WO2014012416A1 - 一种红外激光变倍扩束系统及激光加工设备 - Google Patents

一种红外激光变倍扩束系统及激光加工设备 Download PDF

Info

Publication number
WO2014012416A1
WO2014012416A1 PCT/CN2013/077776 CN2013077776W WO2014012416A1 WO 2014012416 A1 WO2014012416 A1 WO 2014012416A1 CN 2013077776 W CN2013077776 W CN 2013077776W WO 2014012416 A1 WO2014012416 A1 WO 2014012416A1
Authority
WO
WIPO (PCT)
Prior art keywords
curved surface
lens
optical axis
distance
beam expanding
Prior art date
Application number
PCT/CN2013/077776
Other languages
English (en)
French (fr)
Inventor
李家英
周朝明
孙博
陈玉庆
高云峰
Original Assignee
深圳市大族激光科技股份有限公司
深圳市大族数控科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大族激光科技股份有限公司, 深圳市大族数控科技有限公司 filed Critical 深圳市大族激光科技股份有限公司
Priority to DE112013003095.0T priority Critical patent/DE112013003095B4/de
Priority to US14/415,849 priority patent/US9366873B2/en
Priority to JP2015521954A priority patent/JP5965068B2/ja
Publication of WO2014012416A1 publication Critical patent/WO2014012416A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/009Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with infrared radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • the invention belongs to the technical field of laser processing, and in particular relates to an infrared laser zoom beam expanding system and a laser processing device.
  • the light beam diameter ⁇ of the laser beam is very small (about 1 mm), and if such a thin beam is directly focused, the Rayleigh spot will be large.
  • 2.44 ⁇ f / D
  • the diameter of the Rayleigh plaque
  • D the diameter of the entrance pupil of the focusing mirror
  • f the focal length. It can be seen that the smaller D is, the larger the ⁇ is, and the weaker the energy of the focus point is, which will greatly reduce the processing precision of the system. Therefore, the optical system used for laser processing is generally equipped with a beam expander to expand the beam from the laser and then focus the laser to focus the mirror.
  • variable magnification beam expanders are mostly 2 x ⁇ 8 x , and the zoom value is small, which can not meet the needs of laser processing.
  • large-magnification expansion it is only necessary to use a fixed-magnification beam expander, and it is impossible to achieve various magnification expansion requirements through one beam expander, which brings inconvenience to laser processing and affects the efficiency of laser processing.
  • the object of the present invention is to provide an infrared laser zoom-magnification system, which aims to solve the problem that the existing beam expanding mirror has limited beam expanding capability and a small adapting range.
  • an infrared laser zoom-magnification system including a first lens, a second lens, and a third lens that are sequentially disposed coaxially along a transmission direction of incident light rays; the first lens and the third lens All are plano-convex positive lenses, and the second lens is a convex-concave negative lens;
  • the first lens includes a first curved surface and a second curved surface
  • the second lens includes a third curved surface and a fourth curved surface
  • the third lens includes a fifth curved surface and a sixth curved surface; the first to sixth curved surfaces Arranged in sequence along the direction of transmission of incident light;
  • the curvature radii of the first to sixth curved surfaces are: ⁇ , -27 mm, 10 mm, 1.7 mm, ⁇ , -103 mm;
  • the center thickness of the first to third lenses is: 2 mm, 1 mm, 4 mm;
  • the outer diameters of the first to third lenses are: 10 mm, 3 mm, 34 mm;
  • the ratio of the refractive index of the first to third lenses to the Abbe number is: 1.8:25, 1.48:68, 1.8:25;
  • the distance between the second curved surface and the third curved surface on the optical axis is 10 ⁇ 27 mm; the distance between the fourth curved surface and the fifth curved surface on the optical axis is 119 ⁇ 125 mm.
  • the ratio of the radius of curvature, the center thickness, the outer diameter, the ratio of the refractive index to the Abbe number, and the tolerance of each of the pitches are both 5%.
  • Another object of the present invention is to provide a laser processing apparatus including a laser, a beam expanding system for expanding a laser beam emitted from the laser, and a focusing mirror for focusing the beam after being expanded.
  • the beam expanding system adopts the infrared laser zoom expansion beam expanding system.
  • the system can expand the incident infrared laser beam to 2 to 16 times, and the beam expanding range greatly exceeds the conventional beam expanding mirror. It can adapt to more lasers with different exit diameters and divergence angles, which further expands the range of use of the beam expander system and improves the efficiency of laser processing. Moreover, the maximum beam expansion factor of the system is higher than that of the conventional beam expander, so that the shaping effect of the beam is better, thereby effectively improving the focusing effect of the beam, and improving the precision of the laser processing.
  • the laser processing equipment using the beam expanding system has higher processing precision and higher processing efficiency.
  • FIG. 1 is a schematic structural view of an infrared laser zoom-magnification system according to an embodiment of the present invention
  • FIG. 2 is a focus point dispersion diagram of an infrared laser zoom-magnification system according to an embodiment of the present invention
