WO2014003462A1 - 폐수의 질소 제거방법 - Google Patents

폐수의 질소 제거방법 Download PDF

Info

Publication number
WO2014003462A1
WO2014003462A1 PCT/KR2013/005713 KR2013005713W WO2014003462A1 WO 2014003462 A1 WO2014003462 A1 WO 2014003462A1 KR 2013005713 W KR2013005713 W KR 2013005713W WO 2014003462 A1 WO2014003462 A1 WO 2014003462A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
flow path
venturi tube
tank
inlet
Prior art date
Application number
PCT/KR2013/005713
Other languages
English (en)
French (fr)
Inventor
윤만중
Original Assignee
주식회사 신영이앤아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 신영이앤아이 filed Critical 주식회사 신영이앤아이
Publication of WO2014003462A1 publication Critical patent/WO2014003462A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry

Definitions

  • the present invention relates to a method for removing nitrogen from wastewater, and in particular, it is possible to easily remove nitrogen generated during the purification process of livestock manure by a physical method of high-pressure particle subdivision method, and within a specific range within a relatively short time.
  • the present invention relates to a method for removing nitrogen from wastewater that can stably secure a nitrogen removal rate.
  • the nitrogen in the wastewater is usually in the form of ammonia, nitrate and nitrite. These nitrogen compounds are known to be a direct cause of fish mortality by promoting eutrophication, which can lead to dissolved oxygen consumption as well as toxicity to aquatic organisms.
  • nitrification converts ammonia nitrogen to nitric acid (NO3-, NO2-) in an aerobic tank by microorganisms such as nitrosomonas and nitrobacter.
  • Denitrification is a process of converting the nitrate nitrogen component to nitrogen gas, which takes place in a biologically anoxic state.
  • Microorganisms involved in the denitrification process are various and denitrification is carried out by inducing a reduction process of nitrate nitrogen and converting it into nitrogen gas. Since the denitrification process should be performed under anoxic conditions, if the dissolved oxygen concentration is high as opposed to nitrification, the reaction is inhibited. In addition, since the organic (carbon) component is required as a cell synthesis and energy source of the denitrification microorganism, a smooth denitrification process may be performed by supplying a carbon source from the outside.
  • wastewater containing a large amount of particulate organic matter such as livestock wastewater or sludge from sewage treatment plants, is difficult to decompose when hydrolyzed particulate organic matter or macroorganic molecules when treated or stabilized by aerobic or anaerobic biological methods.
  • the reaction rate acts as a rate-limiting step, the reaction rate is slow and a long residence time is required, thereby increasing the volume of the biological reactor.
  • the biological nitrogen removal process has a disadvantage that must meet the complex microorganism maintenance conditions, such as temperature, energy source, PH, DO required for the cultivation of nitrosmonas nitrosmonas, denitrification microorganisms.
  • the existing biological method requires a device such as an aerobic tank / anoxic tank for nitrogen removal, the structure is complicated and time-consuming, as well as the initial investment costs for this.
  • a pretreatment method a mechanical treatment of a ball mill or the like, a physical method using high temperature heat, a chemical method using an alkali or ozone, a biological method using an enzyme, or the like, or a mixed treatment method using two or more methods at the same time have been proposed.
  • the present invention has been made in view of the above-mentioned problems, and an object thereof is to solve the problem of wastewater that can significantly remove nitrogen in the wastewater in a short time by a physical method using a high-pressure particle subdivision method rather than a biochemical method. To provide a nitrogen removal method.
  • Nitrogen removal method of the wastewater of the present invention is circulated along the flow path connected to the tank after the wastewater is introduced into the tank which can be sealed in the purification and discharge process of livestock manure and organic wastewater containing nitrogen,
  • the venturi tube has a venturi tube body having a hollow having an inlet and an outlet at both ends thereof, and a spiral groove having a width extending from the inlet side toward the central side of the hollow on an inner circumferential surface of the inlet side hollow of the venturi tube body.
  • the particles are subdivided to increase the temperature of the waste water, while maintaining the temperature of the waste water having the elevated temperature through a heat exchanger at 30 to 60 ° C.
  • a heat exchanger By controlling to maintain the outlet side pressure of the flow path to 0.096 MPa or less,
  • the present invention is characterized in that it further comprises the step of magnetizing the wastewater passing through the flow path by the magnetic member by placing a magnet member in the flow path.
  • FIG. 1 is a schematic view showing a wastewater treatment apparatus to which a nitrogen removal method of wastewater according to the present invention is applied.
  • Figure 2 is a first, second, and third experimental data applying the nitrogen removal method of the present invention, a graph showing the temperature change process over time.
  • Figure 3 is a graph showing the nitrogen removal rate over time as the first, second, third order experimental data applying the nitrogen removal method of the present invention.
  • 4 and 5 are graphs showing changes in the vacuum outlet side vacuum pressure according to the first and second experiment data, respectively.
  • 6 and 7 are a schematic view and a side view showing a venturi tube of the present invention.
  • the present invention is to allow the nitrogen in the wastewater to be removed in a short time by using a mechanical and physical method by the micronization method of particles using the cavitation phenomenon in the wastewater purification and discharge process.
