WO2014012499A1 - 电容式触摸屏及单层布线电极阵列 - Google Patents

电容式触摸屏及单层布线电极阵列 Download PDF

Info

Publication number
WO2014012499A1
WO2014012499A1 PCT/CN2013/079555 CN2013079555W WO2014012499A1 WO 2014012499 A1 WO2014012499 A1 WO 2014012499A1 CN 2013079555 W CN2013079555 W CN 2013079555W WO 2014012499 A1 WO2014012499 A1 WO 2014012499A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
electrode array
layer wiring
electrode
zigzag
Prior art date
Application number
PCT/CN2013/079555
Other languages
English (en)
French (fr)
Inventor
程泰毅
赵天明
唐昊
Original Assignee
上海思立微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海思立微电子科技有限公司 filed Critical 上海思立微电子科技有限公司
Priority to US14/415,237 priority Critical patent/US9678610B2/en
Publication of WO2014012499A1 publication Critical patent/WO2014012499A1/zh
Priority to US15/598,648 priority patent/US10222919B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the invention belongs to the field of electronic technology, and in particular relates to a single layer wiring electrode array.
  • the present invention also relates to a capacitive touch screen constructed of a single layer wiring electrode array. Background technique
  • Fig. 1 is a single layer electrode pattern and a conductive line pattern disclosed in the prior art Chinese Patent Application Publication No. CN102033672A.
  • the substrate 9 includes an electrode 10 and a conductive line 11.
  • the electrode 10 is a combination of a plurality of comb structures, and the two comb structures cross each other to form an electrode.
  • the conductive lines 11 are vertically or horizontally wired and connected to the electrodes, respectively.
  • obvious colored stripes will appear, which will have a significant influence on the light transmittance, linearity and display effect of the light, and cannot be stably obtained. performance.
  • the technical solution utilized by the present invention is to provide a single-layer wiring electrode array including a capacitor region and a wiring region on a plane, and the wiring of the wiring region has a zigzag shape or a wave shape.
  • the wiring area includes a driving wire connected in parallel to the driving electrode and an inductive wire connected in series to the sensing electrode.
  • the angle between the linear direction of the zigzag edge of the driving wire or the tangential direction of the wavy edge is 10°-170°, and more preferably, the linear direction of the zigzag edge of the driving wire is clamped.
  • the angle between the tangential direction of the corner or wavy edge is 100°-140°.
  • the angle between the angle of the zigzag groove formed by the dividing wire or the tangential direction of the wave groove is 10° - 170°. More preferably, the angle between the angle of the zigzag groove formed by the separation wire or the tangential direction of the wave groove is 40°-140°.
  • the capacitive touch screen further comprises a ground line connected to a control port corresponding to the integrated circuit chip. More preferably, the ground line is wavy or zigzag.
  • the substrate is glass, tempered glass, plexiglass or PET.
  • the integrated circuit chip is one, more preferably, the integrated circuit chip is two, the upper part of the driving wire is connected to a corresponding control port of the opposite integrated circuit chip, and the lower part of the driving wire is connected to the other relative Place the integrated circuit chip on the corresponding control port.
  • This can reduce the space occupied by the driving wires in the electrode array, thereby reducing the area of the non-capacitive sensing region in the electrode array, and the integration of the sensing sensitivity and the unit capacitance is greatly improved.
  • the cell capacitance is substantially rectangular or square, and may be formed by stacking a sensing electrode and a driving electrode in a zigzag or wavy edge in parallel with each other, or may be zigzag or wavy.
  • the two sensing electrodes and the two driving electrodes of the edge are stacked in parallel with each other, and the sensing electrodes and the driving electrodes are arranged at intervals.
  • the edges of the driving electrode and the sensing electrode are wavy or zigzag.
  • the capacitance change of the cell capacitor removed by the finger gradually decreases, and the cell capacitance that is moved in is gradually reduced.
  • the amount of change in capacitance is gradually increased, and the amount of decrease and the amount of increase are approximately linear, so that a good touch effect can be achieved.
  • the single-layer wiring electrode array has a simple preparation process, low cost, and high touch sensing performance.
  • Fig. 5 is a structural diagram showing a second modified structure of the single-layer wiring electrode array in the embodiment of the present invention.
  • Fig. 6 is a structural diagram showing a third modified structure of the single-layer wiring electrode array in the embodiment of the present invention.
  • the present invention provides a single-layer wiring electrode array comprising a capacitor region and a wiring region on a plane in which the wires of the wiring region are zigzag or wavy.
  • the capacitor region and the wiring region are spaced apart from each other.
  • the capacitor region includes a plurality of sequentially arranged unit capacitors, wherein each of the unit capacitors includes at least one sensing electrode on a plane and at least one driving electrode opposed to the sensing electrode.
  • a plurality of sensing electrodes of the plurality of unit capacitors are arranged in parallel, and are connected in series to the sensing electrode array through the sensing wires on one side of the sensing electrode, and the plurality of sensing electrode columns are arranged in parallel to form the sensing electrode surface;
  • a plurality of driving electrodes of the capacitor are arranged in parallel, and are connected in parallel to form a driving electrode column through a plurality of driving wires on one side of the driving electrode, and the plurality of driving electrode columns are arranged in parallel to constitute a driving electrode surface.
  • the sensing wire has a line width of 0.001 to 10 mm
  • the sensing electrode has a width of 0.005 to 10 mm
  • the driving wire has a line width of 0.001 to 10 mm
  • the driving electrode has a width of 0.005 to 10 mm
  • the plurality of driving wires are The spacing between the electrodes is 0.001-5 mm, and the distance between the wavy or zigzag edge of the sensing electrode and the wavy or zigzag edge of the adjacent driving electrode is 0.001-5 mm, and the length of the unit capacitor is l-15 mm.
  • the cell capacitor has a width of l-15 mm.
  • the upper portion of the driving wire is connected to a corresponding control port of an opposite integrated circuit chip, and the lower portion of the driving wire is connected to another corresponding integrated circuit chip corresponding to the control. On the port.
  • the electrode pattern of the capacitive touch screen of the present invention may be a combination of one or more of a rectangular shape, a square shape, a parallelogram shape, a diamond shape, a trapezoidal shape, a hexagonal shape, an octagonal shape, a circular shape, an elliptical shape, and a triangular shape.
  • An improvement to the prior art of the present invention is a change in the shape of the wire of the wiring region, and it is preferred that the wires of the wiring region have a zigzag shape or a wave shape.
  • a zigzag or wavy wire in the wiring area eliminates the color streaks in the display. It will be apparent to those skilled in the art that the wire shape of the wiring area in any capacitive touch screen is the same as, similar to, and modified by the wire shape of the wiring area of the present invention, and is intended to fall within the scope of the present invention.
  • the number of wires in the wiring region 57, the number of electrodes in the capacitor region 52, and the connection relationship between the wires of the wiring region 57 and the electrodes in the capacitor region 52 are not intended to limit the scope of the claims of the present invention.
  • the angle 6 of the linear direction of the zigzag edge of the wire in the wiring region 57 is 130°, and in other embodiments, the angle of the linear direction of the zigzag edge of the wire in the wiring region is It may be 10°-170°, and the angle of the linear direction of the zigzag edge of the wire in the wiring area may also be 100°-140°.
  • the wires in the wiring region 57 are vertically arranged, which may be horizontally arranged or obliquely arranged.
  • it may be a unit capacitor C composed of two sensing electrodes 1 and one driving electrode 2, and may be a unit composed of one sensing electrode 1 and two driving electrodes 2.
  • the capacitor C may also be a unit capacitor C composed of one sensing electrode 1 and one driving electrode 2, and may be a unit capacitor composed of other numbers of sensing electrodes 1 and driving electrodes 2.
  • the unit capacitor C is generally rectangular or square.
  • the adjacent driving electrode 2 forms a capacitance with the sensing electrode 1 to improve the sensitivity of the touch performance.
  • an electrode array composed of one unit capacitor it can be understood that it can be 23x12.
  • the electrode array formed by the unit capacitors may be composed of any number of unit capacitors according to the size of different touch screens.
  • the unit capacitor C has a horizontal length CL of 8 mm and a width CW of 6 mm, and a width 1W between two mutually parallel edges of the sensing electrode 1 is 1.2 mm, and two of the driving electrodes 2 are parallel to each other.
  • the width between the edges 2W is 1.2 mm.
  • Capacitive touch screen 50 also includes a ground line 56 that is coupled to a corresponding control port in the integrated circuit chip.
  • the substrate 51 may be glass, tempered glass or plexiglass according to actual needs, and the substrate 51 may be rectangular, square, circular or a combination of shapes therebetween. It can also be a curved surface with a certain curvature.
  • the advantage of using this structure is that the space of the wiring region 57 occupied by the driving wires 2L in the electrode array 52 is reduced, thereby reducing the area of the wiring region 57 in the electrode array 52, so that the sensing sensitivity and the integration of the electrode array are both Great improvement.
  • the ground line 56 has a zigzag shape and is parallel to the edges of the sensing wire 1L and the driving wire 2L, wherein the ground wire 56 forms a zigzag groove having an angle of 120° and the ground wire 56 has a line width of 0.05 mm.

