WO2014002582A1 - 樹脂組成物及びシール部材 - Google Patents

樹脂組成物及びシール部材 Download PDF

Info

Publication number
WO2014002582A1
WO2014002582A1 PCT/JP2013/061220 JP2013061220W WO2014002582A1 WO 2014002582 A1 WO2014002582 A1 WO 2014002582A1 JP 2013061220 W JP2013061220 W JP 2013061220W WO 2014002582 A1 WO2014002582 A1 WO 2014002582A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
tan
rubber
thermoplastic resin
Prior art date
Application number
PCT/JP2013/061220
Other languages
English (en)
French (fr)
Inventor
明宏 大和田
伊藤 宏
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to EP13789148.7A priority Critical patent/EP2719724A4/en
Priority to CN201380002088.4A priority patent/CN103732674A/zh
Priority to KR1020137029696A priority patent/KR20140033042A/ko
Priority to US14/235,019 priority patent/US20150087785A1/en
Priority to MX2013014062A priority patent/MX2013014062A/es
Publication of WO2014002582A1 publication Critical patent/WO2014002582A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • the present invention relates to a resin composition and a seal member, and more particularly to a resin composition containing a rubber component and a thermoplastic resin and a seal member using the same.
  • a sealing member (seal ring) for a hydraulic continuously variable transmission (hereinafter referred to as “CVT”) can be cited.
  • CVT hydraulic continuously variable transmission
  • the groove widths of the pair of pulleys are changed in correlation with the hydraulic pressure in the hydraulic chamber, and the speed change is changed steplessly by changing the pulley diameter.
  • a fixed pulley is integrally formed on a drive shaft, and a movable pulley is formed on a housing that reciprocates along this shaft.
  • the movable pulley is provided with a hydraulic chamber.
  • the movable pulley comes into contact with and is separated from the fixed pulley.
  • the width of the groove formed in each of the pulleys is increased or decreased to increase or decrease the rotation radius of the belt wound around the pulleys, thereby changing the gear ratio when power is transmitted.
  • a resin seal ring is attached to the shaft groove formed on the outer peripheral surface of the shaft.
  • Combination seal rings composed of: have been used.
  • a polytetrafluoroethylene (PTFE) resin to which a filler is added is used as the material of the resin ring 7, and a rubber-like elastic body is used as the material of the O-ring 6.
  • the seal ring material a material obtained by filling a fluororesin such as polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene, or ethylenetetrafluoroethylene (ETFE) with an additive such as carbon powder or carbon fiber is used. It has been.
  • PTFE polytetrafluoroethylene
  • ETFE ethylenetetrafluoroethylene
  • Patent Document 1 discloses a composition in which carbon black having a predetermined DBP absorption amount is blended with a PTFE resin as a resin composition applicable to CVT.
  • a seal ring having this composition expands when oil is absorbed. It is described that since the gap in the radial direction of the seal ring due to creep deformation at a high temperature can be compensated to improve the low temperature sealing performance, the sealing performance is excellent even at a low temperature immediately after the start of operation of the hydraulic device.
  • the seal ring of patent document 1 is for high surface pressures, such as CVT, it is shown that a carbon fiber and graphite can be mix
  • the seal ring of Patent Document 1 It is considered possible to reduce the amount of oil leakage at low temperatures by adopting the seal ring of Patent Document 1.
  • the seal ring having the above-described structure is mainly composed of PTFE resin, it is plastically deformed by being pressurized in high-temperature lubricating / working oil. For this reason, when the engine is stopped after the operation and is in a no-load state, it is difficult to maintain a close contact state (adhesion) with the inner peripheral surface of the housing, and it is difficult to prevent oil leakage from the hydraulic chamber.
  • a resin material having excellent heat resistance and low compression set is required.
  • Patent Document 2 includes a polyvinyl chloride resin (1), a polyurethane (2), and a plasticizer (3).
  • a sea-island type phase separation structure is observed with a transmission electron microscope.
  • a highly repulsive material obtained by subjecting polyurethane (2) to urethane reaction of a polymer polyol and a compound having three or more isocyanate groups having a size of 0.01 micron or more and 100 microns or less is disclosed. It is described that this material is a material having excellent compression set and workability and high resilience.
  • Patent Document 3 discloses (A) (meth) acrylic block copolymer comprising (A1) (meth) acrylic polymer block and (A2) acrylic polymer block, and (B) in one molecule.
  • a thermoplastic elastomer composition comprising a compound containing two or more amino groups and (C) a thermoplastic resin, wherein (A) (meth) acrylic block copolymer is converted into (C) heat by (B) compound.
  • thermoplastic elastomer composition obtained by dynamically heat-treating in a plastic resin, and further (D) adding a thermoplastic resin and kneading.
  • this composition has an excellent balance between hardness and mechanical strength, has excellent rubber elasticity over a wide temperature range, excellent high-temperature creep performance and molding processability, and is excellent in oil resistance and heat resistance while being a thermoplastic elastomer. ing.
  • the resin composition of Patent Document 2 contains a polyvinyl chloride resin, which is a thermoplastic resin having a glass transition temperature near 87 ° C., as an essential component. Therefore, in the high temperature range above the glass transition temperature, the fluidity of the resin composition becomes high and the elasticity is lowered, so that sufficient sealing characteristics may not be obtained. It is also conceivable that the resin composition is plastically deformed and the sealing performance is deteriorated by use under high temperature and pressure higher than the glass transition temperature.
  • a polyvinyl chloride resin which is a thermoplastic resin having a glass transition temperature near 87 ° C.
  • polyamide resins and polyester resins are disclosed as thermoplastic resins added to the thermoplastic elastomer composition of Patent Document 3.
  • the glass transition temperature of polyamide resin is about 50 ° C.
  • the glass transition temperature of polyester resin is about 50 ° C. (polybutylene terephthalate) and 69 ° C. (polyethylene terephthalate).
  • the thermoplastic elastomer of Patent Document 3 as in the resin of Patent Document 2, the elasticity is lowered at the high temperature range so that sufficient sealing characteristics cannot be obtained, or the resin is used due to use under high temperature and pressure.
  • the composition may be plastically deformed and the sealing performance may deteriorate.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a resin composition capable of maintaining excellent elasticity even after being used for a long time under high temperature and pressure, and a sealing member using the same.
  • the present inventors have determined that the maximum value of the loss tangent (tan ⁇ ) in the temperature range of 20 ° C. to 150 ° C. is 0.2 in the resin composition containing the rubber component and the thermoplastic resin.
  • one aspect of the resin composition according to the present invention is a resin composition containing a rubber component and a thermoplastic resin, and the maximum value of the loss tangent (tan ⁇ ) in the temperature range of 20 ° C. to 150 ° C. is 0.00. 2 or less.
  • the rubber component is preferably acrylic rubber.
  • thermoplastic resin is preferably polyvinylidene fluoride.
  • the equivalent circle diameter of the thermoplastic resin in the resin composition is preferably 40 nm or more and 100 nm or less.
  • One aspect of the seal member according to the present invention is characterized by using the resin composition according to the present invention.
  • the sealing member composed of the resin composition of the present invention can maintain excellent sealing characteristics for a long time even under severe use conditions.
  • FIG. 3 is a graph showing loss tangent (tan ⁇ ) in dynamic viscoelasticity of a dynamically crosslinked resin, polyvinylidene fluoride, and a sample of Comparative Example 1; It is a graph which shows the loss tangent (tan-delta) in the dynamic viscoelasticity of the sample of Example 2, 4, 5 and the comparative example 1.
  • FIG. 2 It is a photograph of the sample of Example 2 expanded by 8000 times using the transmission electron microscope (TEM). It is a photograph of the sample of Example 4 expanded by 8000 times using TEM.
  • TEM transmission electron microscope
