WO2014010597A1 - 植物成形体およびその製造方法 - Google Patents

植物成形体およびその製造方法 Download PDF

Info

Publication number
WO2014010597A1
WO2014010597A1 PCT/JP2013/068763 JP2013068763W WO2014010597A1 WO 2014010597 A1 WO2014010597 A1 WO 2014010597A1 JP 2013068763 W JP2013068763 W JP 2013068763W WO 2014010597 A1 WO2014010597 A1 WO 2014010597A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
molded body
mold
temperature
longitudinal direction
Prior art date
Application number
PCT/JP2013/068763
Other languages
English (en)
French (fr)
Inventor
恒久 三木
公三 金山
宏行 杉元
彰一 立木
大介 国立
Original Assignee
宮吉硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宮吉硝子株式会社 filed Critical 宮吉硝子株式会社
Publication of WO2014010597A1 publication Critical patent/WO2014010597A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/28Moulding or pressing characterised by using extrusion presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M1/00Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching
    • B27M1/02Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching by compressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/02Processes; Apparatus
    • B27K3/15Impregnating involving polymerisation including use of polymer-containing impregnating agents

Definitions

  • the present invention relates to a plant molded body obtained by applying temperature and pressure to a plant-based material, and a method for producing the same.
  • Timber has long been used as a building material.
  • techniques for performing various processing on wood have been developed. For example, bending has been developed as a technique for shaping wood.
  • reinforced wood that uses compression processing and chemical impregnation as a strength performance improvement technology has been researched and developed.
  • thermoplastic resin such as polyethylene or polypropylene
  • the size of the fine powder of the wood material and the degree of mixing with the resin have a great influence on the physical and mechanical properties of the obtained extruded material. Therefore, grinding and classification to a finer size are required, and the use of a surfactant that enhances adhesion to the resin is unavoidable.
  • the performance of the composite material itself greatly depends on the thermoplastic resin, and the wooden material functions only as an extender for reducing the use of the resin.
  • Patent Documents 1 and 2 disclose fluid molding techniques for plant materials developed by the present inventors.
  • This technique is a shaping technique that greatly deforms plant-based materials by changing the position between plant cells.
  • a binder binder
  • the method for producing a plant molded body includes a step of treating a plant-based material with a drug, and charging the plant-based material treated with the drug into a molding machine, and heating and heating in the molding machine.
  • the step of solidifying the plant material by compressing the plant material while changing the temperature in the mold, and then extruding the plant material from the outlet to obtain a plant molded body.
  • a plant material treated with a drug is introduced into a material charging part in a molding machine, and the plant material is heated and pressurized in the material charging part. Fluidize the system material. And in the state which heated and pressurized the plant-type material, it pours into the shaping
  • a plant molded body solidified into a predetermined shape is obtained from the outlet of the mold by the series of steps described above.
  • the plant material can be continuously extruded by continuously applying the plant material to the material input unit, and the plant material can be continuously extruded. It becomes possible to obtain a scaled plant molded body.
  • the temperature of the mold may be set based on the temperature dependence of the physical properties of the plant material treated with the drug.
  • the temperature dependence of the physical properties of plant-based materials treated with chemicals is an index of how the viscosity of the plant-based materials changes with temperature. For example, by thermomechanical measurement and measurement methods equivalent thereto Can be sought.
  • the softening temperature and the curing temperature of the plant-based material are obtained based on the temperature dependence of the physical properties of the plant-based material obtained by, for example, thermomechanical measurement, and the temperature of the mold is thereby set. be able to. Therefore, the temperature of a shaping
  • molding die can be set appropriately and the property of the obtained plant molded object can be made more favorable.
  • the plant molded body according to another aspect of the present invention is a plant molded product that is formed after fluidizing the plant material once by applying pressure and temperature to the plant material impregnated with the drug. It is a body, and the ratio of the length in the longitudinal direction of the plant molded body to the maximum diameter of the cross section of the plant molded body may be 10 or more.
  • the above-mentioned plant molded body of the present invention is a long-shaped plant molded product obtained by applying pressure and temperature to a plant material impregnated with a drug to fluidize the plant material once and then molding and solidifying it. Is the body.
  • the plant molded body of the present invention has a long shape in which the ratio of the length in the longitudinal direction of the plant molded body to the maximum diameter of the cross section of the plant molded body is 10 or more.
  • the ratio of the length in the longitudinal direction of the plant molded body to the maximum diameter of the cross section of the plant molded body is referred to as an aspect ratio. That is, the aspect ratio of the plant molded body of the present invention (cross section of the plant molded body: length in the longitudinal direction of the plant molded body) is 1:10 or more.
  • the plant molded body of the present invention can be suitably used as a building material such as a frame material by having the long shape as described above.
  • the plant molded object of this invention can be manufactured with the manufacturing method of the plant molded object of the above-mentioned this invention, for example.
  • the cells constituting the plant-based material are compressed in the width direction intersecting the longitudinal direction of the plant molded body, and the compressed cells are arranged along the longitudinal direction. It may have a cell structure.
  • the plant molded body of the present invention has the above-described cell structure, so that it can have properties such as high strength in the longitudinal direction and relatively low linear expansion coefficient.
  • FIG. 1A is a side view showing a production apparatus used in the method for producing a plant molded product according to one embodiment of the present invention.
  • FIG. 1B is a plan view showing a mold provided in the manufacturing apparatus shown in FIG. 1A.
  • FIG. 1C is a side view of the mold provided in the manufacturing apparatus shown in FIG. 1A as viewed from the outlet side. It is a perspective view which shows the metal mold
  • FIG. 3A to FIG. 3B are schematic views showing the steps of the method for producing a plant molded body according to one embodiment of the present invention.
  • FIG. 3C is a schematic view showing a plant material impregnated with a chemical obtained by the steps of FIGS. 3A to 3B.
  • FIG. 4A to 4C are schematic views showing the steps of the method for producing a plant molded body according to one embodiment of the present invention. It is a graph which shows the relationship between the temperature of the plant-type material which impregnated the chemical
  • FIG. 1A the structure of the manufacturing apparatus (molding machine) 1 for enforcing the manufacturing method of the plant molded object of this invention is shown.
  • the manufacturing apparatus 1 shown in FIG. 1A includes a punch 11, a material charging unit 12, a heater installation unit 13, and a mold 14 as main components.
  • the punch 11 is a pressurizing tool for applying pressure to the plant material introduced into the manufacturing apparatus 1.
  • the material input part 12 is a part into which plant material is input.
  • the punch 11 and the material input part 12 have a structure corresponding to a piston and a cylinder.
  • the heater installation unit 13 is provided with a plurality of heaters 15 for heating the plant material in each manufacturing process of the plant molded body.
  • the mold 14 is a mold having a recess for molding the plant-based material input from the material input unit 12 into a predetermined shape.
  • FIG. 1B is a plan view of the mold 14.
  • FIG. 1C is a side view of the outlet portion.
  • FIG. 2 is a perspective view of the mold 14.