Abstract

一种电容式触摸屏及单层布线电极阵列。该单层布线电极阵列包括位于一个平面上的电容区和布线区,该布线区的导线呈锯齿形或波浪形。一种包括单层布线电极阵列的电容式触摸屏,该电容式触摸屏包括基板;设置在该基板上的单层布线电极阵列,该单层布线电极阵列包括位于一个平面上的电容区和布线区,该布线区的导线呈锯齿形或波浪形;该布线区的导线分别连接至少一个或多个集成电路芯片对应的控制端口。该单层布线电极阵列和电容式触摸屏使得制备成本低,显示效果好。

Description

电容式触摸屏及单层布线电极阵列
技术领域
本发明属于电子技术领域, 具体涉及一种单层布线电极阵列。 本 发明还涉及由单层布线电极阵列构成的电容式触摸屏。 背景技术
多点式触摸技术正从智能手机向整个消费类电子产业辐射, 包括 中低端手机, 游戏机, 媒体播放器, 导航仪, 电子阅读器, 平板电脑 等。
电容式触摸屏是利用人体的电流感应进行工作的。 电容式触摸屏 通常是一块四层复合玻璃屏, 玻璃屏的内表面和夹层各涂有一层透明 导电膜 ατο), 最外层是一薄层矽土玻璃保护层, 内层和外层 ιτο分别 沿相互垂直的两个轴刻蚀成条状从而形成网格(传感电容)。 当手指触 摸在金属层上时, 在手指接触到的触摸屏网格表面形成一个耦合电容, 对于高频电流来说, 电容是直接导体, 由于人体对大地存在一个对地 电容, 于是手指从接触点吸走一个很小的电流。 通过检测哪些网格的 电流发生了变化就可以得出触摸点的位置。
投射式电容触摸屏的核心部件是内外两面镀了 ιτο膜的玻璃。投射 式电容触摸屏的 ιτο膜并不是覆盖整个屏,而是内外膜分别成水平和垂 直的条形或菱形图案。 内外膜的菱形图形相互错开。
图 1是现有技术中国发明专利申请公开说明书 CN102033672A中所 公开的单层电极图形和导电线路图形。 其包括基板 9, 电极 10和导电线 路 11, 电极 10为多个梳状结构组合而成, 两个梳状结构相互交叉, 形 成电极。 导电线路 11垂直或水平布线, 分别和电极相连接。 对于这种 形状的导电线路, 当基板和 LCD面板相互贴合后, 会出现明显的彩色 状的条紋, 对光线的透光率、 线性度和显示效果会有明显的影响, 不 能得到稳定的性能。
采用两层 ITO膜的制备工艺显然增加了制备过程中的复杂性和增 加了工艺成本, 并且使得通过率下降。
因此目前流行的是采用单层 ITO膜, 但是在制备过程中需要在电 极之间搭桥, 搭桥方式会因为绝缘层膜厚与 ιτο或者金属膜厚差别较 大, 容易产生断裂问题。 当电容式触摸屏贴上 LCD后, 由于电极阵列 中采用水平和 /或垂直的电极导线后,会使得 LCD上面显示出五颜六色 的图像, 类似彩虹现象, 这对人眼和图像显示的效果都会造成影响。 发明内容
本发明要解决的问题是提供一种单层布线电极阵列和电容式触摸 屏, 这种单层布线电极阵列和电容式触摸屏具有制备工艺简单, 成本 低, 触摸感应性能高, 显示效果好。
为解决上述问题, 本发明所利用的技术方案是提供一种单层布线 电极阵列, 包括位于一个平面上的电容区和布线区, 所述布线区的导 线呈锯齿形或波浪形。
优选的, 电容区和布线区相互间隔排列。
优选的, 电容区包括多个顺序排列的单元电容, 其中每个单元电 容包括位于一个平面上的至少一个感应电极和与所述感应电极对置的 至少一个驱动电极。
优选的, 感应电极的中间具有镂空的孔洞。
优选的, 驱动电极的中间具有镂空的孔洞。
优选的, 布线区包括并联连接所述驱动电极的驱动导线和串联连 接所述感应电极的感应导线。
优选的, 感应电极的边缘呈锯齿形或波浪形, 所述驱动电极的边 缘呈锯齿形或波浪形, 所述感应电极与所述驱动电极的边缘相互平行。 相互平行的电极板之间形成电容。
优选的, 多个感应电极相间隔的嵌入所述多个驱动电极形成的波 浪形或锯齿形的凹槽中, 所述多个驱动电极相间隔的嵌入所述多个感 应电极形成的波浪形或锯齿形的凹槽中。
优选的, 多个单元电容的多个感应电极平行排列, 并通过位于感 应电极一侧的感应导线串联连接成感应电极列, 所述多个感应电极列 平行排列构成感应电极面; 所述多个单元电容的多个驱动电极平行排 歹 U, 并通过位于驱动电极一侧的多个驱动导线并联连接成驱动电极列, 所述多个驱动电极列平行排列构成驱动电极面。 优选的, 感应导线的锯齿形边缘所在的直线方向的夹角或波浪形 边缘所在的切线方向的夹角为 10°-170°, 更优选的, 感应导线的锯齿 形边缘所在的直线方向的夹角或波浪形边缘所在的切线方向的夹角为 100°-140°。
优选的, 驱动导线的锯齿形边缘所在的直线方向的夹角或波浪形 边缘所在的切线方向的夹角为 10°-170°, 更优选的, 驱动导线的锯齿 形边缘所在的直线方向的夹角或波浪形边缘所在的切线方向的夹角为 100°-140°。
优选的, 感应电极形成的锯齿形凹槽的夹角或波浪形凹槽的切线 方向之间的夹角为 10°-170°, 驱动电极形成的锯齿形凹槽的夹角或波 浪形凹槽的切线方向之间的夹角为 10°-170°; 更优选的, 感应电极形 成的锯齿形凹槽的夹角或波浪形凹槽的切线方向之间的夹角为 40°-140°,驱动电极形成的锯齿形凹槽的夹角或波浪形凹槽的切线方向 之间的夹角为 40°-140°。
优选的, 感应导线的线宽为 0.001-lOmm , 感应电极的宽度是
0.005-10mm。
优选的, 驱动导线的线宽是 0.001-lOmm , 驱动电极的宽度是 0.005-10mm。
优选的, 多个驱动导线之间的间距为 0.001-5mm。
优选的, 感应电极的波浪形或锯齿形的边缘与相邻的驱动电极的 波浪形或锯齿形的边缘之间的距离是 0.001-5mm。
优选的, 单元电容的长度为 l-15mm, 所述单元电容的宽度为 l-15mm。
优选的, 布线区还包括位于所述感应导线和所述驱动导线之间的 分隔导线。 分隔导线呈波浪形或锯齿形, 分隔导线与所述感应导线和 所述驱动导线的边缘相互平行。
优选的, 分隔导线形成的锯齿形凹槽的夹角或波浪形凹槽的切线 方向之间的夹角为 10°-170°。 更优选的, 分隔导线形成的锯齿形凹槽 的夹角或波浪形凹槽的切线方向之间的夹角为 40°-140°。
优选的, 分隔导线的线宽是 0.005-10mm。
优选的, 分隔导线的边缘与所述驱动导线或感应导线的波浪形或 锯齿形的边缘之间的距离是 0.001-10mm。
优选的, 感应电极和驱动电极的材质为导电薄膜。 更优选的, 感 应电极和驱动电极的材质为 ITO (氧化铟锡)。
本发明所利用的技术方案还提供一种包括单层布线电极阵列的电 容式触摸屏, 包括基板; 设置在所述基板上的单层布线电极阵列, 所 述单层布线电极阵列包括位于一个平面上的电容区和布线区, 所述布 线区的导线呈锯齿形或波浪形; 所述布线区的导线分别连接至少一个 或多个集成电路芯片对应的控制端口。