  • the resin composition according to the present embodiment is composed of a mixture containing a rubber component and a thermoplastic resin, and is a ratio of loss elastic modulus (E ′′) and storage elastic modulus (E ′) by dynamic viscoelasticity measurement (E ′′ /
  • the maximum value of the loss tangent (tan ⁇ ) as E ′) between 20 ° C. and 150 ° C. is 0.2 or less.
  • tan ⁇ has temperature dependence.
  • the maximum value of tan ⁇ in the temperature range of 20 ° C. to 150 ° C. of the resin composition is 0.2 or less, a high repulsive force can be maintained even in a high temperature range. And since the resin composition of this embodiment has a small compression set after high-temperature pressurization and can maintain excellent rubber elasticity even after long-term use, it has excellent sealing properties over a long period even under severe use conditions. Can be maintained.
  • the maximum value of tan ⁇ in the temperature range is preferably 0.15 or less, and more preferably 0.13 or less.
  • the value of tan ⁇ in the above temperature range can be controlled by the type and amount of thermoplastic resin. For example, when a thermoplastic resin having a glass transition temperature of 150 ° C. or higher is used or a thermoplastic resin having a glass transition temperature of less than 150 ° C. is used, the value of tan ⁇ is lowered by reducing the amount of addition. be able to.
  • the use of a thermoplastic resin having a high glass transition temperature is not necessarily advantageous.
  • the method of reducing the tan ⁇ value near the glass transition temperature of the thermoplastic resin by highly dispersing the rubber component and the thermoplastic resin is the method of injection molding, mechanical strength and creep resistance of the resin composition. This is preferable because excellent rubber elasticity in a high temperature range can be realized while maintaining the characteristics.
  • the hardness of the resin composition constituting the seal member of the present embodiment is preferably 60 to 98, and more preferably 70 to 95. By defining the shore hardness within this range, the seal member is unlikely to be deformed by hydraulic pressure during use, and can maintain a high sealing performance even after a long period of operation, and the mounting property to a shaft groove or the like is improved.
  • the rubber component of the present embodiment may be added as a crosslinked rubber or a thermoplastic elastomer, or may be added as a dynamic crosslinked resin.
  • the surface hardness of these rubber components is Shore hardness A and is preferably 60 to 90.
  • Cross-linked rubbers include natural rubber, synthetic isoprene rubber (IR), fluorine rubber, butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), acrylonitrile-butadiene copolymer rubber (NBR), butyl rubber ( IIR), halogenated butyl rubber, urethane rubber, silicone rubber, acrylic rubber and the like.
  • IR isoprene rubber
  • BR butadiene rubber
  • SBR styrene-butadiene rubber
  • CR chloroprene rubber
  • NBR acrylonitrile-butadiene copolymer rubber
  • IIR butyl rubber
  • halogenated butyl rubber urethane rubber
  • silicone rubber acrylic rubber and the like.
  • thermoplastic elastomers examples include polyester elastomers, polyolefin elastomers, fluorine elastomers, silicone elastomers, butadiene elastomers, polyamide elastomers, polystyrene elastomers, urethane elastomers, and the like.
  • thermoplastic elastomers one type can be used, but two or more types can also be mixed and used.
  • polyester elastomers and polyamide elastomers are preferable from the viewpoint of injection moldability and heat resistance.
  • polyester elastomers examples include “Hytrel” manufactured by Toray DuPont Co., Ltd., “Perprene” manufactured by Toyobo Co., Ltd., and “Primalloy” manufactured by Mitsubishi Chemical Corporation. , “Pebax” manufactured by ARKEMA, “UBESTAXPA” manufactured by Ube Industries, Ltd., and the like.
  • the dynamically crosslinked resin has a structure in which a crosslinked rubber phase is dispersed in a thermoplastic resin phase.
  • the thermoplastic resin used for the dynamically crosslinked resin is not particularly limited, and examples thereof include polyester and polyamide (PA).
  • PA polyester and polyamide
  • the rubber is not particularly limited.
  • natural rubber cis-1,4-polyisoprene, high cis polybutadiene, styrene-butadiene copolymer rubber, ethylene-propylene rubber (EPM), ethylene-propylene diene rubber (EPDM).
  • EPM ethylene-propylene rubber
  • EPDM ethylene-propylene diene rubber
  • Chloroprene rubber butyl rubber, halogenated butyl rubber, acrylonitrile-butadiene copolymer rubber, acrylic rubber and the like.
  • the dynamically crosslinked resin can be produced by a known method.
  • a crosslinking agent is mixed in advance in an uncrosslinked rubber component, and a thermoplastic resin component and an uncrosslinked rubber component are melt-kneaded using a twin screw extruder to simultaneously disperse and crosslink the rubber component. be able to.
  • Such a dynamically crosslinked resin can be obtained as a commercial product.
  • commercially available products of dynamically cross-linked resins in which acrylic rubber is dispersed in a polyester resin include “ETPV” manufactured by DuPont, “NOFAloy” manufactured by NOF Corporation (TZ660-7612-BK, TZ660-6602-BK, etc.) Etc.
  • TZ660-7612-BK TZ660-7612-BK
  • TZ660-6602-BK etc.
  • the content of the rubber component is preferably 60% by mass to 95% by mass and more preferably 80% by mass to 95% by mass with respect to the total mass of the resin composition constituting the seal member.
  • the surface hardness of the thermoplastic resin mixed with the rubber component is a Shore hardness D of preferably 70 or more, and more preferably 90 or more.
  • the thermoplastic resin include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyester such as polyethylene naphthalate (PEN), polypropylene (PP), syndiotactic polystyrene resin, polyoxy Methylene (POM), polyamide (PA), polycarbonate (PC), polyphenylene ether (PPE), polyphenylene sulfide (PPS), polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU) , Polyethersulfone, polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryle Preparative (PAR), polyether nitrile (PEN), polytetra
  • the addition amount of the thermoplastic resin is preferably 5% by mass to 40% by mass and more preferably 5% by mass to 20% by mass with respect to the total mass of the resin composition constituting the seal member.
  • the inorganic filler examples include fibrous inorganic fillers such as glass fiber, carbon fiber, carbon nanotube, alumina fiber, potassium titanate fiber, boron fiber, and silicon carbide fiber.
  • fibrous inorganic fillers such as glass fiber, carbon fiber, carbon nanotube, alumina fiber, potassium titanate fiber, boron fiber, and silicon carbide fiber.
  • inorganic fillers can be added for the purpose of improving sliding characteristics and the like.
  • Other inorganic fillers include calcium carbonate, montmorillonite, bentonite, talc, silica, mica, mica, barium sulfate, calcium sulfate, calcium silicate, molybdenum disulfide, glass beads, graphite, fullerene, carbon (amorphous) powder, anthracite Examples thereof include powder, aluminum oxide, titanium oxide, magnesium oxide, potassium titanate, and boron nitride.
  • the addition amount (total) of the inorganic filler is preferably 5% by mass to 10% by mass with respect to the total mass of the resin composition constituting the seal member.
  • the addition amount is preferably 1% by mass to 5% by mass with respect to the total mass of the resin composition constituting the seal member.
  • the rubber component and the thermoplastic resin are highly dispersed.
  • the rubber component and the thermoplastic resin are highly dispersed.
  • an increase in tan ⁇ of the thermoplastic resin near the glass transition temperature can be suppressed, and the value of tan ⁇ can be kept low even in a high temperature range.
  • the resin composition can maintain a high repulsive force even in a high temperature range, an excellent sealing property can be obtained.
  • plastic deformation of the resin composition can be suppressed even under high temperature and pressure conditions, excellent sealing characteristics can be maintained over a long period of time even under severe usage conditions.
  • thermoplastic resin In the resin composition of this embodiment, it is preferable that a fine thermoplastic resin is highly dispersed in the rubber component.
  • the plastic deformation caused by the high fluidity of the thermoplastic resin near the glass transition temperature can be effectively suppressed by the surrounding rubber component, and the increase in tan ⁇ can be further suppressed. For this reason, a higher repulsive force is maintained even in a high temperature range, and excellent sealing characteristics can be obtained. Even under high temperature and pressure conditions, plastic deformation of the resin composition is suppressed, and excellent sealing characteristics can be maintained over a long period of time even under severe usage conditions.