  • FIG. 3 is a graph showing a transfer function of an infrared laser zoom-magnification system according to an embodiment of the present invention
  • FIG. 4 is a graph showing the energy concentration of an infrared laser zoom-magnification system according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an infrared laser zoom-magnification system according to an embodiment of the present invention. For convenience of description, only parts related to the embodiment are shown.
  • the infrared laser zoom beam expander system is mainly suitable for infrared light, especially infrared light of 1064 nm.
  • the system includes a first lens L1, a second lens L2, and a third lens L3 that are coaxially disposed along a transmission direction of incident light.
  • the first lens L1 is a plano-convex positive lens
  • the second lens L2 is a convex-concave negative lens
  • the third lens L3 is a plano-convex positive lens.
  • the first lens L1 includes a first curved surface S1 and a second curved surface S2 arranged along the transmission direction of the incident light, that is, the first curved surface S1 and the second curved surface S2 serve as a light incident surface and a light exit surface, respectively.
  • the second lens L2 includes a third curved surface S3 and a fourth curved surface S4, and the third lens L3 includes a fifth curved surface S5 and a sixth curved surface S6.
  • the incident ray is transmitted along the first curved surface S1 toward the sixth curved surface S6, and is expanded and amplified after passing through the entire beam expanding system.
  • the first curved surface S1 of the first lens L1 is a plane, the radius of curvature is ⁇ , and the second curved surface S2 is convex outward with respect to the first curved surface S1, and the radius of curvature is -27 mm, wherein the negative symbol represents the curved surface
  • the center of the sphere is located in the object space of the curved surface.
  • the positive sign (which is positive in the present embodiment without the negative sign) indicates that the center of the curved surface is located in the image space of the curved surface.
  • the center thickness d1 of the first lens L1 was 2 mm, and the outer diameter D1 was 10 mm.
  • Refractive index Nd1 and Abbe number of the first lens L1 The ratio of V d 1 is 1.8:25.
  • the third curved surface S3 of the second lens L2 is convex toward the object side, the radius of curvature is 10 mm, and the fourth curved surface S4 is also convex toward the object side, but concave with respect to the third curved surface S3, the radius of curvature is 1.7 mm, and the second lens Refractive index Nd3 and Abbe number of L2
  • the ratio of V d 3 is 1.48:68, and the center thickness d3 of the second lens L2 is 1 mm, and the outer diameter D2 is 3 mm.
  • the tolerance range of each parameter of the second lens L2 is still 5%.
  • the fifth curved surface S5 of the third lens L3 is a plane, the curvature is ⁇ , the sixth curved surface S6 is convex outward with respect to the fifth curved surface S5, the radius of curvature is -103 mm, and the refractive index Nd5 of the third lens L3 and the Abbe number V d 5
  • the ratio is 1.8:25, the center thickness d5 is 4 mm, and the outer diameter D3 is 34 mm.
  • the tolerance range of each parameter of the third lens L3 is 5%.
  • the present invention defines the distance between the first lens L1 and the second lens L2, and the distance between the second lens L2 and the third lens L3, specifically, the exit surface of the first lens L1 (second The distance d2 between the curved surface S2) and the incident surface of the second lens L2 (the third curved surface S3) on the optical axis is 10 to 27 mm, the tolerance is 5%, and the exit surface of the second lens L2 (fourth curved surface S4) and the third surface
  • the incident surface (the fifth curved surface S5) of the lens L3 has a pitch d4 on the optical axis of 119 to 125 mm and a tolerance of 5%.
  • the beam expanding system can expand the incident infrared laser beam to 2 to 16 times, and the beam expanding range greatly exceeds the traditional beam expanding mirror, which can adapt to more different exits.
  • the laser with diameter and divergence angle further expands the range of use of the beam expander system and improves the efficiency of laser processing.
  • the pull-in invariant quantification when the beam is enlarged, its divergence angle will decrease, and the maximum beam expansion factor of the system is higher than that of the conventional beam expander, which also makes the beam divergence angle smaller than the beam divergence angle.
  • the shrinking effect of the traditional beam expander on the beam makes the parallelism of the outgoing beam better, and the focusing effect is better, which is more conducive to subsequent shaping and focusing in the laser processing process, and improve the processing precision.
  • the system is suitable for lasers with a divergence angle of ⁇ 2 ⁇ 4 radians (ie, the divergence angle is 2 ⁇ 4 radians).
  • the diameter of the entrance pupil is 2 ⁇ 8mm, and the diameter of the exit pupil can reach 4 ⁇ . 32mm.
  • the total optical length can be controlled within 150mm.
  • the beam expander system can expand it by 2 to 16 times; for an infrared laser beam with a maximum exit diameter of 8 mm, the beam expander system can expand it by 2 to 4 times.