优选的, 电容式触摸屏还包括与所述集成电路芯片对应的控制端 口相连接的地线。 更优选的, 地线呈波浪形或锯齿形。
优选的, 基板为玻璃、 钢化玻璃、 有机玻璃或 PET。
优选的, 和集成电路芯片控制端口的连接线在一端, 更优选的, 和集成电路芯片的连接线分布在两端, 驱动导线的上部分连接一个相 对置的集成电路芯片对应的控制端口上, 所述驱动导线的下部分通过 柔性电路板或位于触摸屏边缘的 ITO或金属走线连接到集成电路芯片 对应的控制端口上。 这样可以减少驱动导线在电极阵列中所占据的空 间, 从而减少了电极阵列中非电容感应区域的面积, 使得感应灵敏度 和单元电容的集成度都有了很大的提高。
优选的, 集成电路芯片是一个, 更优选的, 集成电路芯片是两个, 驱动导线的上部分连接一个相对置的集成电路芯片对应的控制端口 上, 所述驱动导线的下部分连接另一个相对置的集成电路芯片对应的 控制端口上。 这样可以减少驱动导线在电极阵列中所占据的空间, 从 而减少了电极阵列中非电容感应区域的面积, 使得感应灵敏度和单元 电容的集成度都有了很大的提高。
在本发明优选的实施例中, 单元电容大体为长方形或正方形, 可 以由呈锯齿形或波浪形边缘的一个感应电极和一个驱动电极相互平行 上下堆叠构成, 还可以是由呈锯齿形或波浪形边缘的两个感应电极和 两个驱动电极相互平行上下堆叠构成, 且感应电极和驱动电极相互间 隔排列。
本发明的优点在于, 当触摸屏贴上 LCD后, 由于布线区的导线呈 锯齿形或波浪形, 能够消除触摸屏上面的彩虹的条紋, 有利于增加触 摸屏的显示效果。
驱动电极和感应电极的边缘为波浪形或锯齿形, 在手指头从一个 单元电容移到相邻的另一个单元电容的时候, 手指移出的单元电容的 电容变化量逐渐减小, 移入的单元电容的电容变化量逐渐增加, 减少 量和增加量近似线性关系, 从而能够实现很好的触摸效果。 单层布线 电极阵列的制备工艺简单, 成本低, 触摸感应性能高。
感应电极和驱动电极的中间具有镂空的孔洞可以减少电极 的寄 生电容, 提高触摸的灵敏度。
单层布线电极阵列的制备并不需要在电极之间搭桥, 节省工艺流 程。
触摸屏中的集成电路芯片能够从噪声中检测出电容电荷的微小变 化、 对各种寄生效应进行补偿以减小干扰、 计算出精确的触摸中心位 置和手势识别。
触摸屏中的电容矩阵可以实现小尺寸、 中尺寸以及大尺寸等各种 尺寸类型的电容式触摸屏的制备, 从而满足生产中的各种需求。 附图说明
图 1是现有技术中单层布线电极阵列的示意图。
图 2是本发明的实施例中的单层布线电极阵列的示意图。
图 3是本发明的实施例中的单层布线电极阵列的结构图。
图 4是本发明的实施例中的单层布线电极阵列的第一种变形结构 的结构图。
图 5是本发明的实施例中的单层布线电极阵列的第二种变形结构 的结构图。
图 6是本发明的实施例中的单层布线电极阵列的第三种变形结构 的结构图。
图 7是本发明的实施例中电容式触摸屏的示意图。
图 8是本发明的实施例中电容式触摸屏的变形结构的示意图。 具体实施方式
以下配合附图及本发明的实施例, 进一步阐述本发明为了达到目 的所采取的技术方案。
本发明提供一种单层布线电极阵列, 包括位于一个平面上的电容 区和布线区, 所述布线区的导线呈锯齿形或波浪形。
在本发明的一个实施例中, 电容区和所述布线区相互间隔排列。 电容区包括多个顺序排列的单元电容, 其中每个单元电容包括位于一 个平面上的至少一个感应电极和与所述感应电极对置的至少一个驱动 电极。
在本发明的一个优选的实施例中, 感应电极和驱动电极的中间具 有镂空的孔洞, 可以降低寄生电容。
在本发明的又一个优选的实施例中, 布线区包括并联连接所述驱 动电极的驱动导线和串联连接所述感应电极的感应导线。
其中, 感应电极的边缘呈锯齿形或波浪形, 驱动电极的边缘呈锯 齿形或波浪形, 感应电极与驱动电极的边缘相互平行。 多个感应电极 相间隔的嵌入多个驱动电极形成的波浪形或锯齿形的凹槽中, 多个驱 动电极相间隔的嵌入多个感应电极形成的波浪形或锯齿形的凹槽中。
另外, 多个单元电容的多个感应电极平行排列, 并通过位于感应 电极一侧的感应导线串联连接成感应电极列, 所述多个感应电极列平 行排列构成感应电极面; 所述多个单元电容的多个驱动电极平行排列, 并通过位于驱动电极一侧的多个驱动导线并联连接成驱动电极列, 所 述多个驱动电极列平行排列构成驱动电极面。
在本发明的优选的实施例中, 感应导线的锯齿形边缘所在的直线 方向的夹角或波浪形边缘所在的切线方向的夹角为 10°-170°。 优选感 应导线的锯齿形边缘所在的直线方向的夹角或波浪形边缘所在的切线 方向的夹角为 100°-140°。
在本发明的实施例中, 驱动导线的锯齿形边缘所在的直线方向的 夹角或波浪形边缘所在的切线方向的夹角为 10°-170°, 优选驱动导线 的锯齿形边缘所在的直线方向的夹角或波浪形边缘所在的切线方向的 夹角为 100°-140°。 感应电极形成的锯齿形凹槽的夹角或波浪形凹槽的 切线方向之间的夹角为 10°-170°, 驱动电极形成的锯齿形凹槽的夹角 或波浪形凹槽的切线方向之间的夹角为 10°-170°。 优选感应电极形成 的锯齿形凹槽的夹角或波浪形凹槽的切线方向之间的夹角为 40°-140°, 优选驱动电极形成的锯齿形凹槽的夹角或波浪形凹槽的切线方向之间 的夹角为 40°-140°。
在示例性实施例中, 感应导线的线宽为 0.001-lOmm, 感应电极的 宽度是 0.005-10mm,驱动导线的线宽是 0.001-lOmm, 驱动电极的宽度 是 0.005-10mm, 多个驱动导线之间的间距为 0.001-5mm, 感应电极的 波浪形或锯齿形的边缘与相邻的驱动电极的波浪形或锯齿形的边缘之 间的距离是 0.001-5mm, 单元电容的长度为 l-15mm, 所述单元电容的 宽度为 l-15mm。
在一个优选的实施例中, 布线区还包括位于所述感应导线和所述 驱动导线之间的分隔导线, 其中分隔导线呈波浪形或锯齿形, 所述分 隔导线与所述感应导线和所述驱动导线的边缘相互平行, 分隔导线的 线宽是 0.005-10mm, 分隔导线的边缘与所述驱动导线或所述感应导线 的波浪形或锯齿形的边缘之间的距离是 0.001-10mm。
在其他的实施例中, 所述分隔导线形成的锯齿形凹槽的夹角或波 浪形凹槽的切线方向之间的夹角为 10°-170°, 优选分隔导线形成的锯 齿形凹槽的夹角或波浪形凹槽的切线方向之间的夹角为 40°-140°。
在上述实施例中, 感应电极和驱动电极的材质为 ITO, 其可以是 透明导电金属薄膜, 还可以是导电金属薄膜。