  • the size (particle size) of the thermoplastic resin dispersed in the resin composition of the present embodiment is not particularly limited, but the equivalent circle diameter (particle size) of the thermoplastic resin is preferably 40 nm or more and 100 nm or less.
  • the size of the thermoplastic resin can be calculated by specifying the thermoplastic resin from a transmission electron microscope (TEM) observation photograph of the sample prepared by the RuO4 stained ultrathin section method.
  • the mixing method of the resin composition in the present embodiment is not particularly limited as long as tan ⁇ is in the above range, but it is preferable to mix using a lab plast mill, a twin screw extruder or the like.
  • a lab plast mill a twin screw extruder or the like.
  • a commercially available high shear molding machine can also be used.
  • the dispersibility can be controlled by the shape and length of the screw, the reflux hole diameter (feedback hole diameter), the screw rotation speed, the shear mixing time, and the like.
  • the use of the resin composition of the present invention is not particularly limited, and it is used as a gasket, a tube, a packing, a hose, a seal member, etc. in various fields.
  • it is preferably used as a seal member.
  • the seal member include a rotary motion seal ring and a reciprocating seal ring, and the seal member is particularly preferably applied to a seal ring mounted on a CVT of an automobile.
  • the resin composition of the present invention When using the resin composition of the present invention as a seal ring for CVT, it is preferable to employ an endless type seal ring having no joint (joint or joint) in order to reliably prevent oil leakage in a no-load state. Since the resin material of the present invention has flexibility, it is excellent in mounting property even as an endless type, and mounting is further facilitated by using a single type. On the other hand, an abutment can be provided depending on the application.
  • the joint shape in this case is not particularly limited, and other known joints such as a right angle (straight) joint, an oblique (angle) joint, a stepped joint, a double angle joint, a double cut joint, and a triple step joint are adopted. be able to.
  • Example 1 A polyester resin / acrylic rubber-based dynamically cross-linked resin was used as the rubber component, and a polyvinylidene fluoride resin was used as the thermoplastic resin, and they were mixed in a twin-screw extruder equipped with a ⁇ 92 mm screw combining a lead and a kneading disk.
  • a polyester resin / acrylic rubber-based dynamically cross-linked resin and a polyvinylidene fluoride resin were respectively supplied by side feeders, and mixed under shear conditions of a temperature of 240 ° C. and a screw rotation speed of 200 rpm to obtain pellets.
  • the polyester resin / acrylic rubber-based dynamically crosslinked resin and the polyvinylidene fluoride resin were commercially available, and the mass ratio (polyester resin / acrylic rubber-based dynamically crosslinked resin: polyvinylidene fluoride resin) was 90:10.
  • the obtained pellets are injection molded to prepare various measurement samples, and the loss tangent (tan ⁇ ), surface hardness (Shore hardness), compression set, and static leak rate in dynamic viscoelasticity are measured by the following methods. did.
  • the results are shown in Table 1.
  • the size of the seal ring of the static leak amount measurement sample was set so that the compression amount was 25% in a state where it was mounted in the shaft groove.
  • tan ⁇ indicates the maximum value in the temperature range of 20 ° C to 150 ° C.
  • Examples 2 to 5 Sample to be measured in the same manner as in Example 1 except that the screw rotation speed of the twin screw extruder was set to 300 rpm (Example 2), 400 rpm (Example 3), 500 rpm (Example 4), and 600 rpm (Example 5).
  • the loss tangent (tan ⁇ ), surface hardness, compression set, and static leakage amount in dynamic viscoelasticity of each sample were measured. The results are shown in Table 1.
  • FIG. 3 shows the measurement results of tan ⁇ in the temperature range of 20 ° C. to 150 ° C. for the samples of Example 2, Example 4 and Example 5.
  • the structures of the samples of Examples 2 and 4 were observed using a transmission electron microscope (TEM).
  • the measurement sample was prepared by the RuO4 stained ultrathin section method.
  • 4 and 5 show TEM observation photographs of the samples of Example 2 and Example 4, respectively (magnification: 8000 times).
  • a polyester resin / acrylic rubber-based dynamically crosslinked resin and a polyvinylidene fluoride resin which are the raw materials of the examples and comparative examples, were prepared and evaluated in the same manner.
  • Shore hardness was measured based on JIS K7215.
  • the compression set Cs was measured as follows with reference to JIS K6262. A 5 mm x 15 mm, 2 mm thick test piece obtained by injection molding is mounted on a compression device, compressed to a compression rate of 25%, and then preliminarily adjusted to 150 ° C (Automatic Transmission Fluid: ATF) It was immersed in it for 100 hours. After the heat treatment was completed, the ATF on the surface of the test piece taken out from the ATF and removed from the compression apparatus was wiped off, and the thickness (t 2 ) at the center of the test piece after standing at room temperature for 30 minutes was measured. From t 2 at this time, compression set Cs was calculated according to Equation 1.
  • each seal ring is mounted in a shaft groove provided on the outer peripheral surface of the shaft, and at a hydraulic pressure of 4.0 MPa and an oil temperature of 150 ° C., the housing is reciprocated at a cumulative rate of 1 km at a stroke of 10 mm / s, and then the above-mentioned again.
  • the amount of oil leakage was measured by the method.
  • the measurement results are shown in Table 1 as static oil leakage after operation.
  • the static oil leakage amount is also expressed as a relative value with the initial static oil leakage amount of Comparative Example 1 being 100.
  • Table 1 shows that the maximum value of tan ⁇ at 20 ° C. to 150 ° C. can be controlled by changing the screw rotation speed of the twin screw extruder.
  • FIG. 2 shows the measurement results of tan ⁇ in the temperature range of 20 ° C. to 150 ° C. for the polyester resin / acrylic rubber-based dynamically crosslinked resin, polyvinylidene fluoride, and Comparative Example 1.
  • tan ⁇ was 0.2 or more over the entire temperature range of 20 ° C. to 150 ° C., and a gentle peak was observed at 30 ° C. to 40 ° C.
  • This peak is considered to be caused by a glass transition of polybutylene terephthalate (PBT), which is a polyester resin of a polyester resin / acrylic rubber-based dynamically crosslinked resin.
  • PBT polybutylene terephthalate
  • Polyvinylidene fluoride showed a low tan ⁇ of 0.1 near room temperature, but it was found that tan ⁇ increased with increasing temperature.
  • Comparative Example 1 in which the polyester resin / acrylic rubber-based dynamically crosslinked resin and polyvinylidene fluoride were mixed, a clear peak considered to be caused by the glass transition of PBT was observed, but on the high temperature side, It was found that tan ⁇ tends to decrease.
  • FIG. 3 shows the measurement results of tan ⁇ in the temperature range of 20 ° C. to 150 ° C. for the samples of Comparative Example 1, Examples 2, 4 and 5.
  • the value of tan ⁇ is reduced in all temperature ranges, and the peak around 40 ° C. to 50 ° C., which is considered to be caused by the glass transition of PBT, disappears. I understood.
  • the tan ⁇ values of the samples of Examples 4 and 5 were further reduced compared to the sample of Example 2 particularly on the low temperature side. 4 and 5 show TEM observation photographs of the samples of Example 2 and Example 4, respectively.
  • Example 4 has a smaller size (particle size) of polyvinylidene fluoride and is highly dispersed.
  • the thermoplastic resin having a fine size is uniformly dispersed in the rubber component, so that the plastic deformation caused by the flow of the thermoplastic resin is caused by the rubber component (acrylic rubber) 1 around the thermoplastic resin. It is considered that the tan ⁇ value was further effectively suppressed and a low tan ⁇ value could be maintained in the entire temperature range.
  • the plastic deformation of the thermoplastic resin can be effectively suppressed, and the rubber elasticity can be maintained even in a high temperature range. Therefore, it was found that high sealing characteristics can be maintained even after operating under severe conditions.
  • a resin composition capable of maintaining excellent sealing characteristics over a long period of time even under severe use conditions, or a seal member composed of the resin composition.
  • Rubber component 2 Polyvinylidene fluoride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