  • the beam splitting system has better focusing power (the shape of the diffuse spot is regular and the dispersion range is small, and the energy concentration is high, so that the precision and efficiency of the laser processing are high.
  • the parameters of the surface curvature radius, the ratio of the refractive index to the Abbe number, the center thickness and the outer diameter of the first, second, and third lenses may be selected from the specific parameters provided above. That is, the radius of curvature of the first curved surface S1 of the first lens L1 is ⁇ , the radius of curvature of the second curved surface S2 is -27 mm, the center thickness d1 is 2 mm, and the outer diameter D1 is 10 mm.
  • Refractive index Nd1 and Abbe number of the first lens L1 The ratio of V d 1 is 1.8:25.
  • the second lens L2 and the third lens L3 are similar. This preferred solution has a better beam expanding effect, and is particularly suitable for infrared light beam expansion of 1064 nm.
  • the distance d2 on the optical axis of the second curved surface S2 and the third curved surface S3 and the distance d4 on the optical axis of the fourth curved surface S4 and the fifth curved surface S5 may be adopted.
  • Different designs are used to obtain different beam expansion factors ⁇ .
  • the distance d2 between the second curved surface S2 and the third curved surface S3 on the optical axis may be set to 26.6 mm, and the distance d4 between the fourth curved surface S4 and the fifth curved surface S5 on the optical axis may be set. It is set at 119 mm, of course, this parameter is a preferred parameter, which also has a tolerance range of 5%. At this time, the expansion ratio ⁇ of the system is twice.
  • the distance d2 between the second curved surface S2 and the third curved surface S3 on the optical axis may be set to 24.8 mm, and the distance d4 between the fourth curved surface S4 and the fifth curved surface S5 on the optical axis may be set. Set to 122.1mm with a tolerance of 5%. At this time, the system's beam expansion factor ⁇ is 4 times.
  • the distance d2 between the second curved surface S2 and the third curved surface S3 on the optical axis may be set to 22.4 mm, and the distance d4 between the fourth curved surface S4 and the fifth curved surface S5 on the optical axis may be set. Set to 123.3mm with a tolerance of 5%. At this time, the system has a beam expansion factor ⁇ of 6 times.
  • the distance d2 between the second curved surface S2 and the third curved surface S3 on the optical axis may be set to 20 mm, and the distance d4 between the fourth curved surface S4 and the fifth curved surface S5 on the optical axis may be set. It is 123.9mm with a tolerance of 5%. At this time, the expansion ratio ⁇ of the system is 8 times.
  • the distance d2 between the second curved surface S2 and the third curved surface S3 on the optical axis may be set to 17.6 mm, and the distance d4 between the fourth curved surface S4 and the fifth curved surface S5 on the optical axis may be set. Set to 124.2mm with a tolerance of 5%. At this time, the expansion ratio ⁇ of the system is 10 times.
  • the distance d2 between the second curved surface S2 and the third curved surface S3 on the optical axis may be set to 15.2 mm, and the distance d4 between the fourth curved surface S4 and the fifth curved surface S5 on the optical axis may be set. Set to 124.4mm with a tolerance of 5%. At this time, the system's beam expansion factor ⁇ is 12 times.
  • the distance d2 between the second curved surface S2 and the third curved surface S3 on the optical axis may be set to 12.8 mm, and the distance d4 between the fourth curved surface S4 and the fifth curved surface S5 on the optical axis may be set. Set to 124.6mm with a tolerance of 5%. At this time, the system's beam expansion factor ⁇ is 14 times.
  • the distance d2 between the second curved surface S2 and the third curved surface S3 on the optical axis may be set to 10.4 mm, and the distance d4 between the fourth curved surface S4 and the fifth curved surface S5 on the optical axis may be set. Set to 124.7mm with a tolerance of 5%. At this time, the system's beam expansion factor ⁇ is 16 times.
  • a beam expanding effect of 2 to 16 times can be obtained.
  • the relative distances of the three lenses can be adjusted according to the exit pupil diameter, the divergence angle of the actual laser, and the specific conditions of the focusing mirror. , that is, adjusting the surface spacing d2 and d4, and then appropriately expanding the laser beam, so that the expanded laser beam can meet the requirements of laser processing precision and Achieve ideal coupling with different laser processing focusing mirrors to improve the quality and efficiency of laser processing.
  • the infrared laser zoom expansion beam expanding system provided by the invention can realize 2 ⁇ 16 times expansion, the beam expanding range is much larger than the traditional beam expanding mirror, can obviously improve the laser processing precision and quality, and has wide application range, and is suitable for various infrared lasers.
  • the light emitted by the laser is expanded by a beam expander system as a device, and then the beam after the beam is focused by the focusing mirror of the laser processing apparatus onto the workpiece to be processed.
  • the laser processing equipment using the beam expanding system has higher processing precision and higher processing efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