本发明还提供一种包括上述实施例中的单层布线电极阵列的电容 式触摸屏, 包括基板; 设置在所述基板上的单层布线电极阵列, 所述 单层布线电极阵列包括位于一个平面上的电容区和布线区, 所述布线 区的导线呈锯齿形或波浪形; 所述布线区的导线分别连接至少一个或 多个集成电路芯片对应的控制端口。
在本发明的一个实施例中, 电容式触摸屏还包括与所述集成电路 芯片对应的控制端口相连接的地线, 基板为玻璃、 钢化玻璃、 有机玻 璃或 PET中的一种。 在本发明另一个优选的实施例中, 所述地线呈波 浪形或锯齿形。
在本发明的另一个优选的实施例中, 驱动导线的上部分连接一个 相对置的集成电路芯片对应的控制端口上, 所述驱动导线的下部分连 接另一个相对置的集成电路芯片对应的控制端口上。
在前面的背景技术的描述中, 可以知道背景技术中所描述的现有 的电容式触摸屏的导线布线方式在贴上 LCD 后会有彩色条紋现象出 现。
本发明的电容式触摸屏的电极图形可以为长方形、 正方形、 平行 四边形、 菱形、 梯形、 六边形、 八边形、 圆形、 椭圆形、 三角形中的 其中的一种或几种的组合形式, 本发明的对现有技术做出的改进在于 布线区的导线形状的改变, 优选布线区的导线呈锯齿形或波浪形。 布 线区中呈锯齿形或波浪形的导线能够消除显示屏中的彩色条紋现象。 本领域的技术人员可知, 任何电容式触摸屏中布线区的导线形状与本 发明布线区的导线形状相同、 类似以及做出的改进都将落入本发明的 保护范围之内。
本发明的实施例就是针对现有技术中触摸屏不能实现高透光率 和显示效果做出的改进。下面分别结合附图对本发明的具体实施例作 更为详细地说明。
图 2是本发明的实施例中单层布线电极阵列的示意图。 如图 2所 示, 电极阵列包括电容区 52和布线区 57, 电容区 52和布线区 57相互 间隔排列, 布线区 57中的导线呈锯齿形, 且导线之间相互平行, 在其 他的实施例中, 布线区的导线也可以是波浪形, 导线之间也可以是不 平行的。 本实施例只是示意性的表示出了电容区 52和布线区 57的位 置关系和形状, 并未对电容区 52中的电极和布线区 57的导线的实际 连接关系作出说明和描述, 因此图 2中的布线区 57的导线的数量、 电 容区 52中电极的数量以及布线区 57的导线和电容区 52中电极之间连 接关系并不成为限定本发明的权利要求范围。 在图 2中, 布线区 57中 的导线的锯齿形边缘所在的直线方向的夹角 6为 130°, 在其他的实施 例中, 布线区中的导线的锯齿形边缘所在的直线方向的夹角可以是 10°-170°,布线区中的导线的锯齿形边缘所在的直线方向的夹角还可以 是 100°-140°。 布线区 57中的导线是垂直排列的, 其可以是水平排列, 还可以是倾斜排列。布线区 57中的导线的线宽和相邻导线之间的间距 可以是固定值, 在其他的实施例中, 布线区 57中的导线的线宽和相邻 导线之间的间距也可以是变化的, 例如导线从左往右的线宽可以逐渐 的增加, 也可以是导线从上往下的线宽逐渐的增加。 导线之间的间距 可以是从上往下逐渐的增加, 也可以是导线之间的间距从左往右逐渐 的增加。
图 3 是本发明的实施例中的单层布线电极阵列的结构图。 如图 3 所示,位于同一平面上的感应电极 1和驱动电极 2, 感应电极 1相间隔 的嵌入驱动电极 2形成的锯齿形的凹槽 2C中,驱动电极 2相间隔的嵌 入感应电极 1形成的锯齿形的凹槽 2C中。感应电极 1和驱动电极 2构 成单元电容 C, 在图 3中是由两个感应电极 1和两个驱动电极 2构成 的单元电容构 C, 单元电容 C构成电容区。 本领域的技术人员可以理 解, 在其他的实施例中, 可以是由两个感应电极 1 和一个驱动电极 2 构成的单元电容 C, 可以是由一个感应电极 1和两个驱动电极 2构成 的单元电容 C, 还可以是由一个感应电极 1和一个驱动电极 2构成的 单元电容 C, 更可以是由其他数目的感应电极 1和驱动电极 2构成的 单元电容( 。 单元电容 C大体为长方形或正方形, 中间是驱动电极 2 形成的锯齿形或波浪形的凹槽 2C, 感应电极 1的波浪形或锯齿形的边 缘与所述驱动电极 2 的波浪形或锯齿形的边缘相互平行并且具有一定 的间隙, 相邻的驱动电极 2与感应电极 1形成电容, 提高触摸性能的 灵敏度。 在其他实施例中, 虽然也是以一个单元电容构成的电极阵列 来图示的, 但是可以理解的是, 可以是 23x12的单元电容构成的电极 阵列, 根据不同的触摸屏的大小, 还可以是任意数目的单元电容构成 的电极阵列。 两个感应电极 1通过位于感应电极 1左侧的感应导线 1L 串联连接成感应电极列 3, 其中感应导线 1L的线宽是 lmm。两个驱动 电极 2通过位于驱动电极右侧的驱动导线 2L连接成驱动电极列 4, 其 中驱动导线 2L的线宽是 0.05mm。 感应导线 1L和驱动导线 2L构成布 线区,且感应导线 1L和驱动导线 2L呈锯齿形,感应导线 1L的锯齿形 边缘所在的直线方向的夹角 7为 120°,驱动导线 2L的锯齿形边缘所在 的直线方向的夹角 6为 120°。 电容区和布线区相互间隔排列。 在其他 的实施例中, 多个感应电极列平行排列可以构成感应电极面, 多个驱 动电极列平行排列可以构成驱动电极面。 感应电极 1和驱动电极 2的 边缘为锯齿形, 其中感应电极 1和驱动电极 2形成的锯齿形凹槽的夹 角 5为 120°。 本领域的技术人员可知, 感应电极 1和驱动电极 2的边 缘还可以是波浪形。 感应电极 1和驱动电极 2的边缘相互平行且为波 浪形或锯齿形可以在手指头从一个单元电容 C移到相邻的另一个单元 电容 C的时候, 手指移出的单元电容的电容变化量逐渐减小, 移入的 单元电容的电容变化量逐渐增加, 减少量和增加量近似线性关系, 从 而判断出触摸的情况, 能够实现很好的触摸效果。 感应电极 1 与驱动 电极 2的相互对应, 且感应电极 1与驱动电极 2形成互补图形, 驱动 电极 2的边缘和感应电极 1 的边缘相互平行且彼此相邻边缘相间隔的 距离 12C是 0.03mm。
在示例性实施例中,单元电容 C的水平长度 CL为 8mm,宽度 CW 是 6mm,感应电极 1的两条相互平行的边缘之间的宽度 1W为 1.2mm, 驱动电极 2的两条相互平行的边缘之间的宽度 2W为 1.2mm。
