WO2013190920A1 - 缶体のピンホール検査装置 - Google Patents

缶体のピンホール検査装置 Download PDF

Info

Publication number
WO2013190920A1
WO2013190920A1 PCT/JP2013/062600 JP2013062600W WO2013190920A1 WO 2013190920 A1 WO2013190920 A1 WO 2013190920A1 JP 2013062600 W JP2013062600 W JP 2013062600W WO 2013190920 A1 WO2013190920 A1 WO 2013190920A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding
light
rotating turret
pinhole inspection
movable plate
Prior art date
Application number
PCT/JP2013/062600
Other languages
English (en)
French (fr)
Inventor
泰広 小路
佑直 石井
友規 瀬尾
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to US14/408,455 priority Critical patent/US9207144B2/en
Priority to JP2014521013A priority patent/JP6124024B2/ja
Priority to EP13806874.7A priority patent/EP2866023B1/en
Priority to DK13806874.7T priority patent/DK2866023T3/en
Priority to CN201380032576.XA priority patent/CN104395738B/zh
Publication of WO2013190920A1 publication Critical patent/WO2013190920A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/894Pinholes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/909Investigating the presence of flaws or contamination in a container or its contents in opaque containers or opaque container parts, e.g. cans, tins, caps, labels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/064Stray light conditioning
    • G01N2201/0642Light traps; baffles

