WO2014002418A1 - ストレス状態推定装置、ストレス状態推定方法 - Google Patents

ストレス状態推定装置、ストレス状態推定方法 Download PDF

Info

Publication number
WO2014002418A1
WO2014002418A1 PCT/JP2013/003746 JP2013003746W WO2014002418A1 WO 2014002418 A1 WO2014002418 A1 WO 2014002418A1 JP 2013003746 W JP2013003746 W JP 2013003746W WO 2014002418 A1 WO2014002418 A1 WO 2014002418A1
Authority
WO
WIPO (PCT)
Prior art keywords
deceleration
biological information
time
blood pressure
post
Prior art date
Application number
PCT/JP2013/003746
Other languages
English (en)
French (fr)
Inventor
壮一郎 森
清水 洋志
三浦 宏明
康弘 福山
寸田 剛司
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014522408A priority Critical patent/JP5858157B2/ja
Publication of WO2014002418A1 publication Critical patent/WO2014002418A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators

Definitions

  • the present invention relates to a stress condition estimation apparatus and a stress condition estimation method.
  • Patent Document 1 subject's ecological information is acquired, and the subject is observed by observing changes in pulse value, high peak value of pulse wave, pulse pressure value that is high / low peak difference of pulse wave, etc. The condition of stress, sleepiness, fatigue, etc. is determined.
  • An object of the present invention is to improve the estimation accuracy when estimating the driver's stress state.
  • the stress state estimation device records the driver's biological information, and detects a deceleration start time when the vehicle in the traveling state starts to decelerate and stops. Then, referring to the biological information within a predetermined period recorded before the deceleration start time, the pre-deceleration biological information which is a representative value of the referred biological information is extracted and recorded after the deceleration start time. The post-deceleration biological information which is a representative value of the referred biological information is extracted with reference to the biological information within a predetermined period. Then, the stress state before deceleration of the driver is estimated by comparing the extracted pre-deceleration biological information and the post-deceleration biological information.
  • the estimation accuracy is improved. It can be done. That is, by focusing on the tendency that the driver's biometric information is uniformly stabilized after the vehicle is stopped, the pre-deceleration biometric information that can be considered to be in a stable state is compared with the post-deceleration biometric information. The stress state can be accurately estimated.
  • FIG. 1 is a schematic block diagram of a stress condition estimation apparatus.
  • the stress state estimation device is mounted on a car, and includes a pulse wave sensor 11, an electrocardiogram sensor 12, a vehicle speed sensor 13, a brake switch 14, an acceleration sensor 15, a navigation system 16, and a controller 17.
  • the pulse wave sensor 11 detects a driver's pulse wave (volume pulse wave).
  • the pulse wave is biological information representing a change in volume of peripheral arterial blood vessels associated with the pulsation of the heart.
  • the pulse wave sensor 11 utilizes the characteristic that near-infrared wavelength light passes through a living body and is absorbed in blood hemoglobin, and from a photoelectric sensor in which a light emitting element and a light receiving element of infrared light are combined. Become. Specifically, for example, it is provided in the grip portion of the steering wheel, irradiates infrared light to the palm or finger tip of the driver, and inputs to the controller 17 a voltage signal according to the amount of the reflected light reflected. Do. The controller 17 determines a pulse wave from the input voltage signal.
  • the electrocardiograph 12 detects the driver's electrocardiographic waveform.
  • this electrocardiograph 12 for example, a plurality of electrodes are provided on the seat surface, back surface, and the like of the seat, and a controller that detects potential difference signals generated between the electrodes by depolarization accompanying stimulation conduction when the cardiac muscle of the driver extends and contracts.
  • the controller 17 determines an electrocardiogram waveform from the input potential difference signal.
  • clothes and cloth intervene between the driver's skin and the electrode it is desirable to adopt the Laplacian electrode arrangement method or to increase the input impedance of the capacitive measurement circuit.
  • the stress state estimation device is premised to be mounted on a vehicle, and it is desirable that the pulse wave sensor 11 and the electrocardiograph 12 continuously acquire biological information without restraining the driver, and thus the steering wheel It is provided on the seat and back of the grip of the seat and the seat. If the driver's biological information can be acquired, the pulse wave sensor 11 or the electrocardiograph 12 is provided in a portion operated by the driver within a range where a part of the body reaches or a portion supported by the driver's body It is also good.
  • the vehicle speed sensor 13 detects a vehicle speed (hereinafter referred to as a vehicle speed) V.
  • the vehicle speed sensor 13 is provided, for example, in a driven gear on the output side of the transmission, detects magnetic lines of force of the sensor rotor by a detection circuit, converts a change in magnetic field accompanying the rotation of the sensor rotor into a pulse signal and inputs it to the controller 17 Do.
  • the controller 17 determines the vehicle speed V from the input pulse signal.
  • the brake switch 14 detects ON / OFF of the brake.
  • the brake switch 14 inputs a voltage signal corresponding to ON / OFF of the brake to the controller 17 via, for example, a detection circuit of a normally closed contact.
  • the controller 17 determines ON / OFF of the brake from the input voltage signal.
  • the acceleration sensor 15 detects an acceleration / deceleration G in the longitudinal direction of the vehicle.
  • the acceleration sensor 15 detects, for example, the positional displacement of the movable electrode with respect to the fixed electrode as a change in capacitance, converts it into a voltage signal proportional to the degree of acceleration and deceleration, and inputs it to the controller 17.
  • the controller 17 determines the acceleration / deceleration G from the input voltage signal.
  • the navigation system 16 recognizes the current position of the vehicle and road map information at the current position.
  • the navigation system 16 has a GPS receiver, and recognizes the position (latitude, longitude, altitude) of the vehicle and the traveling direction based on the time difference between radio waves arriving from three or more GPS satellites. Then, referring to road map information including road type, road alignment, lane width, passing direction of vehicle, etc. stored in the DVD-ROM drive or hard disk drive, the controller recognizes the road map information at the current position of the own vehicle Enter 17
  • various data may be received from the infrastructure using two-way wireless communication (DSRC: Dedicated Short Range Communication) as a driving safety support system (DSSS).
  • DSRC Dedicated Short Range Communication
  • DSSS driving safety support system
  • the controller 17 directly inputs each detection signal from sensors, it is not limited to this.
  • the controller 17 may be connected to another control unit to receive various data via, for example, CSMA / CA multiplex communication (CAN: Controller Area Network).
  • the controller 17 is, for example, a microcomputer, and executes a stress state estimation process every predetermined time (for example, 10 msec).
  • FIG. 2 is a block diagram showing a stress state estimation process.
  • the stress state estimation process executed by the controller 17 includes a biological information recording unit 21, a deceleration start time point detection unit 22, a biological information extraction unit 23, and a stress state estimation unit 24.
  • the biological information recording unit 21 records the vital signs of the circulatory system of the driver affected by the autonomic nerve as biological information. Specifically, the blood pressure value P is calculated based on the pulse wave detected by the pulse wave sensor 11 and the electrocardiogram waveform detected by the electrocardiogram sensor 12, and the blood pressure value P is recorded as biological information.
  • the biological information recording unit 21 accumulates and manages the blood pressure value P together with time information in a non-volatile memory.
  • FIG. 3 is a diagram for explaining a method of calculating the blood pressure value P.
  • A in the figure shows the pulse wave propagation time Tp according to the pulse wave and the electrocardiogram waveform, and (b) shows the blood pressure value P according to the pulse wave propagation time Tp.
  • time t1 at which the peak value of the electrocardiogram waveform is shown is the time of cardiac output
  • time t2 at which the peak value of the pulse wave is shown is the time when the pulse wave reaches the fingertip.
  • the difference (t2-t1) between the peak time t2 of these pulse waves and the peak time t1 of the electrocardiogram waveform is the pulse wave propagation time Tp.
  • P (alpha) xTp + (beta). According to this relational expression, the blood pressure value P is calculated according to the pulse wave propagation time Tp.
  • the deceleration start time detection unit 22 detects a deceleration start time tg when the vehicle in the traveling state starts to decelerate and stops. Specifically, the vehicle speed V detected by the vehicle speed sensor 14 and the ON / OFF state detected by the brake switch 14 are read. Then, with the vehicle speed V greater than 0, the brakes switch from OFF to ON including the engine brake, and when the vehicle speed V becomes 0 after the vehicle decelerates, the driver's deceleration operation switches to ON. The point in time is detected as the deceleration start point tg.
  • the deceleration start time tg substantially corresponds to the time when the driver recognizes that the vehicle needs to be stopped.
  • the biological information extraction unit 23 uses the deceleration start time point tg detected by the deceleration start time point detection unit 22 as a reference, and within a predetermined pre-deceleration stable period Tb recorded by the biological information recording unit 21 before the deceleration start time tg.
  • the pre-deceleration blood pressure value Pb which is a representative value of the referred blood pressure value P is extracted with reference to the blood pressure value P of FIG.
  • the post-deceleration blood pressure value Pa which is a representative value of the blood pressure value P referred to with reference to the blood pressure value P within the predetermined post-deceleration stable period Ta recorded by the biological information recording unit 21 after the deceleration start time tg. Extract
  • FIG. 4 is a time chart showing the pre-deceleration stable period Tb and the post-deceleration stable period Ta.
  • a required time Tf from when the deceleration start time tg to when the driver's biological information becomes stable is set in advance.
  • the required time Tf is longer than the time from the deceleration start time tg to the stop of the vehicle when the vehicle is decelerated at the deceleration generated by the normal brake operation which is not the emergency brake.
  • the post-deceleration reference start time ta1 and the post-deceleration reference end time ta2 are both after the time when the vehicle stops, they can also be referred to as a post-stop reference start time and a post-stop reference end time.
  • the post-deceleration stable period Ta and the post-deceleration blood pressure value Pa can also be referred to as a post-stop stable period and a post-stop blood pressure value.
  • the time when the vehicle stops is defined as a vehicle stop time ts, and the period from the vehicle stop time ts to the post-deceleration reference end time ta2 is set as a post-stop standby time Tw.
  • the stop continuation time Ts from when the vehicle stops to when it starts again is measured.
  • the average value of the blood pressure values P is extracted as the post-deceleration blood pressure value Pa.
  • i 1, 2,..., N.
  • Pa ⁇ P (i) / N
  • the data group of blood pressure values P is referred to, and the average value is used as a representative value of the referred blood pressure values P.
  • the present invention is not limited thereto.
  • the maximum value or the like may be used as a representative value. The above is the extraction processing of the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa by the biological information extraction unit 23.
  • the stress state estimation unit 24 estimates the pre-deceleration stress state of the driver by comparing the pre-deceleration blood pressure value Pb extracted by the biological information extraction unit 23 and the post-deceleration blood pressure value Pa.
  • FIG. 5 is a diagram illustrating estimation of a stress state.
  • the driver decelerates The previous stress condition is estimated to be small.
  • the difference ⁇ P is larger than the threshold value Pt, it is estimated that the driver's stress state before deceleration is large.
  • a plurality of threshold values may be set, and the stress state before deceleration of the driver may be estimated in three or more steps depending on which range the difference ⁇ P is in.
  • the above is the description of the stress state estimation process based on the block diagram of FIG.
  • step S101 the blood pressure value P is calculated based on the pulse wave detected by the pulse wave sensor 11 and the electrocardiogram detected by the electrocardiogram sensor 12 corresponding to the processing in the biological information recording unit 21, and this blood pressure is calculated.
  • the value P is recorded as biometric information.
  • step S102 it is determined whether the vehicle speed V is zero.
  • the vehicle speed V is greater than 0, it is determined that the vehicle is in a traveling state, and the process proceeds to step S103.
  • step S109 the pre-deceleration stable period Tb and the pre-deceleration blood pressure value Pb set by the biological information extraction unit 23 are reset.
  • step S104 the post-deceleration stable period Ta and the post-deceleration blood pressure value Pa set by the biological information extraction unit 23 are reset.
  • step S105 it is determined whether the brake is ON, including the engine brake.
  • the brake is off, it is determined that the deceleration operation has not been performed, and the process proceeds to step S100.
  • step S107 it is determined that the deceleration operation is performed, and the process proceeds to step S107. Since the driver may switch ON / OFF the brake operation continuously, such as a pumping brake, when the brake switch 14 is switched from OFF to ON, the brake switch 14 continues until a predetermined time elapses. It is possible to take measures to consider that is the state of ON.
  • Step S100 determines whether the accelerator is on.
  • the accelerator is ON, it is determined that the acceleration operation is performed, and the process proceeds to step S106.
  • the accelerator is off, it is determined that the acceleration operation is not performed, and the process returns to the predetermined main program as it is.
  • Step S106 corresponds to the processing in the deceleration start time point detection unit 22. After the deceleration start time point tg is reset, the process returns to the predetermined main program.
  • step S107 it is determined whether the deceleration start time tg is unrecorded.
  • the deceleration start time tg is unrecorded, it is determined that it is immediately after the start of the brake operation, and the process proceeds to step S108.
  • the deceleration start time tg has been recorded, it is determined that it is not immediately after the start of the brake operation, and the process returns to the predetermined main program as it is.
  • step S108 the deceleration start time tg when the vehicle in the traveling state starts to decelerate is recorded, and then the process returns to the predetermined main program.
  • step S109 it is determined whether the deceleration start time tg is unreferenced.
  • the deceleration start time point tg is not referred to, it is determined that the vehicle has just stopped and the process proceeds to step S110.
  • Step S110 corresponds to the processing in the deceleration start time detection unit 22, and reads out (refers to) the deceleration start time tg when the vehicle in the traveling state starts to decelerate.
  • a subsequent step S111 corresponds to the processing in the biological information extraction unit 23, and sets a pre-deceleration stable period Tb. That is, while setting the pre-deceleration reference start time tb1 retroactively from the deceleration start time tg by the predetermined time Tr, the deceleration start time tg is set as the pre-deceleration reference end time tb2, and the deceleration before these deceleration reference start time tb1 A pre-deceleration stabilization time Tb is set up to the pre-reference end time tb2.
  • the subsequent step S112 corresponds to the processing in the biological information extraction unit 23, refers to the data group of the blood pressure value P recorded in the pre-deceleration stable period Tb, and takes the average value of the blood pressure value P as the pre-deceleration blood pressure value Pb. Extract.
  • a subsequent step S113 corresponds to the processing in the biological information extraction unit 23, and sets a post-deceleration stable period Ta. That is, the required time Tf from when the deceleration start time tg is stabilized until the driver's biological information stabilizes is set, and the post-deceleration reference start time ta1 after the required time Tf elapses from the deceleration start time tg is set. A post-deceleration reference end time ta2 for which a predetermined time Te has elapsed from the start time ta1 is set. Then, the post-deceleration stable period Ta from the post-deceleration reference start time ta1 to the post-deceleration reference end time ta2 is set.
  • step S114 it is determined whether or not a standby time Tw has elapsed since the vehicle stopped.
  • the post-stop standby time Tw has not yet elapsed, it is determined that the post-deceleration stable period Ta has not ended and the post-deceleration blood pressure value Pa can not be extracted, and the process returns to the predetermined main program.
  • the post-stop standby time Tw has elapsed, it is determined that the post-deceleration stable period Ta ends and the post-deceleration blood pressure value Pa can be extracted, and the process proceeds to step S115.
  • Step S115 corresponds to the processing in the biological information extraction unit 23, refers to the data group of the blood pressure value P recorded in the post-deceleration stable period Ta, and extracts the average value of the blood pressure values P as the post-deceleration blood pressure value Pa. Do.
  • a subsequent step S116 corresponds to the processing in the stress state estimation unit 24, and determines whether or not the difference ⁇ P between the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa is less than or equal to a predetermined threshold value Pt.
  • a predetermined threshold value Pt it is estimated that the stress state before deceleration of the driver is small, and the process proceeds to step S117.
  • the difference ⁇ P is larger than the threshold value Pt, it is estimated that the stress state before deceleration of the driver is large, and the process proceeds to step S118.
  • Step S117 corresponds to the process in the stress state estimation unit 24, and records the estimation result that the stress state before deceleration of the driver is small, for example, as a history on a predetermined drive recorder, and then proceeds to step S119.
  • Step S118 corresponds to the process in the stress state estimation unit 24.
  • the estimation result that the stress state before deceleration of the driver is large is recorded as a history on a predetermined drive recorder, for example, and then the process proceeds to step S119.
  • step S119 the pre-deceleration stable period Tb and the pre-deceleration blood pressure value Pb set by the biological information extraction unit 23 are reset, and then the process returns to the predetermined main program.
  • the post-deceleration stable period Ta and the post-deceleration blood pressure value Pa set by the biological information extraction unit 23 are reset, and then the process returns to the predetermined main program.
  • the operation of the first embodiment will be described.
  • the blood pressure value P which is a vital sign of the driver's circulatory system is calculated and recorded together with the time information (step S101).
  • attention is paid to the tendency that the blood pressure value P of the driver is uniformly stabilized after the vehicle is stopped, and the driving is performed before the deceleration start time tg made prior to the vehicle stop and after the vehicle is stopped.
  • the driver's stress state before the deceleration start time tg is estimated.
  • step S110 when the vehicle speed V is greater than 0 (the determination in step S102 is "No") and the brake is switched from OFF to ON (the determination in step S105 is “Yes”), that point is taken as the deceleration start time tg. It records (step S108). Then, at the vehicle stop time ts when the vehicle is stopped by the decelerating operation (the determination in step S102 is "Yes"), the recorded deceleration start time tg is read (step S110).
  • the pre-deceleration reference start time tb1 and the pre-deceleration reference end time tb2 are set according to the deceleration start time tg and the predetermined time Tr, and the pre-deceleration reference start time tb1
  • the period up to the reference end time tb2 is set as the pre-deceleration stable period Tb (step S111).
  • the blood pressure value P in the pre-deceleration stable period Tb is referred to, and the average value of the data group of the blood pressure value P is extracted as the pre-deceleration blood pressure value Pb (step S112).
  • the blood pressure value P is in a stable state.
  • deceleration reference start time ta1 and after deceleration reference end time ta2 are set according to deceleration start time tg, predetermined required time Tf, and predetermined time Te.
  • a period from the reference start time ta1 to the post-deceleration reference end time ta2 is set as a post-deceleration stable period Ta (step S113).
  • the blood pressure value P tends to rise along with the deceleration operation.
  • the blood pressure value P turns from rising to falling and eventually returns to the stable state.
  • the time point at which the blood pressure value P returns to the stable state is estimated as the post-deceleration reference start time ta1.
  • step S114 the process waits until the post-stop standby time Tw elapses from the vehicle stop time ts (determination in step S114 is “No”), that is, until data collection of the blood pressure value P in the post-deceleration stable period Ta is completed. Then, when the waiting time Tw after stopping elapses (the determination of 114S is “Yes”), the blood pressure value P in the after-deceleration stable period Ta is referred to, and the average value of the data group of the blood pressure value P is Are extracted (step S115). In the post-deceleration stable period Ta, the blood pressure value P is in a stable state.
  • step S116 when the difference ⁇ P between the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa is less than or equal to a predetermined threshold value Pt (the determination in step S116 is “Yes”), It is estimated that the driver's stress state before deceleration is small (step S117).