在本实施例中, 感应电极 1和驱动电极 2的材质为 ITO薄膜, 在 其他的实施例中, 感应电极 1和驱动电极 2的材质可以是透明导电金 属薄膜。 本领域的技术人员可知, 附图并非按比例地显示了本发明的 基本原理的图示性的各种特征的略微简化的画法。 本文所公开的本发 明的具体设计特征包括例如具体尺寸、 方向、 位置和外形将部分地由 具体所要应用和使用的环境来确定。 在其他的实施例中, 感应电极的 波浪形或锯齿形的边缘与相邻的驱动电极的波浪形或锯齿形的边缘之 间的距离是 0.001-5mm, 单元电容的水平长度可以是 l-15mm, 单元电 容的宽度可以是 l-15mm, 感应电极的宽度可以是 0.005-10mm, 感应 导线的线宽可以为 0.001-lOmm, 驱动导线的线宽可以为 0.001-lOmm, 驱动电极的宽度可以是 0.005-10mm。 多个驱动导线之间的间距可以是 0.001-5mm,感应电极和驱动电极形成的锯齿形凹槽的夹角或波浪形凹 槽的切线方向之间的夹角为 10°-170°。, 优选地为 30°-150°, 更优选地 为 40°-140°。 感应导线的锯齿形边缘所在的直线方向的夹角或波浪形 边缘所在的切线方向的夹角为 10°-170°。 驱动导线的锯齿形边缘所在 的直线方向的夹角或波浪形边缘所在的切线方向的夹角为 10°-170°, 优选感应导线和驱动导线的锯齿形边缘所在的直线方向的夹角或波浪 形边缘所在的切线方向的夹角为 100°-140°。
图 4是本发明实施例中单层布线电极阵列的第一种变形结构的示 意图, 其与第一个实施例的区别在于, 单元电容 C 由一个感应电极 1 和一个驱动电极 2构成, 两个驱动电极 2通过位于驱动电极右侧的驱 动导线 2L并联连接。驱动导线 2L之间的间距 h为 0.05mm,在其他的 实施例中, 驱动导线之间的间距为 0.001-5mm。
图 5是本发明实施例中单层布线电极阵列的第二种变形结构的示 意图, 其与第一个实施例的区别在于, 感应电极 1和驱动电极 2的中 间具有镂空的孔洞 8。在本实施例中, 孔洞 8具有和感应电极 1和驱动 电极 2相同的形状, 在其他的实施例中, 孔洞 8还可以是长方形、 圆 形、 椭圆形、 梯形、 平行四边形以及他们之间的组合形状。 其中可以 是只有感应电极的中间具有镂空的孔洞, 也可以是只有驱动电极具有 镂空的孔洞, 本发明在此并不作出具体的限定。
图 6是本发明实施例中单层布线电极阵列的第三种变形结构的示 意图, 其与第一个实施例的区别在于, 图 6所示是 2x2的电极阵列, 电极阵列包括电容区 52和布线区 57,电容区 52和布线区 57相互间隔 排列, 布线区 57包括感应导线 1L和驱动导线 2L, 还包括位于感应导 线 1L和驱动导线 2L之间的分隔导线 3L。 其中布线区 57中的驱动导 线 2L的线宽从下到上逐渐的减小, 驱动导线 2L之间的间距从下到上 逐渐的减小。驱动导线之间的间距为 0.001-5.0mm, 驱动电极的宽度是 0.005-10mm。 分隔导线 3L呈锯齿形, 分隔导线 3L与感应导线 1L和 驱动导线 2L的边缘相互平行, 分隔导线 3L形成的锯齿形凹槽的夹角 为 120°, 本领域的技术人员可知, 分隔导线 3L形成的锯齿形凹槽的夹 角可以为 10°-170°之间的任意值,其中优选 40°-140°。在其他的实施例 中, 分隔导线 3L呈波浪形, 分隔导线 3L的波浪形凹槽的切线方向之 间的夹角为 10°-170°。 其中, 分隔导线 3L的线宽是 0.05mm, 分隔导 线 3L的边缘与驱动导线 2L或感应导线 1L的锯齿形的边缘之间的距离 是 0.05mm。在本实施例中,感应导线的线宽不变,在其他的实施例中, 感应导线的线宽也可以是变化的, 驱动导线之间的距离和驱动电极的 宽度可以为一个固定的数值。 在其他的实施例中, 分隔导线的线宽可 以是 0.005-10mm之间的任意值。分隔导线的边缘与所述驱动导线或所 述感应导线的波浪形或锯齿形的边缘之间的距离可以是 0.001-lOmm 之间的任意值。
图 7是本发明的实施例中电容式触摸屏的示意图。 如图 7所示, 电容式触摸屏 50包括基板 51,设置在基板 51上的电容区 52和布线区 57, 在本实施例中, 是以 2x2的阵列的单元电容 C构成电极阵列 52, 当然这只是示意性的表示, 可以理解的是, 在实际的实施过程中, 可 以是 10x15的电极阵列、 20x20的电极阵列、 23x12的电极阵列, 可以 根据需要设置任意单元电容阵列形式的电极阵列。 在电极阵列 52中, 感应导线 1L连接集成电路芯片(图中未示出)对应的控制端口 55上, 驱动导线 2L连接在集成电路芯片 (图中未示出) 对应的控制端口 55 上。 其中, 连接在同一感应导线 1L上的一个感应电极列与相对置的驱 动电极列相互配合构成单元电容列。 多个单元电容列排列成电极阵列 52。 在电极阵列 52中, 其中一个单元电容列的驱动导线 2L和相邻的 单元电容列的感应导线 1L位于两个相邻的单元电容列中间的布线区 57上。在本实施例中,控制端口 55的数目只是示例性的表示了与感应 导线 1L和驱动导线 2L连接的其中几个,本领域的技术人员应该知道, 集成电路芯片的控制端口并非这几个, 根据不同的电极阵列, 还可以 是其他数目的控制端口。 电容式触摸屏 50还包括与集成电路芯片中相 对应的控制端口相连接的地线 56。根据实际需要,基板 51可以是玻璃、 钢化玻璃或有机玻璃, 基板 51可以是长方形、 正方形、 圆形或他们之 间的组合形状。 还可以是具有一定弧度的曲面。
图 8是本发明的实施例中电容式触摸屏的变形结构的示意图。 如 图 8所示, 其与第一个实施例中电容式触摸屏的区别在于, 在基板 51 上下两侧分别具有和集成电路芯片(图中未示出)对应的控制端口 552 和 551, 将驱动导线 2L分别连接到控制端口 551或 552上。 即驱动导 线 2L的上半部分连接到控制端口 552上, 驱动导线 2L的下半部分连 接控制端口 551上。 552和 551 可以是同一集成电路芯片上不同的控 制端口, 也可以是相同的两个集成电路芯片的控制端口。 采用这种结 构的好处在于减少了驱动导线 2L在电极阵列 52中所占据的布线区 57 的空间, 从而减少了电极阵列 52中布线区 57的面积, 使得感应灵敏 度和电极阵列的集成度都有了很大的提高。地线 56呈锯齿形并且与感 应导线 1L和驱动导线 2L的边缘相互平行,其中地线 56形成的锯齿形 凹槽的夹角为 120° , 地线 56的线宽为 0.05mm。 在其他的实施例中, 地线 56还可以呈波浪形, 且地线形成的波浪形凹槽的切线方向之间的 夹角为 10°-170°之间的任意值, 根据实际需要, 可以优选分隔导线形 成的锯齿形凹槽的夹角或波浪形凹槽的切线方向之间的夹角为 40°-140 地线的线宽可以是 0.005-10mm。
上述实施例是用于例示性说明本发明的原理及其功效, 但是本发 明并不限于上述实施方式。 任何熟悉此项技术的人员均可在不违背本 发明的精神及范畴下, 在权利要求保护范围内, 对上述实施例进行修 改。 因此本发明的保护范围, 应如本发明的权利要求书所列。

