WO2014000522A1 - 热风穿透内循环式煤样减湿装置 - Google Patents

热风穿透内循环式煤样减湿装置 Download PDF

Info

Publication number
WO2014000522A1
WO2014000522A1 PCT/CN2013/075749 CN2013075749W WO2014000522A1 WO 2014000522 A1 WO2014000522 A1 WO 2014000522A1 CN 2013075749 W CN2013075749 W CN 2013075749W WO 2014000522 A1 WO2014000522 A1 WO 2014000522A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal sample
fan
hot air
coal
sample
Prior art date
Application number
PCT/CN2013/075749
Other languages
English (en)
French (fr)
Inventor
朱先德
任率
Original Assignee
湖南三德科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三德科技股份有限公司 filed Critical 湖南三德科技股份有限公司
Priority to RU2015102061/05U priority Critical patent/RU157332U1/ru
Publication of WO2014000522A1 publication Critical patent/WO2014000522A1/zh
Priority to ZA2015/00429A priority patent/ZA201500429B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B9/00Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards
    • F26B9/003Small self-contained devices, e.g. portable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • G01N2001/4027Concentrating samples by thermal techniques; Phase changes evaporation leaving a concentrated sample

Definitions

  • the invention mainly relates to the field of sample preparation equipment for coal, and particularly relates to a coal sample dehumidification device which adopts hot air penetration type.
  • Coal is a kind of uneven material (particle size, distribution of quality characteristics, etc.).
  • the sampled mothers are generally large (several tens of tons to tens of thousands of tons), and the maximum mass can be represented to represent the entire maternal quality and characteristics.
  • the process of representative samples is called "sampling", and there are many methods such as mechanical sampling, manual sampling, and semi-mechanical sampling. There are mandatory standards in each country and sampling must be carried out in accordance with the standards.
  • the criterion of the sample preparation process is to gradually reduce the particle size of the sample without reducing the representativeness of the sample, and the quality is gradually reduced until the laboratory test is performed. Particle size and mass (weight) requirements.
  • the sample preparation process generally has processes such as air drying, crushing, shrinking, and milling. Air drying (can also be heated and dried, but the temperature should be less than 50 ° C) The process is to reduce the external moisture of the sample, in order to facilitate the normal process of crushing and shrinking. Fragmentation during sample preparation is the process of reducing the particle size of the sample.
  • the shrinking process is a process of representatively reducing the sample.
  • the reduced part of the sample must be representative of the coal quality characteristics of the reduced sample.
  • the shrinking process is also the process of reducing the sample volume during the sample preparation process.
  • the standard stipulates that coal sample loss should not be allowed. Because the sample loss in the non-shrinking process (such as pulverized coal loss, vermiculite is selected, etc.) will change the coal quality characteristics of the sample, the selective (not necessarily artificial) loss of the sample is absolutely not allowed in the sample preparation process. .
  • Air drying method This method does not change the quality characteristics of coal, but the efficiency is too low, the time is very long (usually 24 ⁇ 48 hours), and the occupied space is large.
  • Hot air and large oven drying method This method uses high-power heating lamp or high-power oven to carry out coal sample drying and dehumidification. In this way, because there is no analysis of the two stages of mass transfer in the dehumidification process, the evaporation of water is only carried out on the surface of the material, and the material in the inner layer is difficult to evaporate the water, and once the air on the surface of the material reaches a saturated water absorption amount, it will not Inhale water again. If the surface air is not pumped away or ventilated in time, the evaporation of water will actually stop. Therefore, this method does not dehumidify too quickly, the efficiency is also low, and the time will be long. Since the oven uses an ordinary fan, the ventilation speed is slow, and the ventilation efficiency is low, so that the air in the tank is close to saturated water absorption, so the efficiency of drying the high water content material in the oven is very low.
  • the present invention provides a hot air penetration system which is simple in structure, convenient in operation, high in dehumidification efficiency, low in energy consumption, and capable of improving sample preparation accuracy. Circulating coal sample dehumidification Device.