一种红外激光变倍扩束系统,适用于激光加工领域,包括第一、二、三透镜;第一、三透镜为平凸正透镜,第二透镜为凸凹负透镜;第一、二、三透镜分别包括第一、二曲面,第三、四曲面及第五、六曲面;第一至六曲面的曲率半径为∞,—27,10,1.7,∞,—103;第一至三透镜的中心厚度为2,1,4;第一第三透镜的外径为10,3,34;第一至三透镜的折射率与阿贝数的比例为1.8:25,1.48:68,1.8:25;第二、三曲面的间距为10~27;第四、五曲面的间距为119—125,单位为mm,公差为5%。该系统可将入射光扩束2~16倍,可适应不同出射直径及发散角的激光器,提高了激光加工的效率及精度。

Description

一种红外激光变倍扩束系统及激光加工设备
本发明属于激光加工技术领域,尤其涉及一种红外激光变倍扩束系统及激光加工设备。
在激光加工领域,激光束的出光直径Φ都很小(约为1mm),若直接聚焦如此细的光束,其瑞利斑就会很大。根据瑞利斑公式:δ=2.44λf/D,其中,δ为瑞利斑的直径,D为聚焦镜的入瞳直径,f为焦距。可见:D越小,δ越大,其聚焦点的能量越弱,这样会大大降低系统的加工精度。因此,用于激光加工的光学系统一般都要配用扩束镜,将出自激光器的细光束进行扩束,然后再供激光加工聚焦镜进行聚焦。
   根据拉氏不变量(lagrange)定理:J=nDθ=n′D′θ′,其中:n和n′分别表示光学系统的物方和像方介质的折射率,当物方和像方介质均为空气时,n=n′=1;D和D′分别表示光学系统的入瞳直径和出瞳直径;θ和θ′表示入射光和出射光的视场角,当视场角很小时,可以用弧度来表示。由上式可见,当θ较大时,可通过扩束镜将光束放大β=D/D′倍,以用于激光加工。
   在激光加工时,许多加工对象所适用的激光波长λ是不同的,如λ=1064nm;λ=532nm;λ=266nm等,因此便出现了适应不同波长的激光器的各种光学扩束镜,同时要求光学扩束镜的使用范围越大越好,即同一扩束镜可以配合不同的应用环境,如不同的激光器出瞳直径、发散角等,另外也要求其能够配合不同的激光加工聚焦镜达到理想的耦合。因此,变倍扩束镜便成为激光加工领域的研究热点。目前常用的可变倍率的扩束镜多为2x~8x,变倍数值小,不能很好的满足激光加工的需要。在要求大倍率扩束时,只好使用定倍扩束镜,无法通过一个扩束镜实现多种倍率扩束要求,为激光加工带来了不便,影响了激光加工的效率。
本发明的目的在于提供一种红外激光变倍扩束系统,旨在解决现有扩束镜扩束能力有限,适应范围小的问题。   
本发明是这样实现的,一种红外激光变倍扩束系统,包括沿入射光线的传输方向依次共轴设置的第一透镜、第二透镜及第三透镜;所述第一透镜和第三透镜均为平凸型正透镜,所述第二透镜为凸凹型负透镜;
   所述第一透镜包括第一曲面和第二曲面,所述第二透镜包括第三曲面和第四曲面,所述第三透镜包括第五曲面和第六曲面;所述第一至第六曲面沿入射光线的传输方向依次排布;
   所述第一至第六曲面的曲率半径依次为:∞,-27mm,10mm,1.7mm,∞,-103mm;
   所述第一至第三透镜的中心厚度依次为:2mm,1mm,4mm;
   所述第一至第三透镜的外径依次为:10mm,3mm,34mm;
   所述第一至第三透镜的折射率与阿贝数的比例依次为:1.8:25,1.48:68,1.8:25;
   所述第二曲面与第三曲面在光轴上的间距为10~27mm;所述第四曲面与第五曲面在光轴上的间距为119~125mm。
   各所述曲率半径、中心厚度、外径、折射率与阿贝数的比例以及各所述间距的公差均为5%。
   本发明的另一目的在于提供一种激光加工设备,包括激光器、用于对所述激光器发出的激光进行扩束的扩束系统,以及用于将经过扩束后的光束进行聚焦的聚焦镜,所述扩束系统采用所述的红外激光变倍扩束系统。   
本发明通过对该扩束系统的各透镜进行上述设计后,使该系统可以将入射的红外激光光束扩大为原来的2~16倍,其扩束范围极大的超过了传统的扩束镜,可适应更多不同出射直径及发散角的激光器,进而扩大了该扩束系统的使用范围,提高了激光加工的效率。并且,该系统的最大扩束倍数高于传统扩束镜的扩束倍数,使得光束的整形效果更好,进而有效改善了光束的聚焦效果,有利于提高激光加工的精度。
   由于该扩束系统具有较大的变倍范围,适应性更强,使采用该扩束系统的激光加工设备具有更高的加工精度及更高的加工效率。