  • the planar shape of the recess provided in the mold 14 has a shape like an insulator.
  • this is an example of the present invention, and the present invention is not limited to this.
  • a heater installation portion 13 is provided on the mold 14.
  • the mold 14 is divided into a material supply unit 14a, a throttle unit 14b, and a shape fixing unit 14c.
  • the shape fixing portion 14c has an inlet 14d and an outlet 14e. Further, as shown in FIG. 1C, the shape fixing portion 14c is provided with a protruding portion 14f in which the bottom surface of the concave portion is partially protruded.
  • FIG. 3A to FIG. 3C and FIG. 4A to FIG. 4C show steps of an embodiment of the method for producing a plant molded body of the present invention.
  • thermosetting resin used here is a phenol resin, a melamine resin, a urea resin, an epoxy resin, an unsaturated polyester resin, a silicon resin, a polyurethane resin, or the like.
  • the solvents used are water, methyl alcohol, ethyl alcohol, isopropyl alcohol, normal butyl alcohol, ethylene glycol, xylene, benzene, toluene, acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, acetate ester, normal hexane, ether, Tetrahydrofuran, dioxane, DMF, DMSO and the like.
  • a plant-based material impregnated with a chemical solution (also referred to as a drug-impregnated wood) is taken out from the solution, blown and dried at a temperature sufficiently lower than the curing temperature of the resin, and the solvent is removed. After confirming the constant weight at that temperature, it is cured under a predetermined humidity condition, and moisture is given to the drug-impregnated wood under a gas phase condition.
  • a solvent component such as water
  • the solvent component can be uniformly distributed in the wood as compared with a case where the solvent component is supplied in a liquid state.
  • the plant-based material used in this pretreatment step is a plate-like veneer (single plate) obtained by the same method as that for manufacturing plywood and the like.
  • the types of plants that serve as raw materials for plant-based materials include, for example, trees such as conifers and broad-leaved trees, and plants such as bamboo (bamboo), drill (paulownia), and grass.
  • parts such as a branch and a node other than a trunk, are also possible.
  • FIG. 3C shows the plant material 21 after the pretreatment process.
  • the plant material is a plate-like circular member having a thickness of about 3 to 5 mm.
  • the shape of the plant-based material is not limited to this, and it may be cut into a size that can be put into the production apparatus 1.
  • Patent Documents 1 and 2 For the pretreatment method of plant material, refer to the above-mentioned Patent Documents 1 and 2 and Japanese Patent Publications such as JP-A 2010-52426, JP-A 2010-155393, JP-A 2010-155394, etc. You may go.
  • fluidization and molding (shape imparting and shape fixing) of the pre-treated plant-based material 21 are performed.
  • molding is adjusted suitably. Thereby, the property of the plant molded object obtained can be stabilized or intensity
  • the fiber orientation in the plant molded body is controlled, and thus obtained. It is also possible to change the strength of the plant molded product.
  • the surface state of the plant molded body can be improved by forming a coating layer after molding.
  • FIG. 5 shows the relationship between the temperature and the storage elastic modulus obtained as a result of this thermomechanical measurement.
  • the graph shown in FIG. 5 is a result of thermomechanical measurement of drug-impregnated wood when phenol resin is used as a drug.
  • the thermal properties of the chemical may change due to various interactions.
  • FIG. 5 it can be seen that the storage elastic modulus (MPa) sharply decreases from around 50 ° C. in the first temperature raising process (before curing in FIG. 5), and shows a minimum value around 120 ° C. This indicates that the wood is softened in this temperature range (50 ° C. to 120 ° C.).
  • the temperature becomes higher specifically, 130 ° C.
  • the storage elastic modulus (MPa) increases rapidly, indicating that the thermosetting resin has been cured.
  • the storage elastic modulus of the wood does not change greatly even after the temperature is changed (after curing in FIG. 5).
  • the temperature condition in the molding process of the plant material 21 using the manufacturing apparatus 1 is set.
  • a softening temperature (Ts) and a curing temperature (Th) as shown in FIG. 5 can be set.
  • the softening temperature (Ts) and the curing temperature (Th) are reflected as the set temperature of each heater 15 in the heater installation portion 13 of the manufacturing apparatus 1.
  • the softening temperature and the curing temperature of the drug-impregnated wood are grasped in advance by the thermomechanical measurement as described above, and the temperature setting of the manufacturing apparatus 1 is performed.
  • the temperature setting of the manufacturing apparatus 1 There is no limitation.
  • the softening temperature and the curing temperature are calculated based on the temperature dependence of the physical properties of the drug-impregnated wood, and the obtained results are reflected in the temperature setting of the manufacturing apparatus 1. .
  • die 14 has each part of the material supply part 14a, the aperture
  • the material supply unit 14a softens the plant material 21 by heating and pressing the supplied plant material 21 (drug-impregnated wood) (see FIG. 4A).
  • Throttle unit 14b the plant-based material 21 that is softened by the material supply unit 14a is fluidized, a portion still flowing to the downstream side of the form-locking part 14c, the width of the mold 14 (W) from W 1 to W 2 (See FIG. 4B).
  • the shape fixing part 14c has an inlet 14d and an outlet 14e.
  • the cross-sectional shape of the outlet 14e portion is a shape having a depression on one side of the rectangle, whereby the cross-sectional shape of the obtained plant molded body can be the same shape.
  • the shape fixing portion 14c has a structure in which the outlet 14e penetrates from the inlet 14d. And in the extrusion direction of the plant-based material 21 heading from the narrowed portion 14b to the outlet 14e of the shape fixing portion 14c, a narrowed structure that reduces the cross-sectional area of the concave portion provided in the mold 14 (extrusion angle, extruded length, And a cross-section reduction rate corresponding to them) is set.
  • the inlet 14d of the shape fixing portion 14c is adjusted to the softening temperature (Ts) of the drug-impregnated wood obtained from, for example, the graph of FIG. 5, and the outlet 14e of the shape fixing portion 14c is obtained from, for example, the graph of FIG. It is adjusted to the curing temperature (Th) of the chemical-impregnated wood.
  • the plant-based material 21 is supplied from the material input unit 12 to the material supply unit 14a of the mold 14 and pressurized by the punch 11 (see FIG. 4A).
  • the fluidization of the plant-based material 21 starts when the load pressure by the punch 11 becomes 15 MPa or more.
  • the punch 11 changes its position downward while an appropriate pressure (pressure corresponding to the shape of the mold 14) is applied to the plant material 21. By adjusting the speed of this position change, the amount of the plant material 21 supplied to the narrowed portion 14b of the mold 14 is controlled.
  • the fluidized plant-based material 21 is deformed by the narrowed portion 14b by the position change of the punch 11 at a constant speed (see FIG. 4B). After the plant-based material 21 passes through the narrowed portion 14b, the plant-based material 21 is pushed out to the outlet 14e side while the shape is fixed by curing of a chemical such as an impregnated phenol resin in the shape fixing portion 14c. (See FIG. 4C). Finally, the plant material 21 is extruded from the outlet 14a to the outside of the apparatus, and the plant molded body 30 having a cross section corresponding to the shape of the cross section of the mold 14 is manufactured. In FIG. 6, an example of the plant molded object 30 manufactured by said manufacturing method is shown. In addition, the part A enclosed with the broken line in FIG. 6 is the plant-type material 21 which remained in the material supply part 14a and the narrowing part 14b.
  • the temperature in each part of the production apparatus 1, the pressure applied by the punch 11 to the plant material 21, and the dimensions of each part of the mold 14 are appropriately adjusted.
  • the properties of the obtained plant molded product can be adjusted.
  • the temperature of the material supply unit 14a is about 50 to 80 ° C.
  • the temperature of the throttle unit 14b is about 80 to 100 ° C.
