WO2014001963A1 - Ultrasonic guidance of multiple invasive devices in three dimensions - Google Patents

Ultrasonic guidance of multiple invasive devices in three dimensions Download PDF

Info

Publication number
WO2014001963A1
WO2014001963A1 PCT/IB2013/054992 IB2013054992W WO2014001963A1 WO 2014001963 A1 WO2014001963 A1 WO 2014001963A1 IB 2013054992 W IB2013054992 W IB 2013054992W WO 2014001963 A1 WO2014001963 A1 WO 2014001963A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
ultrasonic imaging
probe
imaging system
needles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IB2013/054992
Other languages
English (en)
French (fr)
Other versions
WO2014001963A9 (en
Inventor
Vijay Parthasarathy
Gary Lee ANDREWS
Gary Cheng-How NG
Douglas Allen STANTON
Andrew Lee ROBINSON
Jochen Kruecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Priority to EP13753345.1A priority Critical patent/EP2866671B1/en
Priority to US14/409,715 priority patent/US10123767B2/en
Priority to CN201380034170.5A priority patent/CN104427944B/zh
Priority to JP2015519410A priority patent/JP6165244B2/ja
Priority to RU2015102538A priority patent/RU2644540C2/ru
Priority to BR112014032134-5A priority patent/BR112014032134B1/pt
Publication of WO2014001963A1 publication Critical patent/WO2014001963A1/en
Anticipated expiration legal-status Critical
Publication of WO2014001963A9 publication Critical patent/WO2014001963A9/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Clinical applications
    • A61B8/0833Clinical applications involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Clinical applications involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments, e.g. catheter-type instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • A61B8/145Echo-tomography characterised by scanning multiple planes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments, e.g. catheter-type instruments
    • A61B2010/045Needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • A61B2034/2053Tracking an applied voltage gradient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/523Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for generating planar views from image data in a user selectable plane not corresponding to the acquisition plane