  • the wastewater is introduced into the tank in the purification and discharge process of the wastewater containing nitrogen, and the wastewater in the tank is returned to the inside of the tank through a flow path connected to an upper end and a lower end of the tank. While circulating, maintaining the temperature of the waste water to 30 ⁇ 60 °C, and the outlet pressure (vacuum) in the flow path is maintained to 0.086Mpa or less, it is composed of steps of subdividing the particles.
  • the reason for applying high pressure to the wastewater is to subdivide the wastewater particles by using the cavitation of the wastewater.
  • FIG. 1 shows a wastewater treatment apparatus to which the nitrogen removal method of the present invention is applied.
  • the waste water treatment apparatus includes a tank 100 in which waste water is stored, a flow path 200 connected in a pipe form so as to connect an upper part and a lower part of the tank 100, and the waste water in the tank 100 through the flow path 200. Consists of a pump 300 for circulating back to the tank 100.
  • the flow path 200 is provided on one side of the tank 100 in which the waste water is stored to pass the stored waste water to perform the function of subdividing the particles.
  • Wastewater flowing into the tank 100 undergoes a first solid-liquid separation process before being introduced into the tank 100, and after the wastewater is introduced into the tank 100, the wastewater has a process of being circulated along the flow path 200. .
  • the magnet member may be disposed in the flow path 200 to magnetize the wastewater passing through the flow path 200 by magnetic force.
  • the range of the pressure in the tank 100 is preferably to give a high pressure of 5.0 ⁇ 7.0 bar, which is, the temperature rises due to the subdividing phenomenon of the wastewater passing through the venturi tube 500, which results in a saturated steam pressure Will rise. If the pressure range is less than 5.0 bar, the incidence of cavitation decreases.
  • the temperature is less than 30 °C, it does not meet the conditions of microbial activity in livestock manure and organic wastewater, the nitrogen removal by ammonia degassing is not performed, when the temperature exceeds 60 °C saturated steam pressure is increased This is because the vacuum pressure is reduced and the particle small fractionation rate is lowered, so that the nitrogen removal efficiency no longer increases.
  • outlet pressure of the flow path 200 it is preferable to set the outlet pressure of the flow path 200 to a vacuum pressure of 0.096 to 0.086 Mpa, and the outlet pressure and the pressure in the tank 100 have an inverse relationship.
  • the wastewater may be passed into the venturi tube 500 to subdivid the particles in the cavitation phenomenon.
  • the oxidation reaction during the particle subdivision has an oxidation reaction according to the basic nitrite oxidation and nitrification oxidation reaction scheme 1,2 as follows. .
  • the nitrification process requires a separate anoxic tank to complete the nitrogen degassing process as a conventional reaction, but the nitrogen removal reaction of most alkaline high animal manures applied with the present technology is strong at high pH as shown in Equation 4 below. It tends to be reducing and reverse reaction occurs due to the increase of ammonium ions, and the amount of nitrogen decreases due to the ammonia stripping principle that the temperature rise by strong energy and ammonia degassing during particle subdivision process.
  • the nitrogen removal rate is changed depending on the temperature which determines the saturated steam pressure.
  • This temperature rise is gradually increased over time, but as described above, if it exceeds 60 °C saturated steam pressure is excessively increased and the vacuum pressure is reduced, it is preferable to maintain the temperature range using a heat exchanger Do.
  • the first and second experiment data of removing nitrogen in the above-described manner can be seen that the nitrogen removal rate is improved over time.
  • the nitrogen removal efficiency of the wastewater has a removal efficiency of 50% or more.
  • the venturi tube 500 in the flow path As the particles are atomized and subdivided, the oxygen contact rate in contact with the nitrogen component is increased, and the nitrogen in the waste water can be reduced physically by oxidation and reduction reactions.
  • the venturi tube 500 of the present invention has a venturi tube body 510 having a hollow 512 having an inlet 520 and an outlet 530 at both ends thereof, as shown in FIGS. 6 and 7.
  • a spiral groove 550 is formed to convert the fluid flowing through the inlet 520 into a vortex.
  • the hollow 512 of the venturi tube body 510 has a nozzle portion 540 having inclined surfaces on both sides thereof so that an inner diameter thereof is reduced on the inner peripheral surface of the intermediate portion.
  • the helical groove portion 550 is formed in a plurality of grooves on the inclined surface of the inlet 520 side of the nozzle portion 540.
  • the spiral groove 550 is a spiral groove 550 corresponding to the other end due to the structural characteristics of the hollow 512 whose inner diameter is narrowed toward the nozzle part 540 with the other end from the inlet 520 side having one side end. Is concentrated on the nozzle unit 540 side.
  • the helical groove 550 is formed such that the width L2 of the other end (center of the hollow 512) is larger than the width L1 of one side of the inlet 520 (l1 < L2). The width of the inlet 520 toward the nozzle portion is increased. This is to amplify the turbulence and vortex when the vortex of the fluid passing through the inlet 520 occurs.
  • Venturi tube body 510 is in communication with the hollow 512 of the outlet 530 side on the outside and the thread is formed on the inner peripheral surface can be formed with a connector 515 connectable to the negative pressure gauge.
  • Nitrogen generated during the purification of livestock manure can be easily removed by the physical method of high pressure particle subdivision method, and nitrogen removal of the waste water can stably secure nitrogen removal rate within a certain range within a relatively short time. Way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Sludge (AREA)