 高温高圧下で長期間使用後も優れた弾性を維持し得る樹脂組成物及びシール部材を提供する。本発明に係る樹脂組成物の一態様は、ゴム成分及び熱可塑性樹脂を含有する樹脂組成物において、20℃~150℃の温度範囲における損失正接(tanδ)の最大値が0.2以下である。

Description

樹脂組成物及びシール部材
 本発明は、樹脂組成物及びシール部材に関し、さらに詳しくは、ゴム成分と熱可塑性樹脂を含有する樹脂組成物及びそれを用いたシール部材に関する。
 近年、自動車用をはじめ各種分野において、耐熱性に優れ、圧縮永久歪(Compression Set)が低い樹脂材料への要求が高まっている。このような樹脂材料の用途としては、例えば、油圧式の無段変速機(Continuously Variable Transmission、以下、「CVT」という。)用のシール部材(シールリング)が挙げられる。油圧式CVTでは、油圧室の油圧により一対のプーリの溝幅を相関的に変化させ、プーリの直径を変えることにより変速を無段階に変化させている。通常、駆動用の軸に固定プーリが一体形成され、この軸に沿って往復動するハウジングに可動プーリが形成されている。可動プーリには油圧室が設けられ、油圧室の油圧を制御することにより、可動プーリが固定プーリに離接する。これにより、両プーリそれぞれに形成される溝部の幅を増減して、プーリに巻き掛けられたベルトの回転半径を増減させ、動力を伝達させる際の変速比を変化させる。油圧室に油を満たし、油圧を生じさせるために、軸の外周面に形成される軸溝には、樹脂製のシールリングが装着される。
 CVTでは、エンジン停止時には、オイルポンプが停止するため油圧が発生せず、シールリングは無負荷となる。従来のシールリングでは、油圧の発生している状態では、十分なシール性が得られるが、無負荷状態では、ハウジング内周面との密着性が失われ、油圧室の油が抜けてしまう。このような状態で、エンジンを再起動すると、油圧室に油が充填されるまでに時間を要する。また、油圧室に油が充填されていない状態で起動すると、CVTの回転部に焼き付きによる損傷が生じる恐れがある。そのため、油圧のない無負荷の状態においても油圧室からの油漏れを低減できるシールリングが求められている。
 CVT用のシールリングとしては、図1に示すように、断面略矩形で外周側に配置されるエンドレスタイプの樹脂リング7と、内周側に配置され、樹脂リングに拡張力を与えるOリング6から構成される組合せシールリングが用いられてきた。一般に、樹脂リング7の材料としては、充填剤を添加したポリテトラフルオロエチレン(PTFE)樹脂等が用いられ、Oリング6の材料としては、ゴム状弾性体が用いられている。
 このような従来の組合せシールリングでは、Oリング6と樹脂リング7を圧縮して、溝底8とハウジング4の内面4aとの間の隙間に装着する。その後Oリング6と樹脂リング7が装着された軸3をハウジング4に挿入する際の組み付け抵抗が大きく、圧入装置を用いてハウジング4を組み付ける必要があった。そのため、製造コストが増加し、シールリングの組み付け不具合も検知できないという問題があった。そこで、上記組合せシールリングの装着性やコスト面での問題点を解決するため、単一のシールリングでの対応が求められている。
 CVTでは、油圧室に最大約7MPaの油圧が生じるため、高油圧下であっても、優れた耐摩耗性及びシール性を有するシールリングが要求される。また、高速運転時の発熱による温度上昇や寒冷地での使用を考慮すると、シールリングには、-40℃~150℃の温度領域での耐性が求められる。そこで、シールリング材料としては、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン、エチレンテトラフルオロエチレン(ETFE)等のフッ素系樹脂にカーボン粉末やカーボンファイバー等の添加剤を充填した材料が用いられている。
 例えば、特許文献1には、CVTに適用可能な樹脂組成物として、PTFE系樹脂に所定のDBP吸収量を有するカーボンブラックを配合した組成物が開示されている。この組成のシールリングでは、吸油した際に膨張する。高温時のクリープ変形によるシールリングの径方向等の隙間を補填し、低温シール性が改善できるため、油圧装置の運転開始直後の低温時でも優れたシール性があることが記載されている。また、特許文献1のシールリングは、CVT等の高面圧用であるため、耐摩耗性及び耐クリープ性等の向上を目的として、炭素繊維やグラファイトを配合できることも示されている。
 特許文献1のシールリングを採用することにより、低温下での油漏れ量を低減することは可能と考えられる。しかしながら、上記の構成のシールリングは、PTFE系樹脂を主成分とするため、高温の潤滑・作動油中で加圧されることにより塑性変形する。そのため、運転後にエンジンを停止し、無負荷状態とするとハウジング内周面との密着状態(密着性)を維持することが困難となり、油圧室からの油漏れを防止することは難しい。このような課題を解決するためには、耐熱性に優れ、圧縮永久歪の低い樹脂材料が求められる。
 樹脂材料の圧縮永久歪を向上させる手段として、多くの提案がなされている。例えば、特許文献2には、ポリ塩化ビニル系樹脂(1)、ポリウレタン(2)及び可塑剤(3)からなり、透過型電子顕微鏡で海-島型の相分離構造が観察され、分離構造のサイズが0.01ミクロン以上100ミクロン以下であり、ポリウレタン(2)がポリマーポリオールと3つ以上イソシアネート基を有する化合物をウレタン反応して得られる高反発材料が開示されている。この材料は、圧縮永久歪、加工性に優れ、且つ高反発な材料であることが記載されている。
 また、特許文献3には、(A1)(メタ)アクリル系重合体ブロックおよび(A2)アクリル系重合体ブロックからなる(A)(メタ)アクリル系ブロック共重合体、(B)1分子中に2個以上のアミノ基を含む化合物および(C)熱可塑性樹脂からなる熱可塑性エラストマー組成物であって、(A)(メタ)アクリル系ブロック共重合体を(B)化合物により、(C)熱可塑性樹脂中で動的に熱処理した後、さらに(D)熱可塑性樹脂を添加して混練することにより得られる熱可塑性エラストマー組成物が開示されている。この組成物は、硬度と機械強度のバランスに優れ、広い温度範囲にわたるゴム弾性、高温クリープ性能、成形加工性に優れ、かつ熱可塑性エラストマーでありながら、耐油性、耐熱性に優れることが記載されている。
 上記特許文献2の樹脂組成物には、87℃付近にガラス転移温度を有する熱可塑性樹脂であるポリ塩化ビニル系樹脂が必須成分として含まれている。そのため、ガラス転移温度以上の高温域では、樹脂組成物の流動性が高くなり、弾性が低下するため、十分なシール特性が得られない可能性がある。また、ガラス転移温度以上の高温加圧下での使用により、樹脂組成物が塑性変形して、シール性能が劣化することも考えられる。
 一方、特許文献3の熱可塑性エラストマー組成物に添加する熱可塑性樹脂としては、ポリアミド系樹脂やポリエステル系樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)が開示されている。一般に、ポリアミド系樹脂のガラス転移温度は、50℃程度で、ポリエステル系樹脂のガラス転移温度は、50℃(ポリブチレンテレフタレート)、69℃(ポリエチレンテレフタレート)程度である。このため、特許文献3の熱可塑性エラストマーにおいても、特許文献2の樹脂と同様に、高温域では、弾性が低下して十分なシール特性が得られなかったり、高温加圧下での使用により、樹脂組成物が塑性変形して、シール性能が劣化したりする可能性がある。
特開2006-283898号公報 特開平7-173357号公報 特開2005-264068号公報