Definitions

  • This invention relates to medical diagnostic ultrasound systems and, in particular, to ultrasonic diagnostic imaging systems which enable the
  • Ultrasonic imaging has long been used to image the insertion path of biopsy needles and other invasive devices so that the clinician can visually observe the insertion of the needle toward and to target anatomy which is to be biopsied.
  • the inserted is in fixed alignment with the image plane of the probe. This limits needle insertion to two positions, one end of the probe or the other.
  • the clinician manipulates the probe until the target anatomy is in view in the image plane.
  • the clinician then inserts the needle through the guide and at an inclination which will cause the tip of the needle to be inserted toward and access the target anatomy.
  • a sample of the target anatomy can then be extracted through the lumen of the needle.
  • a difficulty commonly encountered in needle biopsies is keeping the insertion path of the needle constantly in alignment with the image plane of the probe.
  • the probe must be held stationary with one hand to keep the image plane in a fixed position while the needle is manipulated and inserted with the other hand.
  • the needle can bend and deflect as it is inserted and encounters tissues of different density and stiffness as it penetrates the tissue of the body. This can cause the needle to vary from a single plane as it is inserted.
  • it would be desirable to have a wider field of of view of the target anatomy and the needle insertion path such as one afforded by three dimensional (3D) ultrasound imaging. It would further be desirable to enable the needle to be inserted from a variety of positions and not just from the ends of the probe.
  • Three dimensional ultrasound imaging will afford a wider field of view of the needle insertion.
  • MPR multi-planar reconstruction
  • a diagnostic ultrasound system has a 3D imaging probe with a needle guide that automatically aligns the plane of a displayed ultrasound image with the plane of needle insertion.
  • a needle guide attached to the imaging probe produces a signal identifying the location of the plane of needle insertion in a volumetric region which can be scanned by the probe.
  • the ultrasound system produces an image of the identified plane, preferably by biplane imaging by which only the identified plane or planes are scanned.
  • the insertion planes of multiple needles can be identified, facilitating use of an ultrasound system of the present invention for procedures such as r.f ablation using multiple needles.
  • the insertion planes of differently inclined needles can be identified and visualized.
  • FIGURE 1 illustrates a 3D ultrasound probe being held by the probe handle with a needle guide of the present invention attached to the distal end of the probe .
  • FIGURE 2 is a view of the face of the 3D probe of FIGURE 1 with the needle guide attached to and surrounding the distal end of the probe.
  • FIGURE 3 illustrates a reference plane location and an insertion plane location of the probe and needle guide of FIGURES 1 and 2.
  • FIGURE 4 shows the needle guide attached to the end of the probe with a surrounding needle position encoder and a wireless communicator.
  • FIGURE 5a illustrates a needle guide of the present invention which employs an optical needle position encoder.
  • FIGURE 5b illustrates a needle guide of the present invention which employs a resistive needle position encoder.
  • FIGURE 6 illustrates the relationship between the plane of needle insertion and the location of the biplane in which the insertion plane is located in relation to the volumetric region which can be scanned by a 3D imaging probe.
  • FIGURE 7 illustrates in block diagram form an ultrasound system with a needle guide constructed in accordance with the principles of the present
  • FIGURES 8 an 9 illustrate a needle guide of the present invention with multiple angles of inclination for needle insertion.
  • FIGURE 10 illustrates an ultrasound display of multiple needles being used for a microwave ablation procedure .
  • a 3D ultrasound imaging probe 12 is shown being held at its proximal (cable) end with a needle guide 14 of the present invention attached to the distal (acoustic window) end of the probe.
  • the needle guide attaches to the probe in a fixed orientation by alignment with a distinctive feature of the probe such as its probe orientation marker.
  • a probe orientation marker is a feature usually located on a side of the distal end of the probe which the clinician uses to relate the orientation of the probe on the subject to the orientation of the anatomy in the ultrasound image. See, for example, US Pat. 5,255,682 (Pawluskiewicz et al . )
  • the probe 12 has an orientation marker formed as a projection which is aligned with a mating notch in the inner
  • the illustrated needle guide is a ring-like structure with a number of angled holes 40 located around the guide. The holes are slightly larger than the size of the needle with which the guide is intended to be used, small enough to constrain the path of insertion of the needle yet large enough to permit the
  • the needle guide 12 is a 3D imaging probe which preferably has a two-dimensional array of transducer elements by which a pyramidal or trapezoidal volume in front of the lens can be scanned by electronic beam steering.
  • FIGURE 3 illustrates a reference plane 42 projecting normal to the face of the lens 71 and orthogonal to the ends of the 2D array probe.
  • This illustration shows a hole 40 (enlarged for purposes of illustration) through which a needle can be inserted to travel along an insertion path in an imaging plane of the probe which is at an angle of ⁇ with respect to the reference plane 42.
  • FIGURE 4 illustrates the needle guide 14 with a rotational encoder 44 that identifies the location of a hole around the guide through which a needle is inserted.
  • the encoder identifies a scan plane at a position of ⁇ with respect to the reference plane 42 in which the needle insertion path can be imaged. If a needle is inserted through a hole at the four o'clock position, for instance, the encoder will identify a scan plane at a position of - ⁇ in which the insertion path can be imaged.