  • the shape fixing unit 14c In each heater 15, the temperature of the inlet 14 d (corresponding to the softening temperature Ts) is about 100 to 120 ° C., and the temperature of the outlet 14 e (corresponding to the curing temperature Th) of the shape fixing portion 14 c is about 130 to 150 ° C. Set the temperature.
  • each temperature mentioned above is one Example of this invention, and this invention is not limited to this.
  • the temperature from the material supply unit 14a to the inlet 14d of the shape fixing unit 14c is set to a temperature within a range of 50 to 120 ° C. (corresponding to the softening temperature Th), and the shape fixing unit 14c
  • a temperature within a range of 50 to 120 ° C. (corresponding to the softening temperature Th)
  • the shape fixing unit 14c One example is setting the temperature (corresponding to the curing temperature Th) to about 130 to 150 ° C. and setting the temperature in two steps.
  • the length in the longitudinal direction of 14c 85 mm.
  • this dimension is one embodiment of the present invention, and the present invention is not limited to this.
  • this aperture ratio value is an example of the present invention, and the present invention is not limited to this.
  • the cross-sectional area of the inlet 14d of the shape fixing portion 14c only needs to be smaller than the cross-sectional area of the material supply portion 14a.
  • the surface of the device in contact with the plant material in the manufacturing device 1 may be subjected to smoothing such as mirror finish.
  • smoothing such as mirror finish.
  • the surface of the obtained plant molded object can be smoothed.
  • the surface properties of the obtained plant molded body can be improved to a level comparable to the finished state of the apparatus surface.
  • the cell structure of the obtained plant molded body is derived from the structure of each cell constituting the plant-based material that is a raw material by addition, pressurization, and heating of the drug. It has changed.
  • the cell structure of the obtained plant molded body is deviated from the cell structure of a natural tree or the like as a material, and the position of the cell structure is changed. Due to such a change in cell structure, a unique pattern can be created on the surface of the obtained plant molded body.
  • cells can be arranged along the extrusion direction of the plant material in the extrusion process.
  • individual cells constituting the molded body are not divided, and the cell structure as a whole is not destroyed.
  • the plant molded body obtained by the production method of the present invention has such a cell structure that it has properties such as high strength in the longitudinal direction and relatively low linear expansion coefficient.
  • the plant molded body of the present invention is a long plant molded body formed after fluidizing the plant material once by applying pressure and temperature to the plant material impregnated with the drug.
  • the cells constituting the plant material are compressed in the width direction intersecting the longitudinal direction, and the longitudinal direction of the compressed cells is in the longitudinal direction of the plant molded body.
  • the elongated shape means the ratio of the length of the plant molded body in the longitudinal direction to the maximum diameter of the cross section of the plant molded body (cross section intersecting the longitudinal direction of the plant molded body) (this is the aspect ratio). Is called 10 or more, preferably 20 or more.
  • the length of the longitudinal direction of the plant molded object of this invention can be 7 m or less, for example, Preferably it can be 5 m or less.
  • a plant molded product having a maximum cross-sectional diameter of 20 mm and a length in the longitudinal direction of 300 mm can be cited.
  • the plant molded body of the present invention can be obtained by fluidizing and molding the above-described drug-impregnated wood using the above-described production apparatus 1.
  • the plant material passes through the narrowed portion 14b provided in the mold 14 of the production apparatus 1 so that the cell structure in the plant material changes, and the obtained plant molded body has an elongated shape.
  • Cells have a cell structure in which cells are arranged along the longitudinal direction of the plant molded body and the cells are compressed in the width direction intersecting the longitudinal direction.
  • FIG. 7 shows how the cell structure inside the plant-based material changes in the method for producing a molded plant described in (2) above.
  • FIG. 7 shows a change in cell structure that occurs in the plant-based material (drug-impregnated wood) that has been subjected to the chemical treatment shown in FIGS. 3A to 3B through the fluidization and molding process in the production apparatus 1.
  • the plant-based material 21 charged into the material charging unit 12 of the manufacturing apparatus 1 is pushed in by the punch 11, and pressure P is applied from both the upper and lower surfaces ((1 in FIG. 7). )reference).
  • pressure P is applied from both the upper and lower surfaces ((1 in FIG. 7). )reference).
  • the cell wall softens and buckles, and the intracellular pore is closed (see (2) in FIG. 7).
  • the plant-based material 21 moves from the material supply unit 14a toward the throttle unit 14b as shown in FIG. 4B.
  • the cell wall itself in the plant-based material 21 is compressed, and slipping occurs between the cells constituting the plant-based material 21, causing a change in the position of the cell structure.
  • the plant-type material 21 fluidizes (refer (3) of FIG. 7).
  • the cells in the plant material 21 are compressed in the direction in which pressure is applied, and become elongated in the direction in which the plant material 21 flows.
  • the fluidized plant-based material 21 is extruded from the narrowed portion 14a toward the shape fixing portion 14c as shown in FIG. 4C, and the shape fixing and shape fixing are performed in the shape fixing portion 14c.
  • the plant-based material 21 whose shape has been fixed finally becomes a plant molded body 30 and is pushed out of the apparatus from the outlet 14e of the shape fixing portion 14c.
  • the cells in the plant material 21 are elongated in the longitudinal direction, and the longitudinal direction of each cell is arranged along the longitudinal direction of the plant material 21 (see (4) in FIG. 7).
  • the cells themselves are not broken, but the orientation (tissue) of the cells is changed from the cell structure of the original plant. That is, in the plant molded body 30, the positional relationship between cells is different from the original plant.
  • the plant molded object 30 obtained by throwing in plant material continuously is made into the said aspect ratio (the length of the longitudinal direction of a plant molded object / the cross section of a plant molded object).
  • the longest diameter is 10 or more.
  • the longitudinal direction of each cell constituting the woody or plant tissue is arranged along the longitudinal direction of the plant shaped product 30 so that the fiber orientation of the woody or plant tissue is long. It is lined up uniformly along the direction.
  • the plant molded body of the present invention can be formed into a long shape as described above, and the cross-sectional shape thereof can be changed depending on the shape of the mold to be used. It can be changed as appropriate. Therefore, the plant molded object of this invention can be utilized suitably for building materials.
  • the plant molded body of the present invention is a composite building material using a resin and an aluminum alloy, such as a wooden building material for heat insulation (for example, a frame material) that is currently being promoted for the purpose of improving the energy saving performance of houses.
  • a wooden building material for heat insulation for example, a frame material
  • the frame is made of an aluminum alloy to maintain the strength while improving the heat insulation performance including the heat transmissibility of the indoor components.
  • a resinous frame material having an irregular cross section is attached to the surface of an aluminum alloy casing.
  • the plant molded body of the present invention By using the plant molded body of the present invention in the part of the resinous frame material having an irregular cross section, it is possible to provide a composite building material that can feel the wood texture in appearance after improving the heat insulation performance. it can.
  • the plant molded body of the present invention can be carbonized to cover an aluminum alloy and suppress further fire spread. For this reason, it is possible to improve the flame retardancy which is a problem in the composite building material using the existing resin member.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