Abstract

본 발명에 따른 폐수의 질소 제거방법은, 질소가 함유된 폐수의 정화 방류 공정에서 상기 폐수를 탱크 내에 유입시키고 상기 탱크 내의 폐수를 탱크와 연결된 유로를 통해 다시 탱크 내부로 순환시키되, 상기 폐수의 온도를 30~60℃를 유지하도록 함과 아울러, 상기 유로 내의 출구측 압력을 0.096Mpa 이하로 유지시켜 입자를 소분화시키는 단계들로 구성된다.

Description

폐수의 질소 제거방법
본 발명은 폐수의 질소 제거방법에 관한 것으로, 특히 가축분뇨의 정화 과정중에 발생되는 질소를 고압의 입자 소분화방식의 물리적방법으로 용이하게 제거할 수 있도록 함과 아울러, 비교적 짧은 시간내에 특정 범위내의 질소 제거율을 안정적으로 확보할 수 있는 폐수의 질소 제거방법에 관한 것이다.
종래와 같이 가축분뇨 등의 고농도 유기성 폐수를 호기성 미생물을 이용하여 생물학적 방법으로 처리할 경우에는 생물반응조(호기조)및 무산소조 등을 설치하여서 고농도 폐수를 처리하는 것이 일반적이다.
폐수 속에 들어 있는 질소 성분은 주로 암모니아, 질산(nitrate), 아질산(nitrite) 형태를 취하고 있다. 이러한 질소 화합물은 수생생물에 미치는 독성 뿐만 아니라 해수로 유입되었을 때에 용존 산소 소모를 가져올 수 있는 부영양화(eutrophication)를 촉진시켜 어폐류 폐사의 직접적인 원인이 되는 것으로 알려져있다.
폐수 내의 질소를 제거하는 중요한 메카니즘 중 하나는 질산화/탈질(nitrification/denitrification)이다.
일반적으로 질산화는 암모니아성 질소 성분이 nitrosomonas, nitrobacter 등 미생물에 의해 호기조에서 질산성 질소(NO3-, NO2-)로 전환된다.
탈질은 상기 질산성 질소 성분을 질소가스로 전환시키는 공정으로 생물학적으로 무산소 상태에서 이루어진다.
탈질과정에 관계되는 미생물은 종류가 다양하며 질산성 질소의 환원과정을 유도하여 질소가스로 전환시킴으로써 탈질을 수행하게 된다. 상기 탈질 과정은 무산소 조건 하에서 이루어져야 하므로 질산화와 반대로 용존 산소 농도가 높으면 반응이 저해된다. 또한 탈질 미생물의 세포 합성과 에너지원으로 유기(탄소) 성분을 필요로 하므로 외부에서 탄소원을 공급해 주어야 원활한 탈질 과정이 이루어질 수 있다.
일반적으로 입자상 유기성 물질이 다량 함유되어 있는 폐수, 예를 들어 축산폐수나 하수처리장의 슬러지 등은 호기 또는 혐기적 생물학적 방법으로 처리 또는 안정화 시킬 때, 분해가 힘든 입자상 유기성 물질이나 거대 유기성 분자의 가수분해가 율속단계로 작용하기 때문에 반응속도가 느리게 되고 장시간의 체류시간이 필요하게 됨으로써 생물학적 반응조의 용적이 커져야 하는 단점을 가지고 있다.
또한, 상기한 생물학적 질소 제거공정은 질산화 미생물인 Nitrosmonas, 탈질 미생물인 Nitrobactor의 배양에 필요한 온도, 에너지원, PH, DO 등 복잡한 미생물 유지조건을 충족시켜야 하는 단점이 있다.
그리고, 기존 생물학적 방식은 질소 제거를 위한 호기성조/무산소조 등의 장치 등을 필요로 함에 따라 구조가 복잡하고 시간이 많이 소모될 뿐만 아니라, 이를 위한 초기 투자비용이 많이 요구되는 단점이 있다.
이를 극복하기 위하여 다양한 전처리 방법이 연구되어 왔다. 전처리 방법으로는 볼밀 등의 기계적 처리나 고온의 열을 이용하는 물리적 방법, 알칼리나 오존 등을 이용하는 화학적 방법, 효소 등을 이용하는 생물학적 방법 또는 둘 이상의 방법을 동시에 적용한 혼합처리 방법 등이 제시되었다.