 本発明は上記事情に鑑みてなされたもので、高温加圧下で長期間使用した後も、優れた弾性を維持し得る樹脂組成物及びそれを用いたシール部材を提供することを目的とする。
 上記目的に鑑み鋭意研究の結果、本発明者らは、ゴム成分及び熱可塑性樹脂を含有する樹脂組成物において、20℃~150℃の温度範囲における損失正接(tanδ)の最大値を0.2以下とすることにより、高温加圧下で長期間使用した後も、優れた弾性を維持できるため、前記樹脂組成物から構成されるシール部材は過酷な使用条件下においても、長期に亘り優れたシール特性を維持できることを見いだし、本発明に想到した。すなわち、本発明に係る樹脂組成物の一態様は、ゴム成分及び熱可塑性樹脂を含有する樹脂組成物であって、20℃~150℃の温度範囲における損失正接(tanδ)の最大値が0.2以下である。
 上記態様では、ゴム成分がアクリルゴムであることが好ましい。
 上記態様では、熱可塑性樹脂がポリフッ化ビニリデンであることが好ましい。
 上記態様では、樹脂組成物中における熱可塑性樹脂の円相当径が40nm以上100nm以下であることが好ましい。
 本発明に係るシール部材の一態様は、本発明に係る上記樹脂組成物を用いたことを特徴とする。
 本発明の樹脂組成物から構成されるシール部材は過酷な使用条件下でも長期に亘り優れたシール特性を維持することができる。
従来のシール部材の一例を示す断面図である。 動的架橋樹脂、ポリフッ化ビニリデン及び比較例1の試料の動的粘弾性における損失正接(tanδ)を示すグラフである。 実施例2、4、5及び比較例1の試料の動的粘弾性における損失正接(tanδ)を示すグラフである。 透過型電子顕微鏡(TEM)を用いて8000倍に拡大した実施例2の試料の写真である。 TEMを用いて8000倍に拡大した実施例4の試料の写真である。
 以下に本発明の樹脂組成物及びそれを用いたシール部材の一実施形態について詳細に説明する。
 本実施形態に係る樹脂組成物は、ゴム成分及び熱可塑性樹脂を含有する混合物からなり、動的粘弾性測定による損失弾性率(E”)と貯蔵弾性率(E’)の比(E”/E’)である損失正接(tanδ)の20℃~150℃における最大値が0.2以下である。一般にtanδが大きいほど、即ち、損失弾性率(E”)が大きいほど、塑性変形しやすく、tanδが小さいほど、即ち、貯蔵弾性率(E’)が大きいほど、反発力が大きいことが知られている。また、通常、tanδには温度依存性がある。
 本実施形態においては、樹脂組成物の20℃~150℃の温度範囲におけるtanδの最大値を0.2以下とするため、高温域でも高い反発力を維持できる。そして、本実施形態の樹脂組成物は、高温加圧後の圧縮永久歪が小さく、長期間使用後も優れたゴム弾性を維持できるため、過酷な使用条件においても長期に亘り優れたシール特性を維持できる。前記温度範囲におけるtanδの最大値は、0.15以下が好ましく、0.13以下がより好ましい。
 上記温度範囲におけるtanδの値は、熱可塑性樹脂の種類や添加量により制御することができる。例えば、ガラス転移温度が150℃以上の熱可塑性樹脂を採用したり、ガラス転移温度が150℃未満の熱可塑性樹脂を用いる場合には、その添加量を低減することにより、tanδの値を低くすることができる。しかしながら、樹脂組成物の射出成形性を考慮すると、ガラス転移温度が高い熱可塑性樹脂の使用は必ずしも有利とはいえない。また、シール部材の機械的強度や耐クリープ特性を維持するためには、熱可塑性樹脂の低減には限界がある。これに対して、ゴム成分と熱可塑性樹脂を高分散させることにより、熱可塑性樹脂のガラス転移温度付近でのtanδ値を低下させる方法は、樹脂組成物の射出成形性、機械的強度及び耐クリープ特性を維持しつつ、高温域での優れたゴム弾性を実現できるため好ましい。
 本実施形態のシール部材を構成する樹脂組成物の硬度、すなわち後述する方法で測定するショア硬度Aは、60~98とするのが好ましく、70~95とするのがより好ましい。ショア硬度をこの範囲に規定することにより、シール部材は使用時の油圧による変形が生じにくく、長時間の運転後も高いシール性が維持できるとともに、軸溝等への装着性が向上する。
 本実施形態のゴム成分は、架橋ゴム又は熱可塑性エラストマーとして添加してもよいし、動的架橋樹脂として添加することもできる。これらのゴム成分の表面硬度は、ショア硬度Aで、60~90が好ましい。
 架橋ゴムとしては、天然ゴム、合成イソプレンゴム(IR)、フッ素ゴム、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)、アクリロニトリル-ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム、ウレタンゴム、シリコーンゴム、アクリルゴム等を挙げることができる。これらの架橋ゴムのうちから1種を用いることもできるが、2種以上を混合して用いることもでき、後述する熱可塑性エラストマーや動的架橋樹脂と併用することもできる。
 熱可塑性エラストマーとしては、ポリエステル系エラストマー、ポリオレフィン系エラストマー、フッ素系エラストマー、シリコーン系エラストマー、ブタジエン系エラストマー、ポリアミド系エラストマー、ポリスチレン系エラストマー、ウレタン系エラストマー等が挙げられる。これらの熱可塑性エラストマーのうちから1種を用いることもできるが、2種以上を混合して用いることもできる。射出成形性及び耐熱性の観点から、上記熱可塑性エラストマーの中でも、ポリエステル系エラストマー及びポリアミド系エラストマーが好ましい。
 ポリエステル系エラストマーの市販品としては、東レ・デュポン株式会社製「ハイトレル」、東洋紡績株式会社製「ペルプレン」、及び三菱化学株式会社製「プリマロイ」等が挙げられ、ポリアミド系エラストマーの市販品としては、ARKEMA社製「ペバックス」、宇部興産株式会社製「UBESTAXPA」等が挙げられる。
 動的架橋樹脂は、熱可塑性樹脂相中に架橋ゴム相が分散した構造を有する。動的架橋樹脂に用いられる熱可塑性樹脂は、特に限定されず、ポリエステル、ポリアミド(PA)等が挙げられる。一方、ゴムは、特に限定されず、例えば天然ゴム、シス-1,4-ポリイソプレン、ハイシスポリブタジエン、スチレン-ブタジエン共重合体ゴム、エチレン-プロピレンゴム(EPM)、エチレン-プロピレンジエンゴム(EPDM)、クロロプレンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリロニトリル-ブタジエン共重合体ゴム、アクリルゴム等が挙げられる。
 動的架橋樹脂は公知の方法で製造することができる。例えば、予め未架橋のゴム成分中に架橋剤を混合し、熱可塑性樹脂成分と未架橋のゴム成分を2軸押出機を用いて、溶融混練することにより、ゴム成分の分散と架橋を同時に行うことができる。このような動的架橋樹脂は市販品として入手することもできる。例えば、ポリエステル樹脂中にアクリルゴムが分散した動的架橋樹脂の市販品としては、デュポン社製「ETPV」、日油株式会社製「ノフアロイ」(TZ660-7612-BK、TZ660-6602-BK等)等が挙げられる。また、ポリアミド樹脂中にアクリルゴムが分散した動的架橋樹脂の市販品としては、日本ゼオン株式会社製「ゼオサーム」等が挙げられる。
 シール部材を構成する樹脂組成物全体の質量に対して、ゴム成分の含有量は、60質量%~95質量%とするのが好ましく、80質量%~95質量%とするのがより好ましい。ゴム成分の含有量を前記範囲に規定することにより、樹脂組成物の圧縮永久歪がより小さくなり、長期に亘りより優れたシール特性が得られる。