  • the identified scan plane is communicated to the ultrasound system operating the probe, by either a wired connection or a wireless connection such as a Bluetooth
  • Power for the encoder can be provided by either a wired connection or a battery 62.
  • the encoder can be constructed in a number of ways.
  • One way is to use optical encoding as shown in FIGURE 5a.
  • LEDs 46 which direct light across the holes 40 to light detectors on the other side of the holes.
  • the needle When a needle is inserted through a particular hole, the needle will block the light from the detector for that hole and the detector signal then identifies that particular hole and its corresponding scan plane as one through which a needle is being inserted.
  • the ultrasound probe and ultrasound system will then image the identified scan plane and the needle being inserted in that plane.
  • FIGURE 5a when a needle is
  • the optical detector signal identifies scan plane ⁇ as that of the needle insertion path.
  • FIGURE 5b Another encoder implementation which uses a resistive encoder is illustrated in FIGURE 5b.
  • the encoder 44 has an outer slip ring with one or more holes or grooves 84 through which a needle can be inserted.
  • the outer slip ring is illustrated in FIGURE 5b.
  • the outer slip ring has a sliding contact 82 in a known relationship to the position of the hole or groove 84 of the slip ring 58 which is in electrical contact with the resistive path 48.
  • the sliding contact and resistive path thereby operate as a potentiometer such that an electrical measurement between "+" and "-" terminals electrically connected to the sliding contact 82 and an end of the resistive path will identify the position of the hole or groove around the ring-like structure.
  • This position information is reported to the ultrasound system to identify the plane of the needle insertion path to be scanned by the probe and ultrasound system.
  • Multiple holes or grooves can be individually identified by connecting an additional resistance in series with a respective terminal so that the range of resistance values reported for one hole does not overlap the range of resistance values for the others .
  • FIGURE 6 is an illustration of the relationships between a 3D imaging probe 12, the volume 100 which may be scanned by the probe, and a selected scan plane 102 in which the image field 104 of the probe is positioned.
  • a needle 110 is inserted through a hole or groove in the needle guide 14, the needle is constrained to a path which comes into view beneath the acoustic window of the probe. Since the probe is a 3D imaging probe, it is capable of
  • the rotational encoder of the needle guide 14 identifies the particular hole through which the needle is being inserted, which corresponds to a particular scan plane orientation 102 that can be imaged by the 3D imaging probe.
  • the probe 12 then images the identified scan plane orientation as illustrated by the sector scan area 104 in plane 102.
  • the clinician can then follow the progress of the needle 110 as it is inserted along an insertion path in the sector scan area 104 until the tip 112 of the needle accesses the target anatomy.
  • FIGURE 7 illustrates an ultrasound probe, needle guide, and ultrasound system constructed in
  • the ultrasound system 10 is configured by two subsystems, a front end acquisition subsystem 10A and a display subsystem 10B.
  • a 3D ultrasound probe 12 is coupled to the acquisition subsystem which includes a two-dimensional matrix array transducer 70 and a micro-beamformer 72.
  • the micro-beamformer contains circuitry which control the signals applied to groups of elements ("patches") of the array transducer 70 and does some processing of the echo signals received by elements of each group.
  • Micro- beamforming in the probe advantageously reduces the number of conductors in the cable between the probe and the ultrasound system and is described in US Pat. 5,997,479 (Savord et al . ) and in US Pat. 6,436,048 (Pesque) , and provides electronic steering of beams on transmit and receive for high frame rate real-time (live) 2D or 3D imaging.
  • the probe 12 is coupled to the acquisition subsystem 10A of the ultrasound system.
  • acquisition subsystem includes a beamform controller 74 which is responsive to a user control 36 and, for the present invention, a gating signal, which provide control signals to the microbeamformer 72,
  • the beamform controller also controls the system beamforming of echo signals received by the user
  • A/D analog-to- digital
  • Partially beamformed echo signals received from the probe are amplified by preamplifier and TGC (time gain control) circuitry 16 in the acquisition
  • the digitized echo signals are then formed into fully steered and focused beams by a main system beamformer
  • the echo signals are then processed by an image processor 22 which performs digital filtering, B mode and M mode detection, and Doppler processing, and can also perform other signal processing such as harmonic separation, speckle reduction, and other desired image signal processing.
  • image processor 22 which performs digital filtering, B mode and M mode detection, and Doppler processing, and can also perform other signal processing such as harmonic separation, speckle reduction, and other desired image signal processing.
  • the echo signals produced by the acquisition subsystem 10A are coupled to the display subsystem 10B, which processes the echo signals for display in the desired image format.
  • the echo signals are processed by an image line processor 24, which is capable of sampling the echo signals, splicing segments of beams into complete line signals, and averaging line signals for signal-to-noise
  • the image lines for a 2D image are scan converted into the desired image format by a scan converter 26 which performs R-theta conversion as is known in the art.
  • the scan converter 26 which performs R-theta conversion as is known in the art.
  • the image in memory is also overlaid with graphics to be displayed with the image, which are generated by a graphics generator 34 which is responsive to the user control 36 so that the graphics produced are
  • Individual images or image sequences can be stored in a cine memory 30 during capture of image loops or sequences .
  • the display subsystem 10B also includes a 3D image rendering processor 32 which receives image lines from the image line processor 24 for the rendering of real ⁇ time three dimensional images.
  • the 3D images can be displayed as live (real time) 3D images on the display 38 or coupled to the image memory 28 for storage of the 3D data sets for later review and diagnosis .
  • the scan plane identification signal produced by the needle guide 14, which identifies the scan plane in which a needle inserted through the needle guide will pass and can be imaged, is coupled to a plane ID processor 52.
  • the plane identification signal produced by the plane ID processor is coupled to a trigger signal generator 54 which produces a gating signal that commands the beamformer controller 74 to control the scanning of a desired scan plane, one in which a needle insertion path is located.
  • the beamformer controller 74 controls the microbeamformer 72 to scan the desired scan plane and produce echo signals from the scanning of the desired plane which are partially beamformed by the microbeamformer and coupled to the system beamformer 20 for completion of beamformat ion of scanline in the desired plane.
  • the scanlines of the plane are processed by the image line processor 24 and scan converted into a two dimensional image of the identified plane which is displayed on the display 38.
  • the identified scan plane can be imaged as a single thin plane within the elevational resolution of the probe and system, but can also be imaged as a thick slice image of a plane thickness greater than that of a single thin plane as described in US patent publication no.
  • FIGURES 8 and 9 illustrate another needle guide of the present invention through which needles 110 can be inserted at different inclination angles ⁇ , ⁇ , and ⁇ .
  • the cross sectional view of FIGURE 8 shows three needles 110, 110', and 110" inserted through different holes 40 of the needle guide which guide the needles along insertion paths inclined at angles ⁇ , ⁇ , and ⁇ , respectively.
  • Each set of three holes at a particular rotational position around the guide will direct the needles along an insertion path in the same scan plane, two of which, ⁇ and ⁇ 2, are shown in FIGURE 9 in relation to the central
  • the needle guide 14 of FIGURES 8 and 9 enable a clinician to access target anatomy at different depths below the probe while identifying the scan plane of each insertion path.
  • FIGURES 4 and 9 illustrate multiple needles can be inserted at the same time in different identified scan planes ⁇ 1 and ⁇ 2 or + ⁇ and - ⁇ , for example.
  • the guide will report the identity of the two different scan plane orientations to the plane ID processor, which will cause the ultrasound system 10 to alternately scan the different planes.
  • Two different instruments may be used for microwave ablation of target anatomy, for instance, in which case the clinician will want to visually guide both ablation needles to the target so that their tips are in contact with the anatomy to be ablated.
  • FIGURE 10 illustrates an ultrasound display which shows four different images of an invasive procedure using a needle guide of the present
  • Needle 110 ⁇ , 110 ⁇ , and 110 ⁇ are being used and imaged at the same time. Needle 110 ⁇ is shown in ultrasound image 202 of the insertion path scan plane of needle 110 ⁇ and the border 202a of this image is colored a unique color such as blue to distinguish the image of needle
  • Identifying and coloring a needle in an ultrasound image can be performed by a segmentation technique that specifically identifies the needle in an image from its surrounding tissue as described in US patent pub. no. 2004/0002653 (Greppi et al . ) and in the paper "Enhancement of Needle Visibility in Ultrasound-guided Percutaneous Procedures" by S.
  • needles 110 ⁇ and 110 ⁇ are shown in respective 2D images 204 and 206 of their insertion paths and are outlined in distinctive colors 204a and 206a such as red and yellow.
  • Image 201 is a full 3D volumetric image of the region of the procedure which shows the target anatomy being accessed by all three needles.
  • each needle is colored with its distinctive color, blue, red, or yellow, so that the clinician can easily relate each needle in the 3D image to its own 2D insertion plane image.
  • Each 2D image plane and the full 3D volume are scanned in a time interleaved manner, with the individual
  • the individual 2D images can be frozen on the screen so that the full acquisition time is devoted to 3D imaging and the procedure at the target anatomy can continue to be imaged in live 3D.
  • An implementation of the needle guide and ultrasound system of the present invention can be assisted by other guides to help the clinician plan and carry out a needle insertion procedure, such as guiding the clinician in needle insertion to avoid hard tissues and critical anatomy as described in US patent application no. 61/587,784, filed January 18, 2012 and entitled "ULTRASONIC GUIDANCE OF A NEEDLE PATH DURING BIOPSY" (Kudavelly et al . ) Avoidance of hard tissue in the insertion path can help prevent deflection and bending of a needle during insertion.
  • This guidance assistance can be used to plan the insertion path prior to the procedure or to provide guidance as a needle is being inserted.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Robotics (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
PCT/IB2013/054992 2012-06-28 2013-06-18 Ultrasonic guidance of multiple invasive devices in three dimensions Ceased WO2014001963A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13753345.1A EP2866671B1 (en) 2012-06-28 2013-06-18 Ultrasonic guidance of multiple invasive devices in three dimensions
US14/409,715 US10123767B2 (en) 2012-06-28 2013-06-18 Ultrasonic guidance of multiple invasive devices in three dimensions
CN201380034170.5A CN104427944B (zh) 2012-06-28 2013-06-18 多个有创设备的三维超声引导
JP2015519410A JP6165244B2 (ja) 2012-06-28 2013-06-18 複数の侵襲デバイスの3次元超音波ガイダンス
RU2015102538A RU2644540C2 (ru) 2012-06-28 2013-06-18 Трехмерное ультразвуковое наведение множества инвазивных устройств
BR112014032134-5A BR112014032134B1 (pt) 2012-06-28 2013-06-18 Sistema de obtenção de imagem ultrassônica que orienta visualmente a inserção de uma pluralidade de dispositivos invasivos