 图1是本发明实施例红外激光变倍扩束系统的结构示意图;
   图2是本发明实施例红外激光变倍扩束系统的聚焦点弥散图;
   图3是本发明实施例红外激光变倍扩束系统的传递函数曲线图;
   图4是本发明实施例红外激光变倍扩束系统的能量集中度曲线图。
为了使本 发明 的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本 发明 进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本 发明 ,并不用于限定本 发明 。
以下结合具体实施例对本发明的具体实现进行详细描述:
图1示出了本发明实施例提供的红外激光变倍扩束系统的结构示意图,为了便于说明,仅示出了与本实施例相关的部分。
该红外激光变倍扩束系统主要适用于红外光,特别是1064nm的红外光。如图1,该系统包括沿入射光线的传输方向共轴设置的第一透镜L1、第二透镜L2及第三透镜L3。第一透镜L1为平凸型正透镜,第二透镜L2为凸凹型负透镜,第三透镜L3为平凸型正透镜。其中,第一透镜L1包括沿着入射光线的传输方向排布的第一曲面S1和第二曲面S2,即第一曲面S1和第二曲面S2分别作为光入射面和光出射面。同样的,第二透镜L2包括第三曲面S3和第四曲面S4,第三透镜L3包括第五曲面S5和第六曲面S6。入射光线沿着第一曲面S1向第六曲面S6的方向传输,经过整个扩束系统后得以扩束放大。
在该系统中,第一透镜L1的第一曲面S1为平面,曲率半径为∞,第二曲面S2相对于第一曲面S1向外凸出,曲率半径为-27mm,其中,负号表示曲面的球心位于曲面的物方空间,正号(本实施例中不带有负号标记的即为正)表示曲面的球心位于曲面的像方空间,以下同理。另外,第一透镜L1的中心厚度d1(即第一透镜L1在光轴上的厚度)为2mm,外径D1为10mm。第一透镜L1的折射率Nd1与阿贝数 V d 1 的比例为1.8:25。上述各参数并非唯一选择,均存在5%的公差范围,即允许各参数在±5%范围内变化。
第二透镜L2的第三曲面S3向物方凸出,曲率半径为10mm,第四曲面S4同样向物方凸出,但相对于第三曲面S3内凹,曲率半径为1.7mm,第二透镜L2的折射率Nd3与阿贝数 V d 3 的比例为1.48:68,且第二透镜L2的中心厚度d3为1mm,外径D2为3mm。第二透镜L2的各参数的公差范围仍为5%。
第三透镜L3的第五曲面S5为平面,曲率为∞,第六曲面S6相对第五曲面S5向外凸出,曲率半径为-103mm,第三透镜L3的折射率Nd5与阿贝数 V d 5 的比例为1.8:25,中心厚度d5为4mm,外径D3为34mm。第三透镜L3的各参数的公差范围同为5%。
并且,本发明对第一透镜L1和第二透镜L2之间的距离,以及第二透镜L2与第三透镜L3之间的距离进行了限定,具体的,第一透镜L1的出射面(第二曲面S2)与第二透镜L2的入射面(第三曲面S3)在光轴上的间距d2为10~27mm,公差为5%,第二透镜L2的出射面(第四曲面S4)与第三透镜L3的入射面(第五曲面S5)在光轴上的间距d4为119~125mm,公差为5%。
以下通过表格对上述方案进行更加清晰的说明:
Figure PCTCN2013077776-appb-I000001
通过对各透镜进行上述设计后,该扩束系统可以将入射的红外激光光束扩大为原来的2~16倍,其扩束范围极大的超过了传统的扩束镜,可适应更多不同出射直径及发散角的激光器,进而扩大了该扩束系统的使用范围,提高了激光加工的效率。并且,根据拉式不变量定量,当光束扩大后,其发散角便会减小,该系统的最大扩束倍数高于传统扩束镜的扩束倍数,也使得光束发散角的缩小程度优于传统扩束镜对光束的收缩效果,使出射光束的平行度更好,聚焦效果好,进而更有利于在激光加工过程中进行后续整形及聚焦,提高加工精度。
该系统适用于发散角为±2~4豪弧度(即发散角的角度大小为2~4豪弧度)的激光器,其入瞳直径的范围为2~8mm,出瞳直径的范围可达4~32mm。光学总长可控制在150mm之内。对于最大出射直径为2mm的红外激光束,该扩束系统可将其扩束2~16倍;对于最大出射直径为8mm的红外激光束,该扩束系统可将其扩束2~4倍。