  • the present invention adopts the following technical solutions:
  • a hot air penetrating inner circulation type coal sample dehumidification device comprises a box body, a controller and a fan, a partition plate and a gas heater installed in the box body, wherein the partition plate divides the box body into two chambers,
  • the fan is located in one of the chambers, and the separator is provided with more than one coal sample tray for holding a coal sample, and the bottom of the coal sample tray is provided with more than one ventilation hole, and the coal sample tray is provided with Below is a coal sample holder for collecting samples.
  • the fan is an exhaust fan and is located in the top chamber, and the air outlet of the fan is connected to one end of the return air passage, and the other end and the bottom of the return air passage are
  • the chambers are in communication and the gas heater is mounted in the return air passage.
  • An anemometer for detecting a hot air flow rate is installed in the return air passage, and the controller is connected to the fan through a frequency converter; the controller adjusts the wind speed signal according to the anemometer and the preset wind speed to adjust through the frequency converter. The speed of the fan.
  • the coal sample holder includes a support portion, a venting portion and a sample receiving portion connected in sequence from top to bottom, the support portion is supported on the partition plate, and the coal sample tray is placed above the support portion, and the sample receiving portion is Located below the support.
  • the coal sample holder is integrally formed with the coal sample tray.
  • the invention has the advantages that: the hot air penetrating inner circulation type coal sample dehumidification device of the invention adopts a hot air penetration dehumidification mode, thereby effectively increasing the evaporation surface area of the coal sample, and the efficiency can be increased It is multiplied to several tens of times.
  • a coal sample holder for collecting samples is provided under the coal sample tray to ensure the integrity of the coal sample and improve the precision of sample preparation.
  • Figure 1 is a schematic view showing the structure of the present invention.
  • Figure 2 is a cross-sectional structural view of the A-A of Figure 1.
  • Fig. 3 is a schematic plan view showing the structure of the coal sample disk of the present invention.
  • Figure 4 is a cross-sectional structural view of the B-B of Figure 3.
  • Fig. 5 is a schematic plan view showing the structure of the coal sample holder of the present invention.
  • Figure 6 is a cross-sectional structural view taken at C-C in Figure 5.
  • Fig. 7 is a structural schematic view showing the combination of the coal sample tray placed on the coal sample holder in the present invention.
  • Fig. 8 is a schematic view showing the structure of the coal sample holder and the coal sample tray integrally formed in another embodiment.
  • the hot air penetrating inner circulation type coal sample dehumidifying device of the present invention comprises a casing 1, a controller 4, and a fan 2, a partition 3 installed in the sealed casing 1.
  • the gas heater 6, the partition 3 divides the tank 1 into two chambers, a bottom chamber and a top chamber, respectively.
  • the blower 2 is located in one of the chambers, in the present embodiment, in the top chamber, and the blower 2 is an exhaust fan. More than one coal sample tray 5 for holding the coal sample 11 is placed on the partition 3, and the coal sample 11 is evenly spread in the coal sample tray 5. Referring to Fig. 3 to Fig.
  • vent hole 51 is opened at the bottom of the coal sample plate 5, and the hot air flow passes through the vent hole 51 to uniformly permeate the coal sample 11, and the coal sample 11 is subjected to dehumidification operation.
  • the gas heater 6 is used to heat the circulating air to ensure heating and dehumidification of the coal sample 11 in the coal sample disk 5.
  • the process of dehumidification (water reduction) is actually a mass transfer process, in which the moisture in the material is gradually taken away by the flowing air, and the moisture of the material is gradually reduced.
  • the water reduction process is divided into two stages. In the first stage, the water is changed from the liquid state to the vapor state from the surface of the material.
  • the second stage is the evaporation of water vapor from the surface of the material into a vapor state to dissolve into the air on the surface of the material.
  • the air is taken away.
  • These two stages are related to the temperature around the material.
  • the evaporation of the surface water and the amount of water that can be dissolved by the surrounding air are a function of temperature. The higher the temperature, the faster the evaporation rate, and the amount of water that can be absorbed by a certain amount of air. The bigger.