 前記ゴム成分と混合する熱可塑性樹脂の表面硬度は、ショア硬度Dで、70以上が好ましく、90以上がより好ましい。熱可塑性樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリプロピレン(PP)、シンジオタクティックポリスチレン樹脂、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリフェニレンエーテル(PPE)、ポリフェニレンスルフィド(PPS)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルフォン(PSU)、ポリエーテルスルフォン、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等が挙げられる。これらの樹脂は、共重合体、変性体であってもよく、2種類以上を混合してもよい。射出成型性、耐熱性等を考慮すると、上記熱可塑性樹脂の中でもPBT、PA、PPS、PVDFが好ましい。
 シール部材を構成する樹脂組成物全体の質量に対して、熱可塑性樹脂の添加量は、5質量%~40質量%とするのが好ましく、5質量~20質量%とするのがより好ましい。この範囲で熱可塑性樹脂を添加することにより、シール部材の機械的強度及び耐クリープ特性が向上し、加圧条件下で長時間使用後も、優れたシール特性を維持でき、PV値が高い領域での使用も可能となる。
 本実施形態の樹脂組成物には、使用される用途や要求される特性に応じて、各種充填材を添加することもできる。無機充填材としては、ガラス繊維、炭素繊維、カーボンナノチューブ、アルミナ繊維、チタン酸カリウム繊維、ボロン繊維、炭化珪素繊維等の繊維状無機充填材が挙げられる。繊維状無機充填材の添加により、シール部材の機械的強度及び耐クリープ特性が向上し、優れたシール特性が得られ、PV値が高い領域での使用も可能となる。前記繊維状無機充填材の中でもガラス繊維、炭素繊維、カーボンナノチューブが好ましい。カーボンナノチューブは、繊維状無機充填材として補強機能を発揮するのみならず、後述する無機充填材と同様、摺動特性を向上させるための充填材としても有効である。
 本実施形態においては、摺動特性等を向上させる目的で、その他の無機充填材を添加することもできる。その他の無機充填材としては、炭酸カルシウム、モンモリロナイト、ベントナイト、タルク、シリカ、雲母、マイカ、硫酸バリウム、硫酸カルシウム、珪酸カルシウム、二硫化モリブデン、ガラスビーズ、グラファイト、フラーレン、カーボン(アモルファス)粉、無煙炭粉末、酸化アルミニウム、酸化チタン、酸化マグネシウム、チタン酸カリウム、窒化ホウ素等が挙げられる。
 無機充填材の添加量(合計)は、シール部材を構成する樹脂組成物全体の質量に対して、5質量%~10質量%とするのが好ましい。また、無機充填材として、カーボンナノチューブを添加する場合、その添加量は、シール部材を構成する樹脂組成物全体の質量に対して、1質量%~5質量%とするのが好ましい。この範囲で、無機充填材を添加されたシール部材は、優れた機械的強度及び摺動特性が得られ、長期に亘りより優れたシール特性を維持できる。
 本実施形態の樹脂組成物においては、ゴム成分と熱可塑性樹脂が高分散されていることが好ましい。ゴム成分と熱可塑性樹脂が高分散されることにより、ガラス転移温度付近においての熱可塑性樹脂のtanδの増加が抑えられ、高温域でもtanδの値を低く維持することができる。これにより、樹脂組成物は高温域においても高い反発力を維持できるため、優れたシール特性が得られる。さらに、高温加圧条件下でも樹脂組成物の塑性変形が抑えられるため、過酷な使用条件においても長期に亘り優れたシール特性を維持できる。
 本実施形態の樹脂組成物では、微細な熱可塑性樹脂がゴム成分中に高分散しているのが好ましい。このような構成では、ガラス転移温度付近での熱可塑性樹脂の高流動性に起因する塑性変形を、周囲のゴム成分により効果的に抑え込むことができ、tanδの上昇がさらに抑制できる。このため、高温域においてもさらに高い反発力が維持され、優れたシール特性が得られる。高温加圧条件下においても、上記樹脂組成物の塑性変形は抑制され、過酷な使用条件においても長期に亘り優れたシール特性を維持できる。本実施形態の樹脂組成物中に分散する熱可塑性樹脂の大きさ(粒度)は特に限定されないが、熱可塑性樹脂の円相当径(粒径)は、40nm以上100nm以下であるのが好ましい。熱可塑性樹脂の大きさは、RuO4染色超薄切片法で調整した試料の透過型電子顕微鏡(TEM)観察写真から熱可塑性樹脂を特定して算出することができる。
 本実施形態における樹脂組成物の混合方法はtanδが上記範囲となる方法であれば特に限定されないが、ラボプラストミル、二軸押出機等を用いて混合するのが好ましい。微細均一分散を確実に実現するためにはスクリュー軸にせん断作用の生じるニーディングディスクを組み合わせた二軸押出機を用いて高せん断条件下で混合するのが望ましい。また、市販の高せん断成形加工機を用いることもできる。分散性は、スクリューの形状や長さ、還流穴径(フィードバック穴径)、スクリュー回転速度やせん断混合時間等により制御することができる。
 本発明の樹脂組成物の用途は特に限定されず、各種分野において、ガスケット、チューブ、パッキン、ホース、シール部材等として用いられる。特に、シール部材として好ましく用いられる。シール部材としては、回転運動用シールリングや往復運動用シールリング等が挙げられるが、特に、自動車のCVT等に装着されるシールリングに適用するのが好ましい。
 本発明の樹脂組成物をCVT用シールリングとして用いる場合、無負荷状態における油漏れを確実に防止するため、合口(ジョイントまたは接合部)を有しないエンドレスタイプのシールリングを採用するのが好ましい。本発明の樹脂材料は柔軟性があるため、エンドレスタイプとしても装着性に優れ、1本型とすることによりさらに装着が容易となる。一方、用途等によっては合口を設けることもできる。この場合の合口形状は特に限定されず、直角(ストレート)合口、斜め(アングル)合口、段付き(ステップ)合口の他、ダブルアングル合口、ダブルカット合口、トリプルステップ合口等公知の合口を採用することができる。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
(実施例1)
 ゴム成分としてポリエステル樹脂/アクリルゴム系動的架橋樹脂、熱可塑性樹脂としてポリフッ化ビニリデン樹脂を用い、リードとニーディングディスクを組み合わせたφ92mmのスクリューが設置された2軸押出機で混合した。ここで、ポリエステル樹脂/アクリルゴム系動的架橋樹脂及びポリフッ化ビニリデン樹脂を、それぞれサイドフィーダーにて供給し、温度240℃、スクリュー回転数200rpmのせん断条件で混合してペレットを得た。なお、ポリエステル樹脂/アクリルゴム系動的架橋樹脂とポリフッ化ビニリデン樹脂は、市販品を用い、質量比(ポリエステル樹脂/アクリルゴム系動的架橋樹脂:ポリフッ化ビニリデン樹脂)は90:10とした。得られたペレットを射出成型し、各種測定試料を作製し、以下の方法で、動的粘弾性における損失正接(tanδ)、表面硬度(ショア硬度)、圧縮永久歪、及び静的漏れ量を測定した。結果を表1に示す。ここで、静的漏れ量測定用試料のシールリングのサイズは、軸溝に装着した状態で圧縮量が25%となるように設定した。また、tanδは、20℃~150℃の温度範囲における最大値を示す。
(実施例2~5)