图2、3、4分别示出了该扩束系统的聚焦点弥散图、光学传递函数曲线图及能量集中度曲线图。根据上述附图可知该扩束系统的出射光的聚焦性较好(弥散斑的形状规则且弥散范围较小,能量集中度较高,使得激光加工的精度和效率较高。
优选的,上述第一、第二、第三透镜的表面曲率半径、折射率与阿贝数的比例、中心厚度及外径的参数可选择以上提供的具体参数。即:第一透镜L1的第一曲面S1的曲率半径为∞,第二曲面S2的曲率半径为-27mm,中心厚度d1为2mm,外径D1为10mm。第一透镜L1的折射率Nd1与阿贝数 V d 1 的比例为1.8:25。第二透镜L2和第三透镜L3同理。该优选的方案具有更佳的扩束效果,尤其适用于1064nm的红外光扩束。
进一步的,在上述的核心或优选方案的基础上,可以通过对第二曲面S2与第三曲面S3在光轴上的间距d2和第四曲面S4与第五曲面S5在光轴上的间距d4进行不同的设计而获得不同的扩束倍数β。以下提供几种具体的优选方案。
作为第一种优选的方案,可以将第二曲面S2与第三曲面S3在光轴上的间距d2设定为26.6mm,将第四曲面S4与第五曲面S5在光轴上的间距d4设定为119mm,当然,该参数为优选的参数,该间距同样具有5%的公差范围。此时,该系统的扩束倍数β为2倍。
作为第二种优选的方案,可以将第二曲面S2与第三曲面S3在光轴上的间距d2设定为24.8mm,将第四曲面S4与第五曲面S5在光轴上的间距d4设定为122.1mm,公差为5%。此时,该系统的扩束倍数β为4倍。
作为第三种优选的方案,可以将第二曲面S2与第三曲面S3在光轴上的间距d2设定为22.4mm,将第四曲面S4与第五曲面S5在光轴上的间距d4设定为123.3mm,公差为5%。此时,该系统的扩束倍数β为6倍。
作为第四种优选的方案,可以将第二曲面S2与第三曲面S3在光轴上的间距d2设定为20mm,将第四曲面S4与第五曲面S5在光轴上的间距d4设定为123.9mm,公差为5%。此时,该系统的扩束倍数β为8倍。
作为第五种优选的方案,可以将第二曲面S2与第三曲面S3在光轴上的间距d2设定为17.6mm,将第四曲面S4与第五曲面S5在光轴上的间距d4设定为124.2mm,公差为5%。此时,该系统的扩束倍数β为10倍。
作为第六种优选的方案,可以将第二曲面S2与第三曲面S3在光轴上的间距d2设定为15.2mm,将第四曲面S4与第五曲面S5在光轴上的间距d4设定为124.4mm,公差为5%。此时,该系统的扩束倍数β为12倍。
作为第七种优选的方案,可以将第二曲面S2与第三曲面S3在光轴上的间距d2设定为12.8mm,将第四曲面S4与第五曲面S5在光轴上的间距d4设定为124.6mm,公差为5%。此时,该系统的扩束倍数β为14倍。
作为第八种优选的方案,可以将第二曲面S2与第三曲面S3在光轴上的间距d2设定为10.4mm,将第四曲面S4与第五曲面S5在光轴上的间距d4设定为124.7mm,公差为5%。此时,该系统的扩束倍数β为16倍。
以下通过表格对上述优选的方案进行更加清晰的说明。
表2 透镜曲面间隔与扩束倍数对照表
d2(mm) d4(mm) β
26.6 119 2
24.8 122.1 4
22.4 123.3 6
20 123.9 8
17.6 124.2 10
15.2 124.4 12
12.8 124.6 14
10.4 124.7 16
根据上述各优选的方案,可以获得2~16倍的扩束效果,在激光打标过程中,可以根据实际激光器的出瞳直径、发散角,以及聚焦镜的具体情况调整三个透镜的相对距离,即调节曲面间隔d2和d4,进而对激光光束进行适当的扩束,使扩束后的激光束能够满足激光加工精度的要求并 配合不同的激光加工聚焦镜达到理想的耦合,以提高激光加工的质量和效率。
本发明提供的红外激光变倍扩束系统可实现2~16倍扩束,扩束范围远大于传统的扩束镜,可明显提高激光加工精度和质量,应用范围广,适用于各种红外激光加工设备中,以作为设备的扩束系统对激光器发出的光进行扩束,然后通过激光加工设备的聚焦镜将扩束后的光束聚焦到待加工的工件上。
由于该扩束系统具有较大的变倍范围,适应性更强,使采用该扩束系统的激光加工设备具有更高的加工精度及更高的加工效率。
以上所述仅为本 发明 的较佳实施例而已,并不用以限制本 发明 ,凡在本 发明 的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本 发明 的保护范围之内。