  • difference (DELTA) P is larger than threshold value Pt, it estimates that the stress condition before the driver's deceleration is large (step S118).
  • the pre-deceleration blood pressure value Pb that can be considered to be in a stable state with the post-deceleration blood pressure value Pa, it is possible to accurately estimate the driver's stress state before deceleration.
  • the magnitude of the stress state is estimated by the magnitude of the difference ⁇ P between the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa, the degree of the stress state can be easily estimated in multiple stages. Can.
  • the pre-deceleration stable period Tb is set according to the deceleration start time tg and the predetermined time Tr, and the blood pressure value P recorded in the pre-deceleration stable period Tb is referred to before the deceleration start. It is possible to easily extract a highly reliable pre-deceleration blood pressure value Pb that can be regarded as being stable. Also, by extracting the average value of the data group of blood pressure values P recorded in the pre-deceleration stable period Tb as the pre-deceleration blood pressure value Pb, it is statistical that the dispersion degree of the data observed in the pre-deceleration stable period Tb is equalized. Representative values can be easily extracted.
  • the post-deceleration stable period Ta is set according to the deceleration start time tg, the predetermined required time Tf, and the predetermined time Te, and the data group of the blood pressure value P recorded in the post-deceleration stable period Ta is referred.
  • the average value of the data group of blood pressure values P recorded in the post-deceleration stable period Ta as the post-deceleration blood pressure value Pa it is statistical that the dispersion degree of the data observed in the post-deceleration stable period Ta is equalized. Representative values can be easily extracted.
  • step S101 which is the process of the biological information recording unit 21
  • step S108 and S110 which is the process of the deceleration start time detection unit 22
  • step S110 to S115 which is processing in the biological information extraction unit 23
  • steps S116 to S118 which is processing in the stress condition estimation unit 24
  • the stress state estimation device records the driver's biological information by the processing in the biological information recording unit 21 and the vehicle in the traveling state by the processing in the deceleration start time tg detection unit 22. Detects a deceleration start time tg when the vehicle starts to decelerate and stops.
  • the blood pressure value P within a predetermined period recorded in the biological information recording unit 21 before the deceleration start time point tg is referred to, and the representative value of the blood pressure value P referred to
  • the pre-deceleration blood pressure value Pb which is Further, the post-deceleration blood pressure value Pa, which is a representative value of the referred blood pressure value P, is extracted with reference to the blood pressure value P within a predetermined period recorded by the biological information recording unit 21 after the deceleration start time tg.
  • the stress state estimation unit 24 compares the pre-deceleration blood pressure value Pb extracted by the biological information extraction unit 23 with the post-deceleration blood pressure value Pa to estimate the driver's stress state before deceleration.
  • the driver compares the pre-deceleration blood pressure value Pb which has been in a stable state before the deceleration start time tg with the post-deceleration blood pressure value Pa which has become a stable state after the deceleration start time tg. Since the stress state is estimated, estimation accuracy can be improved. That is, noting the tendency that the blood pressure value P of the driver is uniformly stabilized after the vehicle is stopped, the pre-deceleration blood pressure value Pb which can be considered to be in the stable state is compared with the post-deceleration blood pressure value Pa. The stress state before deceleration can be accurately estimated.
  • the stress state estimation device causes the stress state estimation unit 24 to process the stress before deceleration of the driver as the difference ⁇ P between the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa increases. It is estimated that the state is large. As described above, since the magnitude of the stress state is estimated by the magnitude of the difference ⁇ P between the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa, the degree of the stress state is easily and multistagely estimated. can do.
  • the stress state estimation device sets a time point retroactively for a predetermined time Tr from the deceleration start time point tg as the reference start time point before deceleration tb1 by the processing in the biological information extraction unit 23
  • the start time tg is set as the pre-deceleration reference end time tb2.
  • the blood pressure value P from the pre-deceleration reference start time tb1 to the pre-deceleration reference end time tb2 is referred to, and the deceleration is a representative value of the referred blood pressure value P
  • the pre-blood pressure value Pb is extracted.
  • the stress state estimation device sets in advance the required time Tf from the deceleration start time point tg to the stabilization of the blood pressure value P of the driver by the processing of the biological information extraction unit 23. Then, a point at which the required time Tf has passed from the deceleration start point tg is set as a post-deceleration reference start point ta1 and a point at which a predetermined time Te has passed from the post deceleration reference point ta1 is set as a post-deceleration reference end point ta2. Do.
  • the blood pressure value P from the post-deceleration reference start time ta1 to the post-deceleration reference end time ta2 is referred to and decelerating that is the representative value of the blood pressure value P
  • the post blood pressure value Pa is extracted.
  • the stress state estimation device performs the processing at the stress state estimation unit 24 so that the vehicle stop time ts is longer than the post-stop standby time Tw from the time when the vehicle stops to the post-deceleration reference end time ta2.
  • the stop continuation time Ts from time t1 to time t2 is short, estimation of the stress state is stopped.
  • the post-deceleration blood pressure value Pa can not be extracted with high reliability. It can suppress that the precision of an estimation result falls.
  • the stress state estimation device causes the blood pressure value P within a predetermined period recorded in the biological information recording unit 21 before the deceleration start time tg to be processed by the biological information extraction unit 23. And the average value of the referred blood pressure values P is extracted as the pre-deceleration blood pressure value Pb. Further, the blood pressure value P within a predetermined period recorded in the biological information recording unit 21 after the deceleration start time tg is referred to, and the average value of the referred blood pressure values P is extracted as the post-deceleration blood pressure value Pa.
  • the stress state estimation device records vital signs of the circulatory system of the driver as biological information by the processing of the biological information recording unit 21.
  • the driver's stress state can be accurately estimated by recording the vital signs of the circulatory system affected by the autonomic nerve.
  • the stress state estimation method records the blood pressure value P of the driver and detects the deceleration start time tg when the vehicle in the traveling state starts to decelerate and stops. Then, the blood pressure value P within a predetermined period recorded before the deceleration start time point tg is referred to, and the pre-deceleration blood pressure value Pb which is a representative value of the referred blood pressure value P is extracted and the deceleration start time point tg.
  • the post-deceleration blood pressure value Pa which is a representative value of the referred blood pressure value P, is extracted with reference to the blood pressure value P within a predetermined period recorded later.
  • the driver compares the pre-deceleration blood pressure value Pb which has been in a stable state before the deceleration start time tg with the post-deceleration blood pressure value Pa which has become a stable state after the deceleration start time tg. Since the stress state is estimated, estimation accuracy can be improved. That is, noting the tendency that the blood pressure value P of the driver is uniformly stabilized after the vehicle is stopped, the pre-deceleration blood pressure value Pb which can be considered to be in the stable state is compared with the post-deceleration blood pressure value Pa. The stress state before deceleration can be accurately estimated.
  • the deceleration start time point tg ′ is detected in consideration of the reaction time Tx from when the driver recognizes that the vehicle needs to be stopped until when the driver starts decelerating operation.
  • the deceleration start time point detection unit 22 sets, in advance, a reaction time Tx from when the driver recognizes that the vehicle needs to be stopped to when the deceleration operation is started.
  • This reaction time is the reflection time (for example, 0.4 to 0.5 seconds) from the recognition of the need to stop the vehicle until the foot is moved, and the switching time from the accelerator pedal to the brake pedal (for example 0.2) Sec) and the stepping time (for example, 0.1 to 0.3 seconds) from when the brake pedal is depressed to when the brake switch 14 is turned ON, and Tx is approximately 0.7 to 1.0 seconds It becomes.
  • FIG. 7 is a time chart showing the reaction time Tx and the deceleration start time tg.
  • the pre-deceleration blood pressure value Pb is extracted with reference to the data group including the blood pressure value P which has already started to rise, which affects the estimation accuracy of the stress state. Therefore, in order to improve the estimation accuracy of the stress state, it is necessary to properly set the pre-deceleration stable period Tb and the post-deceleration stable period Ta, and for this reason, it is also possible to accurately detect the deceleration start time tg ′. desired.
  • the reaction time Tx from when the driver recognizes the need to stop the vehicle until when the driver starts decelerating operation is set, and the reaction time Tx is set from time tg when the brake switch 14 is switched on.
  • the retrospective point in time is detected as the deceleration start point tg '.
  • the deceleration start time tg ' approximates to the time when the driver recognizes that the vehicle needs to be stopped, so that the pre-deceleration stable period Tb and the post-deceleration stable period Ta can be properly set, Can improve the estimation accuracy of the stress state.
  • the stress state estimation device sets in advance the reaction time Tx from when the driver recognizes the need for stopping the vehicle to when starting the deceleration operation by the processing at the deceleration start time point detection unit 22. Do. Then, a point in time when the driver starts the decelerating operation from the point in time tg retroactively by the reaction time Tx is detected as a deceleration start point in time tg '.
  • the deceleration start time tg ′ in consideration of the reaction time Tx from when the driver recognizes that the vehicle needs to be stopped to when starting the deceleration operation, the pre-deceleration stable period Tb and the stability after deceleration are stabilized.
  • the period Ta can be set appropriately, and thus the estimation accuracy of the stress state can be improved.
  • the post-deceleration stable period Ta is set according to the representative deceleration Ga in a period from the deceleration start time point tg to the vehicle stop time point ts.
  • points different from the first embodiment described above will be described, and the description of the same parts will be omitted.
  • FIG. 8 is a flowchart showing stress condition estimation processing according to the third embodiment.
  • a new process of step S301 is added after the process of step S108 described above, and a new process of steps S302 to S305 is added after the process of step S112 described above, and steps S101 to S120 and S100 are performed.
  • the processing of the second embodiment is the same as that of the first embodiment described above, so the description will be omitted.
  • step S301 the vehicle speed Vg at the start of deceleration when the vehicle in the traveling state starts to decelerate is recorded, and then the control returns to the predetermined main program.
  • step S302 the vehicle speed Vg at the start of deceleration when the vehicle in the traveling state starts to decelerate is read out.
  • step S303 as shown below, a representative deceleration Ga in a period from the deceleration start time tg to the vehicle stop time ts is calculated according to the vehicle speed Vg at the deceleration start, the deceleration start time tg, and the vehicle stop time ts. .
  • the representative deceleration Ga from the deceleration start time tg to the vehicle stop time ts is calculated according to the vehicle speed Vg at the deceleration start time, the deceleration start time tg, and the vehicle stop time ts, it is limited to this Absent.
  • the deceleration G detected by the acceleration sensor 15 is recorded, the data group of the deceleration G from the deceleration start time tg to the vehicle stop time ts is referred to, and the average value and the maximum value of the deceleration G are representatively reduced. You may use as speed Ga.
  • step S304 it is determined whether the representative deceleration Ga is smaller than a predetermined threshold Gt.
  • the threshold value Gt is a threshold value for determining whether the driver's brake operation is an emergency brake operation such as panic braking, and has a value of, for example, 0.8 G or more.
  • the representative deceleration Ga is smaller than the threshold value Gt, it is judged that the driver's stress state can be estimated because it is not an emergency brake, and the process proceeds to step S305.
  • the representative deceleration Ga is equal to or greater than the threshold value Gt, it is determined that there is a possibility that the estimation accuracy of the stress condition of the driver may decrease because it is an emergency brake, and the process proceeds to step S119 described above.
  • step S305 with reference to the map of FIG. 9, the required time Tf from the deceleration start time tg to the stabilization of the driver's biological information is set according to the representative deceleration Ga.
  • FIG. 9 is a map used to calculate the required time Tf.
  • G MIN and G MAX having a relationship of 0 ⁇ G MIN ⁇ G MAX are determined in advance, and the required time Tf is a relationship of 0 ⁇ T MIN ⁇ T MAX.
  • T MIN and T MAX are predetermined. Then, when the representative deceleration Ga is equal to or less than G MIN , the required time Tf maintains the minimum value T MIN .
  • the required time Tf becomes larger in the range from the minimum value T MIN to the maximum value T MAX as the representative deceleration Ga is larger. Further, when the representative deceleration Ga is equal to or greater than G MAX , the required time Tf maintains the maximum value T MAX .
  • the vehicle speed Vg at the start of deceleration is divided by the time (ts-tg) from the start time of deceleration tg to the stop time ts of the vehicle, and the representative deceleration Ga (average value) from the start time tg to the stop time ts Is calculated (step S303).
  • the representative deceleration Ga is equal to or greater than the threshold Gt (the determination in step S304 is “No”), it is an emergency brake such as a panic brake, and the raised blood pressure value P can be stabilized in a short time after the vehicle stops. Because the sex is low and the estimation accuracy of the stress condition is considered to be reduced, the estimation process is discontinued.
  • step S304 when the representative deceleration Ga is smaller than the threshold Gt (the determination in step S304 is "Yes"), the stress state estimation process is continued because the normal braking operation is performed, and the larger the representative deceleration Ga, the more the deceleration is performed.
  • the required time Tf used to set the post stabilization period Ta is set long (step S305).
  • FIG. 10 is a time chart showing the required time Tf and the post-deceleration stable period Ta. As described above, by setting the required time Tf longer as the deceleration G is larger, it is possible to accurately set the required time Tf until the driver's blood pressure value P is stabilized from the deceleration start time ts. As a result, the post-deceleration stable period Ta can be accurately set, and thus the estimation accuracy of the stress state can be improved.
  • the processes of steps S301 to S303 correspond to the "deceleration detection unit".
  • the stress state estimation device detects the representative deceleration Ga from the deceleration start time tg to the stop of the vehicle, and uses it for setting the post-deceleration stable period Ta as the representative deceleration Ga increases.
  • the required time Tf is set longer. As described above, by setting the required time Tf in accordance with the representative deceleration Ga, the post-deceleration stable period Ta can be accurately set, and thus the estimation accuracy of the stress state can be improved.
  • the stress state estimation device detects the average deceleration or the maximum deceleration from the deceleration start time tg to the stop of the vehicle as the representative deceleration Ga.
  • the average deceleration and the maximum deceleration from the deceleration start time tg to the vehicle stop time ts as the representative deceleration Ga, the dispersion of data observed from the deceleration start time tg to the vehicle stop time ts It is possible to easily detect a statistical representative value with a grade.
  • the stress state estimation device cancels the estimation of the stress state when the representative deceleration Ga is equal to or greater than a predetermined threshold Gt by the processing of the stress state estimation unit 24.
  • a predetermined threshold Gt As described above, when the representative deceleration Ga is equal to or greater than the threshold Gt, there is a possibility that the post-deceleration blood pressure value Pa with high reliability can not be extracted. Therefore, the accuracy of the estimation result can be obtained by stopping the estimation of the stress state. Can be suppressed.
  • the standard deviation ⁇ b of the blood pressure value P in the pre-deceleration stable period Tb and the standard deviation ⁇ a of the blood pressure value P in the post-deceleration stable period Ta are calculated, and the stress is calculated according to the standard deviations ⁇ b and ⁇ a. It cancels the estimation of the state.
  • points different from the first embodiment described above will be described, and the description of the same parts will be omitted.
  • FIG. 11 is a flowchart showing stress condition estimation processing of the fourth embodiment.
  • the process of new steps S401 and S402 is added before the process of step S112 described above, and the process of new steps S403 to S404 is added before the process of step S115 described above, and step S101
  • the processes of S120 and S100 are the same as those of the first embodiment described above, and thus the description thereof is omitted.
  • step S402 it is determined whether the standard deviation ⁇ b is smaller than a predetermined threshold ⁇ t.
  • the standard deviation .sigma.b is smaller than the threshold value .sigma.t, there is no variance in the data group of the blood pressure value P recorded within the post-deceleration stable period Tb, and it is judged that the data is in a stable state, and the process proceeds to step S112 described above.
  • the standard deviation ⁇ b is equal to or larger than the threshold value ⁇ t
  • the data group of the blood pressure value P recorded in the pre-deceleration stable period Tb has variance, and it is determined that it is not in the stable state, and the process proceeds to step S119 described above. .
  • step S403 the data group of the blood pressure value P recorded in the post-deceleration stable period Ta is referred to, and the standard deviation ⁇ a of the blood pressure value P is calculated as described below.
  • i 1, 2,..., N.
  • ⁇ a ⁇ [ ⁇ ⁇ P (i) - ⁇ P (i) / N ⁇ 2 ]]]
  • step S404 it is determined whether the standard deviation ⁇ a is smaller than a predetermined threshold ⁇ t.
  • the standard deviation .sigma.a is smaller than the threshold value .sigma.t, there is no variance in the data group of the blood pressure value P recorded in the post-deceleration stable period Ta, and it is judged that the data is stable, and the process proceeds to step S115 described above.
  • the standard deviation ⁇ a is equal to or larger than the threshold value ⁇ t
  • the data group of the blood pressure value P recorded within the post-deceleration stable period Ta has variance, and it is determined that it is not stable and the process proceeds to step S119 described above. .
  • the above is the description of the stress state estimation process based on the flowchart of FIG.
  • the standard deviations ⁇ b and ⁇ a are calculated with reference to the data group of the blood pressure value P recorded in the pre-deceleration stable period Tb and in the deceleration stable period Ta (steps S401 and S403). . Then, if both the standard deviations ⁇ b and ⁇ a are smaller than the threshold value ⁇ t (the determinations in steps S402 and S404 are “Yes”), the stress state estimation process is continued. On the other hand, if any one of the standard deviations ⁇ b and ⁇ a is equal to or larger than the threshold ⁇ t (the determination in step S402 or S404 is “No”), the stress state estimation process is stopped.
  • the processes of steps S401 and S403 correspond to the "standard deviation calculation unit".
  • the stress state estimation device calculates the standard deviations ⁇ b and ⁇ a of the blood pressure value P in the pre-deceleration stable period Tb and in the deceleration stable period Ta. Then, by the processing in the stress state estimation unit 24, when either one of the standard deviations ⁇ b and ⁇ a is equal to or larger than the threshold value ⁇ t, the estimation of the stress state is stopped.
  • the post-deceleration reference start time ta1 is set in accordance with the amount of change dP per unit time in the blood pressure value P.
  • points different from the first embodiment described above will be described, and the description of the same parts will be omitted.
  • the stress condition estimation process executed by the controller 17 will be described.
  • FIG. 12 is a flowchart showing stress condition estimation processing of the fifth embodiment.
  • step S501-S504 is added after the process of step S112 mentioned above, and about the process of other step S101-S120, S100 Is the same as that of the first embodiment described above, and thus the description thereof is omitted.
  • step S109 it is determined whether the deceleration start time tg is unreferenced.
  • the deceleration start time point tg is not referred to, it is determined that the vehicle has just stopped and the process proceeds to step S110.
  • the deceleration start time tg has been referred to, it is determined that it is not immediately after the stop of the vehicle, and the process proceeds to step S501.