 植物成形体の製造方法は、植物系材料を薬剤で処理する工程と、前記薬剤で処理された前記植物系材料を成形機に投入し、該成形機内で加熱および加圧しながら、材料投入部の幅よりも狭い幅を有する成形型に流し込む工程と、前記成形型内において、該成形型に設けられた出口に向かって前記植物系材料を押出しつつ、該成形型内の温度を変化させながら前記植物系材料を圧縮することによって前記植物系材料を固化させた後に前記出口から前記植物系材料を押出して、植物成形体を得る工程と、を含む。

Description

植物成形体およびその製造方法 関連出願の相互参照
 本国際出願は、2012年7月11日に日本国特許庁に出願された日本国特許出願第2012-155747号に基づく優先権を主張するものであり、日本国特許出願第2012-155747号の全内容を参照により本国際出願に援用する。
 本発明は、植物系材料に温度と圧力を加えることによって得られる植物成形体、および、その製造方法に関する。
 木材は、古くから建材として使用されている。木材の利用可能性を向上させ、さらなる用途拡大を図るために、木材に対して種々の加工を行う技術が開発されてきた。例えば、木材の賦型技術として曲げ加工が開発されている。また、強度性能向上技術として圧縮加工および薬液含浸処理を併用した強化木材などが研究開発されている。
 しかしながら、このような従来の加工技術では、節や枝などのない良質の木質素材のみが加工対象となり、歩留まりが悪くコスト高になる問題があった。また、3次元的な形状を付与するためには切削に頼るところが多く、これにより生産性が低くなるなどの問題があった。
 このような状況下において、微粉末状の木質素材とポリエチレンやポリプロピレンなどの熱可塑性樹脂とを混合した後、押出し成形された木材・プラスチック複合材(Wood Plastic Composite:WPC)が、環境に配慮した木質材料として屋外及び屋内の両方の用途に普及しつつある。このような複合材の製造時には、重量比で50%程度となるように配合された熱可塑性樹脂によって、押出し成形時の加熱過程において混合物に適度な流動性が付与され、任意形状に変形される。さらに、複合材の製造工程では、その後の冷却過程において形状が固定される。
 この複合材においては、木質素材の微粉末のサイズ及び樹脂との混合程度が、得られる押出し材の物理的・機械的性質に多大な影響を及ぼす。そのため、より細かいサイズへの粉砕及び分級が必要とされるとともに、樹脂との接着性を高める界面活性剤の使用が余儀なくされている。また、複合材自体の性能は熱可塑性樹脂に大きく依存し、木質素材は樹脂の使用削減のための増量剤としてしか機能していない。
 特許文献1および2には、本願発明者らが開発した植物系材料の流動成形の技術が開示されている。この技術は、植物細胞間の位置変化により植物系材料に大きな変形を与える賦型技術である。この技術を利用することで、植物系素材にバインダ(結合剤)を添加することによって、賦型と同時に高強度化・寸法安定化を施すことが可能となる。そのため、当該技術は、上述した従来の木材の加工技術と比較して高い生産性を見込める技術である。
特許第4502848号公報 特開第4849609号公報
 ところで、上述したような加工が施された植物系材料を建材に利用する場合には、建材が使用される建造物の大きさに合わせたサイズや形状にすることが要求される。このような中で、長尺物や複雑断面を有する植物成形体を得るためには、植物系材料をより易軟化・易流動化させること、および、植物系材料の流動化と硬化の制御をより厳密に行うことが課題となる。しかしながら、植物系材料の易軟化・易流動化を実現すべく、含水率の高い熱硬化性樹脂を含浸させた植物系材料を成形すると、硬化の制御が困難であり、成形が不可能になるという問題が発生する。
 本発明の一側面においては、より長尺な形状の植物成形体の製造が可能となる植物成形体の製造方法を提供することが望ましい。
 本発明の一側面にかかる植物成形体の製造方法は、植物系材料を薬剤で処理する工程と、前記薬剤で処理された前記植物系材料を成形機に投入し、該成形機内で加熱および加圧しながら、材料投入部の幅よりも狭い幅の入口を有する成形型に流し込む工程と、前記成形型内において、該成形型に設けられた出口に向かって前記植物系材料を押出しつつ、該成形型内の温度を変化させながら前記植物系材料を圧縮することによって前記植物系材料を固化させた後に前記出口から前記植物系材料を押出して、植物成形体を得る工程と、を含んでもよい。
 上記の本発明の植物成形体の製造方法では、薬剤で処理された植物系材料を成形機内の材料投入部に投入し、該材料投入部内で植物系材料を加熱及び加圧することで、該植物系材料を流動化させる。そして、植物系材料を加熱及び加圧した状態で、材料投入部の幅よりも狭い幅の入口を有する成形型に流し込む。その後、成形型内において、該成形型に設けられた出口に向かって植物系材料を押出しつつ、成形型内の温度を変化させながら前記植物系材料を圧縮することによって植物系材料を固化させた後に、成形型の出口から植物系材料を押出す。
 本発明の植物成形体の製造方法によれば、上記の一連の工程により、成形型の出口からは所定の形状に固化された植物成形体が得られる。そして、材料投入部に対して連続して植物系材料を投入しながら、上記の一連の工程を実施することで、植物系材料の連続的な押出し加工が可能となり、成形型の出口からは長尺の植物成形体を得ることが可能となる。
 本発明の植物成形体の製造方法において、前記成形型の温度は、前記薬剤で処理された植物系材料の物性の温度依存性に基づいて設定されてもよい。
 薬剤で処理された植物系材料の物性の温度依存性とは、当該植物系材料の粘度が温度によってどのように変化するかの指標であり、例えば、熱機械測定、およびこれに準ずる測定方法によって求めることができる。
 上記の方法によれば、例えば熱機械測定等によって得られた植物系材料の物性の温度依存性に基づいて、植物系材料の軟化温度及び硬化温度を求め、これにより成形型の温度を設定することができる。したがって、成形型の温度を適切に設定することができ、得られる植物成形体の性状をより良好なものとすることができる。
 また、本発明のさらに別の一側面にかかる植物成形体は、薬剤を含浸させた植物系材料に圧力および温度を加えることによって、該植物系材料を一旦流動化させた後に成形された植物成形体であって、該植物成形体の横断面の最大径に対する該植物成形体の長手方向の長さの比が10以上の長尺状であってもよい。
 上記の本発明の植物成形体は、薬剤を含浸させた植物系材料に圧力および温度を加えることによって、該植物系材料を一旦流動化させた後に成形されて固化された長尺状の植物成形体である。
 そして、本発明の植物成形体は、該植物成形体の横断面の最大径に対する該植物成形体の長手方向の長さの比が10以上の長尺状の形状を有している。ここで、植物成形体の横断面(植物成形体の長手方向に交差する断面)の最大径に対する該植物成形体の長手方向の長さの比をアスペクト比と呼ぶ。すなわち、本発明の植物成形体は、このアスペクト比(植物成形体の横断面:植物成形体の長手方向の長さ)が1:10以上となっている。