Claims

权利要求书:
1、 一种单层布线电极阵列, 其特征在于, 包括位于一个平面上的 电容区和布线区, 所述布线区的导线呈锯齿形或波浪形。
2、 根据权利要求 1所述的单层布线电极阵列, 其特征在于, 所述 电容区和所述布线区相互间隔排列。
3、 根据权利要求 1所述的单层布线电极阵列, 其特征在于, 所述 电容区包括多个顺序排列的单元电容, 其中每个单元电容包括位于一 个平面上的至少一个感应电极和与所述感应电极对置的至少一个驱动 电极。
4、 根据权利要求 3所述的单层布线电极阵列, 其特征在于, 所述 感应电极的中间具有镂空的孔洞。
5、 根据权利要求 3所述的单层布线电极阵列, 其特征在于, 所述 驱动电极的中间具有镂空的孔洞。
6、 根据权利要求 3所述的单层布线电极阵列, 其特征在于, 所述 布线区包括并联连接所述驱动电极的驱动导线和串联连接所述感应电 极的感应导线。
7、 根据权利要求 3所述的单层布线电极阵列, 其特征在于, 所述 感应电极的边缘呈锯齿形或波浪形, 所述驱动电极的边缘呈锯齿形或 波浪形, 所述感应电极与所述驱动电极的边缘相互平行。
8、 根据权利要求 7所述的单层布线电极阵列, 其特征在于, 所述 多个感应电极相间隔的嵌入所述多个驱动电极形成的波浪形或锯齿形 的凹槽中, 所述多个驱动电极相间隔的嵌入所述多个感应电极形成的 波浪形或锯齿形的凹槽中。 多个单元电容的多个感应电极平行排列, 并通过位于感应电极一侧的 感应导线串联连接成感应电极列, 所述多个感应电极列平行排列构成 感应电极面; 所述多个单元电容的多个驱动电极平行排列, 并通过位 于驱动电极一侧的多个驱动导线并联连接成驱动电极列, 所述多个驱 动电极列平行排列构成驱动电极面。
10、 根据权利要求 6所述的单层布线电极阵列, 其特征在于, 所 述感应导线的锯齿形边缘所在的直线方向的夹角或波浪形边缘所在的 切线方向的夹角为 10°-170°, 所述驱动导线的锯齿形边缘所在的直线 方向的夹角或波浪形边缘所在的切线方向的夹角为 10°-170°。
11、 根据权利要求 10所述的单层布线电极阵列, 其特征在于, 所 述感应导线的锯齿形边缘所在的直线方向的夹角或波浪形边缘所在的 切线方向的夹角为 100°-140°, 所述驱动导线的锯齿形边缘所在的直线 方向的夹角或波浪形边缘所在的切线方向的夹角为 100°-140°。
12、 根据权利要求 3至 9任一项所述的单层布线电极阵列, 其特 征在于, 所述感应电极形成的锯齿形凹槽的夹角或波浪形凹槽的切线 方向之间的夹角为 10°-170°, 所述驱动电极形成的锯齿形凹槽的夹角 或波浪形凹槽的切线方向之间的夹角为 10°-170°。
13、 根据权利 12所述的单层布线电极阵列, 其特征在于, 所述感 应电极形成的锯齿形凹槽的夹角或波浪形凹槽的切线方向之间的夹角 为 40°-140°, 所述驱动电极形成的锯齿形凹槽的夹角或波浪形凹槽的 切线方向之间的夹角为 40°-140°。
14、 根据权利要求 6、 10或 11所述的单层布线电极阵列, 其特征 在于, 所述感应导线的线宽为 0.001-lOmm, 所述驱动导线的线宽是 0.001-10 mm。
15、 根据权利要求 3至 9任一项所述的单层布线电极阵列, 其特 征在于, 所述感应电极的宽度是 0.005-10mm, 所述驱动电极的宽度是
0.005-10mm。
16、 根据权利要求 6、 10或 11所述的单层布线电极阵列, 其特征 在于, 所述多个驱动导线之间的间距为 0.001-5.0mm。
17、 根据权利要求 3至 9任一项所述的单层布线电极阵列, 其特 征在于, 所述感应电极的波浪形或锯齿形的边缘与相邻的驱动电极的 波浪形或锯齿形的边缘之间的距离是 0.001-5mm。 18、 根据权利要求 3至 11任一项所述的单层布线电极阵列, 其特 征在于, 所述单元电容的长度为 l-15mm, 所述单元电容的宽度为 l-15mm。
19、 根据权利要求 6所述的单层布线电极阵列, 其特征在于, 所 述布线区还包括位于所述感应导线和所述驱动导线之间的分隔分隔导
20、 根据权利要求 19所述的单层布线电极阵列, 其特征在于, 所 述分隔导线呈波浪形或锯齿形, 所述分隔导线与所述感应导线和所述 驱动导线的边缘相互平行。
21、 根据权利要求 20所述的单层布线电极阵列, 其特征在于, 所 述分隔导线形成的锯齿形凹槽的夹角或波浪形凹槽的切线方向之间的 夹角为 10°-170°。
22、 根据权利要求 21所述的单层布线电极阵列, 其特征在于, 所 述分隔导线形成的锯齿形凹槽的夹角或波浪形凹槽的切线方向之间的 夹角为 40°-140°。 23、 根据权利要求 19或 20所述的单层布线电极阵列, 其特征在 于, 所述分隔导线的线宽是 0.005-10mm。 24、 根据权利要求 19或 20所述的单层布线电极阵列, 其特征在 于, 所述分隔导线的边缘与所述驱动导线或所述感应导线的波浪形或 锯齿形的边缘之间的距离是 0.001-10mm。 25、 根据权利要求 3至 9任一项所述的单层布线电极阵列, 其特 征在于, 所述感应电极和驱动电极的材质为导电薄膜。
26、 根据权利要求 25所述的单层布线电极阵列, 其特征在于, 所 述感应电极和驱动电极的材质为 ITO。
27、 一种电容式触摸屏, 其特征在于, 包括:
基板;
设置在所述基板上的单层布线电极阵列, 所述单层布线电极阵列 包括位于一个平面上的电容区和布线区, 所述布线区的导线呈锯齿形 或波浪形;
所述布线区的导线分别连接至少一个或多个集成电路芯片对应的 控制端口。
28、 根据权利要求 27所述的电容式触摸屏, 其特征在于, 所述电 容式触摸屏还包括与所述集成电路芯片对应的控制端口相连接的地
29、 根据权利要求 28所述的电容式触摸屏, 其特征在于, 所述地 线呈波浪形或锯齿形。
30、 根据权利要求 27所述的电容式触摸屏, 其特征在于, 所述基 板为玻璃、 钢化玻璃、 有机玻璃或 ΡΕΤ。
PCT/CN2013/079555 2012-07-20 2013-07-17 电容式触摸屏及单层布线电极阵列 WO2014012499A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/415,237 US9678610B2 (en) 2012-07-20 2013-07-17 Capacitive touch screen and single layer wiring electrode array
US15/598,648 US10222919B2 (en) 2012-07-20 2017-05-18 Capacitive touch screen and single layer wiring electrode array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210253965.2A CN103576998B (zh) 2012-07-20 2012-07-20 电容式触摸屏及单层布线电极阵列
CN201210253965.2 2012-07-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/415,237 A-371-Of-International US9678610B2 (en) 2012-07-20 2013-07-17 Capacitive touch screen and single layer wiring electrode array
US15/598,648 Continuation US10222919B2 (en) 2012-07-20 2017-05-18 Capacitive touch screen and single layer wiring electrode array