  • step S501 it is determined whether a post-deceleration stable period Ta has not been set.
  • the process proceeds to step S502.
  • the post-deceleration stable period Ta has been set, the process proceeds to step S114 described above.
  • step S502 the amount of change dP per unit time of the blood pressure value P is calculated. Specifically, the difference (P (n-1) -P (n) ) between the previous value P (n-1) and the current value P (n) is calculated as the amount of change dP.
  • step S503 it is determined whether the change amount dP is smaller than a predetermined threshold value Pt.
  • the change amount dP is smaller than the predetermined threshold value Pt, it is determined that the blood pressure value P may have returned to the stable state, and the process proceeds to step S504.
  • the change amount dP is equal to or greater than the threshold value Pt, it is determined that the blood pressure value P has not returned to the stable state, and the program returns to the predetermined main program.
  • step S504 it is determined whether or not a predetermined time Td has elapsed while the change amount dP has become smaller than the threshold value Pt.
  • the predetermined time Td has elapsed, it is determined that the blood pressure value P has returned to the stable state, and the process proceeds to step S113.
  • the predetermined time Td has not elapsed, it is determined that the blood pressure value P has not returned to the stable state, and the program returns to the predetermined main program as it is.
  • a post-deceleration stable period Ta is set. Specifically, a point in time after a predetermined time Td has elapsed while the change amount dP has become smaller than the threshold value Pt is set as a post-deceleration reference start time ta1. Then, the post-deceleration reference end time ta2 for which a predetermined time Te has elapsed from the post-deceleration reference start time ta1 is set. Then, the post-deceleration stable period Ta from the post-deceleration reference start time ta1 to the post-deceleration reference end time ta2 is set.
  • the above is the description of the stress condition estimation process based on the flowchart of FIG.
  • FIG. 13 is a time chart showing a predetermined time Td and a reference start time ta1 after deceleration.
  • Td a predetermined time
  • ta1 a reference start time
  • step S502 the change amount dP of the unit time value of the blood pressure value P is detected (step S502), and in a state where the change amount dP becomes smaller than the threshold value Pd (the determination in step S503 is “Yes")
  • the determination in step S504 is “Yes”
  • that point is set as the post-deceleration reference start point ta1.
  • the setting of the post-deceleration reference end time ta2 and the setting of the post-deceleration stable period Ta are the same as those in the first embodiment described above.
  • the reference start time after deceleration ta1 according to the change amount dP per unit time in the blood pressure value P, the time when the driver's blood pressure value P returns to the stable state after the vehicle stops. Can be set more accurately. As a result, the post-deceleration stable period Ta can be accurately set, and thus the estimation accuracy of the stress state can be improved.
  • the stress state estimation device sequentially refers to the blood pressure value P recorded by the biological information recording unit 21 after the vehicle stops, and the change amount dP per unit time in the blood pressure value P is a threshold Pt.
  • a point at which the smaller state is maintained for a predetermined time Td is set as a post-deceleration reference start time ta1.
  • a point at which a predetermined time Te has elapsed from the post-deceleration reference start time ta1 is set as the post-deceleration reference end time ta2.
  • the blood pressure value P from the post-deceleration reference start time ta1 to the post-deceleration reference end time ta2 is referred to and decelerating that is the representative value of the blood pressure value P
  • the post blood pressure value Pa is extracted.
  • the stress state estimation result is corrected by correcting at least one of the pre-deceleration blood pressure value Pb, the post-deceleration blood pressure value Pa, the difference ⁇ P, and the threshold value Pt according to the post-deceleration blood pressure value Pa. Do.
  • the correction according to the post-deceleration blood pressure value Pa will be described.
  • FIG. 14 is a diagram showing the fluctuation of the blood pressure value P due to the circadian rhythm.
  • (A) in the figure shows the average value of the stress degree subjectively evaluated in each predetermined time zone and the difference ⁇ P obtained in each predetermined time zone when one day of operation Corresponds to the bar graph, and the difference ⁇ P corresponds to the line graph.
  • (B) in the figure is an average value of the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa obtained for each predetermined time zone, and the pre-deceleration blood pressure value Pb corresponds to the broken line graph;
  • the blood pressure value Pa corresponds to a solid line graph.
  • the difference ⁇ P between the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa at that time is different. That is, in the range of A in the morning, both of the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa are lower and the difference ⁇ P is larger as compared with the range of B in the afternoon. On the other hand, in the afternoon time zone B, both the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa are higher and the difference ⁇ P is smaller than in the morning time zone A. Thus, even with the same degree of stress, the blood pressure value P fluctuates due to the circadian rhythm which fluctuates in a 24-hour cycle.
  • estimating whether the stress state is small depends on whether the difference ⁇ P is less than or equal to the threshold value Pt, which affects the estimation accuracy. That is, since the difference ⁇ P between the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa tends to be large in the range of A in the morning, it is easy to estimate that the stress state is large. Sometimes it is not big. Alternatively, in the afternoon B range, the difference ⁇ P between the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa tends to be small, so it is easy to estimate that the stress state is small, but the stress state is actually small There is a case that it does not exist.
  • the post-deceleration blood pressure value Pa corresponds to the driver's circadian rhythm
  • the post-deceleration blood pressure value Pa corresponds to the driver's circadian rhythm
  • the post-deceleration blood pressure value Pa corresponds to the driver's circadian rhythm
  • the difference ⁇ P the difference ⁇ P
  • the threshold value Pt the threshold value
  • the estimation result of the stress state is corrected. That is, the larger the post-deceleration blood pressure value Pa, the smaller the difference ⁇ P tends to be, and it is easy to estimate that the stress state is small. Therefore, it is difficult to estimate that the stress state is small by correcting this (or stress Makes it easy to estimate that the state is large).
  • FIG. 15 is a map used to calculate the correction coefficient kb. This map is set based on the driver's general tendency obtained from experiments etc., and the correction coefficient kb is set to be smaller than 1 as the post-deceleration blood pressure value Pa is larger.
  • the pre-deceleration blood pressure value Pb is multiplied by the correction coefficient kb smaller than 1 and the pre-deceleration blood pressure value Pb is reduced and corrected, so that the difference ⁇ P tends to be large, and as a result, it is estimated that the stress state is small. It becomes difficult (or makes stress conditions more likely to be inferred).
  • FIG. 16 is a map used to calculate the correction coefficient ka. This map is set based on the driver's general tendency obtained from experiments etc., and the correction coefficient kb is set to be larger than 1 as the post-deceleration blood pressure value Pa is larger.
  • the difference ⁇ P tends to be large, and as a result, it is estimated that the stress state is small. It becomes difficult (or makes stress conditions more likely to be inferred).
  • FIG. 17 is a map used to calculate the correction coefficient kd. This map is set based on a general tendency of the driver obtained from an experiment or the like, and the correction coefficient kd is set to be larger than 1 as the post-deceleration blood pressure value Pa is larger.
  • the correction coefficient kd is set to be larger than 1 as the post-deceleration blood pressure value Pa is larger.
  • FIG. 18 is a map used to calculate the correction coefficient kt. This map is set based on the driver's general tendency obtained from experiments etc., and the correction coefficient kt is set to be smaller than 1 as the post-deceleration blood pressure value Pa is larger. As described above, by multiplying the threshold Pt by the correction coefficient kt smaller than 1 and reducing the threshold Pt, it becomes difficult to estimate that the stress state is small as a result (or the stress state is likely to be estimated to be large) .
  • FIG. 19 is a flowchart showing stress condition estimation processing according to the sixth embodiment.
  • step S101 the blood pressure value P is calculated based on the pulse wave detected by the pulse wave sensor 11 and the electrocardiogram detected by the electrocardiogram sensor 12 corresponding to the processing in the biological information recording unit 21, and this blood pressure is calculated.
  • the value P is recorded as biometric information.
  • step S102 it is determined whether the vehicle speed V is zero.
  • the vehicle speed V is greater than 0, it is determined that the vehicle is in a traveling state, and the process proceeds to step S103.
  • step S109 the pre-deceleration stable period Tb and the pre-deceleration blood pressure value Pb set by the biological information extraction unit 23 are reset.
  • step S104 the post-deceleration stable period Ta and the post-deceleration blood pressure value Pa set by the biological information extraction unit 23 are reset.
  • step S105 it is determined whether the brake is ON, including the engine brake.
  • the brake is off, it is determined that the deceleration operation has not been performed, and the process proceeds to step S100.
  • step S107 it is determined that the deceleration operation is performed, and the process proceeds to step S107. Since the driver may switch ON / OFF the brake operation continuously, such as a pumping brake, when the brake switch 14 is switched from OFF to ON, the brake switch 14 continues until a predetermined time elapses. It is possible to take measures to consider that is the state of ON.
  • Step S100 determines whether the accelerator is on.
  • the accelerator is ON, it is determined that the acceleration operation is performed, and the process proceeds to step S106.
  • the accelerator is off, it is determined that the acceleration operation is not performed, and the process returns to the predetermined main program as it is.
  • Step S106 corresponds to the processing in the deceleration start time point detection unit 22. After the deceleration start time point tg is reset, the process returns to the predetermined main program.
  • step S107 it is determined whether the deceleration start time tg is unrecorded.
  • the deceleration start time tg is unrecorded, it is determined that it is immediately after the start of the brake operation, and the process proceeds to step S108.
  • the deceleration start time tg has been recorded, it is determined that it is not immediately after the start of the brake operation, and the process returns to the predetermined main program as it is.
  • step S108 the deceleration start time tg when the vehicle in the traveling state starts to decelerate is recorded, and then the process returns to the predetermined main program.
  • step S109 it is determined whether the deceleration start time tg is unreferenced.
  • the deceleration start time point tg is not referred to, it is determined that the vehicle has just stopped and the process proceeds to step S110.
  • Step S110 corresponds to the processing in the deceleration start time detection unit 22, and reads out (refers to) the deceleration start time tg when the vehicle in the traveling state starts to decelerate.
  • a subsequent step S111 corresponds to the processing in the biological information extraction unit 23, and sets a pre-deceleration stable period Tb. That is, while setting the pre-deceleration reference start time tb1 retroactively from the deceleration start time tg by the predetermined time Tr, the deceleration start time tg is set as the pre-deceleration reference end time tb2, and the deceleration before these deceleration reference start time tb1 A pre-deceleration stabilization time Tb is set up to the pre-reference end time tb2.
  • the subsequent step S112 corresponds to the processing in the biological information extraction unit 23, refers to the data group of the blood pressure value P recorded in the pre-deceleration stable period Tb, and takes the average value of the blood pressure value P as the pre-deceleration blood pressure value Pb. Extract.
  • a subsequent step S113 corresponds to the processing in the biological information extraction unit 23, and sets a post-deceleration stable period Ta. That is, the required time Tf from when the deceleration start time tg is stabilized until the driver's biological information stabilizes is set, and the post-deceleration reference start time ta1 after the required time Tf elapses from the deceleration start time tg is set. A post-deceleration reference end time ta2 for which a predetermined time Te has elapsed from the start time ta1 is set. Then, the post-deceleration stable period Ta from the post-deceleration reference start time ta1 to the post-deceleration reference end time ta2 is set.
  • step S114 it is determined whether or not a standby time Tw has elapsed since the vehicle stopped.
  • the post-stop standby time Tw has not yet elapsed, it is determined that the post-deceleration stable period Ta has not ended and the post-deceleration blood pressure value Pa can not be extracted, and the process returns to the predetermined main program.
  • the post-stop standby time Tw has elapsed, it is determined that the post-deceleration stable period Ta ends and the post-deceleration blood pressure value Pa can be extracted, and the process proceeds to step S115.
  • Step S115 corresponds to the processing in the biological information extraction unit 23, refers to the data group of the blood pressure value P recorded in the post-deceleration stable period Ta, and extracts the average value of the blood pressure values P as the post-deceleration blood pressure value Pa. Do.
  • the subsequent step S200 corresponds to the processing in the stress state estimation unit 24, and according to the post-deceleration blood pressure value Pa, at least one of the pre-deceleration blood pressure value Pb, the post-deceleration blood pressure value Pa, the difference ⁇ P, and the threshold value Pt. to correct.
  • a subsequent step S116 corresponds to the processing in the stress state estimation unit 24, and determines whether or not the difference ⁇ P between the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa is less than or equal to a predetermined threshold value Pt.
  • step S117 when the difference ⁇ P is equal to or less than a predetermined threshold value Pt, it is estimated that the stress state before deceleration of the driver is small, and the process proceeds to step S117.
  • the difference ⁇ P is larger than the threshold value Pt, it is estimated that the stress state before deceleration of the driver is large, and the process proceeds to step S118.
  • Step S117 corresponds to the process in the stress state estimation unit 24, and records the estimation result that the stress state before deceleration of the driver is small, for example, as a history on a predetermined drive recorder, and then proceeds to step S119.
  • Step S118 corresponds to the process in the stress state estimation unit 24.
  • the estimation result that the stress state before deceleration of the driver is large is recorded as a history on a predetermined drive recorder, for example, and then the process proceeds to step S119.
  • step S119 the pre-deceleration stable period Tb and the pre-deceleration blood pressure value Pb set by the biological information extraction unit 23 are reset, and then the process returns to the predetermined main program.
  • the post-deceleration stable period Ta and the post-deceleration blood pressure value Pa set by the biological information extraction unit 23 are reset, and then the process returns to the predetermined main program.
  • the operation of the sixth embodiment will be described. Since the blood pressure value P fluctuates due to the influence of circadian rhythm, estimation accuracy may be affected if it is estimated whether the stress state is small simply by whether the difference ⁇ P is less than or equal to the threshold value Pt. Therefore, at least one of the pre-deceleration blood pressure value Pb, the post-deceleration blood pressure value Pa, the difference ⁇ P, and the threshold value Pt is corrected according to the post-deceleration blood pressure value Pa (step S200). That is, the larger the post-deceleration blood pressure value Pa, the smaller the difference ⁇ P tends to be, and it is easy to estimate that the stress state is small. Therefore, it is difficult to estimate that the stress state is small by correcting this (or stress Makes it easy to estimate that the state is large).
  • the post-deceleration blood pressure value Pa increases, the pre-deceleration blood pressure value Pb is decreased and corrected, the post-deceleration blood pressure value Pa is increased and corrected, the difference ⁇ P is increased and corrected, and the threshold value Pt is decreased and corrected.
  • a map used when correcting the pre-deceleration blood pressure value Pb, the post-deceleration blood pressure value Pa, the difference ⁇ P, and the threshold value Pt is set based on the driver's general tendency obtained from experiments and the like. There is.
  • This map may be constant, but since each driver has a unique constitution or characteristic, they may be determined and the map may be updated as needed. That is, while processing initially using a predetermined default map, the driver's post-deceleration blood pressure value Pa is made into a database in association with the stress degree to be the driver's own subjective evaluation, and based on this, the driver is Determine the specific constitution and characteristics, and update the map as needed.
  • the driver authentication system includes property authentication, knowledge authentication, biometric authentication, and the like.
  • the driver is authenticated from a user ID incorporated in a license.
  • the knowledge authentication for example, the driver is authenticated from the input of a password.
  • biometrics authentication the driver is authenticated from fingerprints, irises, voiceprints, faces, veins and the like. As described above, it is possible to further improve the estimation accuracy of the stress state by determining the constitution and characteristics specific to the driver and updating the reference map based on the determination.
  • step S101 which is the process of the biological information recording unit 21 corresponds to the "biological information recording unit”
  • steps S108 and S110 which is the process of the deceleration start time detection unit 22
  • deceleration start time detection corresponds to the processing in steps S110 to S115, which is processing in the biological information extraction unit 23, corresponds to the "biological information extraction unit”
  • the processing in steps S200 and S116 to S118, which is processing in the stress state estimation unit 24, is "stress”.
  • state estimation unit corresponds to the state estimation unit.
  • the stress state estimation device corrects the estimation result of the stress state according to the extracted post-deceleration blood pressure value Pa. As described above, the estimation accuracy can be further improved by correcting the estimation result of the stress state according to the extracted post-deceleration blood pressure value Pa.
  • the stress state estimation device causes the stress state estimation unit 24 to process the stress before deceleration of the driver as the difference ⁇ P between the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa increases. It is estimated that the state is large. Then, the stress state estimation result is corrected by correcting at least one of the pre-deceleration blood pressure value Pb, the post-deceleration blood pressure value Pa, the difference ⁇ P, and the threshold value Pt according to the post-deceleration blood pressure value Pa.
  • the magnitude of the stress state is estimated by the magnitude of the difference ⁇ P between the pre-deceleration blood pressure value Pb and the post-deceleration blood pressure value Pa, the degree of the stress state is easily and multistagely estimated. can do. Further, by correcting at least one of the pre-deceleration blood pressure value Pb, the post-deceleration blood pressure value Pa, the difference ⁇ P, and the threshold value Pt, the estimation accuracy of the stress state can be easily and accurately estimated. .
  • the stress state estimation device performs the processing in the stress state estimation unit 24 to reduce and correct the pre-deceleration blood pressure value Pb as the post-deceleration blood pressure value Pa increases, thereby estimating the stress state.
  • the difference ⁇ P tends to be large, and as a result, it is difficult to estimate that the stress state is small (or the stress state is large) make it easy to estimate Therefore, the estimation error due to the circadian rhythm can be suppressed, and the estimation accuracy can be further improved.
  • the stress state estimation device performs the processing in the stress state estimation unit 24 to increase and correct the post-deceleration blood pressure value Pa as the post-deceleration blood pressure value Pa increases, thereby estimating the stress state. Correct the Thus, by increasing and correcting the post-deceleration blood pressure value Pa as the post-deceleration blood pressure value Pa increases, the difference ⁇ P tends to be large, and as a result, it is difficult to estimate that the stress state is small (or the stress state is large) Make it easy to estimate Therefore, the estimation error due to the circadian rhythm can be suppressed, and the estimation accuracy can be further improved.
  • the stress state estimation device corrects the estimation result of the stress state by increasing and correcting the difference ⁇ P as the post-deceleration blood pressure value Pa becomes larger by the processing in the stress state estimation unit 24. .
  • the difference ⁇ P is corrected to be increased, and as a result, it is difficult to estimate that the stress state is small (or it is easily estimated that the stress state is large). Therefore, the estimation error due to the circadian rhythm can be suppressed, and the estimation accuracy can be further improved.
  • the stress state estimation device corrects the estimation result of the stress state by reducing and correcting the threshold value Pt as the post-deceleration blood pressure value Pa is larger by the processing in the stress state estimation unit 24. .
  • the threshold value Pt is corrected to be smaller, as a result, it becomes more difficult to be estimated that the stress state is small (or it is easier to be estimated that the stress state is large). Therefore, the estimation error due to the circadian rhythm can be suppressed, and the estimation accuracy can be further improved.