Definitions

  • the present invention relates to an inspection apparatus for inspecting a pinhole generated in a body portion of a can body.
  • a seamless can body (hereinafter simply referred to as a can body) made by drawing and ironing, pinholes such as holes and cracks are generated in the body portion of the can body. There is. The presence or absence of the pinhole is generally inspected by a pinhole inspection apparatus used in the inspection process of the can body.
  • the pinhole inspection apparatus disclosed in Patent Document 1 includes an inspection turret for holding a can body to be inspected on the right side and a can body inside detection apparatus on the left side.
  • a piston-like sealing member to which a sealing ring plate that slides in contact with the sliding ring plate and seals the sliding contact surface is fixed, is slidably provided on the front end surface of the first frame on the sliding ring plate side. Yes.
  • the piston-like sealing member is urged by air pressure against the sliding ring plate that rotates at high speed at the time of pinhole inspection, the sealing effect on the sliding contact surface is enhanced, and disturbance light composed of external light, light source light, etc. Leaking from the sliding surface to the photodetector side is prevented.
  • the pinhole diameter to be inspected by a conventional can pinhole inspection apparatus is about 20 ⁇ m, and when inspecting the presence or absence of a small diameter pinhole, the pinhole enters the can body. There is a possibility that the light that enters will be weak and may not reach a detectable amount of light.
  • a method of securing a light quantity that can be detected by a photodetector using a light source having a higher luminous intensity than the conventional one can be considered, but the conventional apparatus configuration does not take sufficient measures against disturbance light, There is a risk that the incidence of false detection due to the increase will increase.
  • Patent Document 2 the peripheral edge and the inner edge made of aluminum coated with a black silicone resin shield light from the light source.
  • Patent Document 3 the light from the light source is blocked and movable.
  • a light shielding part (cover) that can prevent light from entering between the plate and the rotating disk is described.
  • disturbance light is transmitted to the peripheral edge part, the inner edge part, and the light shielding part (cover). There is a risk of reaching the photodetector side from between the movable plate and the rotating disk, and the above-mentioned problem has not yet been sufficiently solved.
  • the first object of the present invention is to effectively prevent disturbance light from entering the photodetector side from the gap between the movable plate and the rotating turret caused by the surface state and the like.
  • the object is to provide a pinhole inspection apparatus for cans.
  • the second object is to achieve the first object, so that it is possible to use a light source with a high luminous intensity, it is possible to detect a pinhole with a smaller diameter, and the inspection accuracy is further improved.
  • the object is to provide a pinhole inspection apparatus for cans.
  • a pinhole inspection apparatus for a can body includes a rotating turret having a through-hole, a movable plate provided on a fixed frame side facing the rotating turret, a can body holding member for placing the can body,
  • a pinhole inspection device for a can body comprising a photodetector for detecting light leaking into the inside of the can body, and a light source for irradiating the can body with light.
  • a detour formed by a pair of shielding portions installed facing each other with a predetermined interval is provided as a shielding mechanism.
  • the pair of shielding portions includes a first shielding portion and a second shielding portion.
  • the first shielding portion is fixed to a rotating turret, and the second shielding portion is fixed to a position substantially opposite to a side surface portion of the rotating turret. .
  • the pair of shielding portions includes a first shielding portion and a second shielding portion, and the shielding members provided in the shielding portions are arranged so as to alternately protrude toward the cylindrical portions of the opposing shielding portions. . 3.
  • the shielding board formed so that the said shielding member may protrude perpendicularly
  • interval with the shielding member which opposes the said shielding member is 5 mm or less. 5.
  • the overlap amount between the shielding member and the opposing shielding member is 9 mm or more. 6).
  • On the surface of the movable plate a plurality of annular grooves having a rectangular cross section are provided as a shielding mechanism concentrically with the through hole of the movable plate. 7).
  • a light source for irradiating light to the outer peripheral surface of the can body is provided, and white LED light is used as the light source. 8).
  • the can holding member is fixed to a support shaft of the chuck via a rod.
  • the can pinhole inspection apparatus is provided with an intricately structured detour as a shielding mechanism, so that disturbance light can be attenuated or shielded during the detour propagation process, and the movable plate and the rotating turret It is possible to effectively prevent disturbance light from entering the photodetector side from the gap.
  • the pair of shielding portions includes a first shielding portion and a second shielding portion.
  • the first shielding portion is attached to a rotating turret, and the second shielding portion is attached to a case end that covers the fixed frame.
  • the predetermined distance between the pair of shielding portions is stabilized, and disturbance light can be stably attenuated or shielded in the propagation process of the detour, and contact between the shielding portions is effectively prevented. can do.
  • the shielding members provided in the first shielding part and the second shielding part are arranged so as to alternately protrude toward the cylindrical part of each of the opposing shielding parts, thereby making the propagation path of the disturbance light longer. Thus, disturbance light can be effectively attenuated or shielded.
  • the shielding member is a shielding plate formed so as to protrude vertically toward the cylindrical portion of each of the opposing shielding portions, it is easy to attach a pair of shielding portions installed facing each other. And the contact between the shielding parts is prevented.
  • the shielding member a thin plate-like member, the number of shielding members that can be formed in each shielding portion can be increased, and a structure in which a detour is more complicated within a limited range can be obtained. It is possible to further enhance the attenuation or shielding effect.
  • the distance between the shielding member and the shielding member facing the shielding member is 5 mm or less, thereby preventing contact between the first shielding part and the second shielding part due to the rotation of the rotating turret, and the propagation path of the detour path.
  • the width can be narrowed, and disturbance light can be attenuated or shielded more effectively.
  • the amount of overlap between the shielding member and the opposing shielding member is 9 mm or more, the attenuation or shielding effect of disturbance light can be further enhanced.
  • a shielding mechanism comprising an annular groove having a rectangular cross section on the surface of the movable plate, disturbance light entering from the gap between the rotating turret rotating at high speed and the movable plate reaches the space of the annular groove. It is possible to effectively prevent the disturbance light from reaching the photodetector side by effectively reducing the amount of light that is attenuated or absorbed each time and reaches the through-hole formed in the movable plate. For this reason, the attenuation or shielding effect of the disturbance light can be further enhanced by providing the shielding mechanism provided in the entire outer peripheral region of the rotating turret.
  • the pinhole inspection apparatus for a can body of the present invention it is possible to use a light source having a high luminous intensity, and therefore, a light source for irradiating light to the outer peripheral surface of the can body is provided.
  • white LED light instead of the lamp, it is possible to detect pinholes with a smaller diameter (about several ⁇ m) while effectively preventing disturbance light from entering the photodetector.
  • an inspection turret star wheel
  • a light source particularly a lower light source
  • the degree of freedom is widened, it is possible to increase the amount of light by adding a light source. In addition, it is possible to prevent problems that occur when the body of the can body that moves in the axial direction with respect to the rotating turret slides with the end surface of the pocket of the inspection turret, such as scratches and dents on the body of the can body. it can.
  • inspects a can body with the pinhole inspection apparatus of the can body of this invention It is a figure which shows the test
  • FIG. 1 is a schematic diagram illustrating a can body inspection mode in a can body pinhole inspection apparatus according to the present invention.
  • a can body 1 supplied to a pocket 3a of an inspection turret 3 by a supply turret 2 is shown in FIG.
  • a procedure is shown in which the inspection turret 3 continuously rotated in the direction is transported to an inspection station A in which light sources 10a and 10b, which will be described later, are arranged and passed or rejected, and then sent out to the next process by the delivery turret 4.
  • FIG. 2 is a view showing an inspection area of the pinhole inspection apparatus for a can according to the present invention.
  • the pinhole inspection apparatus for a can according to the present invention includes an inspection turret 3, a rotating turret 5, a chuck 6, and a light source 10 (10a, 10b).
  • the inspection turret 3 is generally referred to as a star wheel and is a can holding member on which the can body 1 is placed.
  • a pocket 3a which is a recess in which the body portion of the can body 1 can be placed on the outer peripheral edge thereof.
  • a plurality of are formed.
  • the rotating turret 5 has a plurality of through-holes 8 penetrating between both surfaces thereof, and a sponge-like opening receiving portion 7 to which the opening end of the can body 1 whose one end is open is pressed is formed on one peripheral edge of the through-hole 8. It is attached via an attachment ring 7a.
  • the chuck 6 is a member that supports the bottom of the can 1 by vacuum suction, and is provided so as to be fixed to the support shaft 9 and to face the rotating turret 5.