Publications (1)

Publication Number Publication Date
WO2014012499A1 true WO2014012499A1 (zh) 2014-01-23

Family

ID=49948290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079555 WO2014012499A1 (zh) 2012-07-20 2013-07-17 电容式触摸屏及单层布线电极阵列

Country Status (3)

Country Link
US (2) US9678610B2 (zh)
CN (1) CN103576998B (zh)
WO (1) WO2014012499A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536629A (zh) * 2015-01-16 2015-04-22 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104866133A (zh) * 2014-02-26 2015-08-26 海帝士科技公司 触摸屏
TWI614665B (zh) * 2016-05-31 2018-02-11 Egalax_Empia Tech Inc 電容式觸控面板
US10222919B2 (en) 2012-07-20 2019-03-05 Silead Inc. Capacitive touch screen and single layer wiring electrode array

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10712859B2 (en) * 2012-08-03 2020-07-14 Touchplus Information Corp. Touch-sensitive control device
KR102142855B1 (ko) * 2013-08-29 2020-08-31 미래나노텍(주) 터치스크린 패널용 배선 전극, 이를 이용한 터치스크린 패널 및 그 제조방법
US20150091842A1 (en) 2013-09-30 2015-04-02 Synaptics Incorporated Matrix sensor for image touch sensing
US10042489B2 (en) * 2013-09-30 2018-08-07 Synaptics Incorporated Matrix sensor for image touch sensing
US20150160762A1 (en) * 2013-12-11 2015-06-11 Touchplus Information Corp. Control-point sensing panel
CN103809810A (zh) * 2014-02-19 2014-05-21 深圳市华星光电技术有限公司 触控面板及显示装置
WO2015125864A1 (ja) * 2014-02-20 2015-08-27 シャープ株式会社 タッチパネル
CN104866803B (zh) 2014-02-20 2018-06-05 上海思立微电子科技有限公司 一种指纹信息检测电路
TWI512589B (zh) * 2014-05-16 2015-12-11 Innolux Corp 觸控顯示面板
TWI530852B (zh) * 2014-06-13 2016-04-21 凌巨科技股份有限公司 觸控面板之單層電極
TWI552039B (zh) * 2014-06-27 2016-10-01 群創光電股份有限公司 觸控顯示裝置
CN105278711A (zh) * 2014-06-27 2016-01-27 群创光电股份有限公司 触控显示装置
CN105320329B (zh) * 2014-07-28 2019-03-15 群创光电股份有限公司 显示面板
CN104142757B (zh) * 2014-08-05 2017-02-15 深圳市华星光电技术有限公司 触摸显示屏及其触控面板
CN104298396B (zh) * 2014-09-15 2017-10-20 上海天马微电子有限公司 一种彩膜基板及一种触控显示装置
CN105549798A (zh) * 2014-10-30 2016-05-04 中强光电股份有限公司 触控投影幕及使用触控投影幕的投影系统
CN104536634A (zh) 2015-01-26 2015-04-22 京东方科技集团股份有限公司 一种触摸屏及显示装置
JP6506992B2 (ja) 2015-03-13 2019-04-24 株式会社ジャパンディスプレイ 検出装置及び表示装置
KR101740269B1 (ko) * 2015-07-06 2017-06-08 주식회사 지2터치 고 분해능을 갖는 터치 패널
CN105138988B (zh) * 2015-08-26 2020-02-21 京东方科技集团股份有限公司 互容式指纹识别器件及制备方法、显示面板及显示设备
JP6539190B2 (ja) * 2015-11-20 2019-07-03 株式会社ジャパンディスプレイ タッチ検出装置及びタッチ検出機能付き表示装置
KR102477813B1 (ko) 2015-11-30 2022-12-19 삼성디스플레이 주식회사 터치 패널 및 그것을 포함하는 표시 장치
CN105677096B (zh) * 2016-01-04 2018-09-11 京东方科技集团股份有限公司 一种触控基板及其制作方法和显示面板
CN105786256A (zh) * 2016-03-21 2016-07-20 京东方科技集团股份有限公司 触控基板及显示装置
US10571423B2 (en) 2016-06-24 2020-02-25 Stanley Black & Decker Inc. Systems and methods for locating a stud
CN106339142A (zh) * 2016-08-29 2017-01-18 贵州乾盛科技有限公司 一种触控电极结构、触控面板及触控显示装置
CN106325641A (zh) * 2016-08-29 2017-01-11 红河以恒科技集团有限公司 一种触控电极结构、触控面板及触控显示装置
JP2018063578A (ja) * 2016-10-13 2018-04-19 日本航空電子工業株式会社 印刷配線の製造方法
KR102648414B1 (ko) * 2016-10-31 2024-03-18 엘지디스플레이 주식회사 인-셀 터치 폴더블 표시 장치
CN106843619B (zh) * 2017-01-23 2019-12-24 昆山国显光电有限公司 触控显示面板及其制备方法
CN106990871A (zh) * 2017-04-13 2017-07-28 京东方科技集团股份有限公司 一种触控面板及其制备方法、显示面板和显示装置
CN107544716A (zh) * 2017-09-28 2018-01-05 东莞市骏达触控科技有限公司 Ito电极层、全面屏和电子设备
CN107632740B (zh) * 2017-10-23 2023-10-31 京东方科技集团股份有限公司 触控基板及其制备方法和触控装置
KR102503732B1 (ko) 2017-11-30 2023-02-27 삼성디스플레이 주식회사 표시 장치
US10754487B2 (en) 2018-07-02 2020-08-25 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch sensor with reduced edge breakage
CN108984028A (zh) * 2018-07-02 2018-12-11 武汉华星光电半导体显示技术有限公司 一种触摸传感器
US10802657B1 (en) * 2019-02-12 2020-10-13 Facebook Technologies, Llc System and method for detecting mutual capacitance
CN110119224A (zh) * 2019-05-17 2019-08-13 苏州诺菲纳米科技有限公司 触控传感器及其制备方法
CN112462962B (zh) * 2019-09-06 2023-01-06 华为技术有限公司 触控传感器、触控显示屏及电子设备
CN115485646A (zh) * 2020-03-26 2022-12-16 华为技术有限公司 电容传感器、电子设备以及电子设备的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477430A (zh) * 2009-01-16 2009-07-08 汕头超声显示器(二厂)有限公司 一种电容式触摸屏
CN201402456Y (zh) * 2009-04-20 2010-02-10 深圳市汇顶科技有限公司 一种单面布线的电容型触摸面板及触摸屏终端
CN202771407U (zh) * 2012-07-20 2013-03-06 上海思立微电子科技有限公司 电容式触摸屏及单层布线电极阵列