Abstract

 運転者のストレス状態を推定する際の推定精度を向上させる。 運転者の血圧値Pを記録し、走行状態にある車両が減速を開始して停止した際の減速開始時点tgを検出する。また、減速開始時点tgよりも以前に生体情報記録部(21)で記録された予め定めた期間内の血圧値Pを参照し、参照した血圧値Pの代表値である減速前血圧値Pbを抽出する。また、減速開始時点tgよりも後に生体情報記録部(21)で記録された予め定めた期間内の血圧値Pを参照し、参照した血圧値Pの代表値である減速後血圧値Paを抽出する。そして、生体情報抽出部(23)で抽出した減速前血圧値Pb及び減速後血圧値Paを比較して運転者の減速前のストレス状態を推定する。すなわち、減速前血圧値Pbと減速後血圧値Paとの差分ΔPが大きいほど、運転者の減速前のストレス状態が大きいと推定する。

Description

ストレス状態推定装置、ストレス状態推定方法
 本発明は、ストレス状態推定装置、及びストレス状態推定方法に関するものである。
 特許文献1に記載された従来技術では、被験者の生態情報を取得し、脈拍値、脈波の高ピーク値、脈波の高低ピーク差である脈圧値等の変化を観察することで、被験者のストレス状態、眠気状態、疲労状態などの体調を判別している。
特開2003-061921号公報
 しかしながら、24時間周期で変動する生理現象(サーカディアンリズム)の影響があるため、ストレスの有無に関わらず、脈拍、脈波、脈圧値等は変化するものである。したがって、上記特許文献1に記載された従来技術のように、脈拍、脈波、脈圧値等の変化を観察するだけでは、被験者のストレス状態を正確に推定することが難しい。
 本発明の課題は、運転者のストレス状態を推定する際の推定精度を向上させることである。
 本発明の一態様に係るストレス状態推定装置は、運転者の生体情報を記録しておき、走行状態にある車両が減速を開始して停止した際の減速開始時点を検出する。そして、減速開始時点よりも以前に記録された予め定めた期間内の生体情報を参照し、参照した生体情報の代表値である減速前生体情報を抽出すると共に、減速開始時点よりも後に記録された予め定めた期間内の生体情報を参照し、参照した生体情報の代表値である減速後生体情報を抽出する。そして、抽出した減速前生体情報及び減速後生体情報を比較することにより、運転者の減速前のストレス状態を推定する。
 本発明によれば、減速開始時点よりも以前の減速前生体情報と、減速開始時点よりも後の減速後生体情報と、を比較して運転者のストレス状態を推定するので、推定精度を向上させることができる。すなわち、車両停止後に運転者の生体情報が一様に安定するという傾向に着目し、安定状態にあると見なせる減速前生体情報と減速後生体情報とを比較することにより、運転者の減速前のストレス状態を精度よく推定することができる。
ストレス状態推定装置の概略構成図である。 ストレス状態推定処理を示すブロック図である。 血圧値Pの算出手法について説明した図である。 減速前安定期間Tb、及び減速後安定期間Taを示すタイムチャートである。 ストレス状態の推定について説明した図である。 ストレス状態推定処理を示すフローチャートである。 反応時間Tx、及び減速開始時点tgを示すタイムチャートである。 第3実施形態のストレス状態推定処理を示すフローチャートである。 所要時間Tfの算出に用いるマップである。 所要時間Tf、及び減速後安定期間Taを示すタイムチャートである。 第4実施形態のストレス状態推定処理を示すフローチャートである。 第5実施形態のストレス状態推定処理を示すフローチャートである。 予め定めた時間Td、及び減速後参照開始時点ta1を示すタイムチャートである。 サーカディアンリズムに起因した血圧値Pの変動を示す図である。 補正係数kbの算出に用いるマップである。 補正係数kaの算出に用いるマップである。 補正係数kdの算出に用いるマップである。 補正係数ktの算出に用いるマップである。 第6実施形態のストレス状態推定処理を示すフローチャートである。
 以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
 《構成》
 本実施形態は、運転者のストレス状態を推定するものである。
 図1は、ストレス状態推定装置の概略構成図である。
 ストレス状態推定装置は、自動車に搭載されており、脈波センサ11と、心電センサ12と、車速センサ13と、ブレーキスイッチ14と、加速度センサ15と、ナビゲーションシステム16と、コントローラ17と、を備えている。
 脈波センサ11は、運転者の脈波(容積脈波)を検出する。脈波とは、心臓の拍動に伴う末梢動脈血管の容積変化を表す生体情報である。この脈波センサ11は、近赤外波長光が生体を透過し血中ヘモグロビンに吸収される特性を利用したものであり、赤外光の発光素子と受光素子とを組み合わせた光電式のセンサからなる。具体的には、例えばステアリングホイールの把持部に設けられており、運転者の掌や指尖に対して赤外光を照射し、反射した散乱光の光量に応じた電圧信号をコントローラ17に入力する。コントローラ17は、入力された電圧信号から脈波を判断する。
 心電計12は、運転者の心電波形を検出する。この心電計12では、例えばシートの座面や背面等に複数の電極を設けてあり、運転者の心筋が伸縮するときの刺激伝導に伴う脱分極によって、各電極間に生じる電位差信号をコントローラ17に入力する。コントローラ17は、入力された電位差信号から心電波形を判断する。なお、運転者の皮膚と電極との間に、衣類や生地が介在するため、ラプラシアン電極配列法を採用したり、容量性計測回路の入力インピーダンスを高くしたりすることが望ましい。
 本実施形態のストレス状態推定装置は、車両搭載を前提としており、脈波センサ11や心電計12は、運転者を拘束することなく連続的に生体情報を取得することが望ましいため、ステアリングホイールの把持部やシートの座面や背面に設けている。運転者の生体情報を取得することができれば、脈波センサ11や心電計12を、体の一部が届く範囲で運転者が操作する箇所や、運転者の体を支持する箇所に設けてもよい。
 車速センサ13は、車体速度(以下、車速と称す)Vを検出する。この車速センサ13は、例えばトランスミッションにおける出力側のドリブンギヤに設けられ、センサロータの磁力線を検出回路によって検出しており、センサロータの回転に伴う磁界の変化をパルス信号に変換してコントローラ17に入力する。コントローラ17は、入力されたパルス信号から車速Vを判断する。
 ブレーキスイッチ14は、ブレーキのON/OFFを検出する。このブレーキスイッチ14は、例えば常閉型接点の検出回路を介して、ブレーキのON/OFFに応じた電圧信号をコントローラ17に入力する。コントローラ17は、入力された電圧信号からブレーキのON/OFFを判断する。
 加速度センサ15は、車両前後方向の加減速度Gを検出する。この加速度センサ15は、例えば固定電極に対する可動電極の位置変位を静電容量の変化として検出しており、加減速度と方向に比例した電圧信号に変換してコントローラ17に入力する。コントローラ17は、入力された電圧信号から加減速度Gを判断する。
 ナビゲーションシステム16は、自車両の現在位置と、その現在位置における道路地図情報を認識する。このナビゲーションシステム16は、GPS受信機を有し、三つ以上のGPS衛星から到着する電波の時間差に基づいて自車両の位置(緯度、経度、高度)と進行方向とを認識する。そして、DVD‐ROMドライブやハードディスクドライブに記憶された道路種別、道路線形、車線幅員、車両の通行方向等を含めた道路地図情報を参照し、自車両の現在位置における道路地図情報を認識しコントローラ17に入力する。なお、安全運転支援システム(DSSS:Driving Safety Support Systems)として、双方向無線通信(DSRC:Dedicated Short Range Communication)を利用し、各種データをインフラストラクチャから受信してもよい。
 なお、コントローラ17は、センサ類から各検出信号を直接入力しているが、これに限定されるものではない。コントローラ17を他のコントロールユニットと接続し、例えばCSMA/CA方式の多重通信(CAN:Controller Area Network)を介して各種データを受信してもよい。
 コントローラ17は、例えばマイクロコンピュータからなり、所定時間(例えば10msec)毎にストレス状態推定処理を実行する。
 図2は、ストレス状態推定処理を示すブロック図である。
 コントローラ17で実行するストレス状態推定処理は、生体情報記録部21と、減速開始時点検出部22と、生体情報抽出部23と、ストレス状態推定部24と、を備える。
 生体情報記録部21では、自律神経の影響を受ける運転者の循環器系のバイタルサインを生体情報として記録する。具体的には、脈波センサ11で検出した脈波、及び心電センサ12で検出した心電波形に基づいて血圧値Pを算出し、この血圧値Pを生体情報として記録する。生体情報記録部21は、血圧値Pを時刻情報と共に不揮発性メモリに蓄積し管理する。
 ここで、血圧値Pの算出について説明する。
 本実施形態では、心臓の拍出から抹消に脈が伝播するまでの脈波伝播時間Tpと、血圧値Pとの間に負の相関関係があることを利用し、脈波伝播時間Tpから血圧値Pを算出する。
 図3は、血圧値Pの算出手法について説明した図である。
 図中の(a)は脈波及び心電波形に応じた脈波伝播時間Tpを示し、(b)は脈波伝播時間Tpに応じた血圧値Pを示している。また、(a)において、心電波形のピーク値を示す時点t1は心臓の拍出時点であり、脈波のピーク値を示す時点t2は指先に脈波が到達した時点である。これら脈波のピーク時点t2と心電波形のピーク時点t1との差(t2-t1)が脈波伝播時間Tpである。そして、図中の(b)に示すように、脈波伝播時間Tpと血圧値Pとの間には、P=α×Tp+βという関係がある。この関係式に従い、脈波伝播時間Tpに応じて血圧値Pを算出する。
 上記が生体情報記録部21による血圧値Pの記録処理である。
 減速開始時点検出部22では、走行状態にある車両が減速を開始して停止した際の減速開始時点tgを検出する。具体的には、車速センサ14で検出した車速Vと、ブレーキスイッチ14で検出したON/OFF状態等を読込む。そして、車速Vが0よりも大きい状態で、エンジンブレーキも含めてブレーキがOFFからONに切り替わり、車両の減速を経て車速Vが0になったときに、運転者の減速操作がONに切り替わった時点を、減速開始時点tgとして検出する。この減速開始時点tgは、運転者が車両の停止を必要と認識した時点に略相当する。
 生体情報抽出部23では、減速開始時点検出部22で検出した減速開始時点tgを基準とし、減速開始時点tgよりも以前に生体情報記録部21で記録された予め定めた減速前安定期間Tb内の血圧値Pを参照し、参照した血圧値Pの代表値である減速前血圧値Pbを抽出する。さらに、減速開始時点tgよりも後に生体情報記録部21で記録された予め定めた減速後安定期間Ta内の血圧値Pを参照し、参照した血圧値Pの代表値である減速後血圧値Paを抽出する。
 図4は、減速前安定期間Tb、及び減速後安定期間Taを示すタイムチャートである。
 先ず、減速開始時点tgから予め定めた時間Trだけ遡及した時点を減速前参照開始時点tb1として設定し(tg-Tr=tb1)、減速開始時点tgを減速前参照終了時点tb2として設定する(tg=tb2)。そして、減速前参照開始時点tb1から減速前参照終了時点tb2までの期間を、減速前安定期間Tbとして設定する(tb2-tb1=Tb=Tr)。
 また、減速開始時点tgから運転者の生体情報が安定するまでの所要時間Tfを予め設定する。この所要時間Tfは、緊急ブレーキではない通常のブレーキ操作で発生する減速度で車両を減速させた場合に、減速開始時点tgから車両が停止するまでの時間よりも長い時間である。そして、減速開始時点tgから所要時間Tfだけ経過した時点を減速後参照開始時点ta1として設定し(tg+Tf=ta1)、この減速後参照開始時点ta1から予め定めた時間Teだけ経過した時点を減速後参照終了時点ta2として設定する(ta1+Te=ta2)。そして、減速後参照開始時点ta1から減速後参照終了時点ta2までの期間を、減速後安定期間Taとして設定する(ta2-ta1=Ta=Te)。減速後参照開始時点ta1、及び減速後参照終了時点ta2は、何れも車両が停止した時点よりも後の時点であるため、停止後参照開始時点、停止後参照終了時点と称することもできる。同様に、減速後安定期間Ta、減速後血圧値Paも、停止後安定期間、停止後血圧値と称することができる。
 なお、車両が停止した時点を車両停止時点tsとし、この車両停止時点tsから減速後参照終了時点ta2までの期間を、停止後待機時間Twとして設定する。また、車両が停止してから再発進するまでの停止継続時間Tsを計測しておく。
 そして、減速前安定期間Tb内に記録された血圧値Pのデータ群を参照し、下記に示すように、血圧値Pの平均値を減速前血圧値Pbとして抽出する。なお、i=1、2、……、Nである。
  Pb=ΣP(i)/N
 また、減速後安定期間Ta内に記録された血圧値Pのデータ群を参照し、下記に示すように、血圧値Pの平均値を減速後血圧値Paとして抽出する。なお、i=1、2、……、Nである。
  Pa=ΣP(i)/N
 なお、本実施形態では、血圧値Pのデータ群を参照し、参照した血圧値Pの代表値として平均値を利用しているが、これに限定されるものはなく、他にも中間値や最大値などを代表値としてもよい。
 上記が生体情報抽出部23による減速前血圧値Pb及び減速後血圧値Paの抽出処理である。
 ストレス状態推定部24では、生体情報抽出部23で抽出した減速前血圧値Pb及び減速後血圧値Paを比較することにより、運転者の減速前のストレス状態を推定する。
 図5は、ストレス状態の推定について説明した図である。
 先ず、図中の(a)に示すように、減速前血圧値Pbと減速後血圧値Paとの差分ΔP(=Pb-Pa)が、予め定めた閾値Pt以下であるときには、運転者の減速前のストレス状態は小さいと推定する。また、図中の(b)に示すように、差分ΔPが閾値Ptよりも大きいときには、運転者の減速前のストレス状態が大きいと推定する。
 一方、図中の(c)に示すように、停止後待機時間Twよりも停止継続時間Tsが短いときには、例えば踏み切り通過時の一時停止のように、車両が停止してから落ち着く間もなく再発進しているため、ストレス状態の推定を中止する。
 なお、一つの閾値Ptを設定し、減速前血圧値Pbと減速後血圧値Paとの差分ΔPが閾値Ptより大きいか否かで、運転者の減速前のストレス状態を大きいか小さいかの二段階で推定しているが、これに限定されるものではない。すなわち、複数の閾値を設定し、差分ΔPがどの範囲にあるかで、運転者の減速前のストレス状態を三段階以上で推定してもよい。
 上記が、図2のブロック図に基づくストレス状態推定処理の説明である。
 次に、ストレス状態推定処理をフローチャートに基づいて説明する。
 図6は、ストレス状態推定処理を示すフローチャートである。
 先ずステップS101は、生体情報記録部21での処理に対応し、脈波センサ11で検出した脈波、及び心電センサ12で検出した心電波形に基づいて血圧値Pを算出し、この血圧値Pを生体情報として記録する。
 続くステップS102では、車速Vが0であるか否かを判定する。ここで、車速Vが0より大きいときには、車両は走行状態にあると判断してステップS103に移行する。一方、車速Vが0であるときには、車両が停止状態にあると判断してステップS109に移行する。
 ステップS103では、生体情報抽出部23で設定される減速前安定期間Tb及び減速前血圧値Pbをリセットする。
 続くステップS104では、生体情報抽出部23で設定される減速後安定期間Ta及び減速後血圧値Paをリセットする。
 続くステップS105では、エンジンブレーキも含めてブレーキがONであるか否かを判定する。ここで、ブレーキがOFFであるときには、減速操作はなされていないと判断してステップS100に移行する。一方、ブレーキがONであるときには、減速操作がなされていると判断してステップS107に移行する。なお、ポンピングブレーキ等、運転者が連続的にブレーキ操作のON/OFFを切替える場合もあるため、ブレーキスイッチ14がOFFからONになったときには、予め定めた時間が経過するまでは、ブレーキスイッチ14がONの状態であると見なすような対策をしてもよい。
 ステップS100は、アクセルがONであるか否かを判定する。ここで、アクセルがONであるときには、加速操作がなされていると判断してステップS106に移行する。一方、アクセルがOFFであるときには、加速操作はなされていないと判断して、そのまま所定のメインプログラムに復帰する。
 ステップS106は、減速開始時点検出部22での処理に対応し、減速開始時点tgをリセットしてから所定のメインプログラムに復帰する。
 ステップS107では、減速開始時点tgが未記録であるか否かを判定する。ここで、減速開始時点tgが未記録であるときには、ブレーキ操作を開始した直後であると判断してステップS108に移行する。一方、減速開始時点tgが記録済であるときには、ブレーキ操作を開始した直後ではないと判断して、そのまま所定のメインプログラムに復帰する。
 ステップS108では、走行状態にある車両が減速を開始したときの減速開始時点tgを記録してから所定のメインプログラムに復帰する。
 ステップS109では、減速開始時点tgが未参照であるか否かを判定する。ここで、減速開始時点tgが未参照であるときには、車両が停止した直後であると判断してステップS110に移行する。一方、減速開始時点tgを参照済であるときには、車両が停止した直後ではないと判断してステップS114に移行する。