 2軸押出機のスクリュー回転速度を、300rpm(実施例2)、400rpm(実施例3)、500rpm(実施例4)及び600rpm(実施例5)とした他は実施例1と同様に、測定試料を作製した。それぞれの試料の動的粘弾性における損失正接(tanδ)、表面硬度、圧縮永久歪、及び静的漏れ量を測定した。結果を表1に示す。また、実施例2、実施例4及び実施例5の試料の20℃~150℃の温度範囲におけるtanδの測定結果を図3に示す。さらに、透過型電子顕微鏡(TEM)を用いて実施例2及び4の試料の組織観察を行った。測定試料は、RuO4染色超薄切片法で調整した。図4及び図5に、それぞれ実施例2及び実施例4の試料のTEM観察写真を示す(倍率:8000倍)。
(比較例1、2)
 スクリュー回転数を100rpm(比較例1)及び150rpm(比較例2)とした他は実施例1と同様に測定試料を調整し、評価を行った。比較例1の試料の動的粘弾性における損失正接(tanδ)、表面硬度、圧縮永久歪、及び静的漏れ量を測定した結果を表1に示す。
(動的粘弾性における損失正接(tanδ)の測定)
 実施例1~5及び比較例1、2の樹脂組成物を熱プレスして、厚さ500~1000μmのシートを作製した後、幅3mm、長さ20mmに切断して短冊状測定試料とした。動的粘弾性測定装置は、エスアイアイ・ナノテクノロジー株式会社製熱機械分析装置を用い、昇温法により、空気中で、測定周波数0.1Hz、昇温速度3℃/分で測定を行った。各測定温度における動的貯蔵弾性率(E’)と動的損失弾性率(E”)から損失正接(tanδ=E”/E’)を自動算出してプロットした。なお、参考として、実施例及び比較例の原料であるポリエステル樹脂/アクリルゴム系動的架橋樹脂及びポリフッ化ビニリデン樹脂についても、それぞれ同様の測定試料を作製して同様に評価を行った。
(表面硬度の測定)
 JIS K7215に基づき、ショア硬度を測定した。
(圧縮永久歪Csの測定)
 圧縮永久歪Csの測定は、JIS K6262を参考にして、以下のとおり行った。射出成型により得られた5mm×15mm、厚さ2mmの試験片を圧縮装置に装着し、圧縮量25%に圧縮した後、予め、150℃に調節した潤滑・作動油(Automatic Transmission Fluid:ATF)中に100時間浸漬した。加熱処理終了後、ATF中から取り出し、圧縮装置から取り外した試験片表面のATFを拭き取って、室温にて30分間静置した後の試験片中央部の厚さ(t)を測定した。この時のtより、式1により圧縮永久歪Csを算出した。
 Cs =(t -t)/(t -t)×100・・・(式1)
 t:試験片の元の厚さ(mm)
 t:スペーサーの厚さ(mm)
 t:試験後30分後の厚さ(mm)
(静止状態におけるオイル漏れ量の測定)
 実施例1~5及び比較例1、2の樹脂組成物を用いて、合口を有しないシールリングを射出成型して作製した。得られたシールリングを、軸の外周面に設けた軸溝に装着し、静的漏れ性能試験装置に設置した。ここで、油圧室に165ccのATFを充填し、室温下(油温:25℃)、静止状態で、シールリングから漏れたATFを排油溝から回収し、7日間の累積油漏れ量を測定した。測定結果を初期の静的油漏れ量として表1に示す。ここで、静的油漏れ量は、比較例1の値を100として相対値で表した。なお、シールリングのサイズは、軸溝に装着した状態で圧縮量が25%となるように設定した。
 また、それぞれのシールリングを軸の外周面に設けた軸溝に装着し、油圧4.0MPa、油温150℃において、ハウジングを10mm/sのストロークで、累積1Km往復動した後、再度上記の方法で油漏れ量を測定した。測定結果を運転後の静的油漏れ量として表1に示す。なお、ここでも静的油漏れ量は、比較例1の初期の静的油漏れ量を100として相対値で表した。
 表1より、2軸押出機のスクリュー回転速度を変えることにより、20℃~150℃におけるtanδの最大値を制御できることがわかる。図2に、ポリエステル樹脂/アクリルゴム系動的架橋樹脂、ポリフッ化ビニリデン及び比較例1の20℃~150℃の温度範囲におけるtanδの測定結果を示す。ポリエステル樹脂/アクリルゴム系動的架橋樹脂単独では、20℃~150℃の全温度範囲において、tanδは、0.2以上を示し、30℃~40℃に緩やかなピークが認められた。このピークは、ポリエステル樹脂/アクリルゴム系動的架橋樹脂のポリエステル樹脂であるポリブチレンテレフタレート(PBT)のガラス転移に起因すると考えられる。また、ポリフッ化ビニリデンは、室温付近では、tanδが0.1と低い値を示したが、温度の上昇とともにtanδが増加することがわかった。これに対して、ポリエステル樹脂/アクリルゴム系動的架橋樹脂とポリフッ化ビニリデンを混合した比較例1では、PBTのガラス転移に起因すると考えられる明確なピークが認められたが、高温側においては、tanδが減少する傾向があることがわかった。
 表1より、20℃~150℃の温度範囲におけるtanδの最大値が0.2を超える比較例1及び2の試料では、圧縮永久歪が100%と大きく、静的油漏れ量も多く、十分なシール特性が得られていないことがわかる。これに対して、スクリュー回転速度を200rpmとした実施例1の試料では、tanδの最大値が0.18となり、圧縮永久歪が低下するとともに静的油漏れ量が大幅に低減しており、シール特性の向上が認められた。このことから、20℃~150℃の温度範囲におけるtanδの最大値を0.2以下とした本発明の樹脂組成物の有効性が確認された。スクリュー回転速度をさらに上げた実施例2~5では、tanδの最大値がさらに下がり、圧縮永久歪も低下することがわかった。実施例1~5のいずれの試料においても初期の静的油漏れ量は0であり、優れたシール特性を有することが確認された。しかし、高温加圧条件で運転した後、実施例1の試料で油漏れが観察された。これに対して、tanδの最大値が0.16及び0.14である実施例2及び3の試料では、高温加圧条件下で運転した後の油漏れ量が実施例1に比べ大幅に低減し、tanδの最大値が0.13以下の実施例4及び5では、温高圧条件下で運転した後にも油の漏れは認められなかった。
 図3に、比較例1、実施例2、4及び5の試料の20℃~150℃の温度範囲におけるtanδの測定結果を示す。比較例1の試料に比べ、実施例2の試料では、全ての温度範囲において、tanδの値が低減するとともに、PBTのガラス転移に起因すると考えられる40℃~50℃付近のピークが消失することがわかった。また、実施例4及び5の試料では、特に低温側で、実施例2の試料よりさらにtanδ値が低下することが確認された。図4及び図5に、それぞれ、実施例2及び実施例4の試料のTEM観察写真を示す。ここで、薄い灰色の島状にみえるのが、熱可塑性樹脂であるポリフッ化ビニリデン2と考えられ、ゴム成分1からなるマトリックス中に分散していることがわかる。実施例2に比べると、実施例4の方が、ポリフッ化ビニリデンの大きさ(粒径)が小さくなり、高分散していることがわかる。このように、微細な大きさの熱可塑性樹脂がゴム成分中に均一に分散することにより、熱可塑性樹脂の流動に起因する塑性変形が、熱可塑性樹脂の周囲のゴム成分(アクリルゴム)1によりさらに効果的に抑制され、全温度領域において低いtanδ値を維持できたと考えられる。20℃(室温付近)~150℃の温度範囲におけるtanδが0.2以下である本発明の樹脂組成物では、熱可塑性樹脂の塑性変形を効果的に抑え、高温域においてもゴム弾性を維持できるため、過酷な条件で運転した後も高いシール特性を維持できることがわかった。
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、過酷な使用条件下でも長期に亘り優れたシール特性を維持することができる樹脂組成物、または該樹脂組成物から構成されるシール部材が提供される。
 1  ゴム成分
 2  ポリフッ化ビニリデン