  • the chuck 6 and the support shaft 9 can move in the axial direction with respect to the rotating turret 5 so that the opening end of the can body 1 is in close contact with the opening receiving portion 7 of the rotating turret 5 by a cam and a cam follower (not shown).
  • the fixed frame 11 is covered with a casing 12, and a high-sensitivity photomultiplier tube (photomultiplier) or the like that detects light leaking into the inside of the can body 1 is opposed to the rotating turret 5.
  • the photodetector 13 is provided coaxially with the through hole 8 and a through hole 21 of the movable plate 20 described later.
  • a can body Light sources 10a and 10b for irradiating light from above and below are disposed on one body portion.
  • a cover 10c that prevents light from the light source from leaking outside the apparatus is attached to the light source 10a.
  • white light having a wavelength in the entire region from ultraviolet to infrared is preferable.
  • a white LED light is used as a high-luminance light source, and a plurality of them are arranged. . Accordingly, it is possible to detect a smaller pinhole by increasing the inspection accuracy while effectively preventing disturbance light from entering the photodetector 13 side by a shielding mechanism described later.
  • the movable plate 20 is provided to face the rotating turret 5 and is a general term for each member including a piston member 22 having a through hole in the center, a ring plate 25, and a sliding member 26.
  • a ring plate 25 is fixed to the top surface plate 24 of the piston member 22 composed of the top surface plate 24 by bolts.
  • the top surface of the ring plate 25 is made of a black non-glossy, low friction coefficient, relatively soft plastic, such as a fluorine resin soft plastic, so that the sliding with the rotating turret 5 can be performed smoothly.
  • the member 26 is bonded.
  • the sliding member 26 is desirably bonded to the ring plate 25 fixed to the top surface plate 24 of the piston member 22 as in the present embodiment, the sliding member 26 is directly attached to the top surface plate 24 of the piston member 22. It is also possible to bond.
  • leg portion 23 of the piston member 22 is fitted in a fitting guide groove formed in the fixed frame 11, and can be moved forward and backward by the piston action by air pressure.
  • a pair of O-rings are provided on the inner and outer peripheral portions of the leg portion 23 in order to seal the leg portion 23 and the sliding portion of the fitting guide groove.
  • the can body 1 held in the pocket 3a is supported by the chuck 6 so as to be able to rotate, and its opening end is an opening receiving portion of the rotating turret 5 7 is in close contact.
  • the through hole 8 of the rotating turret 5 coincides with the through hole 21 of the movable plate 20 on the same axis (detection position).
  • a configuration is adopted in which the leaked light is received by the photodetector 13 and the presence or absence of a pinhole is determined based on the brightness.
  • a detour formed by a pair of shielding portions installed facing each other with a predetermined interval is provided as a shielding mechanism in the entire outer peripheral region of the rotating turret.
  • the pair of shielding portions includes a first shielding portion 30 attached to the rotating turret 5 via a bolt or the like, a position substantially opposite to a side surface portion of the rotating turret 5, and the present embodiment.
  • it consists of a second shielding part 40 fixed to the tip of the casing 12 covering the fixed frame 11.
  • the first shielding portion 30 surrounds the entire outer peripheral region of the rotating turret 5 and has a predetermined length along the thickness direction of the rotating turret 5, and the surface of the cylindrical portion 31.
  • a plurality of shielding members 32a and 32b attached so as to protrude toward the second shielding portion 40 from the first shielding portion.
  • the second shielding portion 40 surrounds the outer peripheral region of the side surface portion of the rotating turret 5 and has a cylindrical portion 41 having a predetermined length along the thickness direction of the rotating turret 5, and the second shielding portion 40 from the surface of the cylindrical portion 41. It consists of a plurality of shielding members 42 a and 42 b attached so as to protrude toward one shielding portion 30.
  • the first shielding portion 30 and the second shielding portion 40 that is, the cylindrical portions 31 and 41, the shielding members 32a and 32b, and the shielding members 42a and 42b (hereinafter referred to as shielding members 32 and 42), respectively, are predetermined. Are arranged so as to face each other in a non-contact manner and have a structure that does not interfere with the rotation of the rotating turret 5. Further, the shielding mechanism is made of a metal member such as aluminum or steel, and is surface-treated to a non-glossy black so as to absorb disturbance light and reduce the reflectance.
  • the shielding member 32 is attached to the first shielding part 30 at two places (32a, 32b), and the shielding member 42 is attached to the second shielding part 40 at two places (42a, 42b).
  • the other shielding member has an interval l1 and is arranged so as to alternately protrude toward the cylindrical portion of each of the opposing shielding portions.
  • the shielding members 32 and 42 are shield plates formed so as to protrude vertically toward the cylindrical portions 31 and 41 of the opposing shielding portions 30 and 40, so that a pair of opposed members are installed.
  • the attachment work of the shielding parts 30 and 40 is easy, and contact between the shielding parts 30 and 40 is prevented.
  • the shielding members 32 and 42 as thin plate-like members, the number of shielding members 32 and 42 that can be formed in each shielding portion 30 and 40 is increased, and the detour is more complicated within a limited range. It is possible to further enhance the attenuation or shielding effect of disturbance light.
  • the light shielding effect becomes higher as the distance l1 is shorter, and the light shielding effect becomes higher as the number of the shielding members 32 and 42 is larger.
  • the shielding members 32 and 42 have a length of 1 ⁇ 2 or more of the distance l2 between the cylindrical portions 31 and 41 so that the shielding members 32a and 32b and the opposing shielding members 42a and 42b overlap each other.
  • the amount of overlap l3 is larger, the light shielding effect is higher.
  • the overlap amount l3 is set to 9 mm or more, so that the first shielding unit 30 and the second shield caused by the rotation of the rotary turret 5 are set.
  • the propagation path of a detour can be made narrow, and disturbance light can be attenuated or shielded more effectively.
  • the distance l1 exceeds 5 mm, the propagation path of the detour increases, and when the overlap amount l3 is less than 9 mm, the length of the detour propagation path decreases, effectively attenuating or shielding disturbance light. It may be difficult to do.
  • the shielding members 32 and 42 can be set with an appropriate length, interval, and angle as long as the rotation of the rotary turret 5 is not hindered.
  • the disturbance light to be shielded is direct light emitted from the light sources 10a and 10b, and reflected light from each member of the can 1 or the pinhole inspection device, and the first shielding unit 30 and the second shielding unit 40.
  • the disturbance light that enters the shielding mechanism consisting of is rays A, B, and C from below in FIG.
  • the light rays from the three directions are used as samples, and it is verified how the light rays in the specular reflection direction that gives the strongest reflection propagate based on the Gaussian distribution.
  • the first region is between the shielding member 42a and the shielding member 32a
  • the second region is between the shielding member 32a and the shielding member 42b
  • the second region is between the shielding member 42b and the shielding member 32b.
  • Three regions, the shielding member 32b and subsequent regions will be described as a fourth region.
  • the light beam A is incident on the surface of the shielding member 32a at a low angle, and is reflected a plurality of times between the inner surface of the cylindrical portion 41 of the second shielding part 40 and the tip surface of the shielding member 32a, and then reflected a plurality of times in the second region. To do. That is, if the light ray A cannot exceed the second region and the reflectance is 1 / n, for example, the amount of light after 10 reflections is (1 / n) 10 of the amount of incident light, which is sufficient. The amount of light is low.
  • the light beam B is incident on the surface of the shielding member 32a at a slightly high angle, and similarly to the above, the light beam B is reflected a plurality of times between the inner surface of the cylindrical portion 41 of the second shielding portion 40 and the end surface of the shielding member 32a, and then shielded.
  • the second region is reflected a plurality of times via the member 42b. That is, this light beam B cannot pass through the second region, and the amount of light becomes, for example, (1 / n) 10 of the amount of incident light at the time of 10 reflections.
  • the light ray C is incident on the surface of the shielding member 32a at a high angle, is reflected a plurality of times in the first region, is then reflected a plurality of times in the second region via the inner surface of the cylindrical portion 41, and then Reflecting the inside of the third region a plurality of times via the outer surface of the cylindrical portion 31, it reaches the fourth region again via the inner surface of the cylindrical portion 41.
  • the light beam C originally reaches the fourth region where intrusion should be prevented, but since the number of reflections in the shielding mechanism is large (in the case of this embodiment, 15 times), the amount of light is the amount of incident light ( 1 / n) 15 , which is a lower light amount than the light rays A and B having a sufficiently low light amount. For this reason, even when a gap is momentarily generated between the movable plate 20 and the rotating turret 5, the photodetector 13 is erroneously operated by the light beam C (disturbance light) as compared with the conventional case. It can be effectively prevented.
  • the disturbance light incident on the first region can be easily converted into the fourth by the reflection phenomenon, as can be understood by analyzing the reflection forms of the three sample beams.
  • the structure cannot reach the area.
  • at least the surfaces of the first shielding unit 30 and the second shielding unit 40 are surface-treated with black non-gloss, and therefore it is understood that reflection becomes scattered light.
  • the actual reflection is repeatedly scattered while being scattered in all directions on the surfaces of the first shielding part 30 and the second shielding part 40. Therefore, the light propagation amount attenuates as the first region, the second region,.