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090000921A (ko) * 2007-06-29 2009-01-08 주식회사 이노터치테크놀로지 터치 스크린
US8487898B2 (en) * 2008-04-25 2013-07-16 Apple Inc. Ground guard for capacitive sensing
CN101943975B (zh) * 2009-07-09 2015-12-16 敦泰科技有限公司 超薄型互电容触摸屏及组合式超薄型触摸屏
CN201622554U (zh) * 2010-02-04 2010-11-03 深圳市汇顶科技有限公司 一种电容式触摸传感器、触摸检测装置及触控终端
US9146644B2 (en) * 2010-03-08 2015-09-29 Nuvoton Technology Corporation Systems and methods for detecting multiple touch points in surface-capacitance type touch panels
TWI426437B (zh) * 2010-10-28 2014-02-11 Young Lighting Technology Inc 電容式觸控面板
CN102364414A (zh) * 2011-10-26 2012-02-29 苏州瀚瑞微电子有限公司 单层ito的布线结构
CN103576998B (zh) 2012-07-20 2017-07-28 上海思立微电子科技有限公司 电容式触摸屏及单层布线电极阵列

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477430A (zh) * 2009-01-16 2009-07-08 汕头超声显示器(二厂)有限公司 一种电容式触摸屏
CN201402456Y (zh) * 2009-04-20 2010-02-10 深圳市汇顶科技有限公司 一种单面布线的电容型触摸面板及触摸屏终端
CN202771407U (zh) * 2012-07-20 2013-03-06 上海思立微电子科技有限公司 电容式触摸屏及单层布线电极阵列

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10222919B2 (en) 2012-07-20 2019-03-05 Silead Inc. Capacitive touch screen and single layer wiring electrode array
CN104866133A (zh) * 2014-02-26 2015-08-26 海帝士科技公司 触摸屏
CN104866133B (zh) * 2014-02-26 2019-03-22 海帝士科技公司 触摸屏
CN104536629A (zh) * 2015-01-16 2015-04-22 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104536629B (zh) * 2015-01-16 2019-03-26 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
US10459573B2 (en) 2015-01-16 2019-10-29 Boe Technology Group Co., Ltd. In-cell touch panel and display device
TWI614665B (zh) * 2016-05-31 2018-02-11 Egalax_Empia Tech Inc 電容式觸控面板

Also Published As

Publication number Publication date
US20150177878A1 (en) 2015-06-25
US9678610B2 (en) 2017-06-13
US20170308205A1 (en) 2017-10-26
CN103576998A (zh) 2014-02-12
US10222919B2 (en) 2019-03-05
CN103576998B (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
WO2014012499A1 (zh) 电容式触摸屏及单层布线电极阵列
TWI633472B (zh) 觸控螢幕面板
CN202771407U (zh) 电容式触摸屏及单层布线电极阵列
TWI426436B (zh) 具複數個區塊之電容式觸控面板
KR101363361B1 (ko) 접촉 감지 패널
TWI436256B (zh) Mutual capacitive touchpad and modular mutual capacitive touchpad
JP5420709B2 (ja) タッチパネルの電極構造、その方法およびタッチパネル
US9910550B2 (en) Capacitive-type touch screen sensor, touch screen panel and image display device
KR101850660B1 (ko) 전자기 용량 터치스크린
US11188179B2 (en) Touch panel and manufacturing method thereof, and touch display device
CN102799332B (zh) 一种嵌入式单层电容触摸屏
WO2017076209A1 (zh) 一种单层布线的电容式触摸传感器及触摸屏
WO2013140859A1 (ja) 電極シートおよびタッチパネル並びに表示装置
US11126312B2 (en) Touch substrate, display panel and display device
KR20100070964A (ko) 정전용량방식 터치패널의 전극패턴구조
US10963114B1 (en) Touch display panel
TWI467460B (zh) 投射電容式觸控面板
TWM500929U (zh) 觸控式螢幕設備及其單層互電容觸控式螢幕體和電子裝置
TWI552061B (zh) 觸控式螢幕設備及其單層互電容觸控式螢幕體和電子裝置
CN101526869B (zh) 改良电极图案的触控面板
KR101293165B1 (ko) 접촉 감지 패널
KR20100126140A (ko) 정전용량방식 터치패널의 전극패턴구조
WO2022062137A1 (zh) 触控显示屏及其显示装置
CN206224430U (zh) 触摸感应装置
KR101820661B1 (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820408

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14415237

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13820408

Country of ref document: EP

Kind code of ref document: A1