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261665539P 2012-06-28 2012-06-28
US61/665,539 2012-06-28

Publications (2)

Publication Number Publication Date
WO2014001963A1 true WO2014001963A1 (en) 2014-01-03
WO2014001963A9 WO2014001963A9 (en) 2015-02-26

Family

ID=49036608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/054992 Ceased WO2014001963A1 (en) 2012-06-28 2013-06-18 Ultrasonic guidance of multiple invasive devices in three dimensions

Country Status (7)

Country Link
US (1) US10123767B2 (enExample)
EP (1) EP2866671B1 (enExample)
JP (1) JP6165244B2 (enExample)
CN (1) CN104427944B (enExample)
BR (1) BR112014032134B1 (enExample)
RU (1) RU2644540C2 (enExample)
WO (1) WO2014001963A1 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015168319A1 (en) * 2014-04-29 2015-11-05 The Board Of Regents Of The University Of Texas System Methods and systems for detecting sub-tissue anomalies
WO2019016343A1 (en) 2017-07-21 2019-01-24 Khonsari Sassan ULTRASONIC IMAGING SYSTEM WITH TRANSVERSE PLANE FOR INSTRUMENT GUIDANCE COMBINED IN THE PLAN AND OUTSIDE THE PLAN
EP3220829B1 (en) * 2014-11-18 2022-03-09 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017106362A1 (en) * 2015-12-16 2017-06-22 Canon U.S.A., Inc. Medical guidance device
GB2552544A (en) 2016-07-29 2018-01-31 Micrima Ltd A medical imaging system and method
US10932749B2 (en) 2016-11-09 2021-03-02 Fujifilm Sonosite, Inc. Ultrasound system for enhanced instrument visualization
CN107307844A (zh) * 2017-07-21 2017-11-03 温州星康医学科技有限公司 一种智能化视功能预检仪
US11197723B2 (en) * 2017-10-09 2021-12-14 Canon U.S.A., Inc. Medical guidance system and method using localized insertion plane
CN112334074A (zh) 2018-06-15 2021-02-05 皇家飞利浦有限公司 多个介入医学设备的同步跟踪
CN108969087B (zh) * 2018-08-06 2023-12-26 广州复大医疗有限公司 用于肿瘤消融术中的多角度探针定位及针间距测量装置
CN109029212B (zh) * 2018-08-06 2023-12-05 广州复大医疗有限公司 用于经皮消融术中的探针定位及针间距测量装置
US11191423B1 (en) * 2020-07-16 2021-12-07 DOCBOT, Inc. Endoscopic system and methods having real-time medical imaging
EP4337125A4 (en) * 2021-05-10 2025-03-05 Excera Inc. Multiscale ultrasound tracking and display
US20230329750A1 (en) * 2022-04-15 2023-10-19 Radian Llc Devices and methods to improve efficacy and efficiency of locating the sacral foramina during sacral neuromodulation procedure
US20250375182A1 (en) * 2024-06-07 2025-12-11 Fujifilm Sonosite, Inc. Ultrasonic needle localization

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255682A (en) 1990-11-14 1993-10-26 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic imaging systems with scanhead indicators
US5997479A (en) 1998-05-28 1999-12-07 Hewlett-Packard Company Phased array acoustic systems with intra-group processors
US6203499B1 (en) 1998-10-05 2001-03-20 Atl Ultrasound Inc. Multiple angle needle guide
US6436048B1 (en) 2000-08-24 2002-08-20 Koninklijke Philips Electronics N.V. Ultrasonic diagnostic imaging system with scanhead elevation beamforming
US20020123689A1 (en) * 2001-03-05 2002-09-05 Roberto Furia Needle-guide device, particularly for ultrasound probes
US20040002653A1 (en) 2002-06-26 2004-01-01 Barbara Greppi Method and apparatus for ultrasound imaging of a biopsy needle or the like during an ultrasound imaging examination
US20100168580A1 (en) 2007-04-13 2010-07-01 Koninklijke Philips Electronics N.V. High speed ultrasonic thick slice imaging
US20100298704A1 (en) * 2009-05-20 2010-11-25 Laurent Pelissier Freehand ultrasound imaging systems and methods providing position quality feedback
WO2011114259A1 (en) * 2010-03-19 2011-09-22 Koninklijke Philips Electronics N.V. Automatic positioning of imaging plane in ultrasonic imaging
WO2012003369A2 (en) * 2010-06-30 2012-01-05 Muffin Incorporated Percutaneous, ultrasound-guided introduction of medical devices

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2221941Y (zh) * 1995-01-17 1996-03-13 董天清 导向针槽三维可调式超声导向器
EP0845959A4 (en) * 1995-07-16 1998-09-30 Ultra Guide Ltd HAND-FREE DRAWING A NEEDLE GUIDE
JPH11197155A (ja) 1998-01-14 1999-07-27 Aloka Co Ltd 超音波穿刺プローブ
US6351660B1 (en) * 2000-04-18 2002-02-26 Litton Systems, Inc. Enhanced visualization of in-vivo breast biopsy location for medical documentation
US6733458B1 (en) * 2001-09-25 2004-05-11 Acuson Corporation Diagnostic medical ultrasound systems and methods using image based freehand needle guidance
JP2004305535A (ja) * 2003-04-09 2004-11-04 Ge Medical Systems Global Technology Co Llc 超音波診断装置
JP4828802B2 (ja) * 2004-05-12 2011-11-30 株式会社東芝 穿刺治療のための超音波診断装置
JP2005319173A (ja) 2004-05-11 2005-11-17 Hitachi Medical Corp 超音波プローブ及び超音波撮像装置
US20100312129A1 (en) * 2005-01-26 2010-12-09 Schecter Stuart O Cardiovascular haptic handle system
CN100459950C (zh) * 2006-11-30 2009-02-11 上海交通大学 图像引导的水冷式射频消融肿瘤治疗一体机
JP2008148914A (ja) 2006-12-18 2008-07-03 Ge Medical Systems Global Technology Co Llc 3d/4dプローブ用穿刺ガイド装置および超音波診断装置
RU80105U1 (ru) * 2006-12-27 2009-01-27 ГОУ ВПО "Саратовский государственный университет имени Н.Г. Чернышевского" Устройство для получения трехмерных ультразвуковых изображений внутренних органов человека
JP2009153831A (ja) 2007-12-27 2009-07-16 Ge Medical Systems Global Technology Co Llc 穿刺ガイドの取付構造、超音波プローブ及び超音波診断装置
EP2309929B1 (en) * 2008-08-01 2019-05-15 Koninklijke Philips N.V. Three dimensional imaging ultrasound probe
EP2323561A1 (en) * 2008-08-12 2011-05-25 Koninklijke Philips Electronics N.V. Ultrasound imaging
JP2010068923A (ja) 2008-09-17 2010-04-02 Fujifilm Corp 超音波診断装置
EP2341836B1 (en) * 2008-09-24 2017-03-22 Koninklijke Philips N.V. Generation of standard protocols for review of 3d ultrasound image data
US8086298B2 (en) * 2008-09-29 2011-12-27 Civco Medical Instruments Co., Inc. EM tracking systems for use with ultrasound and other imaging modalities
JP5495593B2 (ja) 2009-03-23 2014-05-21 株式会社東芝 超音波診断装置及び穿刺支援用制御プログラム
US20120298704A1 (en) * 2011-05-25 2012-11-29 Angel Sanz No-roll-container
WO2013108198A1 (en) 2012-01-18 2013-07-25 Koninklijke Philips N.V. Ultrasonic guidance of a needle path during biopsy
WO2013116240A1 (en) * 2012-01-30 2013-08-08 Inneroptic Technology, Inc. Multiple medical device guidance

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255682A (en) 1990-11-14 1993-10-26 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic imaging systems with scanhead indicators
US5997479A (en) 1998-05-28 1999-12-07 Hewlett-Packard Company Phased array acoustic systems with intra-group processors
US6203499B1 (en) 1998-10-05 2001-03-20 Atl Ultrasound Inc. Multiple angle needle guide
US6436048B1 (en) 2000-08-24 2002-08-20 Koninklijke Philips Electronics N.V. Ultrasonic diagnostic imaging system with scanhead elevation beamforming
US20020123689A1 (en) * 2001-03-05 2002-09-05 Roberto Furia Needle-guide device, particularly for ultrasound probes
US20040002653A1 (en) 2002-06-26 2004-01-01 Barbara Greppi Method and apparatus for ultrasound imaging of a biopsy needle or the like during an ultrasound imaging examination
US20100168580A1 (en) 2007-04-13 2010-07-01 Koninklijke Philips Electronics N.V. High speed ultrasonic thick slice imaging
US20100298704A1 (en) * 2009-05-20 2010-11-25 Laurent Pelissier Freehand ultrasound imaging systems and methods providing position quality feedback
WO2011114259A1 (en) * 2010-03-19 2011-09-22 Koninklijke Philips Electronics N.V. Automatic positioning of imaging plane in ultrasonic imaging
WO2012003369A2 (en) * 2010-06-30 2012-01-05 Muffin Incorporated Percutaneous, ultrasound-guided introduction of medical devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEUNG ET AL.: "Enhancement of Needle Visibility in Ultrasound-guided Percutaneous Procedures", ULTRASOUND IN MED. & BIOL., vol. 30, no. 5, 2004, pages 617 - 24

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015168319A1 (en) * 2014-04-29 2015-11-05 The Board Of Regents Of The University Of Texas System Methods and systems for detecting sub-tissue anomalies
EP3220829B1 (en) * 2014-11-18 2022-03-09 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
EP4011298A1 (en) * 2014-11-18 2022-06-15 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US11696746B2 (en) 2014-11-18 2023-07-11 C.R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US12274581B2 (en) 2014-11-18 2025-04-15 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
WO2019016343A1 (en) 2017-07-21 2019-01-24 Khonsari Sassan ULTRASONIC IMAGING SYSTEM WITH TRANSVERSE PLANE FOR INSTRUMENT GUIDANCE COMBINED IN THE PLAN AND OUTSIDE THE PLAN

Also Published As

Publication number Publication date
JP6165244B2 (ja) 2017-07-19
EP2866671A1 (en) 2015-05-06
RU2015102538A (ru) 2016-08-20
BR112014032134A8 (pt) 2018-07-03
CN104427944B (zh) 2017-08-11
JP2015527109A (ja) 2015-09-17
RU2644540C2 (ru) 2018-02-12
WO2014001963A9 (en) 2015-02-26
BR112014032134A2 (pt) 2017-06-27
CN104427944A (zh) 2015-03-18
EP2866671B1 (en) 2019-10-30
US10123767B2 (en) 2018-11-13
BR112014032134B1 (pt) 2022-01-04
US20150173706A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
EP2866671B1 (en) Ultrasonic guidance of multiple invasive devices in three dimensions
EP2866672B1 (en) Ultrasonically guided biopsies in three dimensions
US9597054B2 (en) Ultrasonic guidance of a needle path during biopsy
US7270634B2 (en) Guidance of invasive medical devices by high resolution three dimensional ultrasonic imaging
US7796789B2 (en) Guidance of invasive medical devices by three dimensional ultrasonic imaging
EP2036500A1 (en) Ultrasound diagnostic apparatus
US20060270934A1 (en) Guidance of invasive medical devices with combined three dimensional ultrasonic imaging system
US20090306511A1 (en) Ultrasound imaging apparatus and method for generating ultrasound image
US20130225984A1 (en) Method for guiding the insertion of a surgical instrument with three dimensional ultrasonic imaging
WO2015092628A1 (en) Ultrasound imaging systems and methods for tracking locations of an invasive medical device
JP2006521146A (ja) 広いビューの三次元超音波イメージングにより侵襲的医療装置を案内する方法及び装置
CN111629671A (zh) 超声成像设备及控制超声成像设备的方法
US20140088430A1 (en) Ultrasonic image guidance of transcutaneous procedures
JP2009061076A (ja) 超音波診断装置
US12127878B2 (en) Ultrasound diagnostic device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13753345

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013753345

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015519410

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14409715

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015102538

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014032134

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014032134

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141219