본 발명은 상기한 제반 문제점을 감안하여 이를 해결하고자 창출된 것으로, 그 목적은 생화학적 방법이 아닌 고압의 입자 소분화 방식을 이용한 물리적 방법으로 폐수 중의 질소를 단시간내에 대폭 제거할 수 있도록 한 폐수의 질소 제거방법을 제공하는 데 있다.
본 발명 폐수의 질소 제거방법은 질소가 함유된 가축분뇨 및 유기성 폐수의 정화 방류 공정에서 상기 폐수를 밀폐 가능한 탱크내로 유입시킨 후에 상기 탱크와 연결된 유로를 따라 순환시키되,
상기 유로 내에 벤츄리관을 배치하되,
상기 벤츄리관은 양측 단부에 유입구와 유출구를 갖는 중공이 형성된 벤츄리관 몸체를 구비하고, 상기 벤츄리관 몸체의 유입구측 중공의 내주면에 유입구측에서 상기 중공의 중앙 측으로 갈수록 폭이 확대되는 나선형 홈부를 형성하여서, 상기 유입구를 통해 유입되는 폐수를 와류로 변환시키고, 상기 폐수가 상기 벤츄리관 내부를 통과하는 과정에서 난류와 소용돌이 현상을 증폭시키도록 하며,
상기 폐수를 상기 유로 내의 벤츄리관 내부로 통과시키는 과정 중에 입자를 소분화시켜 폐수의 온도를 상승시키면서, 열교환기를 매개로 온도가 상승된 폐수의 온도를 30~60℃로 유지시키도록 함과 아울러, 상기 유로의 출구 측 압력을 0.096MPa 이하로 유지하도록 제어하여서,
상기 가축 분뇨 및 유기성 폐수내의 미생물 활성도 조건을 충족시키고 상기 탱크의 압력 범위가 5~7bar의 압력 범위를 갖도록 유지시켜 폐수의 입자 소분화율을 조절함으로써, 입자 소분화에 따른 캐비테이션 현상을 이용하여 암모니아 탈기에 의한 질소 제거율을 조절하도록 된 것을 특징으로 한다.
또한, 본 발명에 있어서, 상기 유로 내에 자석부재를 배치하여 상기 유로 내부를 통과하는 폐수를 자기력으로 자화시키는 단계를 더 구비한 것을 특징으로 한다.
첫째, 폐수를 저장탱크에서 유체의 공동화 현상을 발생시키는 유로 내부로 순환시킴으로써, 폐수 입자를 소분화시켜 폐수 중의 질소를 물리적 방법으로 단시간내에 대폭 제거할 수 있는 유용한 효과를 갖는다.
둘째, 온도 조절을 통해 탱크내의 압력과 유로의 출구측 진공압력을 조절할 수 있으므로, 폐수 중의 질소를 제거하는 과정에서 단순한 방식으로 제어가 가능한 이점을 갖는다.
도 1은 본 발명에 따른 폐수의 질소 제거방법이 적용된 폐수 처리장치를 개략적으로 나타낸 구성도.
도 2는 본 발명 질소 제거방법을 적용한 제 1,2,3차 실험 데이터로서,시간 경과에 따른 온도 변화과정을 나타낸 그래프.
도 3은 본 발명 질소 제거방법을 적용한 제 1,2,3차 실험 데이터로서, 시간 경과에 따른 질소 제거율을 나타낸 그래프.
도 4와 도 5는 앞의 제 1,2실험 데이터에 따른 유로 출구측 진공압력의 변화를 각각 나타낸 그래프.
도 6과 도 7은 본 발명의 벤츄리관을 나타낸 구성도 및 측면도.
본 발명은 폐수의 정화방류 과정에서 폐수에 함유된 질소를 공동화현상을 이용한 입자의 소분화방식에 의한 기계적 및 물리적 방법을 이용하여 단시간내에 대폭 제거할 수 있도록 한 것이다.
본 발명에 따른 폐수의 질소 제거방법은, 질소가 함유된 폐수의 정화 방류 공정에서 상기 폐수를 탱크 내에 유입시키고 상기 탱크 내의 폐수를 단부가 탱크의상부와 하부에 배관 연결된 유로를 통해 다시 탱크 내부로 순환시키되, 상기 폐수의 온도를 30~60℃를 유지하도록 함과 아울러, 상기 유로 내의 출구측 압력(진공)을 0.086Mpa 이하로 유지시켜 입자를 소분화시키는 단계들로 구성된다.
더 상세히 설명하면, 폐수에 고압을 부여하는 이유는 폐수의 공동화 현상(cavitation)을 이용하여 폐수 입자를 소분화시키기 위함이다.
도 1은 본 발명의 질소 제거방법이 적용되는 폐수처리장치를 나타낸 것이다.