  • the temperature is high to a certain extent, it will affect the physical and chemical properties of the coal sample. Therefore, the international standard stipulates that the temperature at this time cannot be higher than 40 °C, and the national standard specifies 50 °C.
  • the present invention adopts a hot air penetration dehumidification method in order to effectively increase the evaporation surface area of the material, and the efficiency can be increased several times to several tens of times.
  • the present invention further provides a coal sample holder 7 for collecting the sample below the coal sample tray 5 to ensure the integrity of the coal sample 11. , improve the accuracy of the sample preparation.
  • a return air passage 8 is formed on one side of the casing 1, the fan 2 is an exhaust fan and is located in the top chamber, and the air outlet of the fan 2 is connected to one end of the return air passage 8, and the return air passage 8 The other end is in communication with the bottom chamber, and the gas heater 6 is mounted in the return air passage 8.
  • the hot airflow at the bottom of the casing 1 is moved upward to penetrate the coal sample 11 in the coal sample disk 5 to complete the dehumidification.
  • the airflow in the top chamber of the casing 1 enters the return air passage 8, passes through the gas heater 6, is reused, is heated, and is sent to the cavity at the bottom of the casing 1.
  • a gas condensing and dehumidifying member 13 for dehumidifying the gas is further provided in the return air passage 8.
  • an anemometer 9 for detecting the flow rate of the hot air is installed in the return air passage 8, and the controller 4 is connected to the fan 2 through a frequency converter 10.
  • the controller 4 collects the wind speed signal of the anemometer 9 and compares it with the preset wind speed to pass the frequency converter. 10 Adjust the fan 2 speed so that the dry inlet wind speed is consistent with the preset wind speed to speed up the drying. As the moisture in the sample in the dryer is continuously separated, the gas permeability of the sample is enhanced, and the wind speed of the dry gas stream is gradually increased.
  • the controller 4 will continuously adjust the fan speed according to the signal change of the anemometer 9, so that the wind speed is gradually reduced, thereby avoiding the effect that the coal sample 11 is too dry and energy-saving.
  • the purpose of frequency conversion is to produce a matching air volume and wind speed according to the actual number of working units, thus ensuring the best effect of dehumidification. That is, the actual working unit is small, and the frequency conversion reduces the air volume. If the actual working unit increases, the frequency conversion increases the air volume.
  • the realization process is to install a wind speed detecting device in the total air duct. If a sudden decrease in the wind speed is detected, it indicates that a new working unit is added to the work, and the air volume should be increased at this time. If a sudden increase in wind speed is detected, it is because there is a working unit that has exited the working state and the air volume should be reduced.
  • the water reducing process of the material is divided into three processes: high humidity, medium humidity and low humidity.
  • the material humidity is large and the wind resistance is correspondingly large.
  • Wind volume and wind speed the required wind pressure should be the largest.
  • the air volume and wind speed should be adjusted in time.
  • the third stage there are many high-humidity samples that will agglomerate. At this time, the wind resistance will increase. If it is necessary to continue dehumidification, the wind pressure should be increased to maintain proper wind speed.
  • the coal sample holder 7 includes a support portion 71, a venting portion 72, and a sample receiving portion 73 which are sequentially connected from top to bottom.
  • the support portion 71 is supported on the partition plate 3, and the support portion 71 is disposed between the support portion 71 and the partition plate 3.
  • the side of the coal sample disk 5 i.e., the periphery
  • the side of the coal sample plate 5 is actually more sealed as possible. It is possible to abstractly compare the periphery of the coal sample disk 5 with the central ventilation hole 51 into two channels, from which way the hot air is to go, depending on which road has a small resistance (also called wind resistance).
  • the coal sample holder 7 and the coal sample tray 5 may be integrally formed according to actual needs, and the coal sample holder 7 is directly located below the coal sample tray 5.

Abstract

一种热风穿透内循环式煤样减湿装置,包括箱体(1)、控制器(4)以及装设于箱体(1)内的风机(2)、隔板(3)气体加热器(6),隔板(3)将箱体(1)分隔成两个腔室,风机(2)位于其中一个腔室,隔板(3)上放置有一个以上用来盛装煤样的煤样盘(5),煤样盘(5)的底部开设有一个以上的通风孔(51),煤样盘(5)的下方设有用来收集落样的煤样托(7)。具有结构简单、操作方便、减湿效率高、能耗低、能够提高制样精确性等优点。

Description

热风穿透内循环式煤样减湿装置
【技术领域】
本发明主要涉及到煤的制样设备领域, 特指一种采用热风穿透式的煤样减湿设备。
【背景技术】
对于煤质分析, 实际上是一种抽样分析的过程。 煤炭是一种不均匀的物质 (粒度、 质量 特性分布等), 被抽样的母本一般比较大 (几十吨到几万吨不等), 最大限度地抽到能代表整 个母本质量及特性的代表性样品的过程叫 "采样", 目前有机械采样、 人工采样、 半机械采样 等多种方式方法。 各个国家均有强制标准, 必须遵照标准进行采样工作。
按标准采到样品后, 下一过程是制样, 制样过程的准则是在不破坏样品代表性的前提下, 把样品粒度逐渐减小, 质量也逐步减少, 直到符合实验室化验对样品的粒度和质量 (重量) 要求。 制样过程一般有空气干燥、 破碎、 缩分、 磨粉等过程。 空气干燥 (也可加热干燥, 但 温度应小于 50°C ) 过程是减少样品外部水分, 以利于后面的破碎和缩分过程正常进行。 制样 过程中破碎是把样品粒度减小的过程。 缩分过程是对样品进行有代表性地减质的过程, 减少 的那部分样品必须能代表减少前样本的煤质特征, 缩分过程也是制样过程中完成样品量减少 的过程, 其他过程中标准规定应不允许有煤样损失。 因为非缩分过程的样品损失 (如煤粉流 失, 矸石被选出等), 会改变该样品的煤质特征, 选择性 (不一定是人为的)地流失样品是制 样过程绝对不允许的。
对于煤样的干燥过程而言, 目前现有的减湿方式主要有两种:
( 1 ) 空气自然晾干方式: 该方式不会改变煤的质量特性, 但效率太低, 时间很长(一般 为 24〜48小时), 且占用场地较大。
(2)热风及大烘箱烘干方式: 该方式是用大功率加热灯或大功率烘箱来进行煤样干燥减 湿。这类方式因为没有对减湿过程的传质的两个阶段进行分析, 水分蒸发只在物料表面进行, 内层的物料难以蒸发出水分, 且物料表面的空气一旦达到饱和吸水量, 就不会再吸入水分。 表面的空气如不被及时抽走或换气, 水分蒸发实际上会停止。 因此该方式不会太快地减湿, 效率同样会很低, 时间会很长。 由于烘箱使用的是普通风扇, 换气速度慢, 换气效率低, 因 此会使箱内的空气接近饱和吸水, 因此使用烘箱干燥高含水量物料的效率会非常低下。
【发明内容】
本发明要解决的技术问题就在于: 针对现有技术存在的技术问题, 本发明提供一种结构 简单、 操作方便、 减湿效率高、 能耗低、 能够提高制样精确性的热风穿透内循环式煤样减湿 装置。
为解决上述技术问题, 本发明采用以下技术方案:
一种热风穿透内循环式煤样减湿装置, 包括箱体、 控制器以及装设于箱体内的风机、 隔 板、 气体加热器, 所述隔板将箱体分隔成两个腔室, 所述风机位于其中一个腔室中, 所述隔 板上放置有一个以上用来盛装煤样的煤样盘, 所述煤样盘的底部开设有一个以上的通风孔, 所述煤样盘的下方设有用来收集落样的煤样托。
作为本发明的进一步改进:
所述箱体内的一侧形成回风通道, 所述风机为抽风机并位于顶部腔室中, 所述风机的出 风口与回风通道的一端相连通, 所述回风通道的另一端与底部腔室相连通, 所述气体加热器 安装于回风通道中。
所述回风通道中安装有用来检测热风流速的风速计, 所述控制器通过一变频器与风机相 连; 所述控制器根据风速计采集的风速信号与预设的风速比较从而通过变频器调整风机的转 速。
所述煤样托包括由上至下依次相连的支撑部、 通风部和收样部, 所述支撑部支承于隔板 上, 所述煤样盘放置于支撑部的上方, 所述收样部位于支撑部的下方。
所述煤样托与煤样盘一体成型。
与现有技术相比, 本发明的优点在于: 本发明的热风穿透内循环式煤样减湿装置, 采用 热风穿透的减湿方式, 有效增加了煤样的蒸发表面积, 效率可以提高数倍到数十倍, 同时进 一步在煤样盘的下方设有用来收集落样的煤样托, 保证了煤样的完整性, 提高了制样的精度 性。
【附图说明】
图 1是本发明的结构原理示意图。
图 2是图 1中 A-A处的剖视结构示意图。
图 3是本发明中煤样盘的俯视结构示意图。
图 4是图 3中 B-B处的剖视结构示意图。
图 5是本发明中煤样托的俯视结构示意图。
图 6是图 5中 C-C处的剖视结构示意图。
图 7是本发明中煤样盘放置于煤样托上组合后的结构示意图。
图 8是在另一实施例中煤样托与煤样盘采用一体化成型的结构示意图。
图例说明
1、 箱体; 2、 风机; 3、 隔板; 4、 控制器; 5、 煤样盘; 6、 气体加热器; 7、 煤样托; 8、 回风通道; 9、 风速计; 10、 变频器; 51、 通风孔; 71、 支撑部; 72、 通风部; 73、 收样部; 11、 煤样; 12、 密封垫; 13、 气体冷凝除湿部件
【具体实施方式】
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。
如图 1和图 2所示, 本发明的热风穿透内循环式煤样减湿装置, 包括箱体 1、 控制器 4 以及装设于密闭的箱体 1内的风机 2、 隔板 3、 气体加热器 6, 隔板 3将箱体 1分隔成两个腔 室, 分别为底部腔室和顶部腔室。风机 2位于其中一个腔室中, 本实施例中位于顶部腔室中, 该风机 2采用抽风机。 隔板 3上放置有一个以上用来盛装煤样 11的煤样盘 5, 煤样 11均匀 的摊铺在煤样盘 5内。 参见图 3〜图 7, 煤样盘 5的底部开设有一个以上的通风孔 51, 热风 气流从通风孔 51穿过, 均匀的透过煤样 11, 对煤样 11进行减湿作业。 煤样盘 5的下方设有 用来收集落样的煤样托 7。 气体加热器 6用来对循环风进行加热, 保证对煤样盘 5中的煤样 11进行加热减湿。 减湿 (减水) 过程实际上是一个传质过程, 即要通过流动的空气把物料中 的水分逐步带走, 物料的水分才会逐步减少。 减水过程分为两个阶段, 第一个阶段水分要从 物料表面由液态转变为汽态; 第二个阶段是由物料表面蒸发为汽态的水汽要溶到物料表面的 空气中, 由流动的空气带走。 这两个阶段都与物料周边的温度相关, 物料表面水分蒸发以及 周边空气所能溶吸的水量跟温度成函数关系, 温度越高, 蒸发速度越快, 一定量的空气可溶 吸的水量也越大。 但温度高到一定程度会影响煤样的物理和化学特性, 因此, 国际标准规定 此时的温度不能高于 40°C, 国家标准规定为 50°C。 因此, 本发明采用热风穿透的减湿方法, 是为了有效增加物料的蒸发表面积, 效率可以提高数倍到数十倍。 同时, 为了保证气流在减 湿过程中不会带走部分煤样 11, 因此本发明进一步在煤样盘 5的下方设有用来收集落样的煤 样托 7, 以保证煤样 11的完整性, 提高制样的精度性。
本实施例中, 在箱体 1 内的一侧形成回风通道 8, 风机 2为抽风机并位于顶部腔室中, 风机 2的出风口与回风通道 8的一端相连通, 回风通道 8的另一端与底部腔室相连通, 气体 加热器 6安装于回风通道 8中。 通过风机 2的工作, 令箱体 1底部的热气流往上运动穿透煤 样盘 5中的煤样 11, 完成减湿。 同时, 位于箱体 1顶部腔体内的气流又进入回风通道 8, 经 过气体加热器 6后重新利用、 加热后又被送入箱体 1底部的腔体中。 可以理解, 回风通道 8 内, 为了提高气流的流速, 还可以再增加一个以上的送风机。 本实施例在回风通道 8中还设 有一用来对气体进行除湿的气体冷凝除湿部件 13。
本实施例中, 回风通道 8中安装有用来检测热风流速的风速计 9, 控制器 4通过一变频 器 10与风机 2相连。 在煤样 11的干燥初期, 由于煤样 11水分高, 透气性不强, 干燥气流速 度低于预设速度, 控制器 4采集风速计 9的风速信号并与预设的风速比较从而通过变频器 10 调整风机 2转速, 使得干燥入口风速与预设的风速一致, 以加快干燥速度。 随着干燥机内样 品的水分不断分离, 样品的透气性增强, 干燥气流风速逐渐增大。 控制器 4将根据风速计 9 的信号变化不断调整风机速度, 使风速逐渐减小, 从而避免了煤样 11过于干燥、 达到节能的 效果。
从整体上来说, 变频的目的是根据实际工作的单元数量产生与之匹配的风量和风速, 从 而保证减湿的最佳效果。 即实际工作单元少, 变频使风量减少, 如实际工作单元增加, 变频 使风量增加。 实现过程是在总风管内加装风速检测装置, 如果检测到风速有突然减少, 表明 有新的工作单元加入工作, 此时应提高风量。 如检测到风速突然增加, 则是因为有工作单元 退出工作状态, 应减少风量。
从一个单元的工作过程来看, 物料的减水过程分为高湿、 中湿和低湿三个过程, 减水初 期, 物料湿度大, 风阻相应地较大, 此时要维持透过物料足够的风量和风速, 需要的风压应 该最大。 随着物料水分的降低, 风阻会逐步减小, 此时应适时调整风量和风速。 在第三阶段, 有很多高湿样品会有结块情况发生, 此时风阻反而会增大, 如果还需继续减湿, 应提高风压, 以维持适当的风速。