Claims (10)

  1. 一种红外激光变倍扩束系统,其特征在于,包括沿入射光线的传输方向依次共轴设置的第一透镜、第二透镜及第三透镜;所述第一透镜和第三透镜均为平凸型正透镜,所述第二透镜为凸凹型负透镜;
    所述第一透镜包括第一曲面和第二曲面,所述第二透镜包括第三曲面和第四曲面,所述第三透镜包括第五曲面和第六曲面;所述第一至第六曲面沿入射光线的传输方向依次排布;
    所述第一至第六曲面的曲率半径依次为:∞,-27mm,10mm,1.7mm,∞,-103mm;
    所述第一至第三透镜的中心厚度依次为:2mm,1mm,4mm;
    所述第一至第三透镜的外径依次为:10mm,3mm,34mm;
    所述第一至第三透镜的折射率与阿贝数的比例依次为:1.8:25,1.48:68,1.8:25;
    所述第二曲面与第三曲面在光轴上的间距为10~27mm;所述第四曲面与第五曲面在光轴上的间距为119~125mm。
    各所述曲率半径、中心厚度、外径、折射率与阿贝数的比例以及各所述间距的公差范围均为5%。
  2. 如权利要求1所述的红外激光变倍扩束系统,其特征在于,所述第二曲面与第三曲面在光轴上的间距为26.6mm;所述第四曲面与第五曲面在光轴上的间距为119mm。
  3. 如权利要求1所述的红外激光变倍扩束系统,其特征在于,所述第二曲面与第三曲面在光轴上的间距为24.8mm;所述第四曲面与第五曲面在光轴上的间距为122.1mm。
  4. 如权利要求1所述的红外激光变倍扩束系统,其特征在于,所述第二曲面与第三曲面在光轴上的间距为22.4mm;所述第四曲面与第五曲面在光轴上的间距为123.3mm。
  5. 如权利要求1所述的红外激光变倍扩束系统,其特征在于,所述第二曲面与第三曲面在光轴上的间距为20mm;所述第四曲面与第五曲面在光轴上的间距为123.9mm。
  6. 如权利要求1所述的红外激光变倍扩束系统,其特征在于,所述第二曲面与第三曲面在光轴上的间距为17.6mm;所述第四曲面与第五曲面在光轴上的间距为124.2mm。
  7. 如权利要求1所述的红外激光变倍扩束系统,其特征在于,所述第二曲面与第三曲面在光轴上的间距为15.2mm;所述第四曲面与第五曲面在光轴上的间距为124.4mm。
  8. 如权利要求1所述的红外激光变倍扩束系统,其特征在于,所述第二曲面与第三曲面在光轴上的间距为12.8mm;所述第四曲面与第五曲面在光轴上的间距为124.6mm。
  9. 如权利要求1所述的红外激光变倍扩束系统,其特征在于,所述第二曲面与第三曲面在光轴上的间距为10.4mm;所述第四曲面与第五曲面在光轴上的间距为124.7mm。
  10. 一种激光加工设备,包括激光器、用于对所述激光器发出的激光进行扩束的扩束系统,以及用于将经过扩束后的光束进行聚焦的聚焦镜,其特征在于,所述扩束系统采用权利要求1~9任一项所述的红外激光变倍扩束系统。
PCT/CN2013/077776 2012-07-18 2013-06-24 一种红外激光变倍扩束系统及激光加工设备 WO2014012416A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013003095.0T DE112013003095B4 (de) 2012-07-18 2013-06-24 Infrarot-Laser-Zoomstrahlaufweitungssystem und Laserbearbeitungsanlage
US14/415,849 US9366873B2 (en) 2012-07-18 2013-06-24 Infrared laser zoom beam expanding system and laser processing equipment
JP2015521954A JP5965068B2 (ja) 2012-07-18 2013-06-24 赤外線レーザーズームビーム拡大システム及びレーザー加工機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210248588.3A CN103576316B (zh) 2012-07-18 2012-07-18 一种红外激光变倍扩束系统及激光加工设备
CN201210248588.3 2012-07-18

Publications (1)

Publication Number Publication Date
WO2014012416A1 true WO2014012416A1 (zh) 2014-01-23

Family

ID=49948253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077776 WO2014012416A1 (zh) 2012-07-18 2013-06-24 一种红外激光变倍扩束系统及激光加工设备

Country Status (5)