 ステップS110は、減速開始時点検出部22での処理に対応し、走行状態にある車両が減速を開始したときの減速開始時点tgの読出し(参照)を行う。
 続くステップS111は、生体情報抽出部23での処理に対応し、減速前安定期間Tbを設定する。すなわち、減速開始時点tgから予め定めた時間Trだけ遡及した減速前参照開始時点tb1を設定すると共に、減速開始時点tgを減速前参照終了時点tb2として設定し、これら減速前参照開始時点tb1から減速前参照終了時点tb2までを、減速前安定期間Tbとして設定する。
 続くステップS112は、生体情報抽出部23での処理に対応し、減速前安定期間Tb内に記録された血圧値Pのデータ群を参照し、血圧値Pの平均値を減速前血圧値Pbとして抽出する。
 続くステップS113は、生体情報抽出部23での処理に対応し、減速後安定期間Taを設定する。すなわち、減速開始時点tgから運転者の生体情報が安定するまでの所要時間Tfを設定し、減速開始時点tgから所要時間Tfだけ経過した減速後参照開始時点ta1を設定すると共に、この減速後参照開始時点ta1から予め定めた時間Teだけ経過した減速後参照終了時点ta2を設定する。そして、減速後参照開始時点ta1から減速後参照終了時点ta2までの減速後安定期間Taを設定する。
 続くステップS114では、車両が停止してから停止後待機時間Twが経過したか否かを判定する。ここで、停止後待機時間Twが未だ経過していないときには、減速後安定期間Taが終了しておらず減速後血圧値Paを抽出できないと判断して、そのまま所定のメインプログラムに復帰する。一方、停止後待機時間Twが経過しているときには、減速後安定期間Taが終了しており減速後血圧値Paを抽出できると判断してステップS115に移行する。
 ステップS115は、生体情報抽出部23での処理に対応し、減速後安定期間Ta内に記録された血圧値Pのデータ群を参照し、血圧値Pの平均値を減速後血圧値Paとして抽出する。
 続くステップS116は、ストレス状態推定部24での処理に対応し、減速前血圧値Pbと減速後血圧値Paとの差分ΔPが予め定めた閾値Pt以下であるか否かを判定する。ここで、差分ΔPが予め定めた閾値Pt以下であるときには運転者の減速前のストレス状態は小さいと推定してステップS117に移行する。一方、差分ΔPが閾値Ptよりも大きいときには、運転者の減速前のストレス状態は大きいと推定してステップS118に移行する。
 ステップS117は、ストレス状態推定部24での処理に対応し、運転者の減速前のストレス状態が小さいという推定結果を、例えば所定のドライブレコーダに履歴として記録してからステップS119に移行する。
 ステップS118は、ストレス状態推定部24での処理に対応し、運転者の減速前のストレス状態が大きいという推定結果を、例えば所定のドライブレコーダに履歴として記録してからステップS119に移行する。
 ステップS119では、生体情報抽出部23で設定される減速前安定期間Tb及び減速前血圧値Pbをリセットしてから所定のメインプログラムに復帰する。
 続くステップS120では、生体情報抽出部23で設定される減速後安定期間Ta及び減速後血圧値Paをリセットしてから所定のメインプログラムに復帰する。
 上記が、図6のフローチャートに基づくストレス状態推定処理の説明である。
 《作用》
 次に、第1実施形態の作用について説明する。
 先ず運転者の脈波と心電波形とに基づいて、運転者の循環器系のバイタルサインである血圧値Pを算出し時刻情報と共に記録する(ステップS101)。本実施形態では、車両停止後に運転者の血圧値Pが一様に安定するという傾向に着目し、車両停止に先立ってなされた減速開始時点tgよりも前と、車両停止した後とで、運転者の血圧値Pがどのように変化するかを観察することで、減速開始時点tgよりも前の運転者のストレス状態を推定する。
 先ず、車速Vが0より大きい状態で(ステップS102の判定が“No”)、ブレーキがOFFからONに切り替わったときに(ステップS105の判定が“Yes”)、その時点を減速開始時点tgとして記録しておく(ステップS108)。そして、その減速操作によって車両が停止した車両停止時点tsで(ステップS102の判定が“Yes”)、記録された減速開始時点tgの読出しを行う(ステップS110)。
 そして、図4に示すように、減速開始時点tg、及び予め定めた時間Trに従って、減速前参照開始時点tb1、及び減速前参照終了時点tb2を設定し、この減速前参照開始時点tb1から減速前参照終了時点tb2までの期間を、減速前安定期間Tbとして設定する(ステップS111)。そして、減速前安定期間Tb内の血圧値Pを参照し、血圧値Pのデータ群の平均値を、減速前血圧値Pbとして抽出する(ステップS112)。この減速前安定期間Tbでは、血圧値Pは安定状態にある。
 また、図4に示すように、減速開始時点tg、予め定めた所要時間Tf、及び予め定めた時間Teに従って、減速後参照開始時点ta1、及び減速後参照終了時点ta2を設定し、この減速後参照開始時点ta1から減速後参照終了時点ta2までの期間を、減速後安定期間Taとして設定する(ステップS113)。ここで、減速開始時点tgから車両停止時点tsまでの期間は、減速操作に伴って血圧値Pが上昇する傾向にある。そして、車両が完全に停止すると、血圧値Pは上昇した状態から低下に転じ、やがて安定状態へと戻る。このように、血圧値Pが安定状態へと復帰する時点を、減速後参照開始時点ta1として推定している。
 そして、車両停止時点tsから停止後待機時間Twが経過するまで(ステップS114の判定が“No”)、つまり減速後安定期間Taにおける血圧値Pのデータ収集が完了するまでは待機する。そして、停止後待機時間Twが経過したら(114Sの判定が“Yes”)、減速後安定期間Ta内の血圧値Pを参照し、血圧値Pのデータ群の平均値を、減速後血圧値Paとして抽出する(ステップS115)。この減速後安定期間Taでは、血圧値Pは安定状態にある。
 そして、図5の(a)に示すように、減速前血圧値Pbと減速後血圧値Paとの差分ΔPが、予め定めた閾値Pt以下であるときには(ステップS116の判定が“Yes”)、運転者の減速前のストレス状態は小さいと推定する(ステップS117)。一方、図5の(b)に示すように、差分ΔPが閾値Ptよりも大きいときには、運転者の減速前のストレス状態が大きいと推定する(ステップS118)。このように、安定状態にあると見なせる減速前血圧値Pbと減速後血圧値Paとを比較することにより、運転者の減速前のストレス状態を精度よく推定することができる。また、減速前血圧値Pbと減速後血圧値Paとの差分ΔPの大きさで、ストレス状態の大きさを推定しているので、ストレス状態の度合を、容易に、且つ多段階に推定することができる。
 また、減速開始時点tg、及び予め定めた時間Trに応じて減速前安定期間Tbを設定し、その減速前安定期間Tbに記録された血圧値Pのデータ群を参照することで、減速開始前に安定状態にあると見なせる信頼度の高い減速前血圧値Pbを容易に抽出することができる。また、減速前安定期間Tbに記録された血圧値Pのデータ群の平均値を減速前血圧値Pbとして抽出することで、減速前安定期間Tbに観測されたデータの分散度合を均した統計的な代表値を容易に抽出することができる。
 また、減速開始時点tg、予め定めた所要時間Tf、及び予め定めた時間Teに応じて減速後安定期間Taを設定し、その減速後安定期間Taに記録された血圧値Pのデータ群を参照することで、車両停止後に安定状態にあると見なせる信頼度の高い減速後血圧値Paを容易に抽出することができる。また、減速後安定期間Taに記録された血圧値Pのデータ群の平均値を減速後血圧値Paとして抽出することで、減速後安定期間Taに観測されたデータの分散度合を均した統計的な代表値を容易に抽出することができる。
 また、例えば踏み切り通過時の一時停止のように、車両が停止してから落ち着く間もなく再発進しているときには、信頼度の高い減速後血圧値Paを抽出することができない可能性がある。そこで、図5の(c)に示すように、停止後待機時間Twよりも停止継続時間Tsが短いときには、ストレス状態の推定を中止する。これにより、推定結果の精度が低下することを抑制できる。
 以上、生体情報記録部21での処理となるステップS101の処理が「生体情報記録部」に対応し、減速開始時点検出部22での処理となるステップS108、S110の処理が「減速開始時点検出部」に対応する。また、生体情報抽出部23での処理となるステップS110~S115の処理が「生体情報抽出部」に対応し、ストレス状態推定部24での処理となるステップS116~S118の処理が「ストレス状態推定部」に対応する。
 《効果》
 次に、第1実施形態における主要部の効果を記す。
(1)本実施形態に係るストレス状態推定装置は、生体情報記録部21での処理により、運転者の生体情報を記録し、減速開始時点tg検出部22での処理により、走行状態にある車両が減速を開始して停止した際の減速開始時点tgを検出する。また、生体情報抽出部23での処理により、減速開始時点tgよりも以前に生体情報記録部21で記録された予め定めた期間内の血圧値Pを参照し、参照した血圧値Pの代表値である減速前血圧値Pbを抽出する。また、減速開始時点tgよりも後に生体情報記録部21で記録された予め定めた期間内の血圧値Pを参照し、参照した血圧値Pの代表値である減速後血圧値Paを抽出する。そして、ストレス状態推定部24での処理により、生体情報抽出部23で抽出した減速前血圧値Pb及び減速後血圧値Paを比較して運転者の減速前のストレス状態を推定する。
 このように、減速開始時点tgよりも以前に安定状態にあった減速前血圧値Pbと、減速開始時点tgよりも後に安定状態となった減速後血圧値Paと、を比較して運転者のストレス状態を推定するので、推定精度を向上させることができる。すなわち、車両停止後に運転者の血圧値Pが一様に安定するという傾向に着目し、安定状態にあると見なせる減速前血圧値Pbと減速後血圧値Paとを比較することにより、運転者の減速前のストレス状態を精度よく推定することができる。
(2)本実施形態に係るストレス状態推定装置は、ストレス状態推定部24での処理により、減速前血圧値Pbと減速後血圧値Paとの差分ΔPが大きいほど、運転者の減速前のストレス状態が大きいと推定する。
 このように、減速前血圧値Pbと減速後血圧値Paとの差分ΔPの大きさで、ストレス状態の大きさを推定しているので、ストレス状態の度合を、容易に、且つ多段階に推定することができる。
(3)本実施形態に係るストレス状態推定装置は、生体情報抽出部23での処理により、減速開始時点tgから予め定めた時間Trだけ遡及した時点を減速前参照開始時点tb1として設定し、減速開始時点tgを減速前参照終了時点tb2として設定する。そして、生体情報記録部21に記録された血圧値Pのうち、減速前参照開始時点tb1から減速前参照終了時点tb2までの血圧値Pを参照し、参照した血圧値Pの代表値である減速前血圧値Pbを抽出する。
 このように、減速前安定期間Tbに記録された血圧値Pのデータ群を参照することで、減速開始前に安定状態にあると見なせる信頼度の高い減速前血圧値Pbを容易に抽出することができる。
(4)本実施形態に係るストレス状態推定装置は、生体情報抽出部23での処理により、減速開始時点tgから運転者の血圧値Pが安定するまでの所要時間Tfを予め設定する。そして、減速開始時点tgから所要時間Tfだけ経過した時点を減速後参照開始時点ta1として設定し、減速後参照開始時点ta1から予め定めた時間Teだけ経過した時点を減速後参照終了時点ta2として設定する。そして、生体情報記録部21に記録された血圧値Pのうち、減速後参照開始時点ta1から減速後参照終了時点ta2までの血圧値Pを参照し、参照した血圧値Pの代表値である減速後血圧値Paを抽出する。
 このように、減速後安定期間Taに記録された血圧値Pのデータ群を参照することで、車両停止後に安定状態にあると見なせる信頼度の高い減速後血圧値Paを容易に抽出することができる。
(5)本実施形態に係るストレス状態推定装置は、ストレス状態推定部24での処理により、車両が停止した時点から減速後参照終了時点ta2までの停止後待機時間Twよりも、車両停止時点tsから再発進までの停止継続時間Tsが短いときに、ストレス状態の推定を中止する。
 このように、車両が停止してから落ち着く間もなく再発進しているときには、信頼度の高い減速後血圧値Paを抽出することができない可能性があるため、ストレス状態の推定を中止することで、推定結果の精度が低下することを抑制できる。
(6)本実施形態に係るストレス状態推定装置は、生体情報抽出部23での処理により、減速開始時点tgよりも以前に生体情報記録部21で記録された予め定めた期間内の血圧値Pを参照し、参照した血圧値Pの平均値を減速前血圧値Pbとして抽出する。また、減速開始時点tgよりも後に生体情報記録部21で記録された予め定めた期間内の血圧値Pを参照し、参照した血圧値Pの平均値を減速後血圧値Paとして抽出する。
 このように、減速前安定期間Tbに記録された血圧値Pのデータ群の平均値を減速前血圧値Pbとして抽出することで、減速前安定期間Tbに観測されたデータの分散度合をならした統計的な代表値を容易に抽出することができる。また、減速後安定期間Taに記録された血圧値Pのデータ群の平均値を減速後血圧値Paとして抽出することで、減速後安定期間Taに観測されたデータの分散度合をならした統計的な代表値を容易に抽出することができる。
(7)本実施形態に係るストレス状態推定装置は、生体情報記録部21での処理により、運転者の循環器系のバイタルサインを生体情報として記録する。
 このように、自律神経の影響を受ける循環器系のバイタルサインを記録することで、運転者のストレス状態を精度よく推定することができる。
(8)本実施形態に係るストレス状態推定方法は、運転者の血圧値Pを記録しておき、走行状態にある車両が減速を開始して停止した際の減速開始時点tgを検出する。そして、減速開始時点tgよりも以前に記録された予め定めた期間内の血圧値Pを参照し、参照した血圧値Pの代表値である減速前血圧値Pbを抽出すると共に、減速開始時点tgよりも後に記録された予め定めた期間内の血圧値Pを参照し、参照した血圧値Pの代表値である減速後血圧値Paを抽出する。そして、減速前血圧値Pb及び減速後血圧値Paを比較することにより、運転者の減速前のストレス状態を推定する。
 このように、減速開始時点tgよりも以前に安定状態にあった減速前血圧値Pbと、減速開始時点tgよりも後に安定状態となった減速後血圧値Paと、を比較して運転者のストレス状態を推定するので、推定精度を向上させることができる。すなわち、車両停止後に運転者の血圧値Pが一様に安定するという傾向に着目し、安定状態にあると見なせる減速前血圧値Pbと減速後血圧値Paとを比較することにより、運転者の減速前のストレス状態を精度よく推定することができる。
《第2実施形態》
 《構成》
 本実施形態は、運転者が車両停止の必要を認識してから減速操作を開始するまでの反応時間Txを加味して、減速開始時点tg′を検出するものである。
 ここでは、前述した第1実施形態と異なる点について説明し、同一箇所については説明を省略する。
 減速開始時点検出部22では、運転者が車両停止の必要を認識してから減速操作を開始するまでの反応時間Txを予め設定する。この反応時間とは、車両停止の必要を認識してから足を動かすまでの反射時間(例えば0.4~0.5秒)と、アクセルペダルからブレーキペダルへの踏替え時間(例えば0.2秒)と、ブレーキペダルを踏み始めてブレーキスイッチ14がONに切り替わるまでの踏込み時間(例えば0.1~0.3秒)とを加算した時間であり、Txは約0.7~1.0秒となる。
 図7は、反応時間Tx、及び減速開始時点tgを示すタイムチャートである。
 減速開始時点検出部22では、ブレーキスイッチ14がONに切り替わった時点tgから反応時間Txだけ遡及した時点を、減速開始時点tg′として検出する(tg-Tx=tg′)。
 生体情報抽出部23では、減速開始時点tg′から予め定めた時間Trだけ遡及した時点を減速前参照開始時点tb1として設定する(tg′-Tr=tb1)。また、減速開始時点tg′から所要時間Tfだけ経過した時点を減速後参照開始時点ta1として設定する(tg′+Tf=ta1)。
 上記が、減速開始時点検出部22による減速開始時点tg′の検出処理の説明である。
 《作用》
 次に、第2実施形態の作用について説明する。
 運転者が車両停止の必要を認識した時点と、ブレーキスイッチ14がONに切り替わった時点との間には、認知・判断・行動に伴う微小な時間差(ロスタイム)がある。このため、ブレーキスイッチ14がONに切り替わった減速開始時点tgを、減速前参照終了時点tb2として減速前安定期間Tbを設定すると、減速前参照終了時点tb2の直前の血圧値Pは、既に上昇し始めている可能性がある。この場合、既に上昇し始めている血圧値Pを含むデータ群を参照し、減速前血圧値Pbを抽出することになり、ストレス状態の推定精度に影響を与えてしまう。
 したがって、ストレス状態の推定精度を向上させるには、減速前安定期間Tb及び減速後安定期間Taを的確に設定することが必要であり、そのためにも減速開始時点tg′を正確に検出することが望まれる。
 そこで、本実施形態のように、運転者が車両停止の必要を認識してから減速操作を開始するまでの反応時間Txを設定し、ブレーキスイッチ14がONに切り替わった時点tgから反応時間Txだけ遡及した時点を減速開始時点tg′として検出する。これにより、減速開始時点tg′は、運転者が車両停止の必要を認識した時点に近似するようになるため、減速前安定期間Tb及び減速後安定期間Taを的確に設定することができ、延いてはストレス状態の推定精度を向上させることができる。