폐수 처리장치는 폐수가 저장되는 탱크(100)와, 탱크(100)의 일측 상부와 하부를 연결하도록 배관 형태로 연결되는 유로(200)와, 탱크(100) 내의 폐수를 유로(200)를 통해 압송시켜 다시 탱크(100)로 순환시키는 펌프(300)로 구성된다.
유로(200)는 폐수가 저장되는 탱크(100)의 일측에 마련되어 저장된 폐수를 통과시켜 입자를 소분화시키는 기능을 수행하게 된다.
탱크(100)에 유입되는 폐수는 탱크(100) 내부로 유입되기 전에 1차 고액 분리과정을 거치게 되며, 폐수가 탱크(100) 내부로 유입된 후에는 유로(200)를 따라 순환되는 과정을 갖는다.
이때, 폐수가 유로(200) 내부에 배치된 벤츄리관(500)을 통과하면서, 유로(200)의 출구 측에서 발생되는 공동화 현상을 이용하여 입자가 소분화된다.
또, 상기 유로(200) 내에 자석부재를 배치하여 상기 유로(200) 내부를 통과하는 폐수를 자기력으로 자화시키는 단계를 더 구비할 수 있다.
탱크(100) 내의 압력의 범위는 5.0~7.0bar의 고압을 부여하는 것이 바람직하며, 이는, 벤츄리관(500)을 통과하는 폐수의 소분화 현상에 의해 온도가 상승하게 되고, 이로 인해 포화증기압이 상승하게 된다. 상기한 압력 범위에서 5.0bar 미만일 경우에는 공동화현상의 발생율이 저하된다.
온도 범위는 30~60℃의 범위를 유지하는 것이 바람직하다. 이는, 30℃ 미만의 온도일 경우에는 가축 분뇨 및 유기성 폐수 내 미생물 활성도 조건을 충족시켜 주지 못하고, 암모니아 탈기에 의한 질소 제거가 이루어지지 않으며, 60℃를 초과하는 온도일 경우에는 포화증기압이 상승되고 진공압이 저감되어 입자 소분화율이 저화됨으로써, 질소 제거 효율이 더 이상 상승하지 않기 때문이다.
따라서, 탱크(100) 내의 압력 범위가 7.0bar를 초과하지 않는 범위내에서 온도 조절을 통해 압력을 조절하는 것이 바람직하다.
유로(200)의 출구측 압력을 0.096~0.086Mpa의 진공압력으로 설정하는 것이 바람직하며, 출구측 압력과 탱크(100) 내 압력은 반비례관계를 갖는다.
입자를 소분화시키는 단계는 상기 유로(200) 내에 벤츄리관(500)을 배치함으로써, 상기 폐수를 벤츄리관(500) 내부로 통과시켜 공동화현상으로 입자를 소분화시킬 수 있다.
벤츄리관(500)의 목 부근에서 액체의 속도가 증가되고, 목 부위의 압력이 포화증기압 이하로 감소됨과 아울러, 액체가 증발되면서 기포 핵이 생성되고, 핵이 합쳐져 버블로 성장하게 된다.
이때, 일부 질소는 고압의 입자 소분화과정에서 산소 접촉율을 높여서 산화작용이 발생하게 되고, 입자 소분화시 산화 반응식은 아래와 같은 아질산화 산화 및 질산화 산화 기본 반응식 1,2에 따라 산화 반응을 갖는다.
[반응식1]
2NH4 + + 3O2→2H2O + NO2 - + 4H+
[반응식2]
2NO2 - + O2 →2NO3 -
이러한 반응식을 합하면, 아래의 반응식 3과 같은 반응을 갖게 된다.
[반응식3]
NH4 + + 2O2 NO3 - + 2H+ + H2O
상기한 질산화 공정은 통상적인 반응으로 질소 탈기화 과정을 완성시키기 위해서 별도의 무산소조가 필요하나, 본 기술을 적용한 대부분의 알칼리성이 높은 가축 분뇨의 질소제거반응은 아래의 반응식 4와 같이 높은 pH에서 강한 환원성 경향을 갖게 되며 암모늄 이온의 증가로 역반응이 일어나고 입자 소분화 과정에서 강한 에너지에 의한 온도상승 및 암모니아 탈기가 되는 암모니아 스트리핑(ammonia stripping) 원리에 의해 질소량이 감소하게 된다.
[반응식4]