Country Link
US (1) US9366873B2 (zh)
JP (1) JP5965068B2 (zh)
CN (1) CN103576316B (zh)
DE (1) DE112013003095B4 (zh)
WO (1) WO2014012416A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566649A (zh) * 2021-08-06 2021-10-29 江苏亮点光电研究有限公司 一种射击训练用大倍率激光扩束镜头及其应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576318B (zh) * 2012-07-18 2015-09-09 大族激光科技产业集团股份有限公司 一种绿光激光变倍扩束系统及激光加工设备
CN104175003B (zh) * 2014-09-09 2016-05-25 大族激光科技产业集团股份有限公司 一种激光加工系统及多路激光加工装置
US10416471B2 (en) 2016-10-17 2019-09-17 Cymer, Llc Spectral feature control apparatus
CN108508614B (zh) * 2017-02-23 2024-05-03 常州巴斯光年激光科技有限公司 一种适用于1064nm波长的红外激光连续倍率扩束系统
CN111283320B (zh) * 2020-03-06 2022-02-15 深圳市大族数控科技股份有限公司 激光扩束镜及激光加工设备
CN113319434A (zh) * 2021-06-28 2021-08-31 苏州赛腾精密电子股份有限公司 一种激光线宽调整方法及激光标记装置
CN114099133B (zh) * 2021-11-10 2023-05-26 华中科技大学 一种用于眼科手术的大视场大数值孔径手术物镜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384657A (en) * 1993-02-01 1995-01-24 Lockheed Missiles And Space Co., Inc. Laser beam expanders with glass and liquid lens elements
CN101211002A (zh) * 2006-12-30 2008-07-02 深圳市大族激光科技股份有限公司 激光变倍扩束镜头及调节方法
CN101414052A (zh) * 2008-11-26 2009-04-22 中国科学院上海技术物理研究所 伽利略式多波长可变倍激光扩束准直系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353617A (en) 1980-11-18 1982-10-12 Canon Kabushiki Kaisha Optical system capable of continuously varying the diameter of a beam spot
JPH10209028A (ja) * 1997-01-16 1998-08-07 Nikon Corp 照明光学装置及び半導体素子の製造方法
US5991096A (en) * 1997-09-09 1999-11-23 Eastman Kodak Company Zoom lens
US7706078B2 (en) * 2006-09-14 2010-04-27 Semiconductor Energy Laboratory Co., Ltd. Laser light irradiation apparatus and laser light irradiation method
CN100510831C (zh) 2006-12-31 2009-07-08 深圳市大族激光科技股份有限公司 变倍扩束镜
DE102009025182B4 (de) 2008-06-12 2015-01-22 Jenoptik Optical Systems Gmbh Optischer Strahlaufweiter und Bearbeitungsverfahren mit einem solchen Strahlaufweiter
KR20100048092A (ko) 2008-10-30 2010-05-11 삼성전기주식회사 줌 확대기
JP5429612B2 (ja) * 2009-03-18 2014-02-26 株式会社リコー ズームレンズ、情報装置および撮像装置
CN101738730B (zh) * 2009-12-31 2012-04-11 中国科学院长春光学精密机械与物理研究所 一种透镜间距可调整的激光扩束器
CN102004319B (zh) * 2010-09-30 2012-07-04 深圳市大族激光科技股份有限公司 一种紫外变倍扩束镜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384657A (en) * 1993-02-01 1995-01-24 Lockheed Missiles And Space Co., Inc. Laser beam expanders with glass and liquid lens elements
CN101211002A (zh) * 2006-12-30 2008-07-02 深圳市大族激光科技股份有限公司 激光变倍扩束镜头及调节方法
CN101414052A (zh) * 2008-11-26 2009-04-22 中国科学院上海技术物理研究所 伽利略式多波长可变倍激光扩束准直系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566649A (zh) * 2021-08-06 2021-10-29 江苏亮点光电研究有限公司 一种射击训练用大倍率激光扩束镜头及其应用

Also Published As

Publication number Publication date
DE112013003095B4 (de) 2019-01-03
JP2015523607A (ja) 2015-08-13
CN103576316A (zh) 2014-02-12
US20150185485A1 (en) 2015-07-02
JP5965068B2 (ja) 2016-08-03
CN103576316B (zh) 2015-09-09
US9366873B2 (en) 2016-06-14
DE112013003095T5 (de) 2015-03-19

Similar Documents

Publication Publication Date Title
WO2014012416A1 (zh) 一种红外激光变倍扩束系统及激光加工设备
WO2014067085A1 (zh) 一种超紫外激光打标Fθ镜头及激光加工设备
WO2014012417A1 (zh) 一种绿光激光变倍扩束系统及激光加工设备
WO2014012415A1 (zh) 一种紫外激光变倍扩束系统及激光加工设备
CN101788716B (zh) 一种激光扩束系统
WO2014067097A1 (zh) 一种远红外激光加工用Fθ镜头及激光加工设备
WO2014067103A1 (zh) 一种近红外激光聚焦镜头及激光印刷设备
CN101887173A (zh) 紫外激光变倍扩束镜
WO2016086377A1 (zh) 3d打印机、打印方法及镜头模组
CN216561248U (zh) 一种紫外激光定倍扩束系统
CN105527716B (zh) 一种紫外激光连续变倍扩束镜
CN106681093B (zh) 一种紫外激光投影镜头
WO2014019159A1 (zh) 一种红外激光加工光学镜头及激光加工设备
WO2016029396A1 (zh) 光学镜头
WO2016033730A1 (zh) 光学镜头
WO2016082172A1 (zh) 激光刻线用光学镜头
CN107797225B (zh) 光学镜头及其激光加工设备
WO2016086376A1 (zh) 3d打印机及其采用的镜头模组
CN217034419U (zh) 一种405nm超大倍率可调角度扩束镜
CN112292627B (zh) 远心镜头和激光加工设备
JP2013029748A (ja) 非球面ホモジナイザー及びホモジナイザー用非球面レンズの設計方法
CN108008523B (zh) 一种可实现内部调焦功能的光学镜头
CN100582858C (zh) 变焦Nd-YAG激光扫描f-theta镜系统
CN104423048A (zh) 红外激光定倍扩束镜及扩束装置
TWI420141B (zh) 變焦鏡頭

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013003095

Country of ref document: DE

Ref document number: 1120130030950

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2015521954

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14415849

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13820431

Country of ref document: EP

Kind code of ref document: A1