 本発明の植物成形体は、上記のような長尺状の形状を有していることで、枠材などの建材として好適に利用することができる。なお、本発明の植物成形体は、例えば、上述の本発明の植物成形体の製造方法によって製造することができる。
 本発明の植物成形体は、該植物成形体の長手方向と交差する幅方向に該植物系材料を構成する細胞が圧縮されているとともに、該圧縮された細胞が前記長手方向に沿って配列した細胞構造を有していてもよい。
 本発明の植物成形体は、上記のような細胞構造を有することで、長手方向に対して強度が高く、また、線膨張率が比較的低いという性質を有することができる。
図1Aは、本発明の一実施形態の植物成形体の製造方法に使用する製造装置を示す側面図である。図1Bは、図1Aに示す製造装置に備えられた金型を示す平面図である。図1Cは、図1Aに示す製造装置に備えられた金型を出口側から見た側面図である。 図1Aに示す製造装置に備えられた金型を示す斜視図である。 図3A-図3Bは、本発明の一実施形態の植物成形体の製造方法の工程を示す模式図である。図3Cは、図3A-図3Bの工程によって得られる薬液を含浸させた植物系材料を示す模式図である。 図4A-図4Cは、本発明の一実施形態の植物成形体の製造方法の工程を示す模式図である。 薬液を含浸させた植物系材料の温度と貯蔵弾性係数との関係を示すグラフである。 図1Aに示す製造装置で製造された植物成形体を示す斜視図である。 本発明の一実施形態の植物成形体の製造方法において、植物系材料内部の細胞構造の変化を示す模式図である。
 1…製造装置(成形機)、11…パンチ、12…材料投入部、13…ヒータ設置部、14…金型、15…ヒータ、21…植物系材料、24…細胞、30…植物成形体、14a…(金型の)材料供給部、14b…(金型の)絞り部、14c…(金型の)形状固定部(成形型)、14d…(形状固定部の)入口、14e…(形状固定部の)出口、14f…(金型の)突起部
 以下、本発明の実施形態について図面に基づいて説明する。
 (1)植物成形体の製造装置について
 図1Aには、本発明の植物成形体の製造方法を実施するための製造装置(成形機)1の構成を示す。図1Aに示す製造装置1は、主な構成部材として、パンチ11、材料投入部12、ヒータ設置部13、及び、金型14を備えている。
 パンチ11は、製造装置1内に投入された植物系材料に対して圧力を加えるための加圧工具である。材料投入部12は、植物系材料が投入される部分である。製造装置1においては、パンチ11と材料投入部12とが、ピストンとシリンダーに相当するような構成を有している。
 ヒータ設置部13には、植物成形体の各製造工程において植物系材料を加熱するための複数のヒータ15が設けられている。
 金型14は、材料投入部12から投入された植物系材料を所定の形状に成形するための凹部を有する金型である。図1Bは、金型14の平面図である。図1Cは、出口部分の側面図である。また、図2は、金型14の斜視図である。図1Bに示すように、本実施の形態では、金型14に設けられた凹部の平面形状は、杓子のような形状を有している。但し、これは本発明の一例であり、本発明はこれに限定はされない。
 図1Aに示すように、金型14上にヒータ設置部13が設けられている。この構成により、材料投入部12から投入された植物系材料が、パンチ11によって加圧されながら金型14中を流れて成形される製造プロセスにおいて、金型14の各部分を所定温度に加熱することができる。
 次に、図1Aから図1Cを参照しながら、金型14の各部分について説明する。図1A及び図1Bに示すように、金型14は、材料供給部14a、絞り部14b、および、形状固定部14cに分けられる。形状固定部14cには、入口14dと出口14eとが存在する。また、図1Cに示すように、形状固定部14cにおいては、凹部の底面が部分的に突起した突起部14fが設けられている。
 (2)植物成形体の製造方法について
 続いて、上述した製造装置1を使用して実施される植物成形体の製造方法について説明する。なお、ここで説明する植物成形体の製造方法は本発明の一例であり、本発明の植物成形体の製造方法は製造装置1を用いて実施するものに限定はされない。図3Aから図3C、及び、図4Aから図4Cには、本発明の植物成形体の製造方法の一実施形態の各工程を示す。
 まず、図3Aに示すように、熱硬化性樹脂を重量比0.1~50%で溶かした溶液22中に植物系材料21を浸漬させて、液中減圧・加圧方式によって、植物系材料中に熱硬化性樹脂(薬剤)と溶媒を注入する。ここで使用する熱硬化性樹脂は、フェノール樹脂、メラミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂、ポリウレタン樹脂などである。また、使用する溶媒は、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、ノルマルブチルアルコール、エチレングリコール、キシレン、ベンゼン、トルエン、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、酢酸エステル、ノルマルヘキサン、エーテル、テトラヒドロフラン、ジオキサン、DMF、DMSOなどである。
 次に、図3Bに示すように、液中から薬液を含浸させた植物系材料(薬剤含浸木材とも呼ぶ)を取り出し、樹脂の硬化温度より十分低い温度で送風乾燥し、溶媒を除去する。その温度において、恒量を確認したのち、所定の湿度条件にて養生し、薬剤含浸木材に水分を気相条件で与える。薬剤含浸木材に対して水等の溶媒成分を気相条件で与えることにより、液状の状態で与える場合と比較して、溶媒成分を木材中に均一に分布させることができる。
 以上の図3Aから図3Bの工程は、植物系材料を製造装置1へ投入する前の植物系材料の前処理工程である。この前処理工程に使用される植物系材料は、合板等の製造と同様の方法で得られた板状のベニヤ(単板)である。植物系材料の原料となる植物の種類は、例えば針葉樹、広葉樹などの樹木、タケ(竹)、キリ(桐)、草などの草木類などである。また、使用される樹木の部位としては、幹の他に枝、節などの部位も可能である。
 図3Cには、前処理工程を経た後の植物系材料21を示す。本実施の形態では、図3Cに示すように、植物系材料は厚さ3~5mm程度の板状の円形部材となっている。しかし、本発明においては、植物系材料の形状はこれに限定はされず、製造装置1に投入できる大きさに切断されたものであればよい。
 なお、植物系材料の前処理の方法については、上記の特許文献1及び2や、特開2010-52426、特開2010-155393、特開2010-155394などの日本国公開特許公報を参照して行ってもよい。
 続いて、製造装置1を用いて、前処理を行った植物系材料21の流動化及び成形(形状付与及び形状固定)を行う。本発明の植物成形体の製造方法においては、植物系材料の流動化の工程における軟化温度、植物系材料の成形(形状付与および形状固定)工程における硬化温度、および、植物系材料に加える圧力、並びに、成形に使用される金型の各部分の寸法を適宜調整する。これにより、得られる植物成形体の性状を安定化させたり、強度を向上させたりすることができる。なお、金型の形状(特に出口の断面形状)を変化させ、かつ、植物系材料の粘度(軟化と硬化のバランス)を制御することによって、植物成形体内の繊維配向を制御し、これにより得られる植物成形体の強度を変化させることもできる。また、植物成形体の表面状態は、成形後にコーティング層を形成することで良好にすることも可能である。