NH3 ++ H2O ↔NH4 + + OH-
고압 소분화 과정에서 폐수의 온도가 상승하게 되고, 포화증기압 온도에 따라 질소 제거율이 달라지므로, 질소 제거율은 포화증기압을 결정하는 온도의 영향에 따라 달라지게 된다..
이에 따라, 지역 등의 조건에 따라 액비 중 질소 필요 농도가 다르므로 액비 생산과정에서 온도 조정에 따른 질소 제거율을 조정할 수 있다.
본 발명의 질소 제거 실험시 온도 변화에 따른 1,2,3차 실험 데이터는 도 2에 도시된 바와 같이, 시간의 경과에 따른 질소 제거율이 향상됨을 알 수 있다.(단위는 ℃)
이러한 온도 상승은 시간이 경과함에 따라 점차 상승하게 되지만, 앞서 설명한 바와 같이, 60℃를 초과하게 되면 포화증기압이 과도하게 상승되고 진공압이 저감하게 되므로, 열교환기를 이용하여 온도 범위를 유지하는 것이 바람직하다.
상기한 방식으로 질소를 제거한 1,2,3차 실험 데이터는 도 3에 도시된 바와 같이, 시간의 경과에 따른 질소 제거율이 향상됨을 알 수 있다.
상기한 질소 제거를 위한 시간은 72시간이 경과됨에 따라 폐수의 질소 제거 효율이 50%이상의 제거 효율을 갖는다.
도 4 및 도 5는 앞의 제 1,2실험 데이터에 따른 유로 출구측 진공압력의 변화를 그래프로 나타낸 것으로서, 앞서 온도 상승 변화에 따라 진공압이 저하됨을 알 수 있다. (단위는 Mpa)
즉, 본 발명은 분뇨 등의 폐수가 탱크(100) 내부로 유입된 후에, 탱크(100)와 연결된 유로(200)를 통과하여 다시 탱크(100)로 순환되는 과정에서, 유로 내의 벤츄리관(500)을 통과하면서 입자가 미립화 및 소분화되면서 질소성분과 접촉되는 산소 접촉율이 상승하게 되고, 산화 및 환원 반응에 의해 물리적인 방법으로 폐수중의 질소를 저감시킬 수 있도록 한 것이다.
본 발명의 벤츄리관(500)은 도 6 및 도 7에 도시된 바와 같이, 양측 단부에 유입구(520)와 유출구(530)를 갖는 중공(512)이 형성된 벤츄리관 몸체(510)를 가지며, 벤츄리관 몸체(510)의 유입구(520)측 중공(512)의 내주면에 상기 유입구(520)를 통해 유입되는 유체를 와류로 변환시키기 위한 나선형 홈부(550)가 형성된 것을 채용한다.
상세히 설명하면, 벤츄리관 몸체(510)의 중공(512)은 중간 부위 내주면에 내경이 축소되도록 양측으로 경사면이 형성된 노즐부(540)를 갖는다.
나선형 홈부(550)는 노즐부(540)의 유입구(520)측 경사면에 요홈 형태로 복수개 형성되어 있다.
또한, 나선형 홈부(550)는 일측단이 형성된 유입구(520)측에서 타측단이 형성된 노즐부(540) 측으로 갈수록 내경이 좁아지는 중공(512)의 구조적 특성상 타측단에 해당하는 나선형 홈부(550)가 노즐부(540)측에 집중되는 형태를 갖는다.
더 바람직하게는, 나선형 홈부(550)는 유입구(520)의 일측단폭(ℓ1)보다 타측단(상기 중공(512)의 중앙)측의 폭(ℓ2)이 더 크게 형성된 것(ℓ1〈ℓ2)으로, 유입구(520)측에서 노즐부측으로 갈수록 폭이 확대되도록 형성된 것이다. 이는 유입구(520)를 통해 통과되는 유체의 와류 발생시 난류와 소용돌이 현상을 증폭시키기 위함이다.
벤츄리관 몸체(510)는 외측에 유출구(530)측의 중공(512)과 연통되며 내주면에 나사산이 형성되어 음압 게이지와 연결 가능한 연결구(515)가 형성될 수 있다.
가축분뇨의 정화 과정중에 발생되는 질소를 고압의 입자 소분화방식의 물리적방법으로 용이하게 제거할 수 있도록 함과 아울러, 비교적 짧은 시간내에 특정 범위내의 질소 제거율을 안정적으로 확보할 수 있는 폐수의 질소 제거방법이다.