本实施例中, 煤样托 7包括由上至下依次相连的支撑部 71、 通风部 72和收样部 73, 支 撑部 71支承于隔板 3上, 支撑部 71与隔板 3之间设有密封垫 12, 煤样盘 5放置于支撑部 71 的上方,且保证煤样盘 5与支撑部 71的接触部位完全密封,收样部 73位于支撑部 71的下方。 即, 煤样盘 5的侧面保证密封。 如果煤样盘 5的侧面 (即周边) 的空隙比较大, 就可能会使 大部分气流流向盘的周边而不会从盘中的物料流过。 为了使热气流最大限度的流经煤样盘 5 中的煤样 11, 煤样盘 5的侧面实际上越密封越好。 可以抽象地将煤样盘 5的周边与中部通风 孔 51比喻成两条通道, 热风要从哪条道走, 要看哪条道的阻力小 (也叫风阻)。
如图 8所示, 在另一实施例中, 还可以根据实际需要, 将煤样托 7与煤样盘 5—体成型, 煤样托 7直接位于煤样盘 5的下方。
以上仅是本发明的优选实施方式, 本发明的保护范围并不仅局限于上述实施例, 凡属于 本发明思路下的技术方案均属于本发明的保护范围。 应当指出, 对于本技术领域的普通技术 人员来说, 在不脱离本发明原理前提下的若干改进和润饰, 应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种热风穿透内循环式煤样减湿装置, 其特征在于: 包括箱体 (1)、 控制器 (4) 以及装设于箱体 (1) 内的风机 (2)、 隔板 (3)、 气体加热器 (6), 所述隔板 (3) 将箱体 (1) 分隔成两个腔室, 所述风机 (2) 位于其中一个腔室中, 所述隔板 (3) 上放置有一 个以上用来盛装煤样的煤样盘(5),所述煤样盘(5)的底部开设有一个以上的通风孔(51), 所述煤样盘 (5) 的下方设有用来收集落样的煤样托 (7)。
2、 根据权利要求 1 所述的热风穿透内循环式煤样减湿装置, 其特征在于: 所述箱体 (1) 内的一侧形成回风通道 (8), 所述风机 (2) 为抽风机并位于顶部腔室中, 所述风机 (2) 的出风口与回风通道 (8) 的一端相连通, 所述回风通道 (8) 的另一端与底部腔室 相连通, 所述气体加热器 (6) 安装于回风通道 (8) 中。
3、 根据权利要求 2所述的热风穿透内循环式煤样减湿装置, 其特征在于: 所述回风 通道(8) 中安装有用来检测热风流速的风速计(9), 所述控制器(4)通过一变频器(10) 与风机 (2) 相连; 所述控制器 (4) 根据风速计 (9) 采集的风速信号与预设的风速比较 并通过变频器 (10) 调整风机 (2) 的转速。
4、 根据权利要求 1或 2或 3所述的热风穿透内循环式煤样减湿装置, 其特征在于: 所述煤样托 (7) 包括由上至下依次相连的支撑部 (71)、 通风部 (72) 和收样部 (73), 所述支撑部 (71) 支承于隔板 (3) 上, 所述煤样盘 (5) 放置于支撑部 (71) 的上方, 所 述收样部 (73) 位于支撑部 (71) 的下方。
5、 根据权利要求 4所述的热风穿透内循环式煤样减湿装置, 其特征在于: 所述煤样 托 (7) 与煤样盘 (5) —体成型。
PCT/CN2013/075749 2012-06-26 2013-05-17 热风穿透内循环式煤样减湿装置 WO2014000522A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2015102061/05U RU157332U1 (ru) 2012-06-26 2013-05-17 Устройство сушки образцов угля с внутренней циркуляцией горячего проникающего воздуха
ZA2015/00429A ZA201500429B (en) 2012-06-26 2015-01-21 Hot air penetrating internal circulation coal sample dehumidifying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210212415.6 2012-06-26
CN201210212415.6A CN102937539B (zh) 2012-06-26 2012-06-26 热风穿透内循环式煤样减湿装置