 植物系材料21の流動化及び成形を行うにあたって、予め熱機械測定によって、薬剤含浸木材の軟化温度および硬化温度を把握しておく。図5には、この熱機械測定の結果によって得られた温度と貯蔵弾性係数との関係を示す。図5に示すグラフは、フェノール樹脂を薬剤として使用した場合の薬剤含浸木材の熱機械測定の結果である。
 木材中に薬剤が含浸された場合には、種々の相互作用によって、薬剤の熱特性が変化する場合がある。特に、成形に際して重要となる木材の軟化・流動化の挙動(軟化・流動化する温度域)を、薬剤単独の測定によって判断することは困難である。図5によると、1回目の昇温過程(図5における硬化前)において50℃を越えたあたりから貯蔵弾性係数(MPa)が急激に減少し、120℃付近で最小値を示すことがわかる。これは、この温度域(50℃~120℃)で、木材が軟化していることを示している。さらに高い温度(具体的には、130℃以上)になると、逆に貯蔵弾性係数(MPa)は急激に増加しており、熱硬化樹脂の硬化が始まったことがわかる。また、温度を一旦130℃以上に上昇させて木材を硬化させた後は、温度を変化させても木材の貯蔵弾性係数は大きくは変化しない(図5における硬化後)。
 上記の熱機械測定の結果に基づいて、製造装置1を用いた植物系材料21の成形プロセスにおける温度条件を設定する。一例では、図5に示すような軟化温度(Ts)及び硬化温度(Th)を設定することができる。この軟化温度(Ts)および硬化温度(Th)は、製造装置1のヒータ設置部13における各ヒータ15の設定温度として反映される。
 本実施例においては、上述したような熱機械測定によって、薬剤含浸木材の軟化温度および硬化温度を予め把握し、製造装置1の温度設定を行っているが、本発明はこのような手法に必ずしも限定はされない。製造装置1の温度設定を行うに際しては、薬剤含浸木材の物性の温度依存性に基づいて、軟化温度および硬化温度を算出し、得られた結果を製造装置1の温度設定に反映させればよい。
 ところで、本実施の形態の製造装置1においては、図1Aに示すように、金型14は、材料供給部14a、絞り部14b、および、形状固定部14cの各部分を有している。材料供給部14aでは、供給された植物系材料21(薬剤含浸木材)を加熱及び加圧することで植物系材料21を軟化させる(図4A参照)。絞り部14bは、材料供給部14aで軟化された植物系材料21が流動化し、さらに下流側の形状固定部14cへ流れ込む部分であり、金型14の横幅(W)がW1からW2へと狭められる(図4B参照)。
 形状固定部14cは、入口14dと出口14eを有している。図1Cに示すように、出口14e部分の断面形状は、矩形の一辺に凹みを有する形状となっており、これにより、得られる植物成形体の断面形状を同様の形状とすることができる。
 形状固定部14cは、上記のように、入口14dから出口14eが貫通するような構造となっている。そして、絞り部14bから形状固定部14cの出口14eへと向かう植物系材料21の押出し方向には、金型14に設けられた凹部の断面積を縮小する絞り構造(押出し角度、押出し長さ、およびそれらに応じた断面減少率)が設定されている。なお、形状固定部14cの入口14dは、例えば図5のグラフから得られる薬剤含浸木材の軟化温度(Ts)に調整されており、形状固定部14cの出口14eは、例えば図5のグラフから得られる薬剤含浸木材の硬化温度(Th)に調整されている。
 本実施形態の成形工程においては、材料投入部12から金型14の材料供給部14aへ植物系材料21を供給し、パンチ11によって加圧する(図4A参照)。そして、例えば、フェノール樹脂を含む薬剤を使用した場合には、パンチ11による負荷圧力が15MPa以上となると植物系材料21の流動化が開始する。流動化開始後は、適当な圧力(金型14の形状に応じた圧力)が植物系材料21に負荷された状態で、パンチ11は下方へと位置を変化させる。この位置変化の速度を調整することによって、金型14の絞り部14bに供給される植物系材料21の量をコントロールする。
 一定速度によるパンチ11の位置変化によって、流動化した植物系材料21が絞り部14bにて変形される(図4B参照)。植物系材料21が絞り部14bを通過した後、形状固定部14cにおいて、植物系材料21は、含浸されたフェノール樹脂などの薬剤の硬化により形状固定が随時なされながら出口14e側へ押出される(図4C参照)。そして、最終的には、植物系材料21は出口14aから装置外へ押出され、金型14の横断面の形状に対応した断面を有する植物成形体30が製造される。図6には、上記の製造方法によって製造された植物成形体30の一例を示す。なお、図6において破線で囲んだ部分Aは、材料供給部14aおよび絞り部14bに残存した植物系材料21である。
 本発明の植物成形体の製造方法では、製造装置1の各部分における温度、および、パンチ11が植物系材料21に対して加える圧力、並びに、金型14の各部分の寸法を適宜調整することで、得られる植物成形体の性状を調整することができる。
 本実施の形態の製造装置1においては、金型14の各部分に関して、例えば、材料供給部14aの温度が50~80℃程度、絞り部14bの温度が80~100℃程度、形状固定部14cにおける入口14dの温度(軟化温度Tsに相当)が100~120℃程度、形状固定部14cにおける出口14eの温度(硬化温度Thに相当)が130~150℃程度となるように、各ヒータ15の温度を設定する。但し、上記した各温度は本発明の一実施例であり、本発明はこれに限定はされない。温度設定の他の例としては、例えば、材料供給部14aから形状固定部14cの入口14dまでの温度を50~120℃の範囲内の温度(軟化温度Thに相当)とし、形状固定部14cにおける温度(硬化温度Thに相当)を130~150℃程度とする、2段階の温度設定とすることが挙げられる。
 温度を上記のように設定した上で、金型14の出口14eから一定量の植物成形体が押出されるように、パンチ11の下降速度を調整する。
 さらにこのとき、金型14の各部分の寸法(図1Bおよび図1C参照)を、W1=52mm、W2=20mm、W3=10mm、H1=10mm、H2=5mm、形状固定部14cの長手方向の長さ=85mmとする。但し、この寸法は本発明の一実施例であり、本発明はこれに限定はされない。
 このとき、材料供給部14aにおける金型の断面積の最大値と形状固定部14cの入口14dにおける金型の断面積との比(これを、絞り比と呼ぶ)は、W11/(W21-W32)=520/150=3.47となる。但し、この絞り比の値は、本発明の一実施例であり、本発明はこれに限定はされない。本発明では、形状固定部14cの入口14dの断面積が、材料供給部14aにおける断面積よりも小さくなっていればよい。