  • the shielding mechanism provided in the entire outer peripheral region of the rotating turret of the present invention can be variously changed.
  • the propagation path of the disturbance light can be made long, and the disturbance light can be effectively obtained. Can be attenuated or shielded.
  • FIG. 5A it is also possible to attach the shielding portions 30 and 40 along the axial direction of the rotating turret 5 and to form the respective shielding members with an interval l1. Further, as shown in FIG.
  • each cylindrical portion and shielding member of the first shielding portion 30 and the second shielding portion 40 have an appropriate thickness within a range that does not hinder the rotation of the rotating turret 5.
  • the first shielding part 30 may be arranged as an annular block body 32c so as to have an interval l1 between the shielding members 42a and 42b of the second shielding part 40. .
  • uneven shapes for example, concave grooves
  • Inspection 1 Each structure of the shielding mechanism was made of an aluminum metal plate having a thickness of 2 mm and subjected to a black non-glossy surface treatment, and the dimensions were set as follows.
  • One can body 1 is held in an arbitrary pocket 3a of the inspection turret 3 of the pinhole inspection device, the opening end of the can body 1 is brought into contact with the opening receiving portion 7, and the rotating turret 5 is gradually rotated to rotate.
  • the through hole 8 of the turret 5 and the through hole 21 formed in the movable plate 20 were positioned so as to coincide with each other on the same axis, and the rotation was stopped to conduct a pinhole inspection.
  • a 0.08 mm gap is provided between the movable plate 20 and the rotary turret 5 without operating the air cylinder that urges the movable plate 20 depending on the presence or absence of the shielding mechanism. The shielding effect was confirmed by the light detection value of the light detector 13.
  • the light detection value was 125 mV, and the maximum instantaneous value was 220 mV, whereas when the shielding mechanism was not provided, the light detection value was 4900 mV or more (the upper limit of the light detector measurement). )Met. Note that the value of the light detection value described above is a value obtained by converting the detected light amount into a voltage (mV).
  • a plurality of rectangular grooves 27 (seven in this example) concentrically with the through hole 21 on the surface of the sliding contact member 26 of the movable plate 20 described above are used as a shielding mechanism.
  • An example embodiment is shown.
  • the movable plate 20 By configuring the movable plate 20 as described above, disturbance light that has entered from the gap between the rotating turret 5 rotating at high speed and the movable plate 20 reaches the space of the annular groove 27 having a rectangular cross section of the movable plate 20.
  • the amount of light reaching the through hole 21 formed in the movable plate 20 after being attenuated or absorbed can be effectively reduced, and disturbance light can be effectively prevented from reaching the photodetector 13 side.
  • the shielding mechanism for the movable plate 20 together with the shielding mechanism provided in the entire outer peripheral region of the rotating turret described above, the attenuation or shielding effect of disturbance light can be further enhanced.
  • FIG. 8 is a view for explaining the shielding function by the shielding mechanism of the movable plate 20, and the disturbance light entering the gap between the rotating turret 5 and the peripheral portion of the movable plate 20 from the upper light source 10a and the lower light source 10b.
  • Irradiated direct light and reflected light from each member of the can body 1 or the pinhole inspection device which are rays A, B, and C from the left in FIG.
  • the light ray from the left direction is used as a sample, and based on the Gaussian distribution at the time of reflection, it is verified how the light ray in the specular reflection direction that gives the strongest reflection propagates.
  • the light rays A to C are incident on the surface of the sliding member 26 of the movable plate 20, propagated in the central direction while repeating reflection in the gap, and reach the annular groove 27a having a rectangular cross section.
  • the light rays A to C reach the space of the annular groove 27a, they are attenuated or absorbed when they are repeatedly reflected many times on the wall surface of the annular groove 27a.
  • the light rays A to C whose amount of light has decreased are propagated repeatedly toward the inner side (center side) and reach the annular groove 27b, a large number of reflections are repeatedly attenuated or attenuated as described above. Absorbed.
  • the incident angles of light rays are in the order of A>B> C, and the number of reflections is also in the order of A>B> C.
  • the light beam B after entering the annular groove 27a and repeatedly reflecting a plurality of times, it is returned to the entrance side of the gap and emitted outward.
  • extraneous light incident from an angle parallel to the surface of the sliding contact member 26 of the rotating turret 5 and the movable plate 20 has a small number of reflections and is difficult to attenuate.
  • the annular groove 27a has a wider space than the gap that has been repeatedly reflected, the light rays A to C diffuse and attenuate when they reach the space of the annular groove 27a. That is, even with external light incident from a parallel angle, the amount of light can be made sufficiently low due to the above-described attenuation effect.
  • the inner annular groove 27 is provided by providing a shielding mechanism including a plurality of annular grooves 27 on the surface of the sliding contact member 26 of the movable plate 20.
  • the light attenuation effect is superimposed every time the light reaches the light source, and the extraneous light entering the gap can be made sufficiently low.
  • the surfaces of the rotating turret 5 and the sliding contact member 26 are surface-treated with black non-gloss, so that the reflected light becomes scattered light, and the actual reflection is the surface of the rotating turret 5 and the sliding contact member 26. It is reasonable to understand that this scattering is repeated while being scattered in all directions. Therefore, the amount of light propagation attenuates as the annular groove 27a, the annular groove 27b,.
  • inspection data for confirming the shielding effect such as attenuation or shielding of disturbance light by the shielding mechanism of the movable plate 20 described above will be shown. 2. Inspection 2
  • the dimensions of the sliding contact member 26 having a black non-glossy surface made of a fluorine resin soft plastic of the movable plate 20 were set as follows.
  • the positions “ ⁇ 12 °” and “12 °” indicate the positions of the start point and end point where the peripheral edge of the through hole 8 of the rotating turret 5 and the peripheral edge of the through hole 21 of the movable plate 20 overlap. .
  • the data at this time is shown in Table 1.
  • the timing at which the measurement is performed in the pinhole inspection apparatus of the present invention is in the range of ⁇ 3 ° to 3 °.
  • a can 1 is held in an arbitrary pocket 3a of an inspection turret 3 of a pinhole inspection apparatus, The opening end of the can 1 is brought into contact with the opening receiving portion 7 and the rotating turret 5 is gradually rotated so that the through-holes 8 of the rotating turret 5 and the through holes 21 formed in the movable plate 20 coincide on the same axis. The pinhole was inspected by stopping the rotation.
  • the air cylinder that urges the movable plate 20 is not operated, and a 0.12 mm gap (shim amount) is provided between the movable plate 20 and the rotating turret 5, The shielding effect due to the presence or absence of was confirmed by the light detection value of the photodetector 13.
  • the light detection value was 98 mV when the shielding mechanism was provided, and the light detection value was 570 mV when the shielding mechanism was not provided.
  • the value of the light detection value described above is a value obtained by converting the detected light amount into a voltage (mV).
  • the disturbance light having both of them is attenuated by the disturbance light of the light detection value attenuated by the detour shielding mechanism formed by the pair of shielding portions in the inspection 1. It is inferred that the attenuation is caused by the rate of attenuation by the movable plate shielding mechanism in the inspection 2.
  • 9A to 9C show a can body holding member 3h used in place of the inspection turret 3 that holds the can body described above.
  • 9A is a bottom view of the can body holding member 3h that holds the can body 1
  • FIG. 9B is a front view
  • FIG. 9C is a side view.
  • the can body holding member 3h is a plate-like member, and has a concave portion in which the can body 1 can be placed on the upper portion thereof, and a support shaft 9 of the chuck 6 that supports the bottom portion of the can body via the rod 3r. It is fixed to.
  • the can body holding member 3h is attached to the plurality of rods 3r with a predetermined interval.
  • the can holding member 3h and the chuck 6 are axially connected to the rotating turret 5 so that the opening end of the can 1 is in close contact with the opening receiving portion 7 of the rotating turret 5 by a cam and a cam follower (not shown). It is movable. According to the above configuration, the inspection turret 3 is not required, and the degree of freedom of installation of the light source 10 (particularly the lower light source 10b) for irradiating the can 1 is widened. It becomes.
  • the pinhole inspection apparatus for a can body of the present invention by providing a bypass route formed by a pair of shielding portions as a shielding mechanism, ambient light is attenuated or shielded during the propagation process of the complicated bypass route. It is possible to effectively prevent disturbance light from entering the photodetector side from the gap between the movable plate and the rotating turret caused by the surface condition. Further, in the pinhole inspection apparatus for a can body according to the present invention, by providing a movable plate shielding mechanism, the attenuation or shielding effect of disturbance light can be further enhanced.
  • the pinhole inspection apparatus for cans according to the present invention has a large light shielding effect, it is possible to use a light source having a high luminous intensity and to detect a pinhole having a smaller diameter (about several ⁇ m).
  • a can body pinhole inspection apparatus with improved inspection accuracy can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Textile Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

 表面状態等に起因して生ずる可動板と回転ターレットとの間隙から光検出器側に外乱光が入ることを有効に防止することができる缶体のピンホール検査装置を提供する。また、高光度の光源を用いて、より小径のピンホールの検出することが可能な缶体のピンホール検査装置を提供する。 本発明の缶体のピンホール検査装置は、貫通する透孔を有する回転ターレットと、前記回転ターレットに対向して固定フレーム側に設けられる可動板と、缶体を戴置する缶体保持部材と、缶体の内部に漏れ出た光を検出する光検出器と、前記缶体に光を照射する光源と、を備える缶体のピンホール検査装置であって、前記回転ターレットの全外周領域に、所定の間隔を有して対峙して設置される一対の遮蔽部から形成される迂回路を遮蔽機構として設けたことを特徴とする。

Description

缶体のピンホール検査装置
 本発明は缶体の胴部等に発生したピンホールを検査する検査装置に関する。
 金属缶体、例えば、絞りしごき成形によって作られるシームレス缶体(以下、単に缶体と略称する。)の製造工程において、前記缶体の胴部等に孔や亀裂等のピンホールが発生することがある。前記ピンホールの有無は、前記缶体の検査工程において用いられるピンホール検査装置によって検査されることが一般的である。
 特許文献1に示されたピンホール検査装置は、図10に示されるように、右側が検査される缶体を保持する検査ターレット、左側が缶体内部検出装置で構成されている。また、摺動リング板と摺接して摺接面をシールする封緘リング板が固定されているピストン状封緘部材が、摺動リング板側の第1フレームの先端面に摺動可能に設けられている。これにより、ピンホール検査時に高速回転する摺動リング板に対しピストン状封緘部材をエアー圧により付勢させて、摺接面におけるシール効果を高め、外光及び光源光等からなる外乱光が、前記摺動面から光検出器側に漏れ入ることを阻止している。
 前述の通り、ピンホール検査中は、高速回転する摺動リング板に封緘リング板を押圧状態とするため、通常は封緘リング板と摺動リング板の摺動面から外乱光が光検出器に到達することはない。しかしながら、種々の要素、例えば何らかの外力が加わる、又は封緘リング板及び摺動リング板の表面状態等に起因して、両部材の間に瞬間的に間隙を生じて、前記間隙からの外乱光が光検出器に到達し、良品を不良品として誤検出してしまうおそれがあった。
 また、光検出器の性能上、従来の缶体のピンホール検査装置の検査対象となるピンホール径は20μm程度であり、更に小径のピンホールの有無を検査する場合、ピンホールから缶体内へ侵入する光が微弱となり、検知可能な光量に達しないおそれがある。ここで、従来よりも高光度の光源を用いて光検出器が検知可能な光量を確保する方法が考えられるが、従来の装置構成では外乱光の対策が十分に取られておらず、光量の増加に起因する誤検出の発生率が高まるおそれがあった。
 尚、特許文献2には、黒色シリコーン樹脂が塗布されたアルミニウムからなる周縁部及び内縁部が光源からの光を遮蔽することが、また特許文献3には、光源からの光を遮断して可動板と回転ディスクとの間に光が侵入することを防止できる光遮蔽部(カバー)が記載されているが、前述の各構成では外乱光が周縁部及び内縁部、及び光遮蔽部(カバー)を迂回して、可動板と回転ディスクとの間から光検出器側に到達するおそれがあり、未だ前述の問題を十分に解決するには至っていない。
特許第4715988号公報 特開2002―365230号公報 特許第4230269号公報
 前述の問題を踏まえ、本発明の第一の目的は、表面状態等に起因して生ずる可動板と回転ターレットとの間隙から光検出器側に外乱光が入ることを有効に防止することができる缶体のピンホール検査装置を提供することにある。また、第二の目的は、前記第一の目的を達成することで高光度の光源を用いることが可能となって、更に小径のピンホールを検出することが可能となり、検査精度が更に向上した缶体のピンホール検査装置を提供することである。
 本発明の缶体のピンホール検査装置は、貫通する透孔を有する回転ターレットと、前記回転ターレットに対向して固定フレーム側に設けられる可動板と、缶体を載置する缶体保持部材と、缶体の内部に漏れ出た光を検出する光検出器と、前記缶体に光を照射する光源と、を備える缶体のピンホール検査装置であって、前記回転ターレットの全外周領域に、所定の間隔を有して対峙して設置される一対の遮蔽部から形成される迂回路を遮蔽機構として設けたことを特徴とする。
 また、本発明の缶体のピンホール検査装置は、以下の形態を採用することができる。
1.前記一対の遮蔽部は、第1遮蔽部及び第2遮蔽部からなり、第1遮蔽部は回転する回転ターレットに、第2遮蔽部は回転ターレットの側面部と略対向する位置に固設される。
2.前記一対の遮蔽部は、第1遮蔽部及び第2遮蔽部からなり、前記各遮蔽部に設けられる遮蔽部材が、対向する前記各遮蔽部の筒部に向けて交互に突出するよう配列される。
3.前記遮蔽部材が、対向する前記各遮蔽部の筒部に向けて垂直に突出するように形成された遮蔽板である。
4.前記遮蔽部材と対峙する遮蔽部材との間隔が5mm以下である。
5.前記遮蔽部材と、対峙する遮蔽部材とのオーバーラップ量が9mm以上である。
6.前記可動板の表面に、該可動板の貫通孔と同心円状に複数の断面矩形状の環状溝を遮蔽機構として設ける。
7.缶体の外周面に光を照射する光源を備え、前記光源に白色LED光を用いる。
8.前記缶体保持部材は、ロッドを介してチャックの支持軸に固定される。
 本発明の缶体のピンホール検査装置は、入り組んだ構造の迂回路を遮蔽機構として設けたことにより、迂回路の伝搬過程で外乱光を減衰又は遮蔽することが可能となり、可動板と回転ターレットの間隙から光検出器側に外乱光が入ることを有効に防止することができる。
 また、前記一対の遮蔽部は、第1遮蔽部及び第2遮蔽部からなり、第1遮蔽部は回転する回転ターレットに、第2遮蔽部は固定フレームを覆うケース端部に取り付けられる構成とすることにより、前記一対の遮蔽部の有する所定の間隔が安定して、迂回路の伝搬過程で外乱光を安定して減衰又は遮蔽することが可能となるとともに、遮蔽部同士の接触を有効に防止することができる。
 また、第1遮蔽部及び第2遮蔽部に設けられる遮蔽部材が、対向する前記各遮蔽部の筒部に向けて交互に突出するよう配列されることにより、外乱光の伝搬経路を長くとることができ、効果的に外乱光を減衰又は遮蔽することが可能となる。
 また、前記遮蔽部材が、対向する前記各遮蔽部の筒部に向けて垂直に突出するように形成された遮蔽板であるので、対峙して設置される一対の遮蔽部の取り付け作業が容易、かつ前記遮蔽部同士の接触が防止される。また、遮蔽部材を薄い板状部材とすることで、各遮蔽部に形成可能な遮蔽部材の個数を増やし、限られた範囲内で迂回路をより入り組んだ構造とすることができ、外乱光の減衰又は遮蔽効果をより高めることが可能となる。
 また、前記遮蔽部材と対峙する遮蔽部材との間隔が5mm以下であることにより、回転ターレットの回転に起因する第1遮蔽部及び第2遮蔽部の接触を防止するとともに、迂回路の伝搬経路を幅狭とすることができ、より効果的に外乱光を減衰又は遮蔽することができる。
 また、前記遮蔽部材と、対峙する遮蔽部材とのオーバーラップ量が9mm以上であることにより、外乱光の減衰又は遮蔽効果を更に高めることができる。
 また、前記可動板の表面に、断面矩状の環状溝から成る遮蔽機構を形成することにより、高速回転する回転ターレットと可動板との間隙から侵入した外乱光が、前記環状溝の空間に到達する毎に減衰又は吸収されて、可動板に形成された貫通孔に至る光量を効果的に低減して、光検出器側に外乱光が到達することを有効に防止することができる。このため、前記した回転ターレットの全外周領域に設けた遮蔽機構と併設することにより、前記外乱光の減衰又は遮蔽効果を更により一層高めることができる。
 また、本発明の缶体のピンホール検査装置によれば、高光度の光源を用いることが可能となったので、缶体の外周面に光を照射する光源を備え、前記光源に従来の蛍光灯に換え白色LED光を用いることにより、光検出器側に外乱光が入ることを有効に防止しつつ、更に小径(数μm程度)のピンホールの検出を可能となる。
 さらに、チャックの支持軸に固定されたロッドに取付けられる缶体保持部材を用いることで、検査ターレット(スターホイール)が不要となって缶体に光を照射する光源(特に下部光源)の設置の自由度が広がるため、光源を増設して光量を増加させることが可能となる。また、回転ターレットに対して軸方向に移動する缶体の胴部が、検査ターレットのポケットの端面と摺動して生じる不具合、例えば缶体の胴部の傷、凹み等、を防止することができる。
本発明の缶体のピンホール検査装置で、缶体を検査する形態を説明する概略図である。 本発明の缶体のピンホール検査装置の検査領域を示す図である。 図2における回転ターレットの全外周領域に設けた遮蔽機構の要部拡大図である。 本発明の回転ターレットの全外周領域に設けた遮蔽機構による遮蔽機能を説明する図である。 本発明に係る回転ターレットの全外周領域に設けた遮蔽機構の変形例を示す図である。 本発明の可動板の表面に形成した遮蔽機構の断面図及び平面図である。 可動板の表面に形成した遮蔽機構及び回転ターレットの摺接時における部分拡大図である。 本発明の可動板の表面に形成した遮蔽機構による遮蔽機能を説明する図である。 本発明に適用可能な缶体を保持する機構を示す図である。 従来の缶体のピンホール検査装置の構成を説明する図である。
1       缶体
2       供給ターレット
3       検査ターレット
3a      ポケット
3r      ロッド
4       送出ターレット
5       回転ターレット
6       チャック
9       支持軸
10      光源
10a,10b 上下光源
11      固定フレーム
12      ケーシング
13      光検出器(光電子増倍管)
20      可動板
21      貫通孔
22      ピストン部材
25      リング板
26      摺動部材
27a乃至g  環状溝
30      第1遮蔽部
31      筒部
32a,32b 遮蔽部材
40      第2遮蔽部
41      筒部
42a,42b 遮蔽部材
 本発明の缶体のピンホール検査装置の一実施形態を説明する。
 図1は、本発明の缶体のピンホール検査装置で、缶体の検査形態を説明する概略図であって、供給ターレット2によって検査ターレット3のポケット3aに供給された缶体1が、X方向に連続回転する検査ターレット3によって後述する光源10a,bが配置された検査ステーションAに搬送されて良否判定が行われた後、送出ターレット4によって次工程に送出される手順を示している。
 図2は、本発明の缶体のピンホール検査装置の検査領域を示す図である。
 本発明の缶体のピンホール検査装置は、検査ターレット3、回転ターレット5、チャック6、光源10(10a,10b)を備えている。検査ターレット3は、一般的にスターホイールと称され、缶体1を戴置する缶体保持部材であり、その外周縁部には缶体1の胴部を戴置可能な凹部であるポケット3aが複数形成されている。回転ターレット5は、その両面間を貫通する透孔8を複数有し、一端が開放した缶体1の開口端が押しつけられるスポンジ質の開口部受け部7が、透孔8の一方の周縁に取付リング7aを介して取り付けられている。チャック6は、缶体1の底部をバキューム吸引によって支持する部材であり、支持軸9に固定して回転ターレット5に対向するように設けられる。また、図示しないカム及びカムフォロワーにより、回転ターレット5の開口受け部7に缶体1の開口端が密着するよう、チャック6及び支持軸9は回転ターレット5に対して軸方向に移動可能となっている。
 さらに、固定フレーム11はケーシング12で覆われ、その内部には、回転ターレット5と対向し、缶体1の内部に漏れ出た光を検出する高感度の光電子増倍管(フォトマル)等の光検出器13が、透孔8及び後述する可動板20の貫通孔21と同軸上に設けられている。
 また、前記形態において、ポケット3a及びチャック6によって、保持及び支持された缶体1が固定フレーム11側に設置された光検出器13に対峙する位置(検査ステーションA)に移動した時に、缶体1の胴部に上下方向から光を照射する光源10a,10bが配置されている。光源10aには、光源からの光が装置外方に漏れることを防止するカバー10cが取付けられている。
 この種のピンホール検査の光源としては、紫外線から赤外線までの全領域波長を有する白色光が好ましく、本実施形態では高光度の光源として白色LEDライトを採用し、それを複数個配列させている。これにより、後述の遮蔽機構によって光検出器13側に外乱光が入ることを有効に防止しつつ、検査精度を上げてより小さなピンホールの検出を可能としている。
 また、可動板20は回転ターレット5に対向して設けられ、中央に貫通孔を有するピストン部材22、リング板25及び摺動部材26からなる各部材の総称であり、筒状の脚部23と頂面板24からなるピストン部材22の前記頂面板24には、リング板25がボルトによって固定されている。さらに、このリング板25の天面には、回転ターレット5との摺動がスムーズに行われるよう、黒色非光沢かつ低摩擦係数で比較的柔軟なプラスチック、例えば弗素樹脂系軟質プラスチックからなる摺動部材26が接着されている。
 尚、本実施形態のように、摺動部材26はピストン部材22の頂面板24に固定されるリング板25に接着させることが望ましいが、ピストン部材22の頂面板24に直接摺動部材26を接着することも可能である。
 また、ピストン部材22の脚部23は、固定フレーム11に形成された嵌合ガイド溝に嵌合されており、エアー圧によってピストン作用で回転ターレット5側に進退可能とされている。また、脚部23と該嵌合ガイド溝の摺動部の密封を図るために、脚部23の内外周部には一対のオーリングが設けられている。このような構成とすることにより、可動板20を付勢して回転ターレット5と摺接させて摺接面をシールし、外乱光が摺動面から光検出器13側に漏れ入ることを防止している。
 そして、連続回転により順次搬送されてくる缶体1を検査する場合、ポケット3aに保持された缶体1はチャック6によって自転可能に支持されつつ、その開口端が回転ターレット5の開口部受け部7に密接した状態となる。その後、検査ステーションAにおいて光源10a,bの照明を受けながら、回転ターレット5の透孔8が、可動板20の貫通孔21と同軸上で一致したタイミング(検出位置)で、缶体1内に漏れ出た光が光検出器13で受光され、その明度によってピンホールの有無を判定する構成が採られている。
 また、本実施形態では、回転ターレットの全外周領域に、所定の間隔を有して対峙して設置される一対の遮蔽部から形成される迂回路を遮蔽機構として設けている。すなわち、入り組んだ構造の迂回路を遮蔽機構として設けたことにより、迂回路の伝搬過程で外乱光を減衰又は遮蔽することが可能となり、可動板と回転ターレットとの間から光検出器側に外乱光が入ることを有効に防止することができる。
 図2及び図3に示すように、前記一対の遮蔽部は、回転ターレット5側にボルト等を介して取り付けられる第1遮蔽部30と、回転ターレット5の側面部と略対向する位置、本実施形態では固定フレーム11を覆うケーシング12の先端部に固設される第2遮蔽部40からなる。これにより、前記一対の遮蔽部の有する所定の間隔が安定して、迂回路の伝搬過程で外乱光を安定して減衰又は遮蔽することが可能となるとともに、遮蔽部同士の接触を有効に防止することができる。
 より具体的には、第1遮蔽部30は、回転ターレット5の全外周領域を取り巻くとともに、回転ターレット5の厚み方向に沿って所定の長さを有する筒部31、及びその筒部31の表面から第2遮蔽部40に向けて突出するように取り付けられる複数の遮蔽部材32a,32bを有している。また、第2遮蔽部40は、回転ターレット5の側面部の外周領域を取り巻くとともに、回転ターレット5の厚み方向に沿って所定の長さを有する筒部41、及びその筒部41の表面から第1遮蔽部30に向けて突出するように取り付けられる複数の遮蔽部材42a,42bからなる。
 そして、第1遮蔽部30及び第2遮蔽部40、すなわち、筒部31, 41、各々の遮蔽部材32a,32b及び遮蔽部材42a,42b(以下遮蔽部材32,42と称す)は、各々が所定の間隔を有して非接触かつ対峙するように配置されており、回転ターレット5の回転に干渉しない構造となっている。また、本遮蔽機構はアルミニウム、スチール等の金属部材からなり、外乱光を吸収し反射率が低くなるように非光沢の黒色に表面処理がなされている。
 図4を用いて、本発明の回転ターレットの全外周領域に設けた第1遮蔽部及び第2遮蔽部からなる遮蔽機構の効果を考察する。
 本実施形態では、第1遮蔽部30に遮蔽部材32が2箇所(32a,32b)、第2遮蔽部40に遮蔽部材42が2箇所(42a,42b)に取り付けられ、一方の遮蔽部材と対峙する他方の遮蔽部材との間隔l1を有するとともに、対向する前記各遮蔽部の筒部に向けて交互に突出するよう配列されている。このような構成とすることで、外乱光の伝搬経路を長くとることができ、効果的に外乱光を減衰又は遮蔽することが可能となる。
 さらに、遮蔽部材32,42を、対向する各遮蔽部30,40の筒部31,41に向けて垂直に突出するように形成された遮蔽板とすることで、対峙して設置される一対の遮蔽部30,40の取り付け作業が容易、かつ遮蔽部30,40同士の接触が防止される。また、遮蔽部材32,42を薄い板状部材とすることで、各遮蔽部30,40に形成可能な遮蔽部材32,42の個数を増やし、限られた範囲内で迂回路をより入り組んだ構造とすることができ、外乱光の減衰又は遮蔽効果をより一層高めることが可能となる。
 前記間隔l1は、その間隔が短いほど遮光効果は高くなり、また、遮蔽部材32,42の個数が多いほど遮光効果は高くなる。さらに、遮蔽部材32,42は、筒部31及び41間の距離l2の1/2以上の長さを有し、遮蔽部材32a,32bと、対峙する遮蔽部材42a,42bとがオーバーラップするように形成されており、このオーバーラップ量l3は、その量が大きいほど遮光効果は高くなる。
 本実施形態では、間隔l1が5mm以下、また、間隔l1を5mmと設定した場合にオーバーラップ量l3を9mm以上とすることで、回転ターレット5の回転に起因する第1遮蔽部30及び第2遮蔽部40の接触を防止するとともに、迂回路の伝搬経路を幅狭とすることができ、より効果的に外乱光を減衰又は遮蔽することができる。間隔l1が5mmを越えると、迂回路の伝搬経路が大きくなり、またオーバーラップ量l3が9mm未満であると、迂回路の伝搬経路の長さが短くなり、効果的に外乱光を減衰又は遮蔽することが難しくなるおそれがある。
 尚、遮蔽部材32,42は、回転ターレット5の回転を阻害しない範囲に於いて、適宜の長さ、間隔、及び角度で設定することができる。
 また、遮蔽対象となる外乱光は光源10a,10bから照射された直接光、及び缶体1又はピンホール検査装置の各部材からの反射光であり、第1遮蔽部30及び第2遮蔽部40からなる遮蔽機構へ侵入する外乱光は、図4において下方からの光線A,B,Cとなる。ここで、前記3方向からの光線をサンプルとし、ガウス分布に基づき、もっとも強い反射となる正反射方向の光線がどの様に伝搬するか検証する。尚、図2及び4において、光源10a,10b側から遮蔽部材42a~遮蔽部材32a間を第一領域、遮蔽部材32a~遮蔽部材42b間を第二領域、遮蔽部材42b~遮蔽部材32b間を第三領域、遮蔽部材32b以降を第四領域として説明する。
 光線Aは、遮蔽部材32aの表面に低い角度で入射し、第2遮蔽部40の筒部41の内面及び遮蔽部材32aの先端面間を複数回反射した後、第二領域内を複数回反射する。すなわち、光線Aは第二領域を越えることができず、しかも反射率が1/nとすれば、例えば10回の反射後の光量は入射光の光量の(1/n)10となり、十分に低い光量となる。
 また、光線Bは、遮蔽部材32aの表面にやや高い角度で入射し、前述と同様に、第2遮蔽部40の筒部41の内面及び遮蔽部材32aの端面間を複数回反射した後、遮蔽部材42bを経由して第二領域内を複数回反射する。すなわち、この光線Bも第二領域を越えることができず、例えば10回の反射時点で光量は入射光の光量の(1/n)10となり、十分に低い光量となる。
 また、光線Cは、遮蔽部材32aの表面に高い角度で入射し、第一領域内を複数回反射した後、筒部41の内面を経由して、第二領域内を複数回反射、その後、筒部31の外面を経由して、第三領域内を複数回反射して、再び筒部41の内面を経由して第四領域に達する。すなわち、光線Cは本来侵入を防止すべき第四領域に達しているが、遮蔽機構内での反射回数が多いため(本実施形態の場合は15回)、その光量は入射光の光量の(1/n)15となり、十分に低い光量の光線A,Bに比べて更に低い光量となっている。このため、可動板20と回転ターレット5との間に瞬間的に間隙を生じた場合であっても、従来の場合と比して、光線C(外乱光)による光検出器13の誤作動を有効に防止することができる。
 本発明の回転ターレットの全外周領域に設けた遮蔽機構によれば、以上3つのサンプル光線の反射形態を解析して分かるように、第一領域に入射した外乱光が反射現象によって容易に第四領域に到達できない構造となっている。また、前述したように、少なくとも第1遮蔽部30及び第2遮蔽部40の表面(迂回路を形成する面)は黒色非光沢に表面処理がなされていることから、反射は散乱光となると解され、実際の反射は第1遮蔽部30及び第2遮蔽部40の表面で四方に散乱されながら、この散乱を繰り返されるものと理解するのが相当である。従って、光の伝搬量は第一領域、第二領域、・・・と順次進むに連れて減衰してゆくことになる。
 本発明の回転ターレットの全外周領域に設けた遮蔽機構は、種々の変更を行うことができる。
 例えば、図4に示すように、遮蔽部材42aの長さ寸法を、第1遮蔽部30を取り付けるボルト近傍まで延長させることで、外乱光の伝搬経路を長くとることができ、効果的に外乱光を減衰又は遮蔽することが可能となる。
 また、図5(A)に示すように、遮蔽部30,40を回転ターレット5の軸方向に沿って取り付け、それぞれの遮蔽部材を間隔l1を有して形成することも可能である。
 また、図5(B)に示すように、第1遮蔽部30及び第2遮蔽部40の各々の筒部及び遮蔽部材は、回転ターレット5の回転を阻害しない範囲に於いて、適宜の厚みの部材を用いて構成することも可能であり、例えば、第1遮蔽部30を環状ブロック体32cとして、第2遮蔽部40の遮蔽部材42a,42b間に間隔l1を有するように配置することもできる。また、図5(C)に示すように、逆に第2遮蔽部40を環状ブロック体42cとして構成してもよい。
 さらに、第1遮蔽部30及び第2遮蔽部40の各々の筒部及び遮蔽板の表面に凹凸形状(例えば凹溝)を形成することで、遮蔽機構内に侵入してきた外乱光を更に散乱させることが可能となり、より一層の光遮蔽効果を発揮することができる。
 このように、本発明の遮蔽機構は、装置構成及び所望の光遮蔽効果に応じて、光遮蔽効果が高い多様な形態を採用することができる。
 次に、前述した本発明の回転ターレットの全外周領域に設けた遮蔽機構による外乱光の減衰又は遮蔽等の遮蔽効果を確認した検査データを示す。
1.検査1
 遮蔽機構の各構成は、黒色非光沢の表面処理がなされた厚さ2mmのアルミニウム金属板からなり、寸法は以下のように設定した。
<第1遮蔽部30>
 筒部31の長さ=15mm
 遮蔽部材32a,32bの長さ=12mm
<第2遮蔽部40>
 筒部41の長さ=30mm
 遮蔽部材42aの長さ=17mm
 遮蔽部材42bの長さ=12mm
<その他>
 間隔l1:5mm
 距離l2:15mm
 オーバーラップ量l3:9mm
 ピンホール検査装置の検査ターレット3の任意のポケット3aに缶体1を一缶保持させ、缶体1の開口端を開口受け部7に接触状態とし、回転ターレット5を徐々に回転させて、回転ターレット5の透孔8と可動板20に形成された貫通孔21が同軸上で一致するように位置決めし、回転を止めてピンホール検査を行った。
 そして、遮蔽機構の遮蔽効果を確認するため、敢えて可動板20を付勢するエアーシリンダを作動させず、前記可動板20と回転ターレット5の間に0.08mmの間隙を設け、遮蔽機構の有無による遮蔽効果を光検出器13の光検出値により確認した。
 その結果、遮蔽機構を設けた場合は光検出値が125mVであり、最高瞬時値が220mVであったのに対し、遮蔽機構を設けない場合は光検出値が4900mV以上(光検出器の測定上限)であった。
 尚、前記した光検出値の値は、検出した光量を電圧(mV)に変換した値である。
 図6及び図7に、前述した可動板20の摺接部材26の表面に貫通孔21と同心円状に複数の断面矩形状の環状溝27(ここに示す例では7本)を遮蔽機構とした実施形態例を示す。可動板20をこのような構成とすることで、高速回転する回転ターレット5と可動板20との間隙から侵入した外乱光が、可動板20の断面矩形状の環状溝27の空間に到達する毎に減衰又は吸収されて、可動板20に形成された貫通孔21に至る光量を効果的に低減して、光検出器13側に外乱光が到達することを有効に防止することができる。
 そして、この可動板20の遮蔽機構を、前述した回転ターレットの全外周領域に設けた遮蔽機構と併設して設けることにより、外乱光の減衰又は遮蔽効果を更により一層高めることができる。
 図8は、可動板20の遮蔽機構による遮蔽機能を説明する図であり、回転ターレット5と可動板20の周縁部から両部材の間隙に侵入する外乱光は、上部光源10a,下部光源10bから照射された直接光、及び缶体1又はピンホール検査装置の各部材からの反射光であり、図8において左方向からの光線A,B,Cとなる。ここで、前記左方向からの光線をサンプルとし、反射の際ガウス分布に基づき、もっとも強い反射となる正反射方向の光線がどの様に伝搬するか検証する。
 光線A乃至Cは、可動板20の摺接部材26の表面に入射し、前記間隙内にて反射を繰り返しながら中央方向に伝搬され、断面矩形状の環状溝27aに到達する。光線A乃至Cは環状溝27aの空間に到達すると、環状溝27aの壁面で多数回の反射を繰り返す際に、減衰又は吸収される。その後、光量の減少した光線A乃至Cが、更に内側(中央側)に向かって反射を繰り返し伝搬して環状溝27bに至ると、前述の場合と同様に、多数回の反射を繰り返して減衰又は吸収される。ここで、光線の入射角度はA>B>Cの順となっており、その反射回数についてもA>B>Cの順となっている。また、光線Bの場合、環状溝27aに侵入して複数回反射を繰り返した後、前記間隙の入口側に戻されて外方に放出されるようになっている。
 尚、回転ターレット5と可動板20の摺接部材26表面に平行な角度から入射した外来光は、反射回数も少なく光量を減衰させることは本来難しい。しかしながら、環状溝27aは反射を繰り返してきた間隙と比較して広い空間となっているため、光線A乃至Cは環状溝27aの空間に到達すると拡散して減衰される。すなわち、平行な角度から入射した外来光においても、前述の減衰効果によって、十分に低い光量とすることができる。
 以上、3つのサンプル光線の反射形態を解析して分かるように、可動板20の摺接部材26の表面に、複数の環状溝27から成る遮蔽機構を設けたことにより、内方の環状溝27に到達する毎に光減衰効果が重畳されていき、前記間隙内に侵入した外来光を十分に低い光量とすることができる。
 さらに、前述したように回転ターレット5と、摺接部材26の表面は黒色非光沢に表面処理されているので、反射光は散乱光となり、実際の反射は回転ターレット5と摺接部材26の表面で四方に散乱されながら、この散乱を繰り返されるものと理解するのが相当である。従って、光の伝搬量は環状溝27a、環状溝27b、・・・と順次進むに連れて減衰してゆくことになる。
 次に、前述した可動板20の遮蔽機構による外乱光の減衰又は遮蔽等の遮蔽効果を確認した検査データを示す。
2.検査2
 可動板20の弗素樹脂系軟質プラスチックから成る黒色非光沢表面の摺接部材26の各寸法を以下のように設定した。
 摺接部材26 直径:φ192mm
 貫通孔21  直径:φ71mm
 環状溝27a 中心位置の径:φ153mm
 環状溝27b 中心位置の径:φ143mm
 環状溝27c 中心位置の径:φ133mm
 環状溝27d 中心位置の径:φ123mm
 環状溝27e 中心位置の径:φ113mm
 環状溝27f 中心位置の径:φ103mm
 環状溝27g 中心位置の径:φ93mm
 環状溝27a乃至g 幅:各7.3mm、深さ:各1.5mm
<測定位置>
 缶体1の軸芯位置と光検出器13の軸心が一致する角度を0°とし、回転ターレット5の回転位置が時計方向に進んだ角度を+とし、反時計方向に遅れた角度を-で表示し、-12°、-6°、0°、6°、12°位置で光検出器13により検出光量を測定した。ここで、「-12°」及び「12°」の位置は、回転ターレット5の透孔8の周縁部と、可動板20の貫通孔21の周縁部が重なる始点及び終点の位置を示している。この時のデータを表1に示す。なお、本発明のピンホール検査装置において測定が行われるタイミングは-3°~3°の範囲内である。
<測定方法>
 ピンホール検査装置の検査ターレット3の任意のポケット3aに缶体1を一缶保持させ、
 缶体1の開口端を開口受け部7に接触状態とし、回転ターレット5を徐々に回転させて、回転ターレット5の透孔8と可動板20に形成された貫通孔21が同軸上で一致するように位置決めし、回転を止めてピンホール検査を行った。
 そして、遮蔽機構の遮光効果を確認するため、敢えて可動板20を付勢するエアーシリンダを作動させず、可動板20と回転ターレット5の間に0.12mmの間隙(シム量)を設け、遮蔽機構の有無による遮蔽効果を光検出器13の光検出値により確認した。
Figure JPOXMLDOC01-appb-T000001
 表1にて示すように、角度0°となる測定タイミングで、遮蔽機構を設けた場合は光検出値が98mVであり、遮蔽機構を設けない場合は光検出値が570mVであった。
 尚、前記した光検出値の値は、検出した光量を電圧(mV)に変換した値である。
 そして、前述した検査1と検査2から、両者を併設した外乱光の減衰は、検査1における一対の遮蔽部から形成される迂回路の遮蔽機構で減衰された光検出値の外乱光が、前述した検査2における可動板の遮蔽機構による減衰割合で減衰することが推察される。
 図9(A)乃至(C)は、前述した缶体を保持する検査ターレット3に替えて用いられる缶体保持部材3hを示している。尚、図9(A)は缶体1を保持した缶体保持部材3hの底面図、(B)は正面図、(C)は側面図である。
 缶体保持部材3hはプレート状の部材であって、その上部に缶体1を戴置可能な凹部が形成されており、ロッド3rを介して缶体の底部を支持するチャック6の支持軸9に固定されている。また、缶体1の胴部上端及び下端近傍を支持するため、缶体保持部材3hは複数のロッド3rに所定の間隔を有して取付けられている。そして、缶体保持部材3h及びチャック6は、図示しないカム及びカムフォロワーにより、回転ターレット5の開口部受け部7に缶体1の開口端が密着するよう、回転ターレット5に対して軸方向に移動可能となっている。
 前記構成によれば、検査ターレット3が不要となり、缶体1に光を照射する光源10(特に下部光源10b)の設置の自由度が広がるため、光源を増設して光量を増加させることが可能となる。また、回転ターレット5に対して軸方向に移動する缶体1の胴部が、検査ターレット3のポケット3aの缶体の載置部と摺動して生じる不具合、例えば缶体1の胴部の傷、凹み等、を防止することができる。
 以上、本発明の缶体のピンホール検査装置によれば、一対の遮蔽部から形成される迂回路を遮蔽機構として設けたことにより、入り組んだ迂回路の伝搬過程で外乱光を減衰又は遮蔽することが可能となり、表面上状態等に起因して生ずる可動板と回転ターレットとの間隙から光検出器側に外乱光が入ることを有効に防止することができる。
 また、本発明の缶体のピンホール検査装置において、可動板の遮蔽機構を併設することにより、外乱光の減衰又は遮蔽効果を更により一層高めることができる。
 さらに、本発明の缶体のピンホール検査装置は光遮蔽効果が大きいため、高光度の光源を用いることが可能となって、より小径(数μm程度)のピンホールを検出することが可能となり、検査精度がより一層向上した缶体のピンホール検査装置を提供することができる。

Claims (12)

  1.  貫通する透孔を有する回転ターレットと、
     前記回転ターレットに対向して固定フレーム側に設けられる可動板と、
     缶体の胴部を支持する缶体保持部材と、
     缶体の内部に漏れ出た光を検出する光検出器と、
     前記缶体の外周面に光を照射する光源と、
     を備える缶体のピンホール検査装置であって、
     前記回転ターレットの全外周領域に、所定の間隔を有して対峙して設置される一対の遮蔽部から形成される迂回路を遮蔽機構として設けたことを特徴とする缶体のピンホール検査装置。
  2.  前記一対の遮蔽部は、第1遮蔽部及び第2遮蔽部からなり、第1遮蔽部は回転する回転ターレットに、第2遮蔽部は回転ターレットの側面部と略対向する位置に固設される請求項1に記載の缶体のピンホール検査装置。
  3.  前記一対の遮蔽部は、第1遮蔽部及び第2遮蔽部からなり、前記各遮蔽部に設けられる遮蔽部材が、対向する前記各遮蔽部の筒部に向けて交互に突出するよう配列される請求項1に記載の缶体のピンホール検査装置。
  4.  前記一対の遮蔽部は、第1遮蔽部及び第2遮蔽部からなり、前記各遮蔽部に設けられる遮蔽部材が、対向する前記各遮蔽部の筒部に向けて交互に突出するよう配列される請求項2に記載の缶体のピンホール検査装置。
  5.  前記遮蔽部材が、対向する前記各遮蔽部の筒部に向けて垂直に突出するように形成された遮蔽板である請求項3記載の缶体のピンホール検査装置。
  6.  前記遮蔽部材と対峙する遮蔽部材との間隔が5mm以下である請求項3に記載の缶体のピンホール検査装置。
  7.  前記遮蔽部材と、対峙する遮蔽部材とのオーバーラップ量が9mm以上である請求項6に記載の缶体のピンホール検査装置。
  8.  前記可動板の表面に、該可動板の貫通孔と同心円状に複数の断面矩形状の環状溝を遮蔽機構として設けたことを特徴とする請求項1に記載の缶体のピンホール検査装置。
  9.  前記光源に白色LED光を用いたことを特徴とする請求項1に記載の缶体のピンホール検査装置。
  10.  前記光源に白色LED光を用いたことを特徴とする請求項8に記載の缶体のピンホール検査装置。
  11.  前記缶体保持部材は、ロッドを介してチャックの支持軸に固定される請求項1に記載の缶体のピンホール検査装置。
  12.  前記缶体保持部材は、ロッドを介してチャックの支持軸に固定される請求項8に記載の缶体のピンホール検査装置。
PCT/JP2013/062600 2012-06-21 2013-04-30 缶体のピンホール検査装置 WO2013190920A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/408,455 US9207144B2 (en) 2012-06-21 2013-04-30 Pinhole inspection apparatus for can bodies
JP2014521013A JP6124024B2 (ja) 2012-06-21 2013-04-30 缶体のピンホール検査装置
EP13806874.7A EP2866023B1 (en) 2012-06-21 2013-04-30 Inspection device for can pinholes
DK13806874.7T DK2866023T3 (en) 2012-06-21 2013-04-30 Canned pore inspection device
CN201380032576.XA CN104395738B (zh) 2012-06-21 2013-04-30 罐体的针孔检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-139988 2012-06-21
JP2012139988 2012-06-21

Publications (1)

Publication Number Publication Date
WO2013190920A1 true WO2013190920A1 (ja) 2013-12-27

Family

ID=49768526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062600 WO2013190920A1 (ja) 2012-06-21 2013-04-30 缶体のピンホール検査装置

Country Status (6)

Country Link
US (1) US9207144B2 (ja)
EP (1) EP2866023B1 (ja)
JP (1) JP6124024B2 (ja)
CN (1) CN104395738B (ja)
DK (1) DK2866023T3 (ja)
WO (1) WO2013190920A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2899536A4 (en) * 2012-09-18 2015-09-02 Toyo Seikan Group Holdings Ltd PIN HOLE INSPECTION DEVICE FOR BOX BODIES
CN106896112A (zh) * 2015-12-21 2017-06-27 深圳市青铜科技有限公司 鱼眼类端子在视觉检测中借助于遮光板的光学成像方法
EP3974818A1 (en) 2016-05-31 2022-03-30 Tech Pro Packag S.L. Inspection device of containers and method for the inspection of containers implemented with said device
MY197195A (en) * 2016-07-13 2023-05-31 Zuiko Corp Conveying device and method for manufacturing disposable wearable article using same
CA3168205A1 (en) 2020-05-07 2021-11-11 Toyo Seikan Co., Ltd. Can container

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479646A (en) * 1987-09-21 1989-03-24 Mitsubishi Metal Corp Defective can passage preventor for pinhole tester
JPH09210924A (ja) * 1996-02-05 1997-08-15 Toyo Seikan Kaisha Ltd 缶ボトムチャック
JP2002365230A (ja) 2001-06-04 2002-12-18 Hamamatsu Photonics Kk ピンホール検出器
JP2004317356A (ja) * 2003-04-17 2004-11-11 Mitsubishi Materials Techno Corp 缶の検査装置
JP2009025131A (ja) * 2007-07-19 2009-02-05 Mitsubishi Materials Techno Corp 缶のピンホール検査方法及び検査装置
JP4715988B2 (ja) 2001-09-04 2011-07-06 東洋製罐株式会社 缶体のピンホール検査装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US835836A (en) * 1906-02-27 1906-11-13 Richard Schulz Labyrinth packing for rotary machines.
GB1292308A (en) * 1968-10-14 1972-10-11 Reynolds Metals Co Apparatus for inspecting containers for leaks
US3697758A (en) * 1971-04-13 1972-10-10 Melvin J Binks Pinhole detector with internal light shield assembly
US4074809A (en) * 1976-07-19 1978-02-21 Coors Container Company Apparatus and methods for inspection of can bodies by use of light
JPS577545A (en) * 1980-06-18 1982-01-14 Toyo Seikan Kaisha Ltd Rotary type continuously optical inspecter for empty can
US4441813A (en) * 1981-03-10 1984-04-10 Toyo Seikan Kaisha, Ltd. Apparatus for detecting pinholes in cans
US5064284A (en) * 1990-04-26 1991-11-12 Coherent, Inc. Apparatus for measuring the mode quality of a laser beam
US5451773A (en) * 1993-06-04 1995-09-19 Pressco Technology, Inc. Non-contact perforation/pinhole detection system for opaque vessels
DE10011063A1 (de) * 2000-03-07 2001-09-27 Daimler Chrysler Ag Labyrinthdichtung zwischen drehbaren Bauteilen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479646A (en) * 1987-09-21 1989-03-24 Mitsubishi Metal Corp Defective can passage preventor for pinhole tester
JPH09210924A (ja) * 1996-02-05 1997-08-15 Toyo Seikan Kaisha Ltd 缶ボトムチャック
JP2002365230A (ja) 2001-06-04 2002-12-18 Hamamatsu Photonics Kk ピンホール検出器
JP4715988B2 (ja) 2001-09-04 2011-07-06 東洋製罐株式会社 缶体のピンホール検査装置
JP2004317356A (ja) * 2003-04-17 2004-11-11 Mitsubishi Materials Techno Corp 缶の検査装置
JP4230269B2 (ja) 2003-04-17 2009-02-25 三菱マテリアルテクノ株式会社 缶の検査装置
JP2009025131A (ja) * 2007-07-19 2009-02-05 Mitsubishi Materials Techno Corp 缶のピンホール検査方法及び検査装置

Also Published As

Publication number Publication date
EP2866023A1 (en) 2015-04-29
JP6124024B2 (ja) 2017-05-10
EP2866023B1 (en) 2018-10-03
CN104395738B (zh) 2016-11-02
US20150192493A1 (en) 2015-07-09
JPWO2013190920A1 (ja) 2016-05-26
CN104395738A (zh) 2015-03-04
EP2866023A4 (en) 2016-02-17
US9207144B2 (en) 2015-12-08
DK2866023T3 (en) 2019-01-07

Similar Documents

Publication Publication Date Title
JP6124024B2 (ja) 缶体のピンホール検査装置
KR100710926B1 (ko) 표면 검사방법 및 표면 검사장치
JP2019522177A (ja) バルク材料を検査するための装置およびその方法
JP2007093593A5 (ja)
US7538866B2 (en) Optical sensor and method for optically inspecting surfaces
JP5534284B1 (ja) 缶体のピンホール検査装置
JP2013036948A (ja) 欠陥検査装置
WO2010058680A1 (ja) シリコンウェハ欠陥検査装置
JP6039119B1 (ja) 欠陥検査装置
JP6132081B2 (ja) 缶体のピンホール検査装置
JP4630945B1 (ja) 欠陥検査装置
JP6121758B2 (ja) クラック及び外観検査装置並びにクラック及び外観検査方法
JP6381865B2 (ja) 検査装置及び検査方法
JP2009192307A (ja) フィルム検査装置
JP2008096187A (ja) 端部傷検査装置
JP2008216150A (ja) 透明物の検査装置及び検査方法
TW202215000A (zh) X射線分析裝置
JP2009210476A (ja) クラック検査装置およびクラック検査方法
JP2017142143A (ja) 蛍光測定装置及び蛍光測定方法
JP7082091B2 (ja) 紫外線照射装置、及び紫外線探傷装置
JP6144608B2 (ja) 缶体の検査装置及びその缶体の検査装置に用いる缶体支持体並びに缶体支持体の製造方法
JP2008191066A (ja) 表面検査方法および表面検査装置
KR100658915B1 (ko) 광학 검사를 이용한 반도체의 미소 결함 검사 장치
JP2008216149A (ja) 表面検査装置及び表面検査方法
JPWO2014129580A1 (ja) 缶体の検査方法及び検査装置並びに検査ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521013

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14408455

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013806874

Country of ref document: EP