Claims (2)

  1. 질소가 함유된 가축분뇨 및 유기성 폐수의 정화 방류 공정에서 상기 폐수를 밀폐 가능한 탱크(100)내로 유입시킨 후에 상기 탱크(100)와 연결된 유로(200)를 따라 순환시키되,
    상기 유로(200) 내에 벤츄리관(500)을 배치하되,
    상기 벤츄리관은 양측 단부에 유입구(520)와 유출구(530)를 갖는 중공(512)이 형성된 벤츄리관 몸체(510)를 구비하고, 상기 벤츄리관 몸체(510)의 유입구(520)측 중공(512)의 내주면에 유입구(520)측에서 상기 중공(512)의 중앙 측으로 갈수록 폭이 확대되는 나선형 홈부(550)를 형성하여서, 상기 유입구(520)를 통해 유입되는 폐수를 와류로 변환시키고, 상기 폐수가 상기 벤츄리관(500) 내부를 통과하는 과정에서 난류와 소용돌이 현상을 증폭시키도록 하며,
    상기 폐수를 상기 유로(200) 내의 벤츄리관(500) 내부로 통과시키는 과정 중에 입자를 소분화시켜 폐수의 온도를 상승시키면서, 열교환기를 매개로 온도가 상승된 폐수의 온도를 30~60℃로 유지시키도록 함과 아울러, 상기 유로(200)의 출구 측 압력을 0.096MPa 이하로 유지하도록 제어하여서,
    상기 가축 분뇨 및 유기성 폐수내의 미생물 활성도 조건을 충족시키고 상기 탱크(100)의 압력 범위가 5~7bar의 압력 범위를 갖도록 유지시켜 폐수의 입자 소분화율을 조절함으로써, 입자 소분화에 따른 캐비테이션 현상을 이용하여 암모니아 탈기에 의한 질소 제거율을 조절하도록 된 것을 특징으로 하는 폐수의 질소 제거방법.
  2. 청구항 1에 있어서,
    상기 유로(200) 내에 자석부재를 배치하여 상기 유로(200) 내부를 통과하는 폐수를 자기력으로 자화시키는 단계를 더 구비한 것을 특징으로 하는 폐수의 질소 제거방법.
PCT/KR2013/005713 2012-06-29 2013-06-27 폐수의 질소 제거방법 WO2014003462A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0070689 2012-06-29
KR1020120070689A KR101250349B1 (ko) 2012-06-29 2012-06-29 폐수의 질소 제거방법

Publications (1)

Publication Number Publication Date
WO2014003462A1 true WO2014003462A1 (ko) 2014-01-03

Family

ID=48442262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005713 WO2014003462A1 (ko) 2012-06-29 2013-06-27 폐수의 질소 제거방법

Country Status (2)

Country Link
KR (1) KR101250349B1 (ko)
WO (1) WO2014003462A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106630370A (zh) * 2015-11-04 2017-05-10 东莞源控环保科技有限公司 水力空化除磷装置及应用该装置的污水处理系统、方法
CN115043458A (zh) * 2022-05-25 2022-09-13 三峡大学 一种文丘里空化试验系统及操作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405876B1 (ko) 2013-07-25 2014-06-17 주식회사 신영이앤아이 슬러지 가용화 기술을 이용한 바이오 가스 생산방법
KR102066443B1 (ko) * 2018-03-06 2020-02-11 보평그린(주) 요 순환 미생물 증식 장치 및 이에 의해 증식된 미생물의 부산물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976384A (en) * 1997-04-28 1999-11-02 Campbell; Bryan A. Process for treating waste water
KR100849165B1 (ko) * 2008-03-06 2008-07-30 (주)엔지에스티 슬러지 미립화 장치
US20080277354A1 (en) * 2004-05-11 2008-11-13 Gunnar Baerheim Ballast Water System
JP2010506715A (ja) * 2006-10-20 2010-03-04 オーシャンセイバー エーエス. 液体の処理方法および処理装置
KR20120028554A (ko) * 2010-09-15 2012-03-23 장경옥 슬러지가 발생하지 않는 자화처리 및 메디아 다공회전통을 이용한 오폐수처리장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866620B1 (ko) 2007-05-15 2008-11-04 삼창기업 주식회사 수리동력학적 캐비테이션을 이용한 슬러지 전처리 장치
KR100926000B1 (ko) 2008-12-01 2009-11-09 충남대학교산학협력단 자석 교반기를 이용한 수처리 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976384A (en) * 1997-04-28 1999-11-02 Campbell; Bryan A. Process for treating waste water
US20080277354A1 (en) * 2004-05-11 2008-11-13 Gunnar Baerheim Ballast Water System
JP2010506715A (ja) * 2006-10-20 2010-03-04 オーシャンセイバー エーエス. 液体の処理方法および処理装置
KR100849165B1 (ko) * 2008-03-06 2008-07-30 (주)엔지에스티 슬러지 미립화 장치
KR20120028554A (ko) * 2010-09-15 2012-03-23 장경옥 슬러지가 발생하지 않는 자화처리 및 메디아 다공회전통을 이용한 오폐수처리장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106630370A (zh) * 2015-11-04 2017-05-10 东莞源控环保科技有限公司 水力空化除磷装置及应用该装置的污水处理系统、方法
CN106630370B (zh) * 2015-11-04 2019-07-30 广东源控环保科技有限公司 水力空化除磷装置及应用该装置的污水处理系统、方法
CN115043458A (zh) * 2022-05-25 2022-09-13 三峡大学 一种文丘里空化试验系统及操作方法

Also Published As

Publication number Publication date
KR101250349B1 (ko) 2013-04-03

Similar Documents

Publication Publication Date Title
CN109574420B (zh) 一种反渗透浓缩水处理方法与设备
KR101288503B1 (ko) 하·폐수처리장치
CN104909520A (zh) Mabr和mbr联用式污水处理装置及处理方法
WO2014003462A1 (ko) 폐수의 질소 제거방법
CN110217939B (zh) 基于改良型aao污水脱氮除磷装置及工艺
CN105984991B (zh) 一种污水深度处理工艺
CN110255812B (zh) 一种在畜禽养殖污水处理过程中保留氨氮去除抗生素的生化与高级氧化组合方法
CN205011584U (zh) 一种基于mbr的污水处理系统
CN209210486U (zh) 一种短程硝化同步反硝化除磷耦合装置
CN111592099A (zh) 利用序批式活性污泥反应器进行污水处理的方法及装置
CN106045026A (zh) 厌氧‑兼氧上流式反应器垃圾渗滤液的处理方法及设备
CN217398562U (zh) 高浓度含氮废水处理系统
CN104230109B (zh) Uasb/a/mbbr结合化学法处理高有机物高氨氮废水的方法
KR20210040632A (ko) 다양한 고농도 폐액의 아질산화 반응과 미생물 배양강화를 통한 하수처리장 수처리공정에서 혐기성 암모늄 산화 공법 기반의 하수처리 시스템
KR20130122192A (ko) 하이브리드 공간분리기능과 콤팩트형 접촉여재를 이용한 산화구 개선시스템
CN215855353U (zh) 一种处理有机氮废水的生物除碳脱氮的一体化反应器
CN102923859B (zh) 一种处理高浓度印染退浆废水及好氧剩余污泥的工艺
CN101585652A (zh) 一种丙烯腈-腈纶综合生产废水处理方法及处理设备
CN204661498U (zh) 采用预处理和微曝气两阶段式低能耗污水处理系统
CN210193608U (zh) 一种畜禽养殖沼液处理系统
CN113845221A (zh) 一种处理有机氮废水的生物除碳脱氮的一体化反应器
KR102095467B1 (ko) 미생물반응기를 이용한 수처리시스템
CN209352631U (zh) 一种电场强化型厌氧氨氧化装置
CN102115298A (zh) 一种低碳氮比亚硝化的污水处理装置及其方法
CN215712061U (zh) 一种高污泥浓度低溶解氧生物倍增污水处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810210

Country of ref document: EP

Kind code of ref document: A1