 なお、本実施の形態の植物成形体の製造方法においては、材料投入部12内に植物系材料21が少なくなれば、さらに追加の植物系材料(薬剤含浸木材)21を供給することによって、随時、絞り部14bに植物系材料を供給することができる。これにより、植物系材料21の連続的な押出し加工がなされる。そのため、長尺の植物成形体30を得ることが可能である。
 また、製造装置1において植物系材料と接する箇所の装置表面には、鏡面仕上げなどの平滑加工が施されていてもよい。これにより、得られる植物成形体の表面を滑らかにすることができる。さらに、薬剤含浸木材において気相条件で調整した水分量を数%程度に設定することによって、得られる植物成形体の表面性状を、装置表面の仕上げ状態に匹敵する程度に向上させることができる。
 本発明の植物成形体の製造方法によれば、得られる植物成形体の細胞構造は、薬剤の添加、加圧、および加熱によって、原料である植物系材料を構成している各細胞の構造から変化している。すなわち、得られる植物成形体の細胞構造は、材料となる自然の樹木などの細胞構造からずれが生じ、細胞構造の位置変化が起こっている。このような細胞構造の変化に起因して、得られる植物成形体の表面に独特の模様を作り出すことができる。
 また、得られる植物成形体においては、押出し工程における植物系材料の押出し方向に沿って細胞を配列させることができる。得られる植物成形体においては、該成形体を構成する個々の細胞が分断されておらず、細胞構造が全体として破壊されていない。本発明の製造方法によって得られる植物成形体は、このような細胞構造を有することで、長手方向に対して強度が高く、また、線膨張率が比較的低いという性質を有する。
 (3)本発明の植物成形体について
 続いて、本発明の植物成形体について説明する。本発明の植物成形体の一例としては、上述した製造装置1を用いて得られる植物成形体が挙げられる。
 本発明の植物成形体は、薬剤を含浸させた植物系材料に圧力および温度を加えることによって、該植物系材料を一旦流動化させた後に成形された長尺状の植物成形体である。そして、本発明の植物成形体は、その長手方向と交差する幅方向に該植物系材料を構成する細胞が圧縮されているとともに、該圧縮された細胞の長手方向が植物成形体の長手方向に沿って配列している。なお、ここで長尺状とは、該植物成形体の横断面(植物成形体の長手方向に交差する断面)の最大径に対する該植物成形体の長手方向の長さの比(これをアスペクト比と呼ぶ)が10以上、好ましくは20以上であることをいう。また、本発明の植物成形体の長手方向の長さは、例えば7m以下とすることができ、好ましくは5m以下とすることができる。例えば、アスペクト比が10以上となる植物成形体の寸法の一例としては、植物成形体の横断面の最大径が20mmであり、長手方向の長さが300mmのものが挙げられる。
 本発明の植物成形体は、上述した薬剤含浸木材を上述の製造装置1を用いて流動化および成形することで得ることができる。この製法により、植物系材料が製造装置1の金型14に設けられた絞り部14bを通過することで植物系材料内の細胞構造に変化が生じ、得られる植物成形体は、長尺状の植物成形体の長手方向に沿って細胞が配列し、かつ、該長手方向と交差する幅方向に細胞が圧縮された細胞構造を有する。
 図7には、上記(2)で説明した植物成形体の製造方法において、植物系材料内部の細胞構造がどのように変化するかを示している。図7では、製造装置1における流動化および成形プロセスを経ることによって、図3A~図3Bに示す薬剤処理が施された植物系材料(薬剤含浸木材)において生じる細胞構造の変化を示す。
 まず、製造装置1の材料投入部12に投入された植物系材料21は、図4Aに示すように、パンチ11によって押し込まれ、上面及び下面の両側から圧力Pが加えられる(図7の(1)参照)。これにより、植物系材料21内の細胞24では、細胞壁が軟化して座屈し、細胞内孔が閉塞する(図7の(2)参照)。
 次に、製造装置1においてパンチ11がさらに下方へ押されることによって、図4Bに示すように、植物系材料21は、材料供給部14aから絞り部14bの方へ移動する。これにより、植物系材料21内の細胞壁自体が圧縮し、さらに植物系材料21を構成する各細胞間ですべりが生じ、細胞構造の位置変化が起こる。これにより、植物系材料21が流動化する(図7の(3)参照)。以上の工程において、植物系材料21内の細胞は、圧力が加えられる方向に圧縮され、植物系材料21が流動する方向に細長い形状になる。
 その後、流動化した植物系材料21は、図4Cに示すように、絞り部14aから形状固定部14cの方へ押出され、形状固定部14cにおいて形状付与および形状固定が行われる。形状固定された植物系材料21は、最終的に植物成形体30となって、形状固定部14cの出口14eから装置外へ押出される。この工程において、植物系材料21内の細胞は、長手方向に細長い形状となり、かつ、各細胞の長手方向が植物系材料21の長手方向に沿って配列する(図7の(4)参照)。
 以上のようにして得られる植物成形体30においては、細胞自体は壊れていないが、細胞の配向(組織)は、もとの植物の細胞構造から変化している。すなわち、植物成形体30においては、細胞同士の位置関係が元の植物とは異なっている。
 また、植物成形体の製造方法において、連続的に植物系材料を投入することで、得られる植物成形体30を、前記アスペクト比(植物成形体の長手方向の長さ/植物成形体の横断面の最大径)が10以上である長尺な形状とすることができる。このような長尺な植物成形体30においては、木質あるいは植物組織を構成する各細胞の長手方向が植物成形体30の長手方向に沿って配列することで、木質あるいは植物組織の繊維配向が長手方向に沿って均一に並んでいる。このような繊維配向を有することで、長手方向に対して強度が高く、また、線膨張率が比較的低いという性質を有する植物成形体が得られる。
 (4)本発明の植物成形体の適用例
 本発明の植物成形体は、上述のように、長尺な形状に形成することができるとともに、使用する金型の形状に応じてその断面形状を適宜変更することができる。そのため、本発明の植物成形体は、建材に好適に利用することが可能である。
 さらに、本発明の植物成形体は、現在住宅の省エネルギー性能を向上させる目的で普及が推進されている断熱用の木質建材(例えば、枠材)など、樹脂とアルミ合金を使用した複合型の建材への応用が期待される。既存の複合型の建材においては、躯体(骨格となる部材)はアルミ合金で構成することで強度を維持しつつ、室内側の構成部材には、熱貫流率を始めとした断熱性能を向上させる目的でアルミ合金の躯体の表面に異型断面を有する樹脂性の枠材を取り付けている。
 この異型断面を有する樹脂性の枠材の部分に、本発明の植物成形体を利用することによって、より断熱性能を高めたうえで、見た目に木質感が感じ取れる複合型の建材を提供することができる。また、本発明の植物成形体は炭化することによりアルミ合金を被覆しそれ以上の延焼を抑えることも可能である。そのため、既存の樹脂部材を使用した複合型の建材で問題となっている難燃性能についても改善することができる。
 以上、本発明の実施形態について説明した。但し、本発明は上述したような実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において種々な態様で実施し得る。