Publications (1)

Publication Number Publication Date
WO2014000522A1 true WO2014000522A1 (zh) 2014-01-03

Family

ID=47696450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075749 WO2014000522A1 (zh) 2012-06-26 2013-05-17 热风穿透内循环式煤样减湿装置

Country Status (5)

Country Link
CN (1) CN102937539B (zh)
AU (1) AU2013101715A4 (zh)
RU (1) RU157332U1 (zh)
WO (1) WO2014000522A1 (zh)
ZA (1) ZA201500429B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103994912A (zh) * 2014-05-11 2014-08-20 中国矿业大学 一种保持煤样结构完整性的浸水方法
CN108424846A (zh) * 2018-05-21 2018-08-21 南京申友生物技术有限公司 一种基因检测用晾干装置
CN109100195A (zh) * 2018-10-26 2018-12-28 长沙开元仪器有限公司 一种煤样自动制样系统及方法
CN113587976A (zh) * 2021-06-09 2021-11-02 合肥通用机械研究院有限公司 一种宽温域空气温湿度取样测量装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937539B (zh) * 2012-06-26 2015-10-28 湖南三德科技股份有限公司 热风穿透内循环式煤样减湿装置
CN103674656B (zh) * 2013-12-23 2017-03-01 湖南三德科技股份有限公司 风机外置式煤样减湿装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2533914A1 (de) * 1975-07-30 1977-02-10 Ruhrkohle Ag Trockner fuer feinkoerniges schuettgut
JP2840579B2 (ja) * 1996-01-26 1998-12-24 川崎重工業株式会社 流動層分級器
CN2916533Y (zh) * 2006-04-05 2007-06-27 主典兴业股份有限公司 利用斜坡式循环干燥的低温干燥机
CN201497310U (zh) * 2009-08-25 2010-06-02 杭州萧山天成机械有限公司 隧道式原丝烘干炉错层式炉体机构
CN101946971A (zh) * 2010-08-11 2011-01-19 中国水产科学研究院渔业机械仪器研究所 一种翻料式发酵豆粕烘干机的排料机构改良结构
CN202661309U (zh) * 2012-06-26 2013-01-09 湖南三德科技发展有限公司 热风穿透内循环式煤样减湿装置
CN102937539A (zh) * 2012-06-26 2013-02-20 湖南三德科技发展有限公司 热风穿透内循环式煤样减湿装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150773A (en) * 1978-05-19 1979-11-27 Toshiba Corp Dryer
CN201041455Y (zh) * 2007-05-23 2008-03-26 莱州市电子仪器有限公司 一种纺织分析专用烘燥装置
CN201215434Y (zh) * 2008-06-06 2009-04-01 昆明理工大学 变风量滚筒式下送上回风中高温热泵干燥机
CN201964742U (zh) * 2010-11-30 2011-09-07 广州能之原节能技术有限公司 一种通过反馈调节风机转速的智能节能干燥机
CN202002440U (zh) * 2011-02-22 2011-10-05 成都东和工业有限责任公司 一种冷凝除湿热水加热烘烤装置
CN201974017U (zh) * 2011-02-22 2011-09-14 浙江佳为环境科技有限公司 一种高效节能的脱水烘干设备
CN202074791U (zh) * 2011-04-25 2011-12-14 季连祥 新型烘干机
CN202254674U (zh) * 2011-10-15 2012-05-30 四川制药制剂有限公司 一种节省能耗的电热鼓风干燥箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2533914A1 (de) * 1975-07-30 1977-02-10 Ruhrkohle Ag Trockner fuer feinkoerniges schuettgut
JP2840579B2 (ja) * 1996-01-26 1998-12-24 川崎重工業株式会社 流動層分級器
CN2916533Y (zh) * 2006-04-05 2007-06-27 主典兴业股份有限公司 利用斜坡式循环干燥的低温干燥机
CN201497310U (zh) * 2009-08-25 2010-06-02 杭州萧山天成机械有限公司 隧道式原丝烘干炉错层式炉体机构
CN101946971A (zh) * 2010-08-11 2011-01-19 中国水产科学研究院渔业机械仪器研究所 一种翻料式发酵豆粕烘干机的排料机构改良结构
CN202661309U (zh) * 2012-06-26 2013-01-09 湖南三德科技发展有限公司 热风穿透内循环式煤样减湿装置
CN102937539A (zh) * 2012-06-26 2013-02-20 湖南三德科技发展有限公司 热风穿透内循环式煤样减湿装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103994912A (zh) * 2014-05-11 2014-08-20 中国矿业大学 一种保持煤样结构完整性的浸水方法
CN108424846A (zh) * 2018-05-21 2018-08-21 南京申友生物技术有限公司 一种基因检测用晾干装置
CN109100195A (zh) * 2018-10-26 2018-12-28 长沙开元仪器有限公司 一种煤样自动制样系统及方法
CN113587976A (zh) * 2021-06-09 2021-11-02 合肥通用机械研究院有限公司 一种宽温域空气温湿度取样测量装置
CN113587976B (zh) * 2021-06-09 2024-04-09 合肥通用机械研究院有限公司 一种宽温域空气温湿度取样测量装置

Also Published As

Publication number Publication date
ZA201500429B (en) 2016-03-30
CN102937539B (zh) 2015-10-28
AU2013101715A4 (en) 2015-02-12
CN102937539A (zh) 2013-02-20
RU157332U1 (ru) 2015-11-27

Similar Documents

Publication Publication Date Title
WO2014000522A1 (zh) 热风穿透内循环式煤样减湿装置
CN109959218B (zh) 一种花椒提露、烘干方法及装置
CN201269609Y (zh) 带湿度控制的新风换气机
CN106765851A (zh) 一种空气过滤处理器及其处理系统、处理方法
CN102589948A (zh) 生物样品处理箱
CN204012330U (zh) 高压柜洁净干空气交换系统
CN103115409A (zh) 高效电子除湿器
CN202254665U (zh) 干燥程序可控的常温干燥装置
CN204227863U (zh) 翻转落料式风透干燥设备
CN209263194U (zh) 一种除湿设备
CN204408839U (zh) 电气控制柜
CN203534081U (zh) 一种鼓风式热风穿透干燥箱
CN102937370B (zh) 热风穿透外循环式煤样减湿装置
CN201805862U (zh) 一种隧道式果品太阳能干燥设备
CN202661310U (zh) 可自动送取样的热风穿透内循环式煤样减湿装置
CN202661309U (zh) 热风穿透内循环式煤样减湿装置
CN207635777U (zh) 化学玻璃仪器烘干器
CN104481001A (zh) 从干燥空气中取水的方法及装置
CN103674656B (zh) 风机外置式煤样减湿装置
CN209182103U (zh) 一种可以控制流量的非加热方式去除冷凝水的大气采样管
CN203672057U (zh) 一种带辅助加热的风透式干燥箱
CN202631334U (zh) 可自动送取样的热风穿透外循环式煤样减湿装置
CN102937540B (zh) 可自动送取样的热风穿透内循环式煤样减湿装置
CN203464646U (zh) 用于热风穿透式煤样减湿设备的风量均流装置
CN108825412B (zh) 一种低温进气空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809269

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014/15752

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809269

Country of ref document: EP

Kind code of ref document: A1