 《効果》
 次に、第2実施形態における主要部の効果を記す。
(1)本実施形態に係るストレス状態推定装置は、減速開始時点検出部22での処理により、運転者が車両停止の必要を認識してから減速操作を開始するまでの反応時間Txを予め設定する。そして、運転者が減速操作を開始した時点tgから反応時間Txだけ遡及した時点を、減速開始時点tg′として検出する。
 このように、運転者が車両停止の必要を認識してから減速操作を開始するまでの反応時間Txを加味して減速開始時点tg′を検出することで、減速前安定期間Tb及び減速後安定期間Taを的確に設定することができ、延いてはストレス状態の推定精度を向上させることができる。
《第3実施形態》
 《構成》
 本実施形態は、減速開始時点tgから車両停止時点tsまでの期間の代表減速度Gaに応じて、減速後安定期間Taを設定するものである。
 ここでは、前述した第1実施形態と異なる点について説明し、同一箇所については説明を省略する。
 以下、コントローラ17で実行するストレス状態推定処理について説明する。
 図8は、第3実施形態のストレス状態推定処理を示すフローチャートである。
 ここでは、前述したステップS108の処理後に、新たなステップS301の処理を追加すると共に、前述したステップS112の処理後に、新たなステップS302~S305の処理を追加しており、ステップS101~S120、S100の処理については、前述した第1実施形態と同様であるため、説明を省略する。
 ステップS301では、走行状態にある車両が減速を開始したときの減速開始時車速Vgを記録してから所定のメインプログラムに復帰する。
 ステップS302では、走行状態にある車両が減速を開始したときの減速開始時車速Vgの読出しを行う。
 続くステップS303では、下記に示すように、減速開始時車速Vg、減速開始時点tg、車両停止時点tsに応じて、減速開始時点tgから車両停止時点tsまでの期間の代表減速度Gaを算出する。この代表減速度Gaは、減速開始時点tgから車両停止時点tsまでの期間の平均減速度に相当する。
  Ga=Vg/(ts-tg)
 なお、減速開始時車速Vg、減速開始時点tg、車両停止時点tsに応じて、減速開始時点tgから車両停止時点tsまでの代表減速度Gaを算出しているが、これに限定されるものではない。例えば、加速度センサ15で検出した減速度Gを記録しておき、減速開始時点tgから車両停止時点tsまでの減速度Gのデータ群を参照し、減速度Gの平均値や最大値を代表減速度Gaとして用いてもよい。
 続くステップS304では、代表減速度Gaが予め定めた閾値Gtよりも小さいか否かを判定する。閾値Gtは、運転者のブレーキ操作がパニックブレーキのような緊急ブレーキ操作であるか否かを判断するための閾値であり、例えば0.8G以上の値である。ここで、代表減速度Gaが閾値Gtよりも小さいときには、緊急ブレーキではないため運転者のストレス状態を推定可能であると判断してステップS305に移行する。一方、代表減速度Gaが閾値Gt以上であるときには、緊急ブレーキであるため運転者のストレス状態の推定精度が低下する可能性があると判断して前述したステップS119に移行する。
 ステップS305では、図9のマップを参照し、減速開始時点tgから運転者の生体情報が安定するまでの所要時間Tfを代表減速度Gaに応じて設定する。
 図9は、所要時間Tfの算出に用いるマップである。
 このマップでは、代表減速度Gaについては、0<GMIN<GMAXの関係となるGMIN及びGMAXを予め定めておき、所要時間Tfについては、0<TMIN<TMAXの関係となるTMIN及びTMAXを予め定めておく。そして、代表減速度GaがGMIN以下のときには、所要時間Tfが最小値TMINを維持する。また、代表減速度GaがGMINからGMAXの範囲にあるときには、代表減速度Gaが大きいほど、所要時間Tfが最小値TMINから最大値TMAXの範囲で大きくなる。また、代表減速度GaがGMAX以上のときには、所要時間Tfが最大値TMAXを維持する。
 上記が、図3のフローチャートに基づくストレス状態推定処理の説明である。
 《作用》
 次に、第3実施形態の作用について説明する。
 減速を開始してから停止するまでの代表減速度Gaが大きいほど、運転者の血圧値Pが安定するまでの時間が長くなると考えられる。
 そこで、本実施形態では、ブレーキがOFFからONに切り替わったときに(ステップS105の判定が“Yes”)、その時点の車速を減速開始時車速Vgとして記録しておく(ステップS301)。そして、その減速操作によって車両が停止した車両停止時点tsで(ステップS102の判定が“Yes”)、記録された減速開始時車速Vgの読出しを行う(ステップS302)。
 そして、減速開始時車速Vgを、減速開始時点tgから車両停止時点tsまでの時間(ts-tg)で除算して、減速開始時点tgから車両停止時点tsまでの代表減速度Ga(平均値)を算出する(ステップS303)。
 そして、代表減速度Gaが閾値Gt以上であるときには(ステップS304の判定が“No”)、パニックブレーキのような緊急ブレーキであり、上昇した血圧値Pが車両停止後の短い時間で安定する可能性が低く、ストレス状態の推定精度が低下すると考えられるため、推定処理を中止する。
 一方、代表減速度Gaが閾値Gtよりも小さいときには(ステップS304の判定が“Yes”)、通常のブレーキ操作であるため、ストレス状態の推定処理を継続し、代表減速度Gaが大きいほど、減速後安定期間Taの設定に用いる所要時間Tfを長く設定する(ステップS305)。
 図10は、所要時間Tf、及び減速後安定期間Taを示すタイムチャートである。
 このように、減速度Gが大きいほど、所要時間Tfを長く設定することで、減速開始時点tsから運転者の血圧値Pが安定するまでの所要時間Tfを正確に設定することができる。これにより、減速後安定期間Taを的確に設定することができ、延いてはストレス状態の推定精度を向上させることができる。
 以上、ステップS301~S303の処理が「減速度検出部」に対応する。
 《効果》
 次に、第3実施形態における主要部の効果を記す。
(1)本実施形態に係るストレス状態推定装置は、減速開始時点tgから車両が停止するまでの代表減速度Gaを検出し、代表減速度Gaが大きいほど、減速後安定期間Taの設定に用いる所要時間Tfを長く設定する。
 このように、代表減速度Gaに応じて所要時間Tfを設定することで、減速後安定期間Taを的確に設定することができ、延いてはストレス状態の推定精度を向上させることができる。
(2)本実施形態に係るストレス状態推定装置は、減速開始時点tgから車両が停止するまでの平均減速度又は最大減速度を代表減速度Gaとして検出する。
 このように、減速開始時点tgから車両停止時点tsまでの平均減速度や最大減速度を代表減速度Gaとして検出することで、減速開始時点tgから車両停止時点tsまでに観測されたデータの分散度合をならした統計的な代表値を容易に検出することができる。
(3)本実施形態に係るストレス状態推定装置は、ストレス状態推定部24での処理により、代表減速度Gaが予め定めた閾値Gt以上のときに、ストレス状態の推定を中止する。
 このように、代表減速度Gaが閾値Gt以上のときには、信頼度の高い減速後血圧値Paを抽出することができない可能性があるため、ストレス状態の推定を中止することで、推定結果の精度が低下することを抑制できる。
《第4実施形態》
 《構成》
 本実施形態は、減速前安定期間Tb内の血圧値Pの標準偏差σb、及び減速後安定期間Ta内の血圧値Pの標準偏差σaを算出し、各標準偏差σb及びσaに応じて、ストレス状態の推定を中止するものである。
 ここでは、前述した第1実施形態と異なる点について説明し、同一箇所については説明を省略する。
 以下、コントローラ17で実行するストレス状態推定処理について説明する。
 図11は、第4実施形態のストレス状態推定処理を示すフローチャートである。
 ここでは、前述したステップS112の処理前に、新たなステップS401、S402の処理を追加すると共に、前述したステップS115の処理前に、新たなステップS403~S404の処理を追加しており、ステップS101~S120、S100の処理については、前述した第1実施形態と同様であるため、説明を省略する。
 ステップS401では、減速前安定期間Tb内に記録された血圧値Pのデータ群を参照し、下記に示すように、血圧値Pの標準偏差σbを算出する。なお、i=1、2、……、Nである。
  σb=√[Σ〈{P(i)-ΣP(i)/N}〉]
 続くステップS402では、標準偏差σbが予め定めた閾値σtより小さいか否かを判定する。ここで、標準偏差σbが閾値σtより小さいときには、減速後安定期間Tb内に記録された血圧値Pのデータ群に分散はなく、安定状態にあると判断して前述したステップS112に移行する。一方、標準偏差σbが閾値σt以上であるときには、減速前安定期間Tb内に記録された血圧値Pのデータ群に分散があり、安定状態にはないと判断して前述したステップS119に移行する。
 ステップS403では、減速後安定期間Ta内に記録された血圧値Pのデータ群を参照し、下記に示すように、血圧値Pの標準偏差σaを算出する。なお、なお、i=1、2、……、Nである。
  σa=√[Σ〈{P(i)-ΣP(i)/N}〉]
 続くステップS404では、標準偏差σaが予め定めた閾値σtより小さいか否かを判定する。ここで、標準偏差σaが閾値σtより小さいときには、減速後安定期間Ta内に記録された血圧値Pのデータ群に分散はなく、安定状態にあると判断して前述したステップS115に移行する。一方、標準偏差σaが閾値σt以上であるときには、減速後安定期間Ta内に記録された血圧値Pのデータ群に分散があり、安定状態にはないと判断して前述したステップS119に移行する。
 上記が、図11のフローチャートに基づくストレス状態推定処理の説明である。
 《作用》
 次に、第4実施形態の作用について説明する。
 減速前安定期間Tb内、及び減速安定期間Ta内に記録された血圧値Pのデータ群に、分散があると、血圧値Pが安定状態にはないため、そのようなデータ群から抽出した減速前血圧値Pbと減速後血圧値Paとを比較しても、精度よく運転者のストレス状態を推定することは難しい。
 そこで、本実施形態では、減速前安定期間Tb内、及び減速安定期間Ta内に記録された血圧値Pのデータ群を参照し、夫々の標準偏差σb及びσaを算出する(ステップS401、S403)。そして、標準偏差σb及びσaの双方が閾値σtより小さければ(ステップS402、S404の判定が“Yes”)、ストレス状態の推定処理を継続する。一方、標準偏差σb及びσaの何れか一方でも閾値σt以上であれば(ステップS402、又はS404の判定が“No”)、ストレス状態の推定処理を中止する。
 以上、ステップS401、S403の処理が「標準偏差算出部」に対応する。
 《効果》
 次に、第4実施形態における主要部の効果を記す。
(1)本実施形態に係るストレス状態推定装置は、減速前安定期間Tb内、及び減速安定期間Ta内の血圧値Pの標準偏差σb及びσaを算出する。そして、ストレス状態推定部24での処理により、標準偏差σb及びσaの何れか一方が閾値σt以上であるときに、ストレス状態の推定を中止する。
 このように、標準偏差σb及びσaの何れか一方が閾値σt以上のときには、信頼度の高い減速前血圧値Pb及び減速後血圧値Paを抽出することができないため、ストレス状態の推定を中止することで、推定結果の精度が低下することを抑制できる。
《第5実施形態》
 《構成》
 本実施形態は、血圧値Pにおける単位時間当たりの変化量dPに応じて、減速後参照開始時点ta1を設定するものである。
 ここでは、前述した第1実施形態と異なる点について説明し、同一箇所については説明を省略する。
 以下、コントローラ17で実行するストレス状態推定処理について説明する。
 図12は、第5実施形態のストレス状態推定処理を示すフローチャートである。
 ここでは、前述したステップS109、ステップS113の処理を変更すると共に、前述したステップS112の処理後に、新たなステップS501~S504の処理を追加しており、他のステップS101~S120、S100の処理については、前述した第1実施形態と同様であるため、説明を省略する。
 ステップS109では、減速開始時点tgが未参照であるか否かを判定する。ここで、減速開始時点tgが未参照であるときには、車両が停止した直後であると判断してステップS110に移行する。一方、減速開始時点tgを参照済であるときには、車両が停止した直後ではないと判断してステップS501に移行する。
 ステップS501では、減速後安定期間Taを未設定であるか否かを判定する。ここで、減速後安定期間Taを未設定であるときにはステップS502に移行する。一方、減速後安定期間Taを設定済であるときには前述したステップS114に移行する。
 ステップS502では、血圧値Pの単位時間当たりの変化量dPを算出する。具体的には、前回値P(n-1)と今回値P(n)との差分(P(n-1)-P(n))を変化量dPとして算出する。
 続くステップS503では、変化量dPが予め定めた閾値Ptより小さいか否かを判定する。ここで、変化量dPが予め定めた閾値Ptより小さいときには、血圧値Pが安定状態に復帰した可能性があると判断してステップS504に移行する。一方、変化量dPが閾値Pt以上であるときには、血圧値Pは未だ安定状態に復帰していないと判断して、そのまま所定のメインプログラムに復帰する。
 ステップS504では、変化量dPが閾値Ptより小さくなった状態で予め定めた時間Tdが経過したか否かを判定する。ここで、予め定めた時間Tdが経過しているときには、血圧値Pが安定状態に復帰したと判断してステップS113に移行する。一方、予め定めた時間Tdが経過していないときには、血圧値Pは未だ安定状態に復帰していないと判断して、そのまま所定のメインプログラムに復帰する。
 ステップS113では、減速後安定期間Taを設定する。具体的には、変化量dPが閾値Ptより小さくなった状態で予め定めた時間Tdが経過した時点を、減速後参照開始時点ta1として設定する。そして、この減速後参照開始時点ta1から予め定めた時間Teだけ経過した減速後参照終了時点ta2を設定する。そして、減速後参照開始時点ta1から減速後参照終了時点ta2までの減速後安定期間Taを設定する。
 上記が、図12のフローチャートに基づくストレス状態推定処理の説明である。
 《作用》
 次に、第5実施形態の作用について説明する。
 図13は、予め定めた時間Td、及び減速後参照開始時点ta1を示すタイムチャートである。
 本実施形態では、車両が停止してから運転者の血圧値Pが安定状態に復帰した時点を、血圧値Pの単位時間当たりの変化量dPから検出する。すなわち、血圧値Pの単位時間値の変化量dPを検出し(ステップS502)、変化量dPが閾値Pdより小さくなった状態で(ステップS503の判定が“Yes”)、予め定めた時間Tdが経過したときに(ステップS504の判定が“Yes”)、その時点を減速後参照開始時点ta1として設定する。なお、減速後参照終了時点ta2、及び減速後安定期間Taの設定については、前述した第1実施形態と同様である。
 このように、血圧値Pにおける単位時間当たりの変化量dPに応じて、減速後参照開始時点ta1を設定することで、車両が停止してから運転者の血圧値Pが安定状態に復帰した時点を、より正確に設定することができる。これにより、減速後安定期間Taを的確に設定することができ、延いてはストレス状態の推定精度を向上させることができる。
 《効果》
(1)本実施形態に係るストレス状態推定装置は、車両が停止した後に生体情報記録部21で記録された血圧値Pを順に参照し、血圧値Pにおける単位時間当たりの変化量dPが閾値Ptよりも小さくなった状態を予め定めた時間Tdだけ維持した時点を、減速後参照開始時点ta1として設定する。そして、減速後参照開始時点ta1から予め定めた時間Teだけ経過した時点を減速後参照終了時点ta2として設定する。そして、生体情報記録部21に記録された血圧値Pのうち、減速後参照開始時点ta1から減速後参照終了時点ta2までの血圧値Pを参照し、参照した血圧値Pの代表値である減速後血圧値Paを抽出する。
 このように、血圧値Pにおける単位時間当たりの変化量dPに応じて、減速後参照開始時点ta1を設定することで、車両が停止してから運転者の血圧値Pが安定状態に復帰した時点を、より正確に設定することができる。
《第6実施形態》
 《構成》
 本実施形態では、減速前血圧値Pb、減速後血圧値Pa、差分ΔP、及び閾値Ptのうち、少なくとも一つを減速後血圧値Paに応じて補正することにより、ストレス状態の推定結果を補正する。
 ここで、減速後血圧値Paに応じた補正について説明する。
 図14は、サーカディアンリズムに起因した血圧値Pの変動を示す図である。
 図中の(a)は、一日運転した際に、予め定めた時間帯ごとに主観評価したストレス度合と、予め定めた時間帯ごとに求めた差分ΔPの平均値を示しており、ストレス度合が棒グラフに対応し、差分ΔPが折れ線グラフに対応している。図中の(b)は、予め定めた時間帯ごとに求めた減速前血圧値Pb及び減速後血圧値Paの平均値であり、減速前血圧値Pbが破線の折れ線グラフに対応し、減速後血圧値Paが実線の折れ線グラフに対応している。
 午前のAの範囲と午後のBの範囲とでは、主観評価したストレス度合は同一であるものの、そのときの減速前血圧値Pbと減速後血圧値Paとの差分ΔPは異なっている。すなわち、午前のAの範囲では、午後のBの範囲と比較して、減速前血圧値Pb及び減速後血圧値Paの双方が低く、且つ差分ΔPが大きい。一方、午後の時間帯Bでは、午前の時間帯Aと比較して、減速前血圧値Pb及び減速後血圧値Paの双方が高く、且つ差分ΔPが小さい。このように、同一のストレス度合であっても、24時間周期で変動するサーカディアンリズムに起因して血圧値Pが変動してしまう。
 したがって、上記のように、単に差分ΔPが閾値Pt以下であるか否かで、ストレス状態が小さいか否かを推定すると、推定精度に影響を与えてしまう。すなわち、午前のAの範囲では、減速前血圧値Pbと減速後血圧値Paとの差分ΔPが大きくなる傾向があるため、ストレス状態が大きいと推定されやすくなるが、実際にはそれほどストレス状態は大きくないという場合がある。あるいは、午後のBの範囲では、減速前血圧値Pbと減速後血圧値Paとの差分ΔPが小さくなる傾向があるため、ストレス状態が小さいと推定されやすくなるが、実際にはストレス状態は小さくないという場合がある。
 そこで、減速後血圧値Paが運転者のサーカディアンリズムに対応していることに注目し、減速前血圧値Pb、減速後血圧値Pa、差分ΔP、及び閾値Ptのうち、少なくとも一つを減速後血圧値Paに応じて補正することにより、ストレス状態の推定結果を補正する。すなわち、減速後血圧値Paが大きいほど、差分ΔPが小さくなる傾向があり、ストレス状態が小さいと推定されやすくなっているので、これを補正により、ストレス状態が小さいと推定されにくくする(又はストレス状態が大きいと推定されやすくする)。
 先ず、減速前血圧値Pbを補正する場合について説明する。
 ここでは、予め定めたマップを参照し、減速後血圧値Paに応じて補正係数kbを算出し、減速前血圧値Pbに補正係数kbを乗算することにより、減速前血圧値Pbを減少補正する。
 図15は、補正係数kbの算出に用いるマップである。
 このマップは、実験などから求めた運転者の一般的な傾向に基づいて設定されており、減速後血圧値Paが大きいほど、補正係数kbが1よりも小さくなるように設定されている。
 このように、1よりも小さい補正係数kbを減速前血圧値Pbに乗算し、減速前血圧値Pbを減少補正することで、差分ΔPが大きくなりやすくなり、結果としてストレス状態が小さいと推定されにくくなる(又はストレス状態が大きいと推定されやすくする)。
 次に、減速後血圧値Paを補正する場合について説明する。
 ここでは、予め定めたマップを参照し、減速後血圧値Paに応じて補正係数kaを算出し、減速後血圧値Paに補正係数kaを乗算することにより、減速後血圧値Paを増加補正する。
 図16は、補正係数kaの算出に用いるマップである。
 このマップは、実験などから求めた運転者の一般的な傾向に基づいて設定されており、減速後血圧値Paが大きいほど、補正係数kbが1よりも大きくなるように設定されている。
 このように、1よりも大きい補正係数kaを減速後血圧値Paに乗算し、減速後血圧値Paを増加補正することで、差分ΔPが大きくなりやすくなり、結果としてストレス状態が小さいと推定されにくくなる(又はストレス状態が大きいと推定されやすくする)。
 次に、差分ΔPを補正する場合について説明する。
 ここでは、予め定めたマップを参照し、減速後血圧値Paに応じて補正係数kdを算出し、差分ΔPに補正係数kdを乗算することにより、差分ΔPを増加補正する。
 図17は、補正係数kdの算出に用いるマップである。
 このマップは、実験などから求めた運転者の一般的な傾向に基づいて設定されており、減速後血圧値Paが大きいほど、補正係数kdが1よりも大きくなるように設定されている。
 このように、1よりも大きい補正係数kdを差分ΔPに乗算し、差分ΔPを増加補正することで、結果としてストレス状態が小さいと推定されにくくなる(又はストレス状態が大きいと推定されやすくする)。
 次に、閾値Ptを補正する場合について説明する。
 ここでは、予め定めたマップを参照し、減速後血圧値Paに応じて補正係数ktを算出し、閾値Ptに補正係数ktを乗算することにより、閾値Ptを減少補正する。
 図18は、補正係数ktの算出に用いるマップである。
 このマップは、実験などから求めた運転者の一般的な傾向に基づいて設定されており、減速後血圧値Paが大きいほど、補正係数ktが1よりも小さくなるように設定されている。
 このように、1よりも小さい補正係数ktを閾値Ptに乗算し、閾値Ptを減少補正することで、結果としてストレス状態が小さいと推定されにくくなる(又はストレス状態が大きいと推定されやすくする)。
 次に、ストレス状態推定処理をフローチャートに基づいて説明する。
 図19は、第6実施形態のストレス状態推定処理を示すフローチャートである。
 先ずステップS101は、生体情報記録部21での処理に対応し、脈波センサ11で検出した脈波、及び心電センサ12で検出した心電波形に基づいて血圧値Pを算出し、この血圧値Pを生体情報として記録する。
 続くステップS102では、車速Vが0であるか否かを判定する。ここで、車速Vが0より大きいときには、車両は走行状態にあると判断してステップS103に移行する。一方、車速Vが0であるときには、車両が停止状態にあると判断してステップS109に移行する。
 ステップS103では、生体情報抽出部23で設定される減速前安定期間Tb及び減速前血圧値Pbをリセットする。
 続くステップS104では、生体情報抽出部23で設定される減速後安定期間Ta及び減速後血圧値Paをリセットする。
 続くステップS105では、エンジンブレーキも含めてブレーキがONであるか否かを判定する。ここで、ブレーキがOFFであるときには、減速操作はなされていないと判断してステップS100に移行する。一方、ブレーキがONであるときには、減速操作がなされていると判断してステップS107に移行する。なお、ポンピングブレーキ等、運転者が連続的にブレーキ操作のON/OFFを切替える場合もあるため、ブレーキスイッチ14がOFFからONになったときには、予め定めた時間が経過するまでは、ブレーキスイッチ14がONの状態であると見なすような対策をしてもよい。
 ステップS100は、アクセルがONであるか否かを判定する。ここで、アクセルがONであるときには、加速操作がなされていると判断してステップS106に移行する。一方、アクセルがOFFであるときには、加速操作はなされていないと判断して、そのまま所定のメインプログラムに復帰する。
 ステップS106は、減速開始時点検出部22での処理に対応し、減速開始時点tgをリセットしてから所定のメインプログラムに復帰する。
 ステップS107では、減速開始時点tgが未記録であるか否かを判定する。ここで、減速開始時点tgが未記録であるときには、ブレーキ操作を開始した直後であると判断してステップS108に移行する。一方、減速開始時点tgが記録済であるときには、ブレーキ操作を開始した直後ではないと判断して、そのまま所定のメインプログラムに復帰する。
 ステップS108では、走行状態にある車両が減速を開始したときの減速開始時点tgを記録してから所定のメインプログラムに復帰する。
 ステップS109では、減速開始時点tgが未参照であるか否かを判定する。ここで、減速開始時点tgが未参照であるときには、車両が停止した直後であると判断してステップS110に移行する。一方、減速開始時点tgを参照済であるときには、車両が停止した直後ではないと判断してステップS114に移行する。
 ステップS110は、減速開始時点検出部22での処理に対応し、走行状態にある車両が減速を開始したときの減速開始時点tgの読出し(参照)を行う。
 続くステップS111は、生体情報抽出部23での処理に対応し、減速前安定期間Tbを設定する。すなわち、減速開始時点tgから予め定めた時間Trだけ遡及した減速前参照開始時点tb1を設定すると共に、減速開始時点tgを減速前参照終了時点tb2として設定し、これら減速前参照開始時点tb1から減速前参照終了時点tb2までを、減速前安定期間Tbとして設定する。
 続くステップS112は、生体情報抽出部23での処理に対応し、減速前安定期間Tb内に記録された血圧値Pのデータ群を参照し、血圧値Pの平均値を減速前血圧値Pbとして抽出する。
 続くステップS113は、生体情報抽出部23での処理に対応し、減速後安定期間Taを設定する。すなわち、減速開始時点tgから運転者の生体情報が安定するまでの所要時間Tfを設定し、減速開始時点tgから所要時間Tfだけ経過した減速後参照開始時点ta1を設定すると共に、この減速後参照開始時点ta1から予め定めた時間Teだけ経過した減速後参照終了時点ta2を設定する。そして、減速後参照開始時点ta1から減速後参照終了時点ta2までの減速後安定期間Taを設定する。
 続くステップS114では、車両が停止してから停止後待機時間Twが経過したか否かを判定する。ここで、停止後待機時間Twが未だ経過していないときには、減速後安定期間Taが終了しておらず減速後血圧値Paを抽出できないと判断して、そのまま所定のメインプログラムに復帰する。一方、停止後待機時間Twが経過しているときには、減速後安定期間Taが終了しており減速後血圧値Paを抽出できると判断してステップS115に移行する。
 ステップS115は、生体情報抽出部23での処理に対応し、減速後安定期間Ta内に記録された血圧値Pのデータ群を参照し、血圧値Pの平均値を減速後血圧値Paとして抽出する。
 続くステップS200は、ストレス状態推定部24での処理に対応し、減速前血圧値Pb、減速後血圧値Pa、差分ΔP、及び閾値Ptのうち、少なくとも一つを減速後血圧値Paに応じて補正する。
 続くステップS116は、ストレス状態推定部24での処理に対応し、減速前血圧値Pbと減速後血圧値Paとの差分ΔPが予め定めた閾値Pt以下であるか否かを判定する。ここで、差分ΔPが予め定めた閾値Pt以下であるときには運転者の減速前のストレス状態は小さいと推定してステップS117に移行する。一方、差分ΔPが閾値Ptよりも大きいときには、運転者の減速前のストレス状態は大きいと推定してステップS118に移行する。
 ステップS117は、ストレス状態推定部24での処理に対応し、運転者の減速前のストレス状態が小さいという推定結果を、例えば所定のドライブレコーダに履歴として記録してからステップS119に移行する。
 ステップS118は、ストレス状態推定部24での処理に対応し、運転者の減速前のストレス状態が大きいという推定結果を、例えば所定のドライブレコーダに履歴として記録してからステップS119に移行する。
 ステップS119では、生体情報抽出部23で設定される減速前安定期間Tb及び減速前血圧値Pbをリセットしてから所定のメインプログラムに復帰する。
 続くステップS120では、生体情報抽出部23で設定される減速後安定期間Ta及び減速後血圧値Paをリセットしてから所定のメインプログラムに復帰する。
 上記が、図19のフローチャートに基づくストレス状態推定処理の説明である。
 《作用》
 次に、第6実施形態の作用について説明する。
 サーカディアンリズムの影響により血圧値Pは変動するので、単に差分ΔPが閾値Pt以下であるか否かで、ストレス状態が小さいか否かを推定すると、推定精度に影響を与えてしまう。そこで、減速前血圧値Pb、減速後血圧値Pa、差分ΔP、及び閾値Ptのうち、少なくとも一つを減速後血圧値Paに応じて補正する(ステップS200)。すなわち、減速後血圧値Paが大きいほど、差分ΔPが小さくなる傾向があり、ストレス状態が小さいと推定されやすくなっているので、これを補正により、ストレス状態が小さいと推定されにくくする(又はストレス状態が大きいと推定されやすくする)。
 例えば、減速後血圧値Paが大きいほど、減速前血圧値Pbを減少補正したり、減速後血圧値Paを増加補正したり、差分ΔPを増加補正したり、閾値Ptを減少補正する。これらの少なくとも一つを実行することで、ストレス状態が小さいと推定されにくくなる(又はストレス状態が大きいと推定されやすくする)。したがって、ストレス状態の推定精度をさらに向上させることができる。
 《応用例1》
 本実施形態では、減速前血圧値Pb、減速後血圧値Pa、差分ΔP、及び閾値Ptを補正する際に用いるマップは、実験などから求めた運転者の一般的な傾向に基づいて設定されている。このマップは、一定でもよいが、運転者ごとに固有の体質や特性があるため、それらを判断し、随時マップを更新するようにしてもよい。すなわち、最初は予め定めたデフォルトのマップを用いて処理しながら、運転者の減速後血圧値Paに運転者自身の主観評価となるストレス度合を対応付けてデータベース化し、それに基づいて運転者ごとに固有の体質や特性を判断し、随時マップを更新する。
 この場合は、運転者を認証するシステムを導入することが好ましい。運転者の認証システムには、所有物認証、知識認証、生体認証等がある。所有物認証としては、例えば免許証に内蔵されたユーザIDから運転者を認証する。また、知識認証としては、例えばパスワードの入力から運転者を認証する。また、生体認証としては、指紋、虹彩、声紋、顔、静脈等から運転者を認証する。
 このように、運転者に固有の体質や特性を判断し、それに基づいて参照するマップを更新してゆくことで、ストレス状態の推定精度をさらに向上させることができる。
 以上、生体情報記録部21での処理となるステップS101の処理が「生体情報記録部」に対応し、減速開始時点検出部22での処理となるステップS108、S110の処理が「減速開始時点検出部」に対応する。また、生体情報抽出部23での処理となるステップS110~S115の処理が「生体情報抽出部」に対応し、ストレス状態推定部24での処理となるステップS200、S116~S118の処理が「ストレス状態推定部」に対応する。
 《効果》
 次に、第6実施形態における主要部の効果を記す。
(1)本実施形態に係るストレス状態推定装置は、抽出した減速後血圧値Paに応じて、ストレス状態の推定結果を補正する。
 このように、抽出した減速後血圧値Paに応じて、ストレス状態の推定結果を補正することで、推定精度をさらに向上させることができる。
(2)本実施形態に係るストレス状態推定装置は、ストレス状態推定部24での処理により、減速前血圧値Pbと減速後血圧値Paとの差分ΔPが大きいほど、運転者の減速前のストレス状態が大きいと推定する。そして、減速前血圧値Pb、減速後血圧値Pa、差分ΔP、及び閾値Ptのうち、少なくとも一つを減速後血圧値Paに応じて補正することにより、ストレス状態の推定結果を補正する。
 このように、減速前血圧値Pbと減速後血圧値Paとの差分ΔPの大きさで、ストレス状態の大きさを推定しているので、ストレス状態の度合を、容易に、且つ多段階に推定することができる。また、減速前血圧値Pb、減速後血圧値Pa、差分ΔP、及び閾値Ptのうち、少なくとも一つを補正することで、ストレス状態の推定精度を、容易に、且つ精度よく推定することができる。
(3)本実施形態に係るストレス状態推定装置は、ストレス状態推定部24での処理により、減速後血圧値Paが大きいほど、減速前血圧値Pbを減少補正することにより、ストレス状態の推定結果を補正する。
 このように、減速後血圧値Paが大きいほど、減速前血圧値Pbを減少補正することにより、差分ΔPが大きくなりやすくなり、結果としてストレス状態が小さいと推定されにくくなる(又はストレス状態が大きいと推定されやすくする)。したがって、サーカディアンリズムによる推定誤差を抑制し、推定精度をさらに向上させることができる。
(4)本実施形態に係るストレス状態推定装置は、ストレス状態推定部24での処理により、減速後血圧値Paが大きいほど、減速後血圧値Paを増加補正することにより、ストレス状態の推定結果を補正する。
 このように、減速後血圧値Paが大きいほど、減速後血圧値Paを増加補正することにより、差分ΔPが大きくなりやすくなり、結果としてストレス状態が小さいと推定されにくくなる(又はストレス状態が大きいと推定されやすくする)。したがって、サーカディアンリズムによる推定誤差を抑制し、推定精度をさらに向上させることができる。
(5)本実施形態に係るストレス状態推定装置は、ストレス状態推定部24での処理により、減速後血圧値Paが大きいほど、差分ΔPを増加補正することにより、ストレス状態の推定結果を補正する。
 このように、減速後血圧値Paが大きいほど、差分ΔPを増加補正することにより、結果としてストレス状態が小さいと推定されにくくなる(又はストレス状態が大きいと推定されやすくする)。したがって、サーカディアンリズムによる推定誤差を抑制し、推定精度をさらに向上させることができる。
(6)本実施形態に係るストレス状態推定装置は、ストレス状態推定部24での処理により、減速後血圧値Paが大きいほど、閾値Ptを減少補正することにより、ストレス状態の推定結果を補正する。
 このように、減速後血圧値Paが大きいほど、閾値Ptを減少補正することにより、結果としてストレス状態が小さいと推定されにくくなる(又はストレス状態が大きいと推定されやすくする)。したがって、サーカディアンリズムによる推定誤差を抑制し、推定精度をさらに向上させることができる。
 以上、本願が優先権を主張する日本国特許出願P2012-144218(2012年6月27日出願)、及び日本国特許出願P2012-173927(2012年8月6日出願)の全内容は、ここに引用例として包含される。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。
11 脈波センサ
12 心電計
13 車速センサ
14 ブレーキスイッチ
15 加速度センサ
16 ナビゲーションシステム
17 コントローラ
21 生体情報記録部
22 減速開始点検出部
23 生体情報抽出部
24 ストレス状態推定部

Claims (20)

  1.  運転者の生体情報を記録する生体情報記録部と、
     走行状態にある車両が減速を開始して停止した際の、減速開始時点を検出する減速開始時点検出部と、
     前記減速開始時点検出部で検出した減速開始時点よりも以前に前記生体情報記録部で記録された予め定めた期間内の生体情報を参照し、参照した生体情報の代表値である減速前生体情報を抽出すると共に、前記減速開始時点よりも後に前記生体情報記録部で記録された予め定めた期間内の生体情報を参照し、参照した生体情報の代表値である減速後生体情報を抽出する生体情報抽出部と、
     前記生体情報抽出部で抽出した減速前生体情報及び減速後生体情報を比較することにより、運転者の減速前のストレス状態を推定するストレス状態推定部と、を備えることを特徴とするストレス状態推定装置。
  2.  前記ストレス状態推定部は、
     前記減速前生体情報と前記減速後生体情報との差分が大きいほど、運転者の減速前のストレス状態が大きいと推定することを特徴とする請求項1に記載のストレス状態推定装置。
  3.  前記減速開始時点検出部は、
     運転者が車両停止の必要を認識してから減速操作を開始するまでの反応時間を予め設定し、
     運転者が減速操作を開始した時点から前記反応時間だけ遡及した時点を、前記減速開始時点として検出することを特徴とする請求項1に記載のストレス状態推定装置。
  4.  前記生体情報抽出部は、
     前記減速開始時点から予め定めた時間だけ遡及した時点を減速前参照開始時点として設定し、
     前記減速開始時点を減速前参照終了時点として設定し、
     前記生体情報記録部に記録された生体情報のうち、前記減速前参照開始時点から前記減速前参照終了時点までの生体情報を参照し、参照した生体情報の代表値である前記減速前生体情報を抽出することを特徴とする請求項1に記載のストレス状態推定装置。
  5.  前記生体情報抽出部は、
     前記減速開始時点から運転者の生体情報が安定するまでの所要時間を予め設定し、
     前記減速開始時点から前記所要時間だけ経過した時点を減速後参照開始時点として設定し、
     前記減速後参照開始時点から予め定めた時間だけ経過した時点を減速後参照終了時点として設定し、
     前記生体情報記録部に記録された生体情報のうち、前記減速後参照開始時点から前記減速後参照終了時点までの生体情報を参照し、参照した生体情報の代表値である前記減速後生体情報を抽出することを特徴とする請求項1に記載のストレス状態推定装置。
  6.  前記減速開始時点から車両が停止するまでの減速度を検出する減速度検出部を備え、
     前記生体情報抽出部は、
     前記減速度検出部で検出した減速度が大きいほど、前記所要時間を長く設定することを特徴とする請求項5に記載のストレス状態推定装置。
  7.  前記減速度検出部は、
     前記減速開始時点から車両が停止するまでの平均減速度又は最大減速度を前記減速度として検出することを特徴とする請求項6に記載のストレス状態推定装置。
  8.  前記生体情報抽出部は、
     車両が停止した後に前記生体情報記録部で記録された生体情報を順に参照し、生体情報における単位時間当たりの変化量が予め定めた閾値よりも小さくなった状態を予め定めた時間だけ維持した時点を、減速後参照開始時点として設定し、
     前記減速後参照開始時点から予め定めた時間だけ経過した時点を減速後参照終了時点として設定し、
     前記生体情報記録部に記録された生体情報のうち、前記減速後参照開始時点から前記減速後参照終了時点までの生体情報を参照し、参照した生体情報の代表値である前記減速後生体情報を抽出することを特徴とする請求項1に記載のストレス状態推定装置。
  9.  前記ストレス状態推定部は、
     車両が停止した時点から前記減速後参照終了時点までの時間よりも、車両が停止した時点から再発進までの時間が短いときに、前記ストレス状態の推定を中止することを特徴とする請求項5に記載のストレス状態推定装置。
  10.  前記ストレス状態推定部は、
     前記減速度検出部で検出した減速度が予め定めた減速度用閾値よりも大きいときに、前記ストレス状態の推定を中止することを特徴とする請求項6に記載のストレス状態推定装置。
  11.  前記予め定めた期間内の生体情報の標準偏差を算出する標準偏差算出部を備え、
     前記ストレス状態推定部は、
     前記標準偏差算出部で算出した標準偏差が予め定めた標準偏差用閾値よりも大きいときに、前記ストレス状態の推定を中止することを特徴とする請求項1に記載のストレス状態推定装置。
  12.  前記生体情報抽出部は、
     前記減速開始時点よりも以前に前記生体情報記録部で記録された予め定めた期間内の生体情報を参照し、参照した生体情報の平均値を前記減速前生体情報として抽出すると共に、前記減速開始時点よりも後に前記生体情報記録部で記録された予め定めた期間内の生体情報を参照し、参照した生体情報の平均値を前記減速後生体情報として抽出することを特徴とする請求項1に記載のストレス状態推定装置。
  13.  前記生体情報記録部は、
     運転者の循環器系のバイタルサインを前記生体情報として記録することを特徴とする請求項1に記載のストレス状態推定装置。
  14.  前記ストレス状態推定部は、
     前記生体情報抽出部で抽出した減速後生体情報に応じて、ストレス状態の推定結果を補正することを特徴とする請求項1に記載のストレス状態推定装置。
  15.  前記ストレス状態推定部は、
     前記減速前生体情報と前記減速後生体情報との差分が大きいほど、運転者の減速前のストレス状態が大きいと推定し、
     前記減速前生体情報、前記減速後生体情報、前記減速前生体情報と前記減速後生体情報との差分、及び前記差分に応じたストレス状態の推定に用いる判定閾値のうち、少なくとも一つを前記減速後生体情報に応じて補正することにより、ストレス状態の推定結果を補正することを特徴とする請求項14に記載のストレス状態推定装置。
  16.  前記生体情報記録部は、
     運転者の血圧値を前記生体情報として記録し、
     前記ストレス状態推定部は、
     前記減速後生体情報が高いほど、前記減速前生体情報を減少補正することにより、ストレス状態の推定結果を補正することを特徴とする請求項15に記載のストレス状態推定装置。
  17.  前記生体情報記録部は、
     運転者の血圧値を前記生体情報として記録し、
     前記ストレス状態推定部は、
     前記減速後生体情報が高いほど、前記減速後生体情報を増加補正することにより、ストレス状態の推定結果を補正することを特徴とする請求項15に記載のストレス状態推定装置。
  18.  前記生体情報記録部は、
     運転者の血圧値を前記生体情報として記録し、
     前記ストレス状態推定部は、
     前記減速後生体情報が高いほど、前記減速前生体情報と前記減速後生体情報との差分を増加補正することにより、ストレス状態の推定結果を補正することを特徴とする請求項15に記載のストレス状態推定装置。
  19.  前記生体情報記録部は、
     運転者の血圧値を前記生体情報として記録し、
     前記ストレス状態推定部は、
     前記減速後生体情報が高いほど、前記差分に応じたストレス状態の推定に用いる判定閾値を減少補正することにより、ストレス状態の推定結果を補正することを特徴とする請求項15に記載のストレス状態推定装置。
  20.  運転者の生体情報を記録し、
     走行状態にある車両が減速を開始して停止した際の減速開始時点を検出し、
     前記減速開始時点よりも以前に記録された予め定めた期間内の生体情報を参照し、参照した生体情報の代表値である減速前生体情報を抽出すると共に、前記減速開始時点よりも後に記録された予め定めた期間内の生体情報を参照し、参照した生体情報の代表値である減速後生体情報を抽出し、
     前記減速前生体情報及び前記減速後生体情報を比較することにより、運転者の減速前のストレス状態を推定することを特徴とするストレス状態推定方法。
     
PCT/JP2013/003746 2012-06-27 2013-06-14 ストレス状態推定装置、ストレス状態推定方法 WO2014002418A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014522408A JP5858157B2 (ja) 2012-06-27 2013-06-14 ストレス状態推定装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-144218 2012-06-27
JP2012144218 2012-06-27
JP2012-173927 2012-08-06
JP2012173927 2012-08-06

Publications (1)

Publication Number Publication Date
WO2014002418A1 true WO2014002418A1 (ja) 2014-01-03

Family

ID=49782618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003746 WO2014002418A1 (ja) 2012-06-27 2013-06-14 ストレス状態推定装置、ストレス状態推定方法

Country Status (2)

Country Link
JP (1) JP5858157B2 (ja)
WO (1) WO2014002418A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016248A (ja) * 2016-07-29 2018-02-01 日産自動車株式会社 制動制御方法及び制動制御装置
JP2018153269A (ja) * 2017-03-15 2018-10-04 オムロンヘルスケア株式会社 血圧測定装置、方法及びプログラム
JP2020513958A (ja) * 2017-03-08 2020-05-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 健康状態を監視するためのシステム及び方法
JP2021094419A (ja) * 2017-07-26 2021-06-24 パラマウントベッド株式会社 評価システム
US11308520B2 (en) 2019-06-11 2022-04-19 Toyota Boshoku Kabushiki Kaisha Vehicle advertisement display system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102546144B1 (ko) 2022-12-29 2023-06-22 주식회사 트로이스세이프티 인공지능 기반의 건설 및 산업 안전관리 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061921A (ja) * 2001-08-30 2003-03-04 Mitsuba Corp 体調判別方法および体調判別装置
JP2009213768A (ja) * 2008-03-12 2009-09-24 Denso Corp 運転者状態判定装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061921A (ja) * 2001-08-30 2003-03-04 Mitsuba Corp 体調判別方法および体調判別装置
JP2009213768A (ja) * 2008-03-12 2009-09-24 Denso Corp 運転者状態判定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTOHIRO TAKIZAWA ET AL.: "The Psychological Influence on the Driver by the Change of Running Circumstance : A Change of Physiological Responses while a Vehicle Accelerate-Decelerate", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS KOTSU-BUTSURYU BUMON TAIKAI KOEN RONBUNSHU, vol. 12, 8 December 2003 (2003-12-08), pages 233 - 236 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016248A (ja) * 2016-07-29 2018-02-01 日産自動車株式会社 制動制御方法及び制動制御装置
JP2020513958A (ja) * 2017-03-08 2020-05-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 健康状態を監視するためのシステム及び方法
JP7333270B2 (ja) 2017-03-08 2023-08-24 コーニンクレッカ フィリップス エヌ ヴェ 健康状態を監視するためのシステム、その作動方法、及びそのコンピュータプログラム
JP2018153269A (ja) * 2017-03-15 2018-10-04 オムロンヘルスケア株式会社 血圧測定装置、方法及びプログラム
JP7056002B2 (ja) 2017-03-15 2022-04-19 オムロンヘルスケア株式会社 血圧測定装置、方法及びプログラム
JP2021094419A (ja) * 2017-07-26 2021-06-24 パラマウントベッド株式会社 評価システム
JP7177876B2 (ja) 2017-07-26 2022-11-24 パラマウントベッド株式会社 評価システム
US11308520B2 (en) 2019-06-11 2022-04-19 Toyota Boshoku Kabushiki Kaisha Vehicle advertisement display system

Also Published As

Publication number Publication date
JPWO2014002418A1 (ja) 2016-05-30
JP5858157B2 (ja) 2016-02-10

Similar Documents

Publication Publication Date Title
JP5854142B2 (ja) 運転者状態推定装置、運転者状態推定方法
WO2014002418A1 (ja) ストレス状態推定装置、ストレス状態推定方法
US9801580B2 (en) Driving assistance device, driving assistance method, information-providing device, information-providing method, navigation device and navigation method
RU2644998C2 (ru) Транспортное средство и способ его автономного управления
KR102287315B1 (ko) 피로도 기반 차량 제어 장치 및 방법
JP5720462B2 (ja) 運転者疲労度推定装置
CN106963348B (zh) 基于行驶环境的用于车辆座椅的生物信号测量系统
JP4924489B2 (ja) 状態推定装置
US20140303899A1 (en) System and method for biometric identification in a vehicle
US20150164400A1 (en) Driver's fatigue degree estimation apparatus and driver's fatigue degree estimation method
JP2012081194A (ja) 生体状態監視装置
US20100009326A1 (en) Psychological state estimation device
JP2015033457A (ja) 運転状態推定装置及び運転状態推定方法
JP2009265818A (ja) ドライバ覚醒装置
JP2014202733A (ja) ナビゲーション装置及びナビゲーション方法
US20210034891A1 (en) Emotion estimation device
CN113830102A (zh) 驾驶模式切换方法、装置、存储介质及计算机设备
US11517804B2 (en) Method and apparatus for false start detection
JP2009207809A (ja) 生体信号検出装置
JP2018194961A (ja) 運転者監視装置、運転者監視方法及び運転者監視のためのプログラム
JP2014102539A (ja) 運転者状態推定装置
CN113147393A (zh) 一种汽车油门踏板误踩识别方法及装置
CN110609549A (zh) 基于车辆的智能避障方法及系统、存储介质
JP6477665B2 (ja) 車両用操作期間推定装置
JP6365631B2 (ja) 運転支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13808693

Country of ref document: EP

Kind code of ref document: A1