Claims (4)

  1.  植物系材料を薬剤で処理する工程と、
     前記薬剤で処理された前記植物系材料を成形機に投入し、該成形機内で加熱および加圧しながら、材料投入部の幅よりも狭い幅の入口を有する成形型に流し込む工程と、
     前記成形型内において、該成形型に設けられた出口に向かって前記植物系材料を押出しつつ、該成形型内の温度を変化させながら前記植物系材料を圧縮することによって前記植物系材料を固化させた後に前記出口から前記植物系材料を押出して、植物成形体を得る工程と、
     を含む植物成形体の製造方法。
  2.  前記成形型の温度は、前記薬剤で処理された植物系材料の物性の温度依存性に基づいて設定される、請求項1に記載の植物成形体の製造方法。
  3.  薬剤を含浸させた植物系材料に圧力および温度を加えることによって、該植物系材料を一旦流動化させた後に成形された植物成形体であって、
     該植物成形体の横断面の最大径に対する該植物成形体の長手方向の長さの比が10以上の長尺状である、植物成形体。
  4.  該植物成形体の長手方向と交差する幅方向に該植物系材料を構成する細胞が圧縮されているとともに、該圧縮された細胞が前記長手方向に沿って配列している、請求項3に記載の植物成形体。
PCT/JP2013/068763 2012-07-11 2013-07-09 植物成形体およびその製造方法 WO2014010597A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-155747 2012-07-11
JP2012155747A JP6292650B2 (ja) 2012-07-11 2012-07-11 植物成形体の製造方法

Publications (1)

Publication Number Publication Date
WO2014010597A1 true WO2014010597A1 (ja) 2014-01-16

Family

ID=49916049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068763 WO2014010597A1 (ja) 2012-07-11 2013-07-09 植物成形体およびその製造方法

Country Status (2)

Country Link
JP (1) JP6292650B2 (ja)
WO (1) WO2014010597A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015984B2 (ja) * 2017-05-24 2022-02-04 国立研究開発法人産業技術総合研究所 流動成形用前駆体並びに植物系材料の流動成形前処理方法及びその成形品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502848B2 (ja) * 2005-03-09 2010-07-14 独立行政法人産業技術総合研究所 繊維を有する植物系熱圧成形材料及びその製造方法
JP4849609B2 (ja) * 2006-08-04 2012-01-11 独立行政法人産業技術総合研究所 植物系材料の成形方法及びその成形体
JP2012506800A (ja) * 2008-10-31 2012-03-22 ウーペーエム−キュンメネ コーポレイション 木材複合材製品の形成方法、木材複合材製品、および木材複合材製品の製造装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5327791B2 (ja) * 2008-12-26 2013-10-30 独立行政法人産業技術総合研究所 植物系材料の成形体の作製方法及び該方法により得られる成形体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502848B2 (ja) * 2005-03-09 2010-07-14 独立行政法人産業技術総合研究所 繊維を有する植物系熱圧成形材料及びその製造方法
JP4849609B2 (ja) * 2006-08-04 2012-01-11 独立行政法人産業技術総合研究所 植物系材料の成形方法及びその成形体
JP2012506800A (ja) * 2008-10-31 2012-03-22 ウーペーエム−キュンメネ コーポレイション 木材複合材製品の形成方法、木材複合材製品、および木材複合材製品の製造装置

Also Published As

Publication number Publication date
JP2014015031A (ja) 2014-01-30
JP6292650B2 (ja) 2018-03-14

Similar Documents

Publication Publication Date Title
US20070013096A1 (en) Multistage method and apparatus for continuously forming a composite article
CN102069523B (zh) 一种异形木质模压家具部件及其制造方法
KR102060109B1 (ko) Pmi 발포체 코어를 사용하는 풀-코어 방법
JP4849609B2 (ja) 植物系材料の成形方法及びその成形体
CN105178557B (zh) 一种重组竹地板及其制造方法
US20160375643A1 (en) Apparatus and method for manufacturing composite reinforcement structure
CN107363963A (zh) 一种超高密度超高强度植物纤维板的制造方法
KR20170020817A (ko) 강성 발포체 코어 제조를 위한 폐쇄된 몰드에서의 폴리(메트)아크릴이미드 입자의 압력-의존적 발포 성형
JP6292650B2 (ja) 植物成形体の製造方法
CN107399090B (zh) 一种纤维增强发泡复合材料及其制造方法
CN104511958B (zh) 成形木质体及制造该木质体的方法
KR102142936B1 (ko) 다공성 물질의 제어된 형성 및 장치
JP2012161933A (ja) 植物系材料の成形体製造装置
JP2011102013A (ja) 炭素繊維強化樹脂材及びその製造方法
JP5550080B2 (ja) 植物系材料の成形体製造方法及び植物系材料の成形体
JP2009172929A (ja) 長繊維板の製造方法
JP2001252960A (ja) 熱可塑性複合材料成形体及びその製造方法
KR101280697B1 (ko) 주조용 목형의 제조 방법 및 그 방법을 통해 얻어진 목형
KR101816902B1 (ko) 합성목재 제조방법
JP5997696B2 (ja) 木質複合材、その製造方法およびそれを含む製品
WO2017130957A1 (ja) 植物系材料の成形方法及び成形体
WO2012029708A1 (ja) 圧縮木製品の製造方法
JP6976256B2 (ja) 織り表面組織を備えた成形圧盤およびそれから作製される熱硬化性物品
US8178016B2 (en) Method for manufacturing a multilayered composite molded part
RU2006142195A (ru) Способ изготовления длинномерных профильных изделий из композиционных материалов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816386

Country of ref document: EP

Kind code of ref document: A1