Claims (5)

  1.  ゴム成分及び熱可塑性樹脂を含有する樹脂組成物であって、20℃~150℃の温度範囲における損失正接(tanδ)の最大値が0.2以下であることを特徴とする樹脂組成物。
  2.  前記ゴム成分が、アクリルゴムであることを特徴とする請求項1に記載の樹脂組成物。
  3.  前記熱可塑性樹脂が、ポリフッ化ビニリデンであることを特徴とする請求項1又は2に記載の樹脂組成物。
  4.  前記樹脂組成物中における熱可塑性樹脂の円相当径が、40nm以上100nm以下であることを特徴とする請求項1~3の何れか一項に記載の樹脂組成物。
  5.  請求項1~4の何れか一項に記載の樹脂組成物を用いたことを特徴とするシール部材。
PCT/JP2013/061220 2011-06-26 2013-04-15 樹脂組成物及びシール部材 WO2014002582A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13789148.7A EP2719724A4 (en) 2012-06-26 2013-04-15 RESIN COMPOSITION AND SEALING ELEMENT
CN201380002088.4A CN103732674A (zh) 2012-06-26 2013-04-15 树脂组合物及密封构件
KR1020137029696A KR20140033042A (ko) 2012-06-26 2013-04-15 수지 조성물 및 시일 부재
US14/235,019 US20150087785A1 (en) 2011-06-26 2013-04-15 Resin composition and seal member
MX2013014062A MX2013014062A (es) 2012-06-26 2013-04-15 Composicion de resina y miembro de obturacion.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-143580 2012-06-26
JP2012143580A JP5444420B2 (ja) 2012-06-26 2012-06-26 シール部材

Publications (1)

Publication Number Publication Date
WO2014002582A1 true WO2014002582A1 (ja) 2014-01-03

Family

ID=49782760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061220 WO2014002582A1 (ja) 2011-06-26 2013-04-15 樹脂組成物及びシール部材

Country Status (7)

Country Link
US (1) US20150087785A1 (ja)
EP (1) EP2719724A4 (ja)
JP (1) JP5444420B2 (ja)
KR (1) KR20140033042A (ja)
CN (1) CN103732674A (ja)
MX (1) MX2013014062A (ja)
WO (1) WO2014002582A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102866B (zh) * 2013-03-27 2017-05-10 株式会社理研 密封装置
CN106633234A (zh) * 2016-11-24 2017-05-10 安徽美腾特种电缆材料有限公司 一种防老化密封圈橡胶材料及其制备方法
US20180298771A1 (en) * 2017-04-12 2018-10-18 Borgwarner Inc. Polymeric actuation pivot shaft seal
GB2566921A (en) * 2017-07-24 2019-04-03 Element Six Uk Ltd Gasket restrictor assembly, capsule assembly and method for using same
JP6431999B1 (ja) * 2018-05-22 2018-11-28 デクセリアルズ株式会社 漏油補修材、漏油補修方法、及び、配管
US20240199842A1 (en) * 2021-03-30 2024-06-20 Asahi Rubber Inc. Ultraviolet reflective material, method for producing same, and raw material composition therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186606A (ja) * 1992-01-08 1993-07-27 Tokai Rubber Ind Ltd 自動車用ホース
JPH07173357A (ja) 1993-12-17 1995-07-11 Tosoh Corp 高反発材料
JP2005264068A (ja) 2004-03-19 2005-09-29 Kaneka Corp 熱可塑性エラストマー組成物
JP2006283898A (ja) 2005-04-01 2006-10-19 Ntn Corp シールリング用樹脂組成物および樹脂製シールリング
JP2007191576A (ja) * 2006-01-19 2007-08-02 Daikin Ind Ltd 熱可塑性重合体組成物、熱可塑性樹脂組成物、それを用いた成形品および熱可塑性樹脂組成物の製造方法
WO2012096387A1 (ja) * 2011-01-14 2012-07-19 株式会社リケン シールリング

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1272540A (en) * 1985-01-31 1990-08-07 Yoshiaki Zama Vulcanizable rubber compositions and applications thereof
DE10021070A1 (de) * 2000-04-28 2001-10-31 Bayer Ag Gelhaltige Kautschukmischungen für dynamisch belastete Reifenbauteile
JP4075469B2 (ja) * 2001-07-23 2008-04-16 日本精工株式会社 シール
JP2006206628A (ja) * 2005-01-25 2006-08-10 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物およびその成形体
JP5023449B2 (ja) * 2005-08-08 2012-09-12 日油株式会社 熱可塑性エラストマー組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186606A (ja) * 1992-01-08 1993-07-27 Tokai Rubber Ind Ltd 自動車用ホース
JPH07173357A (ja) 1993-12-17 1995-07-11 Tosoh Corp 高反発材料
JP2005264068A (ja) 2004-03-19 2005-09-29 Kaneka Corp 熱可塑性エラストマー組成物
JP2006283898A (ja) 2005-04-01 2006-10-19 Ntn Corp シールリング用樹脂組成物および樹脂製シールリング
JP2007191576A (ja) * 2006-01-19 2007-08-02 Daikin Ind Ltd 熱可塑性重合体組成物、熱可塑性樹脂組成物、それを用いた成形品および熱可塑性樹脂組成物の製造方法
WO2012096387A1 (ja) * 2011-01-14 2012-07-19 株式会社リケン シールリング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2719724A4

Also Published As

Publication number Publication date
EP2719724A4 (en) 2015-12-23
MX2013014062A (es) 2014-09-04
JP5444420B2 (ja) 2014-03-19
JP2014005411A (ja) 2014-01-16
US20150087785A1 (en) 2015-03-26
EP2719724A1 (en) 2014-04-16
CN103732674A (zh) 2014-04-16
KR20140033042A (ko) 2014-03-17

Similar Documents

Publication Publication Date Title
JP5782551B2 (ja) 無段変速機用シールリング
WO2014002582A1 (ja) 樹脂組成物及びシール部材
JP5386052B2 (ja) シールリング
JP2014156935A5 (ja) 無段変速機用シールリング
WO2013035697A1 (ja) ウォーターポンプ用リップシール
KR20170095305A (ko) 수소화나이트릴 고무 조성물 및 드라이브트레인용 오일씰
JP5642756B2 (ja) シール部材
JP2015108079A (ja) シール部材
JPH11310666A (ja) 潤滑性ゴム組成物およびシール部材
JPH09183867A (ja) ワイパーブレードゴム
JPH093249A (ja) 潤滑性ゴム組成物
JP2022132013A (ja) リップシール
JP7405722B2 (ja) 軸シール
JP2012167812A (ja) 密封装置及び転動装置
JP5816195B2 (ja) シーリングシステムの方法および装置
JP3170541B2 (ja) 潤滑性ゴム組成物
EP4050242A1 (en) Lip seal
JP3509564B2 (ja) 潤滑性ゴム組成物
JP2023147120A (ja) 軸シール
JPH07188469A (ja) 潤滑性ゴム組成物
JPH0985966A (ja) インクジェット記録装置のインク回収用プランジャポンプ
JPH1180480A (ja) 潤滑性ゴム組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20137029696

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013789148

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013789148

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/014062

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14235019

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13789148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE