WO2013189113A1 - 一种靶向性分子成像探针及活体分子成像方法 - Google Patents

一种靶向性分子成像探针及活体分子成像方法 Download PDF

Info

Publication number
WO2013189113A1
WO2013189113A1 PCT/CN2012/079344 CN2012079344W WO2013189113A1 WO 2013189113 A1 WO2013189113 A1 WO 2013189113A1 CN 2012079344 W CN2012079344 W CN 2012079344W WO 2013189113 A1 WO2013189113 A1 WO 2013189113A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
targeting
rxp
probe
gly
Prior art date
Application number
PCT/CN2012/079344
Other languages
English (en)
French (fr)
Inventor
申宝忠
程震
卜丽红
Original Assignee
Shen Baozhong
Cheng Zhen
Bu Lihong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shen Baozhong, Cheng Zhen, Bu Lihong filed Critical Shen Baozhong
Priority to US14/353,111 priority Critical patent/US9764048B2/en
Publication of WO2013189113A1 publication Critical patent/WO2013189113A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/088Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins conjugates with carriers being peptides, polyamino acids or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres

Definitions

  • the invention relates to the field of medical technology, in particular to a Cx43 targeting molecular imaging probe and a living molecular imaging method.
  • Gap junction remodeling is one of the common pathological basis of the occurrence and development of diseases such as arrhythmia, tumor and atherosclerosis, and connexin43 (Cx43) is the basic structure of gap junction.
  • the unit is the main structural basis for the formation of gap junctions between cardiomyocytes.
  • Cx43 is a connexin with a molecular weight of 43 Kd, whose main function is to mediate direct communication between adjacent cells.
  • its main role is to form a rapid electrical impulse between cells, to ensure the synchronization and coordination of the overall electrical activity of the heart, to maintain the electrical activity of myocardial cells and the synchronization of mechanical contraction and diastolic function.
  • Cx43 gap junction reconstruction is the basis of various arrhythmias, especially the important structural basis of reentry tachycardia, and the most important cause of death and sudden death of various heart diseases.
  • Cx43 is involved in various cell life cycle from growth to death, directly mediating the transmission of cell growth regulatory signals between adjacent cells, regulating cell growth, differentiation and apoptosis.
  • Abnormal Cx43 will directly lead to abnormal cell growth regulation, loss of contact inhibition, terminal differentiation and apoptosis, and manifested as prolonged or immortal cell life cycle, leading to tumorigenesis.
  • Cx43 has become a new research focus in the field of cardiovascular diseases and cancer research at home and abroad as a common molecular target for antiarrhythmia therapy and antitumor therapy.
  • a variety of in vitro studies have also been developed for the analysis of the number and function (including phosphorylation status) of Cx43.
  • Imaging refers to a subject that uses imaging methods to image, qualitatively and quantitatively study the biological processes at the cellular and molecular levels in humans or animals in a living state. It uses a molecular probe as a distinguishing feature to image specific targets in the body using a variety of imaging methods. Imaging methods include: radionuclide imaging, magnetic resonance imaging (MRI), magnetic resonance imaging (MRRS), optical imaging (01), ultrasound imaging (ultrasound) Imaging, US) and integration of multi-mode imaging. With these imaging techniques, certain specific physiological or pathological processes within the living system, such as gene expression, protein-protein interactions, signal transduction, cell metabolism, and cell traceability, can be visualized as intuitive images.
  • V Baklaushev et al. performed a Cx43 visualization scheme to synthesize a specific antibody targeting the extracellular E2 segment of Cx43 protein as a targeting affinity component, using a radioisotope 125 1 and a fluorescent dye Alexa660 as a signal component probe, using a gamma ray counter and Fluorescence microscopy was used to detect the abnormal expression of Cx43 in brain gel shield tumors, but it still did not get rid of the limitations of in vitro examination methods:
  • 125 1 is not a nuclides suitable for live imaging. It can only be detected by gamma ray counter, and the results are not intuitive enough. So the study was in the intravenous probe
  • Alexa660 is not a fluorescent dye suitable for in vivo imaging. It can only be used for immunohistochemical staining analysis. Therefore, after intravenous injection of the probe Alexa660-MAbE2Cx43, the animal was sacrificed, tissue was obtained, and frozen sections were prepared. The organization conducted an analysis;
  • the MAbE2Cx43 antibody is used as an affinity component, and the antibody is expensive and may cause an immunogenic reaction leading to side effects. More importantly, due to the large molecular weight of the antibody, the non-specific absorption will be high. It is not easy to obtain the ideal pharmacokinetic characteristics and biological distribution characteristics after injection into the body, resulting in inaccurate detection results and inconvenient application. There is a need for in vivo detection and quantification of Cx43. Summary of the invention
  • the technical problem mainly solved by the present invention is the problem of in vivo detection and quantification of Cx43.
  • the in vivo detection and quantification of Cx43 by living molecular imaging technology can determine the dynamic changes of Cx43 expression, distribution, function and disease development in vivo, and determine the optimal time and dose of Cx43 targeted therapy intervention.
  • Cx43 targeted therapy efficacy monitoring can be constructed.
  • the invention provides a method of imaging a living molecule, the method comprising: providing a Cx43 targeting molecular probe comprising a signal component, a targeting affinity component, and a linker a three-part composition, the signal component being a moiety detectable by an imaging device, the targeted affinity component being a moiety that specifically binds to Cx43, the linker will signal component and a targeted affinity group Connected together
  • the targeting affinity component specifically binds to the carboxy terminus of Cx43. More preferably, the targeted affinity component is selected from the group consisting of:
  • RXP-A the amino acid sequence of which is shown in SEQ ID No. l;
  • RXP-B the amino acid sequence of which is shown in SEQ ID No. 2;
  • RXP-C the amino acid sequence of which is shown in SEQ ID No. 3;
  • RXP-D the amino acid sequence of which is shown in SEQ ID No. 4;
  • RXP-E the amino acid sequence of which is shown in SEQ ID No. 5.
  • the signal component is selected from one or more of a radioisotope, a fluorescent dye, a quantum dot, a paramagnetic material, a magnetic nanoparticle, a superparamagnetic material, an ultrasonic microbubble, and a photoacoustic nanoparticle.
  • the linker is selected from the group consisting of DTPA, DOTA, DOTAGA, NOTA, NOD AG A, TETA, CB-TE2A, Sar, NODA, etc. or other directly linking the signal component and the Cx43 targeting affinity component directly. chemical method.
  • the invention provides a targeted molecular probe, by signal component, targeting
  • the affinity component and the linker connecting the signal component and the targeted affinity component are three-part, the signal component is a moiety detectable by the imaging device, and the targeted affinity component is A portion of Cx43 that specifically binds, the linker linking the signal component to the targeted affinity component.
  • the targeting affinity component of the targeting molecular probe specifically binds to the carboxyl terminus of Cx43.
  • the targeted affinity component is selected from the group consisting of:
  • Cx43SP4 including 5 analogues with RXP-X structure, has the following sequence:
  • the signal component is selected from one or more of a radioisotope, a fluorescent dye, a quantum dot, a paramagnetic material, a magnetic nanoparticle, a superparamagnetic material, an ultrasonic microbubble, and a photoacoustic nanoparticle.
  • the linker is selected from a chelating agent such as DTPA, DOTA, DOTAGA, NOTA, NODAGA, TETA, CB-TE2A, Sar, NODA, or other direct chemical reaction to directly link the signal component to the Cx43 affinity component.
  • Molecular probe A labeled compound that binds specifically to a specific biomolecule (such as protein, DNA, RNA) or cellular structure and is available for in vivo or (and) in vitro imaging. Molecules, these labeled compound molecules are capable of reflecting the amount and/or function of their target biomolecules in vivo or (and) ex vivo. It can be easily understood as a molecular imaging diagnostic drug.
  • a specific biomolecule such as protein, DNA, RNA
  • Probes must have the following two important characteristics: 1 High affinity and targeting specificity for target molecules closely related to disease; 2 Traceable for imaging equipment in vitro. Probes are primarily used to image, quantify, and measure biological processes in vivo.
  • the basic structure is generally divided into three parts: the signaling component, the affinity component, and the linker.
  • a signal component is a portion of a contrast agent or marker that can produce an imaging signal and can be detected by high-precision imaging techniques (such as radionuclides, fluorescein, paramagnetic atoms, and ultrasonic microbubbles);
  • a molecule is a moiety (such as a ligand or antibody, etc.) that specifically binds to an imaging target.
  • the signal component and the affinity component can be directly connected by radiochemical or biomolecular link chemistry, or they can be linked by a linker, ie, a crosslinking reagent or a derivatizing reagents.
  • the invention provides a Cx43 molecular targeting specific probe, which is composed of radioisotopes, fluorescent dyes, quantum dots, nanoparticles, magnetic materials, ultrasonic microbubbles, photoacoustic imaging materials and multi-modal imaging methods.
  • the marker Cx43 is targeted to specifically bind to the polypeptide.
  • PET positron emission tomography
  • SPECT single photon emission tomography
  • optical imaging ultrasound imaging, magnetic resonance imaging, photoacoustic imaging and multi-modal imaging, etc.
  • Cx43 targeting molecules have high imaging specificity, high accuracy, good contrast of images, suitable for cardiovascular diseases (especially arrhythmia), diagnosis of tumors, Cx43 Targeted therapy efficacy monitoring, identifying the optimal time and dose of targeted therapy intervention, and accurately and objectively evaluating the efficacy of "reconstructive Cx43" therapy.
  • cardiovascular diseases especially arrhythmia
  • Cx43 Targeted therapy efficacy monitoring identifying the optimal time and dose of targeted therapy intervention, and accurately and objectively evaluating the efficacy of "reconstructive Cx43" therapy.
  • it provides an effective method for basic research on tumor and cardiovascular diseases, and provides a new means for studying the correlation between Cx43 and the occurrence and development characteristics of diseases.
  • the invention also provides an imaging composition comprising the above-described targeted molecular probe.
  • the invention also provides the use of the targeted molecular probe in the preparation of a medicament for diagnosing a Cx43 expression-related disorder.
  • the Cx43 expression-associated disease is a disease characterized by Cx43 expression or dysfunction, mainly including arrhythmia or tumor.
  • the invention establishes a non-invasive and intuitive Cx43 living molecular imaging method, synthesizes a probe for detecting imaging equipment, visually displays the distribution and quantity of Cx43, and initially evaluates its function, and the technology has established safety, non-invasive, living, dynamic, Intuitive, accurate, and directly applicable to the human body.
  • the Cx43 targeted imaging diagnostic drug (molecular probe) developed by the invention has good pharmacokinetic characteristics and biological distribution characteristics, and the detection result is more accurate, the application is more convenient, and the image is visually reflected. Biochemical characteristics of diseases such as arrhythmias and tumors.
  • Non-specific probes used in imaging and nuclear medicine examinations do not specifically recognize and bind biomolecules in the body, and therefore can only provide information (anatomical, pathological, and physiological changes) downstream of disease molecules, or the overall morphology and function of the disease. Information, such as changes in blood flow, changes in blood perfusion.
  • probes are required to specifically recognize and bind to molecular markers in vivo, provide information on the molecular level of the disease, and deepen understanding of the biological processes of the disease.
  • the use of targeting-specific probes can effectively reduce the non-specific binding of probes to other non-imaging targets, and is more conducive to accurate quantification of imaging targets.
  • the visualization of key molecular markers in the development of the disease requires that the probe has an emission imaging signal that can be used for non-invasive imaging equipment to detect in vitro performance, and the distribution of molecular markers is visually displayed through the image. Because imaging examinations are safe, non-invasive, and intuitive.
  • the ideal molecular imaging image is obtained on the premise that the molecular probe aggregates at a high concentration of the imaging target, that is, the probe is required to bind to the target early after reaching the target area, and the dissociation time is relatively late, ensuring After several blood circulation cycles, the probe reaches the desired aggregation state at the target.
  • High-contrast images require that the signal intensity of the lesion area be high enough, that is, the target/background ratio and the signal/noise ratio are high.
  • the molecular probe production process is simple and easy, and the cost is low.
  • Figure 1 is a schematic view showing the structure of a Cx43 targeting molecular imaging probe
  • Figure 2 is a fluorescence micrograph of the probe in vitro binding to HeLa-Cx43 cells:
  • Cy5.5-Cx43SP was co-incubated with HeLa-Cx43 cells, and HeLa-Cx43 cells ingested a large number of probes Cy5.5-Cx43SP (green);
  • Figure 3 is a fluorescence micrograph of frozen sections of tissue with muscle as a control: a: After the tail vein injection of Cy5.5-Cx43SP lh, the muscle frozen section showed under fluorescence microscope that Cy5.5-Cx43SP did not aggregate in muscle tissue;
  • Figure 4 is a fluorescence micrograph of frozen sections of myocardial tissue after a live injection of a probe: a: After the injection of Cy5.5-Cx43SP in the tail vein, lh, the frozen section of the myocardium is under the fluorescence microscope. Cy5.5-Cx43SP aggregates in the myocardial tissue;
  • Cy5.5-Cx43SP aggregates in myocardial tissue and is mainly distributed in the location of gap junction between cardiomyocytes.
  • Figure 5 shows the binding and blocking experiments of 64 Cu-NODA-Cx43SP1 and Hela-Cx43 cells.
  • Figure 6 shows the near-infrared fluorescence imaging of the main tissues and organs in vitro: mouse tail vein injection probe
  • the probes After Cy5.5-Cx43SP lh, the probes accumulate in the heart, stomach, liver, biliary tract and intestines, and most of them are excreted through the liver and intestines.
  • Figure 7 shows the PET formation of 64 Cu-NOTA-Cx43SP1 at different time points in normal rats.
  • Figure 8 is a PET image of 64 Cu-NOTA-Cx43SP1 in normal mice for 1 hour showing that the probe is prominent in the heart.
  • 64 Cu-NOTA-Cx43SPl injection volume is about 50 micro-residence.
  • Figure 9 Near-infrared imaging experiment of living mouse tumors: After the tail vein injection of the probe Cy5.5-Cx43SP1, the mice accumulated a large amount of Hex-Cx43 tumors overexpressing Cx43, but no HeLa tumors in the right control group. Concentrated.
  • Figure 10 In vivo mouse tumor PET imaging experiment: mouse tail vein injection probe
  • the invention discloses a Cx43 molecular imaging probe and a living molecular imaging method, and those skilled in the art can learn from the contents of the paper and appropriately improve the process parameters. It is to be understood that all such alternatives and modifications are obvious to those skilled in the art and are considered to be included in the present invention.
  • the method and the application of the present invention have been described by the preferred embodiments, and it is obvious that the method and application described herein may be modified or appropriately modified and combined without departing from the scope of the present invention.
  • the technique of the present invention is applied. The invention is further described in detail with reference to specific embodiments.
  • Example 1 Cx43 *L affinity component - Cx43 targeting binding peptide (Cx43SP) Any of the following four types of polypeptides (Cx43 targeting binding peptide) can specifically bind to the carboxy terminus of Cx43, thus Can be used to synthesize Cx43 targeting molecular probes.
  • Gly- Ala -Pro- Gly-4 Hyp- Pro- Tyr also known as: AAP 10 , Molecular Formula: C 26 HN 7 0 8 , Molecular Weight: 575.6, Its structure is as follows:
  • Cx43SP l is the most important targeting affinity component of the molecular probe of the present invention, and is a polypeptide composed of 6 amino acids which can specifically recognize and bind to Cx43 in vivo.
  • Cx43SP 1 is a series of antiarrhythmic peptides that were extracted from the atrial tissue of cattle in 1980 by Aonuma S et al., which was named antiarrhythamic peptide 10 (AAP 10).
  • AAP 10 antiarrhythamic peptide 10
  • the inventors of the present invention chemically modified the AAP10 structure, synthesized a probe for Cx43 in vivo imaging, and verified that the probe has an ideal living body stability.
  • Cx43 Specific Peptide 1 The horseshoe-shaped domain of Cx43SP l specifically binds to the receptor domain of the carboxy terminus of Cx43.
  • Cx43SP2 is an analog of Cx43SP1, which replaces some of the L-form amino acids in Cx43SP with D-type amino acids, thereby increasing stability. Currently, it has entered the clinical trial stage as an antiarrhythmic drug.
  • rotigaptide also known as: CHEMBL450656, GAP-486, ZP123.
  • Molecular formula C 28 H 39 N 7 O 9 , molecular weight: 617.65076.
  • Cx43SP3 is a functional analog of Cx43SP2, also known as GAP 134, with a molecular weight of 291.3. Its structure is as follows:
  • Cx43SP4 is a five amino acid sequence containing the characteristic structure of RXP-E, as shown in Table 1:
  • Cx43SP3 is a type of polypeptide that can be specifically bound to the carboxy terminus of Cx43 (amino acid 255-382) by phage display technology in 2006, consisting of 34 amino acids.
  • the basic binding motif is RXP-X, hence the name RXP series of peptides, intended for antiarrhythmic treatment. Among them, RXP-E has more application prospects than other peptides.
  • Example 2 Preparation of Cx43 Targeting Molecular Probes
  • the imaging target is connexin 43 (Connexin 43, Cx43), and the carboxy terminus (C-terminus) of Cx43 has a gated granular structure, which functions as a specific receptor domain and is the main binding of Cx43SP.
  • the target is the target of the Cx43 radial imaging of the present invention.
  • Signal component It is the part of the probe that can be detected by imaging equipment. In this patent, it is mainly radioisotope (PET and SPECT imaging), fluorescent dyes and quantum dots (optical imaging), paramagnetic materials and superparamagnetism. Materials and magnetic nanoparticles (magnetic resonance imaging), ultrasound microbubbles (ultrasound imaging), various photoacoustic nanoparticles (photoacoustic imaging) and various components of the above combined multi-mode imaging technology to detect imaging materials .
  • PET and SPECT imaging radioisotope
  • fluorescent dyes and quantum dots optical imaging
  • paramagnetic materials and superparamagnetism Materials and magnetic nanoparticles (magnetic resonance imaging), ultrasound microbubbles (ultrasound imaging), various photoacoustic nanoparticles (photoacoustic imaging) and various components of the above combined multi-mode imaging technology to detect imaging materials .
  • Targeting affinity component is the part of the probe that specifically binds to the molecular target of imaging, and the binding between the two is highly specific and high affinity, equivalent to "key and lock"
  • the present invention mainly relates to the polypeptide and small molecule structure of Example 1.
  • Linker The part that links the signal component to the targeted affinity component. Instead of introducing a linker, the signal component and the Cx43 affinity component can be directly connected directly by chemical means.
  • Example 3 Preparation of a radioisotope labeled Cx43 targeting molecular probe
  • Example 1 All of the four types of polypeptides in Example 1 can specifically bind to the carboxy terminus of Cx43, and thus can be prepared as a labeled Cx43 targeting molecular probe.
  • Cx43SP1 is used as a representative polypeptide.
  • the signal component is a positron-emitting radioisotope or a single-photon radionuclide, which can be used for clinical and small animal positron emission tomography (PET) or single photon emission tomography (SPECT).
  • PET positron emission tomography
  • SPECT single photon emission tomography
  • the radioisotope and the targeting polypeptide can be linked together by radiochemical methods by selecting the appropriate linker.
  • the linker used is also called a bifunctional chelating agent.
  • the bifunctional chelating agent has both a functional motif group that binds to the radioactive metal and a group that binds to Cx43SP, and the two are joined to form a Cx43 targeting molecular probe.
  • DOTA 1 , 4,7, 10-tetraazacyclododecane- 1 ,4,7, 10-tetraacetic acid 1 ,4,7, 10-tetraazacyclododecane - 1,4,7, 10-tetraacetic acid
  • NOTA 1 ,4,7-triazacyclononane-l ,4,7-triacetic acid 1 ,4,7- ⁇ ⁇ . ⁇ -1 ,4,7- triacetic acid
  • NODAGA NOTA is functionally modified by the glutaric acid arm
  • TETA 1 ,4,8, 1 1 -tetraazacyclotetradecane- 1 ,4,8, 1 1 ,tetraacetic acid
  • SarAr and AmBa Sar are carboxylic acid and amino derivatives of Sar
  • Cii label Cx43SP as an example, illustrating the method of divalent (M 2+ ) or trivalent metal ion (M 3+ ) labeling Cx43SP of radioisotope.
  • NODA modification Cx43SP excess NODA, add appropriate amount of N,N-dimethylformamide (DMF) and 2% N,N-diisopropylethylamine (DIPEA), shake at room temperature overnight. Separation and purification by high performance liquid chromatography (HPLC), and product identification by mass spectrometry.
  • the chemical reaction formula of NODA modification Cx43SPl is as follows:
  • 64 Cu labeling Dissolve 10 g of Cx43SP-NODA in ammonium acetate 200 ⁇ l buffer with a pH between 4 and 5, and add 50 ⁇ M of 64 CuCl 2 ( ⁇ between 5-6). The mixture was reacted at 37 ° C for 1 hour. The radiolabeled product was separated and purified by radioactive detector-high performance liquid chromatography (RP-HPLC) to determine the labeling rate, radiochemical purity, and specific activity.
  • RP-HPLC radioactive detector-high performance liquid chromatography
  • 18 F is the most commonly used radionuclide in clinical practice, 18 FF with affinity application - direct labeling
  • NODA-Cx43SP was synthesized using NODA-Cx43SP.
  • QMA-SepPak column adsorbs 30mCi (l. LGBq) 18 F- aluminum fluoride, metal ion-free rinsing solution 2.5mL 18 F- aluminum fluoride, aluminum fluoride and rinsed with 18 F- 400 0.4M KHCO3 solution , take 200 ⁇
  • Replacement page (Article 26) 18 F-aluminum fluoride solution for use.
  • the pH of the solution was adjusted to 4.0 with acetic acid containing no metal ions.
  • Aluminum chloride (A1C1 3 , 2 mM, 3 ⁇ , dissolved in 0.1 M sodium acetate buffer, pH 4) and 5 ⁇ of NOTA-Cx43SP (60 mg/mL in DMSO) were added to the solution in this order.
  • Reaction mixture 100. After incubation for 15 minutes, it was diluted with 1 mL of metal ion-free water. The product was purified by semi-preparative HPLC.
  • the 18 F-AlF-NOTA-Cx43SP analog was collected, evaporated to dryness, dissolved in PBS and ultrafiltered through 0.22 ⁇ m to disinfectant dose. In bottles, for in vitro and in vivo experiments. Similarly, the labeling rate, radiochemical purity, specific activity, etc. were determined by HPLC, and the chemical reaction formula of 18 F-labeled Cx43SP1 was as follows.
  • Cx43SP can be labeled in a similar manner by other 18 F precursors (ie, an auxiliary group).
  • 18 F labeled common precursor of formula [18 F] FBA: [18 F] fluoro-phthalic acid; [18 F] FSB: [ 18 F] fluoro messy Yue ester; [18 F] FBEM [18 F] FBBO follows Shown as follows:
  • radionuclides such as "C, 13 N, 15 O, etc. can be applied, and the corresponding precursors are selected to label Cx43SP.
  • Advantages of positron-emitting radionuclide-labeled probes High sensitivity , can be accurately quantified, can be clinically transformed, the probe has a small molecular weight, and the pharmacokinetic characteristics are good.
  • the bifunctional chelating agent HYNIC-NHS reacts with the amino group (-NH 2 ) on Cx43SP, using DMF as solvent and 2% DIPEA as catalyst. After purification by high pressure liquid chromatography (HPLC), the product is confirmed by mass spectrometry.
  • ⁇ -99m labeled HYNIC- Cx43SP through the "3 + ⁇ , binary mixed ligand complexation scheme, with tridentate ligand tricine as a synergistic reagent, using stannous chloride (SnCl 2 .H 2 O) As a reducing agent, after reacting at room temperature for 20 min, the radiochemical purity of the labeled compound was determined, and the cast colloid was less than 1%.
  • stannous chloride SnCl 2 .H 2 O
  • Near-infrared fluorescent dyes with a wavelength of 700-900 nm have a strong penetrating power and can reach deeper tissues, so they are commonly used for in vivo optical imaging. Commonly used near-infrared fluorescent dyes are shown in the figure. Different bifunctional chelating agents can be selected to label the near-infrared fluorescent dye on the Cx43SP.
  • the chemical structure of the cyanine dye is as follows:
  • Cy5.5 labeling Cx43-specific binding peptide was dissolved in 100 DMSO, mixed with Cy5.5-NHS (1 equiv.) in the dark, co-dissolved in 2% DIPEA, and incubated overnight at room temperature with shaking. The product was purified by preparative HPLC C 1 8 column (250 X 10 mm), product was collected, lyophilized, yield was calculated, and molecular weight was determined by mass spectrometry (MALDI-TOF-MS). The chemical reaction formula of Cy5.5 label Cx43SP l is as follows:
  • nanomaterials including: nanoprobes containing near-infrared fluorescent dyes, quantum dots, broken nanotubes, and gold nanoclusters.
  • Cx43SP using quantum dot labeling Cx43SP: taking Cx43SP l OOOeq, dissolved in water, mixed with leq quantum dots, adding 1000 eq of EDC, stirring at room temperature for 1 hour, separating with PD10 column, and concentrating with a centrifuge tube. Measure the concentration.
  • a quantum dot can be labeled with 500-600 Cx43SP molecules.
  • the synthesized probe was subjected to near-infrared fluorescence imaging for in vivo detection.
  • Example 5 Preparation of magnetically labeled Cx43 targeting molecular probes
  • superparamagnetic nanoparticle labeling Cx43SP synthetic probe for magnetic resonance imaging Taking superparamagnetic nanoparticles as an example, the superparamagnetic nanoparticles are labeled with Cx43SP: Cx43SP lOOOeq, dissolved in water, mixed with l eq of superparamagnetic nanoparticles, added
  • a paramagnetic metal chelate can also be labeled on Cx43SP to form a probe for magnetic resonance imaging.
  • the paramagnetic metal elements mainly include: ritual (Gd 3+ ), Dy 3+ , Tm 3+ , Mn 2+ , CEST reagent 1He, 129 Xeterrorism due to the weaker relaxation of paramagnetic metal chelates, and magnetic Resonance molecular imaging is less sensitive and can also introduce an effective signal amplification mechanism, that is, using macromolecules such as lysate and liposome, the surface carries multiple functional groups, and multiple Cx43SP molecules and a large number of paramagnetic metals. Chelate the surface to form a probe.
  • the chemical reaction formula of the paramagnetic metal chelate labeled Cx43SP1 is as follows:
  • gold nanoparticles can also be used to mark Cx43SP for photoacoustic imaging, such as gold nanorods.
  • Apply gold nanorods to mark Cx43SP Take Cx43SP lOOOeq, dissolve in water, mix with leq gold nanorods, add lOOOeq of EDC, stir the reaction for 1 hour at room temperature, separate with PD10 column, concentrate with a centrifuge tube, and measure the concentration.
  • the chemical reaction formula of gold nanorod marker Cx43SPl is as follows:
  • Example 8 Preparation of multi-mode labeled CX43 targeting molecular probes
  • the above two or more imaging labeling methods are used simultaneously to generate Cx43 targeted probes for detection by two or more imaging methods.
  • Needle a multimodal molecular imaging probe.
  • different functional groups are attached to the surface of the nanomaterial for connecting other modes of imaging agents such as polypeptides, radionuclides, and fluorescent dyes.
  • the surface of the near-infrared quantum dot is modified by a thiol group and a carboxyl group, first connected to Cx43SPl, and the quantum dot is modified by NODA-MAL.
  • the NODA is attached to the quantum dot by the reaction of the maleican and the sulfhydryl group.
  • the radiolabeled product was separated and purified by PD10, and the labeling rate, radiochemical purity, specific activity, and probe were simultaneously detected by near-infrared fluorescence imaging and PET imaging.
  • the chemical reaction formula of 64 Cu and quantum dot dual-mode label Cx43 SP 1 is as follows:
  • Cx43 high expression cell line The cervical cancer HeLa cells were transfected with Cx43 gene, and the Cx43 overexpressing cervical cancer cell line HeLa-Cx43 was successfully prepared, and the transgenic Hela cells (without C43 expression) were used as controls.
  • Cy5.5-Cx43SP1 cell binding and blocking assay Hela-Cx43 cells and control group Hela-Control cells, 0.5 ⁇ 10 6 /well, were plated in 12-well plates one day before the experiment, a total of four groups: Group A: Hela- Cx43 cell group, group B: Hela-Control cell group, group C: Hela-Cx43
  • tissue frozen sections were further prepared and visualized under a fluorescence microscope.
  • muscle as a control (Fig. 3-a, 3-b, 3-c)
  • the distribution of the probe Cy5.5-Cx43SP in the heart was observed under a fluorescence microscope, and the myocardial frozen section was taken 1 hour after the injection of Cy5.5-Cx43SP in the tail vein.
  • Fluorescence microscopy showed that Cy5.5-Cx43SP aggregated in myocardial tissue and was mainly distributed in the site of gap junction between cardiomyocytes (Fig. 4-a, 4-b, 4-c).
  • Fig. 4-a, 4-b, 4-c At the tissue level, it was demonstrated that targeting myocardial gap junctions has targeted specificity.
  • Hela-Cx43 cells and control group Hela-Control cells 0.5 ⁇ 10 6 /well, were plated in 12-well plates one day before the experiment, a total of four groups: group A: Hela-Cx43 cell group, group B: Hela-Control cell group, C Group: Hela-Cx43 cell blocking group, group D: Hela-Control cell blocking group. 3 wells per group and the experiment was repeated 3 times. 64 Cu-NODA-Cx43SPl was added to each well at a concentration of 3.2 ⁇ /well, 1 ml. The blocking group was added with unlabeled NODA-Cx43SP1 at a concentration of 50 ⁇ /well (10 times 64 Cu-NODA-Cx43SP1).
  • -NODA-Cx43SP1 can be specifically taken up by HeLa cells overexpressing Cx43,
  • Cu-NOTA-Cx43SP showed obvious aggregation in the heart 30 minutes after intravenous injection, and continued to accumulate until 3 hours (Fig. 7), but there was little accumulation in the liver and lung, and the myocardial development was clear. Since Cx43 is the major gap junction protein in the myocardium, the results are explained.
  • a subcutaneous xenograft model of mice (Fig. 9, left) was established using HeLa-Cx43 cells overexpressing Cx43, and a subcutaneous xenograft model of conventional HeLa cells not transfected with Cx43 was used as a control group (Fig. 9, right side).
  • Near-infrared fluorescence imaging of living Cy5.5-Cx43SP1 tumors showed that the probe Cy5.5-Cx43SP1 was highly concentrated in the HeLa-Cx43 tumor site overexpressing Cx43 after a ' ⁇ ! There was no obvious aggregation in the HeLa tumor site of the control group. This result again shows that at the living level, the Cx43 target molecular probe Cy5.5-Cx43S has a certain targeting specificity for Cx43-positive tumors.
  • a subcutaneous xenograft model of mice was established using HeLa-Cx43 cells overexpressing Cx43 (Fig. 10, left). Intravenous injection of 64Cu-NODA-Cx43SP at a concentration of 40 micro-residue.
  • the results of Micro PET imaging showed that the probe 64Cu-NODA-Cx43SP accumulated at a high concentration in the HeLa-Cx43 tumor site overexpressing Cx43 after a tail vein injection. This result again shows that at the living level, the Cx43 targeting molecular probe 64Cu-NODA-Cx43SP has a certain targeting specificity for Cx43-positive tumors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

一种靶向性分子成像探针,由信号组分、Cx43靶向亲和组分以及连接体三部分组成。通过引入该可供影像学设备检测的靶向性分子成像探针,可以以图像的形式反映与心血管系统疾病(尤其是心律失常)和肿瘤疾病相关的缝隙连接蛋白43(Cx43)的生物化学变化特征,从而实现活体分子成像。

Description

一种靶向性分子成像探针及活体分子成像方法 本申请要求于 2012 年 6 月 18 日提交中国专利局、 申请号为 201210200690.6、 发明名称为"一种靶向性分子成像探针及活体分子成 像方法"的中国专利申请的优先权,其全部内容通过引用结合在本申请 中。 技术领域
本发明涉及医用技术领域, 特别涉及一种 Cx43靶向性分子成像 探针及活体分子成像方法。
背景技术
缝隙连接重构 (gap junction remodeling )是参与心律失常、 肿瘤、 动脉粥样硬化等疾病发生、 发展的共同病理基础之一, 而缝隙连接蛋 白 43 ( connexin43 , Cx43 ) 则是组成缝隙连接的基本结构单位, 是构 成心肌细胞间缝隙连接的主要结构基础。 Cx43是分子量为 43Kd的一 种连接蛋白, 其主要作用是介导相邻细胞之间的直接通讯。 在心脏, 其主要作用是形成细胞间快速的电冲动, 保证心脏整体电活动同步性 和协调性,维持心肌细胞的电活动以及机械收缩和舒张功能的同步性。 因此, Cx43在数量、 分布、 功能和磷酸化状态等方面发生改变 (即缝 隙连接重构) 时必然会引起心肌细胞间电耦联障碍。 主要表现为细胞 间电活动的同步性、 协调性改变, 电传导速度的减慢及各向异性的改 变等。 多种成年获得性心血管病, 如心肌缺血、 心律失常、 心力衰竭、 高血压、 动脉粥样硬化等均出现了不同程度的 Cx43缝隙连接重构。 Cx43缝隙连接重构是各种心律失常,尤其是折返性心动过速产生的重 要结构基础, 也是各种心脏疾病死亡和猝死的最主要原因。
1
替换页 (细则第 26条) 同时, Cx43参与多种细胞生命周期从生长到死亡的各个环节, 直 接介导细胞生长调控信号在相邻细胞之间的传递, 调控细胞生长、 分 化和凋亡。 Cx43的异常将直接导致细胞生长调控异常,接触抑制作用、 终末分化和凋亡能力消失, 表现为延长的或永生的细胞生命周期, 从 而引起肿瘤发生。
因此, Cx43作为抗心律失常治疗和抗肿瘤治疗的共同分子靶点, 已成为国内外心血管疾病和肿瘤研究领域的新的研究热点。 多种体外 研究方法也被相应的开发出来, 用于 Cx43的数量和功能 (包括磷酸 化状态) 分析。 这些研究方法包括: 应用 PCR或 RT-PCR在 mRNA 水平检测 Cx43的表达情况; 应用 Western Blot对 Cx43蛋白进行半定 量研究; 通过免疫组织荧光染色技术, 观察 Cx43的亚细胞水平定位 和缝隙连接重构等; 通过引入 Cx43不同磷酸化位点的特异性抗体, 利用基质辅助激光解析 /电离质谱、 固定金属亲和层析、 液相串联质谱 分析 Cx43的不同磷酸化位点的磷酸化状态; 利用荧光染料细胞间传 递实验, 通过显微注射方法将小分子荧光染料引入到细胞浆, 结合荧 光显微镜技术, 在细胞水平评价 Cx43介导的细胞间直接通讯功能等。 但是, 这些体外检测方法主要依靠对大量的、 细胞水平或离体组织的 实验结果的分析。
体外检测方法虽可判断、 分析细胞或组织的 Cx43表达水平和功 能状态, 但从技术层面上分析, 都存在着一定的局限性:
①需要通过细胞培养、 活检或尸检取得标本, 不能直接应用于人 体;
②体外实验结果可能与活体状态下的真实情况不符: 体外实验受 实验条件、 实验设备、 实验方法的影响较大, 在样品的处理过程中, 可能会遗失某些重要的成分, 误差较大, 使得实验结果与活体状态下
2
替换页 (细则第 26条) 的真实情况不符;
③体外实验不利于动态研究: 体外实验需要在不同的时间点处死 实验动物来获取组织或反复活检取材, 只能观察疾病的某一阶段, 无 法实现在同一动物体内真正的动态研究, 不易在如此复杂的、 进展的 疾病全过程得到准确的结论;
④操作复杂, 费时耗财, 随机性很大。 因此, Cx43的活体可视化 研究可能为解决这些问题, 提供了一种新的思路, 而分子影像学技术 的出现使之成为可能。
分子影像学是指在活体状态下, 应用影像学方法对人或动物体内 的细胞和分子水平生物学过程进行成像、定性和定量研究的一门学科。 它以应用分子探针为显著特点, 采用多种成像手段, 对体内特定靶点 进行成像。 成像手段包括: 放射性核素成像 ( radionuclide imaging )、 磁共振成像 ( magnetic resonance imaging , MRI )、磁共振波 i普成像 ( MR spectroscopy , MRS )、 光学成像 ( optical imaging, 01 )、 超声成像 ( ultrasound imaging, US ) 及多模式融合成像 ( integration of multi-mode imaging )等。 借助这些成像技术, 生命系统内部某些特定 的生理或者病理过程, 如基因表达, 蛋白质之间相互作用, 信号传导, 细胞的代谢以及细胞示踪等等可变为直观的图像显现出来。
V Baklaushev等进行的 Cx43可视化方案, 合成了以 Cx43蛋白细 胞外 E2段的特异性抗体为靶向亲和组件,以放射性同位素 1251和荧光 染料 Alexa660为信号组件的探针,利用 γ射线计数器和荧光显微镜进 行检测脑胶盾瘤中 Cx43的表达异常情况, 但仍没有摆脱体外检查方 法的局限:
1251并不是一种适合活体显像的核素, 只能应用 γ射线计数器 进行检测, 且检查结果不够直观。 所以该研究在静脉注射探针
3
替换页 (细则第 26条) 125I-MAbE2Cx43后, 处死动物, 获取组织, 应用 γ射线计数器进行了 放射性分析;
② Alexa660也并不是适用于活体成像的荧光染料, 只能用于免疫 组织染色分析,因此该研究在静脉注射探针 Alexa660-MAbE2Cx43后, 处死动物, 获取组织, 制成冰冻切片, 应用荧光显微镜对组织进行了 分析;
③采用 MAbE2Cx43抗体作为亲和组件, 抗体价格昂贵, 并可能 会引起免疫原性反应从而引发副作用。 更重要的是, 由于抗体分子量 较大, 非特异性吸收会较高, 注射入体内后不易获得理想的药代动力 学特征和生物学分布特征, 导致检测结果不准确, 应用起来不方便。 目前亟需活体检测和定量 Cx43的方法。 发明内容
本发明主要解决的技术问题就是 Cx43的活体检测和定量问题。 通过活体分子成像技术对 Cx43进行过活体检测和定量, 可在活体确 定 Cx43的表达数量、 分布、 功能和疾病发展过程中 Cx43的动态变化 情况, 明确 Cx43靶向治疗干预的最佳时间、 剂量, 并对"重建 Cx43,, 治疗的疗效进行准确客观的评价, 从而实现快速折返性心律失常和恶 性肿瘤等疾病的预后评估、 Cx43靶向治疗疗效监测。
一方面, 本发明提供一种活体分子成像的方法, 所述方法包括: 提供 Cx43靶向性分子探针, 所述靶向性分子探针由信号组分、 靶向亲和组分以及连接体三部分组成, 所述信号组分为可供影像学设 备检测的部分, 所述靶向亲和组分为与 Cx43特异性结合的部分, 所 述连接体将信号组分和靶向亲和组分连接起来;
用所述的 Cx43靶向性分子探针对所述患者待测位置实施光学成 像、 正电子发射断层成像、 单光子发射断层成像、 磁共振成像、 光声 成像、 超声成像或其他活体影像学融合成像技术优选 PET/CT, PET/MRL
作为优选, 所述靶向亲和组分与 Cx43的羧基末端特异性结合。 更优选地, 所述靶向亲和组分选自:
I 、 Cx43SPl, Gly- Ala -Pro- Gly-4 Hyp- Pro- Tyr
II 、 Cx43SP2 , Gly -D-Tyr-D-Pro-D-Hyp-Gly-D-Ala-Gly
III、 x43SP3 , 其结构式如下:
Figure imgf000006_0001
IV、 Cx43SP4 , 包括 5种具有 RXP-X结构的类似物, 具体如下:
RXP-A, 其氨基酸序列如 SEQ ID No. l所示;
RXP-B , 其氨基酸序列如 SEQ ID No.2所示;
RXP-C, 其氨基酸序列如 SEQ ID No.3所示;
RXP-D , 其氨基酸序列如 SEQ ID No.4所示;
RXP-E, 其氨基酸序列如 SEQ ID No.5所示。
作为优选, 所述信号组分选自放射性同位素、 荧光染料、 量子点、 顺磁性性材料、 磁性纳米粒子、 超顺磁性材料、 超声微泡、 光声纳米 颗粒的一种或几种。
作为优选, 所述连接体选自 DTPA、 DOTA、 DOTAGA、 NOTA、 NOD AG A, TETA、 CB-TE2A、 Sar、 NODA等螯合剂或者其他可直接 将信号组件和 Cx43靶向亲和组件直接相连的化学方法。
另一方面, 本发明提供一种靶向性分子探针, 由信号组分、 靶向
5
替換页 (细则第 26条) 亲和组分以及将信号组分和靶向亲和组分连接起来的连接体三部分组 成, 所述信号组分为可供影像学设备检测的部分, 所述靶向亲和组分 为与 Cx43特异性结合的部分, 所述连接体将信号组分和靶向亲和组 分连接起来。
作为优选, 所述靶向性分子探针的靶向亲和组分与 Cx43的羧基 末端特异性结合。
更优选地, 所述靶向亲和组分选自:
I 、 Cx43SPl , Gly- Ala -Pro- Gly-4 Hyp- Pro- Tyr
II 、 Cx43SP2, Gly -D-Tyr-D-Pro-D-Hyp-Gly-D-Ala-Gly
III、 x43SP3, 其结构如下:
Figure imgf000007_0001
Cx43SP4, 包括 5种具有 RXP-X结构的类似物, 序列如下:
Figure imgf000007_0002
作为优选, 所述信号组分选自放射性同位素、 荧光染料、 量子点、 顺磁性性材料、 磁性纳米粒子、 超顺磁性材料、 超声微泡、 光声纳米 颗粒的一种或几种。 作为优选, 所述连接体选自 DTPA、 DOTA、 DOTAGA、 NOTA、 NODAGA、 TETA、 CB-TE2A、 Sar、 NODA等螯合剂, 或利用其他直 接的化学反应将信号组件和 Cx43亲和组件直接连接。
分子探针(molecular probe ): 是能够与某一特定生物分子 (如蛋 白质、 DNA、 RNA )或者细胞结构靶向特异性的结合、 并可供体内或 (和)体外影像学示踪的标记化合物分子, 这些标记化合物分子能够 在活体或 (和) 离体反映其靶生物分子的量和 (或) 功能。 可以简单 理解为分子影像学诊断类药物。
分子成像探针必须具备以下 2个重要特征: ①对与疾病密切相关 的靶分子具有高度亲和力和靶向特异性; ②可供影像学设备在活体外 进行示踪。 探针主要用于在活体内对生物过程进行成像、 定量和测量 研究。 基本结构一般分为三个部分: 信号组件( signaling component )、 亲和组件 ( affinity component ) 和连接体 ( linker )。 信号组件是指能 产生影像学信号且能被高精度的成像技术探测的造影剂或标记物部分 (如放射性核素、 荧光素、 顺磁性原子及超声微泡等); 亲和组件即靶 向分子, 是与成像靶点特异性结合的部分(如配体或抗体等)。 通过放 射性化学或者生物分子链接化学技术可直接把信号组件和亲和组件连 接起来, 也可通过 linker, 即引入交联试剂或衍生化试剂( crosslinking or derivatizing reagents )把二者连接起来。
本发明提供一种 Cx43分子靶向特异性探针, 该类探针由放射性 同位素、 荧光染料、 量子点、 纳米粒子、 磁性材料、 超声微泡、 光声 成像材料和多模式成像等影像学方法标记 Cx43靶向特异性结合多肽 而成。 引入该类探针, 应用正电子发射断层显像(PET ), 单光子发射 断层显像(SPECT ), 光学成像、 超声成像、 磁共振成像、 光声成像和 多模式成像等影像学手段可在活体内检测到正常生理及病理情况下,
替换页 (细则第 26条) 感兴趣区域的 Cx43的数量、 分布和功能, 及其在疾病发展的不同阶 段的变化特征。
经研究已经证实该探针在活体内稳定性良好, Cx43靶向分子成像 特异性高, 准确性高, 图像的对比度佳, 适用于心血管系统疾病 (尤 其是心律失常)、 肿瘤的诊断、 Cx43靶向治疗疗效监测, 明确靶向治 疗干预的最佳时间、 剂量, 并对"重建 Cx43"治疗的疗效进行准确客观 的评价。 同时, 也为肿瘤和心血管系统疾病的基础研究提供了有效的 方法, 为研究 Cx43与疾病的发生、 发展特征之间的相关性提供了新 的手段。
本发明还提供一种成像组合物, 包含上述的靶向性分子探针。 本发明还提供所述靶向性分子探针在制备诊断 Cx43表达异常相 关疾病的试剂中的用途。
作为优选,所述 Cx43表达异常相关疾病为以 Cx43表达或功能异 常为分子特征的疾病, 主要包括心律失常或肿瘤。
本发明建立无创、 直观的 Cx43活体分子成像方法, 合成可供影 像学设备检测的探针, 直观的显示 Cx43的分布和数量, 初步评价其 功能, 该技术具有建立安全、 无创、 活体、 动态、 直观、 准确、 可直 接应用于人体的特征。
本发明开发的一类 Cx43靶向性影像学诊断类药物 (分子探针), 具有良好的药代动力学特征和生物学分布特征, 检测结果更加准确, 应用更加方便, 以图像的形式直观反映心律失常和肿瘤等疾病的生物 化学特征。
本发明的靶向特异性探针具有如下优点:
1).具有 Cx43靶向特异性, 确保 Cx43分子成像靶向检测的准确 性
8
替换页 (细则第 26条) 一般影像学和核医学检查所用的非特异性探针不能特异性识别 并结合体内的生物分子, 因此只能提供疾病分子改变下游的信息 (解 剖、 病理和生理学改变), 或者疾病的整体形态和功能信息, 例如血流 量的改变、 血流灌注的改变。 若想准确检测疾病发展过程中的关鍵标 志物分子, 则要求探针可特异性识别并结合体内分子标志物, 提供疾 病分子水平的信息, 加深对疾病生物过程的理解。 另外, 利用靶向特 异性探针, 可有效地减少探针与其他非成像靶点的非特异性结合, 更 加有助于对成像靶点进行准确的定量。
2).Cx43的活体可视化, 确保 Cx43分子成像检测的安全、 无创和 直观性
实现疾病发展过程中关键分子标志物的活体可视化, 要求探针具 有发射影像学信号, 可供无创的影像学设备在体外检测的性能, 通过 图像直观的显示出分子标志物的分布情况。因为影像学检查具有安全、 无创、 直观的特点。
3). 分子探针与靶点 Cx43的高亲和力
实现 Cx43活体检测, 获得理想的分子成像图像的前提是分子探 针在成像靶点的高浓度聚集, 即要求探针到达靶区后早期就与靶点结 合, 解离的时间相对较晚, 确保在几个血液循环周期后, 探针在靶点 达到理想的聚集状态。
4). 分子探针检测 Cx43的高敏感性
在疾病早期, 或者治疗干预的早期检测到分子标志物的变化情 况, 通常要求探针可检测到非常少量的生物标志物, 即具有高度敏感 性。 另外, 与治疗药物不同, 理想的分子探针必须确保其产生的生物 学影响或药理学作用尽量低, 因此需要探针的敏感性足够高, 只需要 少量的探针就可获得理想的图像, 尽量减少引入体内探针的数量, 降
9
替換页 (细则第 26条) 低探针引发的药理学作用。
5) . Cx43活体分子成像的高对比度
高对比度的图像要求病变区域的信号强度足够高, 即靶 /背景比值 和信号 /噪声比值很高。 这就要求探针具有理想的生物学分布特征, 即 探针在靶区浓聚的量大, 停留的时间长, 而在正常组织器官内摄取率 低, 清除速度快。
6) . 分子探针的活体稳定性
尽管分子探针的引入量可能很少, 但是维持分子探针在活体内的 稳定性和完整性依然是一个难题, 因为血浆内或者靶组织内存在许多 酶, 可将探针降解。 图像质量和定量研究的准确性依赖于探针在活体 内的稳定性。
7) . 分子探针的免疫源性和毒性低
应用于人体的分子探针必须安全、 没有免疫源性和毒性。 产生的 药理学作用尽量低。
8) .分子探针的生产过程简便易行, 成本低
分子探针的制备过程方便易行, 成本低廉, 有助于在临床广泛的 应用。 如果生产过程复杂, 成本高则势必会影响分子探针的临床转化。 附图说明
图 1为 Cx43靶向分子成像探针的结构示意图;
图 2为探针在体外与 HeLa-Cx43细胞结合实验的荧光显微镜照 片:
a: Cy5.5-Cx43SP与 HeLa-Cx43细胞共孵育后, HeLa-Cx43细胞 摄取了大量的探针 Cy5.5-Cx43SP (绿色);
b: Cy5.5-Cx43SP与 HeLa细胞共孵育后, Cy5.5-Cx43SP未被对
10
替换页 (细则第 26条) 照组 HeLa细胞摄取;
c: 引入过量未经标记的 Cx43SP预先阻断, 再将 Cy5.5-Cx43SP 与 HeLa-Cx43细胞共孵育后, HeLa-Cx43细胞摄取 Cy5.5-Cx43SP的 量明显减少, 几乎没有摄取;
d: 引入过量未经标记的 Cx43SP阻断, Cy5.5-Cx43SP与 HeLa细 胞共孵育后, HeLa细胞依然没有摄取 Cy5.5-Cx43SP。 证实探针具有 良好的靶向特异性。
图 3为以肌肉作为对照的组织冰冻切片荧光显微镜照片: a:尾静脉注射 Cy5.5-Cx43SP后 lh, 肌肉冰冻切片荧光显微镜下显 示, Cy5.5-Cx43SP在肌肉组织内无聚集;
b:肌肉冰冻切片 bright field图片, 显示肌肉组织形态;
c:肌肉冰冻切片和荧光显微镜下图融合图片。
图 4为活体注射探针后, 心肌组织冰冻切片荧光显微镜照片: a: 尾静脉注射 Cy5.5-Cx43SP后 lh, 心肌冰冻切片荧光显微镜下 图片, Cy5.5-Cx43SP在心肌组织大量聚集;
b:尾静脉注射 Cy5.5-Cx43SP后 lh, 心肌冰冻切片 bright field图片 显示心肌组织形态;
c:尾静脉注射 Cy5.5-Cx43SP后 lh, 心肌冰冻切片和荧光显微镜下 图融合图片显示 Cy5.5-Cx43SP在心肌组织大量聚集, 且主要分布于 心肌细胞间缝隙连接所在部位。
图 5为 64Cu-NODA-Cx43SPl与 Hela-Cx43细胞结合和阻断实验 图 6为离体主要组织器官近红外荧光成像: 小鼠尾静脉注射探针
Cy5.5-Cx43SP后 lh, 探针在心脏、 胃、 肝脏、 胆嚢和肠道明显聚集, 大部分经肝肠道排泄。
图 7为 64Cu-NOTA-Cx43SPl在正常大鼠中不同时间点的 PET成
11
替换页 (细则第 26条) 像, 显示探针在心脏聚集明显。 64Cu-NOTA-Cx43SPl注射量约 200微 居。
图 8为 64Cu -NOTA-Cx43SPl在正常小鼠中 1小时的 PET成像,显示 探针在心脏聚集明显。 64Cu-NOTA-Cx43SPl注射量约 50微居。
图 9: 活体小鼠肿瘤近红外成像实验: 小鼠尾静脉注射探针 Cy5.5-Cx43SPl后 lh, 在过表达 Cx43的 HeLa-Cx43肿瘤部位大量聚集, 而在右侧对照组 HeLa肿瘤部位无浓聚。
图 10: 体内小鼠肿瘤 PET成像实验: 小鼠尾静脉注射探针
64Cu-NODA-Cx43SPl后 lh, 探针在过表达 Cx43的 HeLa-Cx43肿瘤部位 大量聚集 (左側)。 具体实施方式
本发明公开了一种 Cx43耙向性分子成像探针及活体分子成像方 法, 本领域技术人员可以借鉴本文内容, 适当改进工艺参数实现。 特 别需要指出的是, 所有类似的替换和改动对本领域技术人员来说是显 而易见的, 它们都被视为包括在本发明。 本发明的方法及应用已经通 过较佳实施例进行了描述, 相关人员明显能在不脱离本发明内容、 精 神和范围内对本文所述的方法和应用进行改动或适当变更与组合, 来 实现和应用本发明技术。 合具体实施例对本发明作进一步的详细说明。 实施例 1 : Cx43 *L向亲和组分— Cx43靶向性结合肽( Cx43SP ) 以下 4类多肽 (Cx43靶向性结合肽) 的任何一类均可以与 Cx43 的羧基末端特异性结合, 因此可用来合成 Cx43靶向分子探针。
12
替换页 (细则第 26条) 1 )、 Cx43SP l的结构:
Gly- Ala -Pro- Gly-4 Hyp- Pro- Tyr , 又称为: AAP 10 , 分子式: C26H N708 , 分子量: 575.6 , 其结构如下所示:
Figure imgf000014_0001
Cx43SP l是本发明分子探针中最重要的靶向亲和组分, 是 1种能 够在活体内特异性识别 Cx43, 并与之结合的 6个氨基酸组成的多肽。 Cx43SP 1 是 1980年 Aonuma S等在牛的心房组织中提取出来的一系列 通过作用于 Cx43而起作用的抗心律失常多肽, 因此曾被命名为 antiarrhythmic peptide 10 (AAP 10) 。 但是由于 AAP 10在血浆中结构不 稳定, 未能有进一步的临床应用。 本专利发明者对 AAP10结构进行了 化学修饰, 合成了用于 Cx43活体成像的探针, 并验证了该探针具有 理想的活体稳定性。 由于在本发明中, 该化学结构不再作为抗心律失 常药物, 而是作为 Cx43靶向分子成像探针的靶向亲和组分, 因此命 名为 Cx43特异性结合肽 l (Cx43 Specific Peptide 1)。 Cx43SP l的马蹄 形结构域可与 Cx43的羧基末端的受体结构域特异性结合。
2 )、 Cx43SP2的结构:
Gly -D-Tyr-D-Pro-D-Hyp-Gly-D-Ala-Gly , 其结构如下所示:
13
替换页 (细则第 26条)
Figure imgf000015_0001
Cx43SP2是 Cx43SPl的类似物, 用 D型氨基酸代替了 Cx43SP 中的部分 L型氨基酸, 从而增加了稳定性, 目前作为抗心律失常药物 已经进入到临床试验阶段。 Cx43SP2的商品名: rotigaptide, 又称: CHEMBL450656, GAP-486, ZP123。 分子式: C28H39N7O9, 分子量: 617.65076。
3 ) Cx43SP3的结构:
Cx43SP3是 Cx43SP2的功能类似物, 又称为 GAP 134 , 分子量 为 291.3, 其结构如下所示:
Figure imgf000015_0002
4 ) Cx43SP4为包含 RXP-E特征性结构的 5种氨基酸序列, 如表 1所示:
表 1 Cx43SP4的氨基酸序列
Figure imgf000015_0003
14
替换页 (细则第 26条) RXP-A DVPGRDPGYIKGGGSAHARVPFFSHSLNRNRKPSLYQ
RXP-B EIQPRSPLMFSGGGSAHARVPFFSHSAKEARWPRAHR
RXP-C GIAAREPNSHDGGGSAHARVPFFSHSRDLWRKPAKSL
RXP-D WEEPRRPFTMSGGGSAETHARVPFYSHSPMRHRLPGVHL
RXP-E SDDLRSPQLHNGGGSAVPFYSHSHMVRRKPRNPR
Cx43SP3是 Mario Delmar等人 2006年通过噬菌体展示技术筛选 出来的一类可以与 Cx43的羧基末端 (氨基酸 255-382 )特异性结合的 多肽, 由 34个氨基酸构成。基本结合模序是 RXP-X, 因此又叫做 RXP 系列多肽, 拟用于抗心律失常治疗。 其中 RXP-E较其他多肽更具有应 用前景。 实施例 2: 制备 Cx43靶向性分子探针
本发明 Cx43靶向性分子探针的结构通式如图 1所示。
( 1 ) 成像靶点为缝隙连接蛋白 43(Connexin 43, Cx43), Cx43的 羧基末端 (C末端) 有一个门控颗粒状结构, 功能相当于特异性的受 体结构域, 是 Cx43SP的主要结合靶点, 是本发明 Cx43耙向成像的靶 点。
( 2 ) 信号组分: 是探针可供影像学设备检测的部分, 本专利中 主要为放射性同位素 (PET和 SPECT成像)、 荧光染料和量子点 (光 学成像)、顺磁性材料和超顺磁性材料和磁性纳米粒子(磁共振成像)、 超声微泡(超声成像)、 各种光声纳米颗粒(光声成像)及以上各种组 分进行组合而成的多模式成像技术检测的影像学材料。
( 3 ) 靶向亲和组分: 是探针与成像的分子靶点特异性结合的部 分, 二者之间的结合具有高度特异性和高亲和力, 相当于 "钥匙和锁"
15
替换页 (细则第 26条) 的关系。 本发明中主要涉及到实施例 1中的多肽和小分子结构。
( 4 ) 连接体: 将信号组分和靶向亲和组分连接起来的部分。 也 可不引入连接体, 而是采用化学方法直接将信号组件和 Cx43亲和组 件直接连接。 实施例 3: 放射性同位素标记的 Cx43靶向分子探针的制备
实施例 1 中 4类多肽均可以与 Cx43的羧基末端特异性结合, 因 此均可用制备成标记 Cx43靶向分子探针。 以下的合成过程举例中, 均用 Cx43SPl作为代表性多肽。
信号组分为正电子发射性放射性同位素或者单光子放射性核素, 可用于临床和小动物正电子发射断层显像 (PET) 或单光子发射断层 显像(SPECT )。 选择恰当的连接体, 通过放射性化学方法可将放射性 同位素和靶向性多肽连接在一起。采用的连接体又叫做双功能螯合剂。 双功能螯合剂既具有与放射性金属结合的功能模序基团, 也有与 Cx43SP结合的基团, 将二者连接起来, 成为 Cx43靶向性分子探针。
1 )二价(M2+ )或者三价金属离子 (M3+ )标记 Cx43SP
可根据放射性核素的不同特性, 选择不同的连接体, 详见表 2。 表 2 常用放射性同位素、 双功能螯合剂及由此合成 Cx43靶向性探针
Figure imgf000017_0001
16
替换页 (细则第 26条)
Figure imgf000018_0001
17
替换页 (细则第 26条)
Figure imgf000019_0001
18
替换页 (细则第 26条)
Figure imgf000020_0001
DTPA: diethylene triamine pentaacetic acid 二乙三胺五乙酸
DOTA: 1 ,4,7, 10-tetraazacyclododecane- 1 ,4,7, 10-tetraacetic acid 1 ,4,7, 10- 四氮杂环十二烷 - 1,4,7, 10-四乙酸
DOTAGA :
1 -(1 -carboxy-3-carboxypropyl)- 1 ,4,7, 10-tetraazacyclododecane-1 ,4,7, 10-triacetic acid
19
替换页 (细则第 26条) ( 羧基 -3-羧丙基) -1 ,4,7,10-四氮杂环十二烷 -1 ,4,7,10-四乙酸
NOTA: 1 ,4,7-triazacyclononane-l ,4,7-triacetic acid 1 ,4,7-ί ί^^. ή -1 ,4,7- 三乙酸
NODAGA : NOTA通过戊二酸臂进行功能修饰
2-(p-SCN-Bz)-NOTA : NOTA通过苄基异硫氰酸进行功能修饰
TETA : 1 ,4,8, 1 1 -tetraazacyclotetradecane- 1 ,4,8, 1 1 ,tetraacetic acid
1 ,4,8,U -大环四胺四乙酸 -1 ,4,7,10-四乙酸
CB-TE2A : Attachment of two carboxymethyl pendant arms to cross-bridged
(CB)-cyclam leads to CB-TE2A
Sar: sarcophagine (3,6,10,13,16,19-hexa azabicyclo [6.6.6] icosane) 钴离子 ( 3,6,10,13, 16,19-六溴氮杂双环 [6.6.6] 二十碳烷)
SarAr 和 AmBa Sar是 Sar的羧酸和氨基衍生物
NODA: 1 ,4,7-triazacyclononane-l ,4-diacetate 1,4,7-叠氮酸钠 -1 ,4-双乙酸钠 由于以上涉及到多种放射性同位素和双功能整合剂,在此以 64Cii 标记 Cx43SP为例, 说明放射性同位素的二价(M2+ )或者三价金属 离子 (M3+ )标记 Cx43SP的方法.
NODA修饰 Cx43SP: NODA过量, 加适量的 N,N-二甲基甲酰胺 (DMF)和 2%的 N,N-二异丙基乙基胺 (DIPEA), 室温震荡过夜。 高效液 相色谱 (HPLC)分离纯化, 质谱分析鉴定产物。 NODA修饰 Cx43SPl 的化学反应式如下:
Figure imgf000021_0001
CX43SP1 NODA
20
替换页 (细则第 26条)
Figure imgf000022_0001
NODA修饰 Cx43 SP 1的化学反应式
64Cu标记:将其 lO g的 Cx43SP-NODA溶于 pH 介于 4-5之间的醋酸 铵 200μ1緩冲液中, 再加入 50 μΙ 的 64CuCl2 ( ρΗ 介于 5-6之间) 。 混 合液于 37°C反应 1 小时 。 放射性标记的产品经放射性探测器 -高效 液相色谱 (RP-HPLC) 分离纯化, 测定标记率, 放射化学纯, 比活度。 64Cu标记 NODA-Cx43 SP 1的化学反应式如下:
Figure imgf000022_0002
Cu标记 NODA-Cx43SPl的化学反应式
2 ) 18F标记 Cx43SP
18F是临床最常用的放射性核素, 应用亲和性的 18F-F—直接标记多
21
替换页 (细则第 26条) 肽难度很大, 一般利用经过修饰的 18F前体, 如 4-硝基苯 2-[18F]氟丙酸 ( 18F-NFP )。 通过本技术, 可得到适合用于心脏和肿瘤 Cx43靶向分子 成像的 18F标记的 Cx43探针, 该探针的特点是更具有临床应用潜力。
18F-FP-Cx43SP的合成:
18F 标记的前体 18F-NFP (4-nitrophenyl 2-[18F]-fluoropropionate, t = 22-23 min), Cx43 靶向结合肽 500 溶于 150μί无水二曱基亚砜 ( DMSO ) 中, 并加入 18F-NFP 和 20μί 的 Ν, Ν-二异丙基乙胺
( DIPEA ) 。 混合液室温下反应 30分钟后加入 800μί的 5%乙酸中和。 产物经半制备型 HPLC C-18柱纯化。 纯化产物加入 20μί水稀释。 制备 过程中用 5mL乙醇及 1 OmL水反复冲洗 C- 18柱子洗脱产物, 最终产物在 60°C用氮气吹干。 最后, 18F 标记的多肽溶于 PBS中并通过 0.22μπι超 微过滤到消毒剂量瓶中, 用于体外和活体实验。 同样, 用 HPLC测定 标记率,放射化学纯, 比活度等。 18F标记 Cx43SPl的化学反应式如下:
DIPEA, D SO
Figure imgf000023_0001
1 8F标记 Cx43 SP 1的化学反应式
F-AlF-NODA-Cx43SP的合成:
用 NODA-Cx43SP , 合成 NODA-Cx43SP。 采用 QMA-SepPak柱吸附 30mCi (l . lGBq) 18F-氟化铝, 用 2.5mL 的无金属离子水溶液冲洗 18F- 氟化铝, 并用 400 的 0.4M KHCO3溶液淋洗 18F-氟化铝, 取 200μΙ^的
22
替换页 (细则第 26条) 18F-氟化铝溶液备用。 用不含金属离子的醋酸将溶液 pH值调至 4.0。 向 溶液中按顺序加入氯化铝 (A1C13 , 2mM, 3 μί, 溶于 0.1M 醋酸钠 緩冲液, pH4)和 5μί 的 NOTA-Cx43SP ( 60mg/mL溶于 DMSO) 。 反应 混合物 100。C 孵育 15分钟后, 用 lmL无金属离子水稀释, 产物经半制 备 HPLC纯化, 收集 18F-AlF-NOTA-Cx43SP类似物, 蒸干, 溶于 PBS中 并通过 0.22μπι超微过滤到消毒剂量瓶中, 用于体外和活体实验。 同样, 用 HPLC测定标记率, 放射化学纯, 比活度等, 18F标记 Cx43SPl的化 学反应式如下。
Figure imgf000024_0001
F标记 Cx43SPl的化学反应式
除了 18F-NFP之外, 也可以通过其他 18F前体 (就是辅助基团), 采 用类似的方法标记 Cx43SP。 常用的 18F标记前体结构式 [18F]FBA: [18F] 邻氟苯甲酸; [18F] FSB: [18F]氟笨曱酸酯; [18F]FBEM [18F]FBBO如下 所示:
23
替换页 (细则第 26条)
Figure imgf000025_0001
[,8F]FBA [11SF]FSB I18F]FBEM
Figure imgf000025_0002
除了 18F之外, 还可应用 "C、 13N、 15O等放射性核素, 选取相应 的前体, 对 Cx43SP进行标记。 正电子发射的放射性核素标记的探针 的优点: 敏感性高, 可准确定量,. 可临床转化, 探针分子量小, 药物 代谢动力学特征佳。
3 ): 99mTc标记 Cx43SP
举例: 99mTc03+或者 99mTc02+, 采用 HYNIC作为双功能赘合剂。 具体步骤如下:
1. 双功能螯合剂 HYNIC-NHS与 Cx43SP上的氨基 ( -NH2 ) 反 应, 以 DMF为溶剂, 2% DIPEA作为催化剂, 经高压液相(HPLC)纯 化后, 产品, 质 i普加以确认。
2. 锝 -99m标记 HYNIC- Cx43SP: 通过" 3+Γ,的二元混合配体 络合的方案, 以三齿配体 tricine作协同试剂, 用氯化亚锡(SnCl2.H2O ) 作还原剂, 室温反应 20min后, 测定标记化合物的放射化学纯度, 铸 的胶体小于 1 %。
3. 分析: 用薄层层析 (ITLC)和高压液相(HPLC)的方法来分析标 记化合物中胶体的含量及产品的含量。
99mTc标记 Cx43SPl的化学反应式如下:
24
替换页 (细则第 26条)
Figure imgf000026_0001
Figure imgf000026_0002
99mTc标记 Cx43SPl的化学反应式
根据不同的 99mTc-核, 选择不同的连接体, 通过不同的反应过程, 可得到不同结构的产品。 99mTc标记 Cx43SP , 常见的双功能螯合剂及 合成的探针, R代表 Cx43SP如表 2所示:
Figure imgf000026_0003
25
替换页 (细则第 26条) His-R (N*His)Ac-R PADA-
4 ) 123/124I标记 Cx43SP
选择适当的氧化剂, 接可将放射性同位素碘标记在 Cx43SP上。 主要有 2种标记方法, 直接标记和间接标记。
①直接标记: 碘化反应可直接通过 "碘质子化"来实现。 123/1241直 接标记 Cx43SP常采用的氧化剂结构式如下:
Figure imgf000027_0001
氯胺 T 碘珠 非水溶性碘化试剂
123 ,241直接标记 Cx43SPl的化学反应式如下:
26
替换页 (细则第 26条)
Figure imgf000028_0001
Figure imgf000028_0002
Figure imgf000028_0003
Figure imgf000028_0004
Figure imgf000028_0005
替换页 (细则第 26条) 实施例 4: 光学标记的 CX43靶向分子探针的制备
1 )近红外荧光染料标记 Cx43SPl
波长在 700-900 nm的近红外荧光染料由于穿透力较强, 可到达较 深部的组织, 因此常用来进行活体光学成像。 常用的近红外荧光染料 见图。 可选择不同的双功能螯合剂, 将近红外荧光染料标记在 Cx43SP 上。 花菁染料化学结构通式如下:
Figure imgf000029_0001
常用 4类近红外荧光染料的化学结构如下:
( l a) cyanine, (lb) ICG , ( l c) SIDAG , (I d) PPCy
Figure imgf000029_0002
花菁染料化学结构通式
Cy5.5标记: Cx43特异性结合肽溶于 100 的 DMSO中, 避光 条件下与 Cy5.5-NHS ( 1 equiv. )混合, 共溶于 2%的 DIPEA中, 室温, 震动孵育过夜。 产品经半制备 HPLC C 1 8 柱子(250 X 10 mm)分离纯 化, 收集产物, 冻干, 计算产率, 用质谱 ( MALDI-TOF-MS ) 测定分 子量。 Cy5.5标记 Cx43SP l的化学反应式如下:
28
替换页 (细则第 26条)
Figure imgf000030_0001
Figure imgf000030_0002
2 )、 近红外纳米材料标记 Cx43SP
目前最常用的有以下四类纳米材料, 包括: 包含有近红外荧光染 料的纳米探针、 量子点、 破纳米管、 金纳米簇.
以近红外量子点为例, 应用量子点标记 Cx43SP: 取 Cx43SP l OOOeq, 溶于水中, 与 leq的量子点混合, 加入 lOOOeq的 EDC , 室 温搅拌反应 1小时, 用 PD10柱子分离, 用离心管浓缩, 测浓度。 一 个量子点上可标记上 500-600个 Cx43SP分子。 合成的探针经近红外 荧光成像进行活体检测。 实施例 5: 磁性标记的 Cx43靶向分子探针的制备
1 ) 超顺磁性纳米粒子 (Fe3O4 )
应用超顺磁性纳米粒子标记 Cx43SP合成探针, 用于磁共振成像。 以超顺磁性纳米粒子为例, 应用超顺磁性纳米粒子标记 Cx43SP: 取 Cx43SP lOOOeq, 溶于水中, 与 l eq的超顺磁性纳米粒子混合, 加入
29
替换页 (细则第 26条) lOOOeq的 EDC , 室温搅拌反应 1小时, 用 PD10柱子分离, 用离心管 浓缩, 测浓度。 超顺磁性氧化铁标记 Cx43SPl的化学反应式如下:
Figure imgf000031_0001
Cx43SP
2 ) 顺磁性金属螯合物: 通过选择适当的双功能螯合剂, 还可将 顺磁性金属螯合物标记在 Cx43SP上, 形成探针, 用于磁共振成像。 顺磁性金属元素主要包括: 礼(Gd3+ )、 Dy3+ 、 Tm3+、 Mn2+, CEST 试剂 1He, 129Xe„ 由于顺磁性金属螯合物产生的弛豫能力较弱, 而磁 共振分子成像的敏感性较低, 也可以引入有效的信号放大机制, 即利 用繁枝体、 脂质体等大分子, 表面携带多个功能基团, 将多个 Cx43SP 分子和大量的顺磁性金属螯合其表面, 形成一个探针。 顺磁性金属螯 合物标记 Cx43SPl的化学反应式如下:
30
替换页 (细则第 26条)
Figure imgf000032_0001
Figure imgf000032_0002
实施例 6: 超声徵泡标记的 Cx43靶向分子探针的制备
取 Cx43SP lOOOeq,溶于水中,与 leq的超声微泡混合,加入 lOOOeq 的 EDC, 室温搅拌反应 1小时。超声微泡标记 Cx43SPl的化学反应式 如下:
31
替换页 (细则第 26条)
Figure imgf000033_0001
Cx43SP
实施例 7: 光声材料标记的 Cx43靶向分子探针的制备
目前, 有一些金纳米粒子也可用来标记 Cx43SP, 进行光声成像, 例如金纳米棒。 应用金纳米棒标记 Cx43SP: 取 Cx43SP lOOOeq, 溶于 水中, 与 leq的金纳米棒混合, 加入 lOOOeq的 EDC , 室温搅拌反应 1 小时, 用 PD10柱子分离, 用离心管浓缩, 测浓度。 金纳米棒标记 Cx43SPl的化学反应式如下:
Figure imgf000033_0002
Cx43SP
32
替换页 (细则第 26条) 实施例 8: 多模式标记的 CX43靶向分子探针的制备 将以上 2种或者多种影像学标记方法同时使用, 产生可供 2种或 2种以上影像学检查手段探测的 Cx43靶向性探针,即多模式分子成像 探针。 例如在纳米材料表面连上不同的功能基团, 用于连接多肽、 放 射性核素、 荧光染料等其他模式的显像剂。
在近红外量子点表面经巯基和羧基修饰, 先连接上 Cx43SPl , 用 NODA-MAL修饰量子点, 通过马来甘与巯基的反应, 将 NODA连接 在量子点上。 再用 64Cu标记, 放射性标记的产品经 PD10分离纯化, 测定标记率, 放射化学纯, 比活度, 探针可供近红外荧光成像和 PET 成像同时检测。 64Cu和量子点双模式标记 Cx43 SP 1的化学反应式如下:
33
替换页 (细则第 26条)
Figure imgf000035_0001
Figure imgf000035_0002
Cx43SP 实施例 9: 离体实验证明
1 )、 Cx43高表达细胞系的建立: 用 Cx43基因转染了宫颈癌 HeLa 细胞, 成功制备 Cx43过表达宫颈癌肿瘤细胞系 HeLa-Cx43 , 将为转 基因的 Hela细胞 (无 C43表达) 作为对照。
2 ) Cy5.5-Cx43SPl细胞结合和阻断实验: Hela-Cx43细胞和对照 组 Hela-Control细胞, 0.5X106/孔, 实验前一天铺于 12孔板, 共四组: A组: Hela-Cx43细胞组, B组: Hela-Control细胞组, C组: Hela-Cx43
34
替换页 (细则第 26条) 细胞阻断组, D组: Hela-Control细胞阻断组。 每组 3孔, 实验重复 3 次。 每孔加入 Cy5.5-Cx43SPl , 浓度为 500nmol/L, lml。 阻断组加入 没标记的 Cx43SPl, 浓度为 5 mol/L。
结果显示: Cy5.5-Cx43SPl与 HeLa-Cx43细胞存在明显的特异性 结合, 与未转染 Cx43基因的对照组 HeLa细胞则无结合(图 2-a, 图 2-b )。 引入过量未经标记的 5 mol/L的 Cx43SP阻断后, Cy5.5-Cx43SP 与 HeLa-Cx43细胞的结合明显的大大减低 (图 2-c )。 以上结果表明, 近红外荧光探针 Cy5.5-Cx43SP可被过表达 Cx43的 HeLa细胞特异性 摄取, Cy5.5-Cx43SP与 HeLa-Cx43的结合具有靶向特异性。
同时, 进一步制作了组织冰冻切片, 在荧光显微镜下显像。 以肌 肉作为对照 (图 3-a, 3-b,3-c ), 荧光显微镜下观察探针 Cy5.5-Cx43SP 在心脏的分布情况, 尾静脉注射 Cy5.5-Cx43SP后 lh, 心肌冰冻切片 荧光显微镜下显示, Cy5.5-Cx43SP在心肌组织大量聚集, 且主要分布 于心肌细胞间缝隙连接所在部位(图 4-a, 4-b,4-c )。在组织水平证实探 针对心肌缝隙连接具有靶向特异性。
3) 、 64Cu-NODA-Cx43SPl细胞结合和阻断实验
Hela-Cx43细胞和对照组 Hela-Control细胞, 0.5X106/孔, 实验前 一天铺于 12孔板,共四组: A组: Hela-Cx43细胞组, B组: Hela-Control 细胞组, C组: Hela-Cx43细胞阻断组, D组: Hela-Control细胞阻断 组。 每组 3孔, 实验重复 3次。 每孔加入 64Cu-NODA-Cx43SPl , 浓度 为 3.2μ /孔, lml。阻断组加入没标记的 NODA-Cx43SPl ,浓度为 50μ§/ 孔 ( 10倍于 64Cu-NODA-Cx43SPl )。 结果显示: 64Cu-NODA-Cx43SPl 与 HeLa-Cx43细胞存在明显的特异性结合, 与未转染 Cx43基因的对 照组 HeLa细胞则无结合。 阻断实验, 64Cu-NODA-Cx43 SP 1与
35
替换页 (细则第 26条) HeLa-Cx43细胞的结合明显的大大减低 (图 5 )。 结果表明,
-NODA-Cx43SPl可被过表达 Cx43的 HeLa细胞特异性摄取,
-NODA-Cx43SPl与 HeLa-Cx43的结合具有靶向特异性和高亲和力。 实施例 10: 、 动物实验
1 )、 探针活体生物学分布特征:
Cy5.5-Cx43SP在正常小鼠中的生物分布
注射 Cy5.5-Cx43SP—小时后, 处死小鼠, 取出器官, 进行离体 主要器官近红外荧光成像显示, 结果显示: 探针 Cy5.5-Cx43SP主要 分布于心脏、 肝脏, 胃肠道, 主要经肝肠道排泄, 部分经肾脏, 泌尿 系统排泄。尤其是其较高的心脏摄取, 这是和正常心脏表达较高 Cx43 是非常一致的 (图 6 )。
2 )、 正常大鼠 PET心脏成像:
前期实验在活体水平验证了 64Cu-NOTA-Cx43 SP在正常大鼠心脏 的靶向聚集能力及探针的生物学分布特性。 结果表明,
64Cu-NOTA-Cx43SP在静脉注射后 30min即在心脏部位出现明显聚集, 一直持续到 3h依然有聚集(图 7), 而在肝脏、 肺脏的聚集很少, 心肌 显影清晰。 由于 Cx43为心肌主要缝隙连接蛋白, 结果说明
64Cu-NOTA-Cx43SP在心肌靶向性聚集。 静脉注射 lh后, 探针在 64Cu-NOTA-Cx43SP小鼠主要分布于心脏、 肠道。 这些结果与小鼠 Cy5.5-Cx43SP体外光学成像结果一致。 该实验结果, 表明了预实验所 设计的 Cx43耙向分子探针 64Cu-NOTA-Cx43S能对心肌进行活体成 像。
36
替换页 (细则第 26条) 3 )、 正常小鼠 PET心脏成像:
同时进行了 64Cu-NOTA-Cx43SP在正常小鼠的 PET显像实验。 结 果如图 8。64Cu-NOTA-Cx43SP在静脉注射后 1 小时后在心脏部位现明 显聚集, 同时在肝脏有吸收, 并很多通过腎脏和膀胱排泄。 这些结果 与大鼠试验具有一致性, 但心脏显像结果较大鼠中差。说明探针在不 同的动物种类中, 生物分布具有一定差异。 同时, 64Cu-NOTA-Cx43SP 探针也有进一步优化的空间和需求。
4 )荷癍棵鼠光学肿癌成像:
利用过表达 Cx43的 HeLa-Cx43细胞建立了棵鼠皮下移植瘤模型 (图 9 , 左侧), 并以未转染 Cx43的 常规 HeLa细胞皮下移植瘤模型 作为对照组(图 9 , 右侧)。 进行活体 Cy5.5-Cx43SPl肿瘤近红外荧光 成像, 结果表明: 探针 Cy5.5-Cx43SPl在尾静脉注射一'■!、时后, 在过 表达 Cx43的 HeLa-Cx43肿瘤部位呈高浓度聚集, 而在对照组 HeLa 肿瘤部位未见明显聚集。 该结果再次显示: 在活体水平上, Cx43靶 向分子探针 Cy5.5-Cx43S对 Cx43阳性的肿瘤具有一定的靶向特异性。
5 )、 荷癌棵鼠 PET肿瘆成像:
利用过表达 Cx43的 HeLa-Cx43细胞建立了棵鼠皮下移植瘤模型 (图 10 , 左侧)。 静脉注射 64Cu-NODA-Cx43SP, 浓度为 40微居。 Micro PET成像结果表明: 探针 64Cu-NODA-Cx43SP在尾静脉注射一' 时后, 在过表达 Cx43的 HeLa-Cx43肿瘤部位呈高浓度聚集。该结果再次显示: 在活体水平上, Cx43靶向分子探针 64Cu-NODA-Cx43SP对 Cx43阳性 的肿瘤具有一定的靶向特异性。
37
替换页 (细则第 26条) SEQUENCE LISTING
<110> 申宝忠
<120> 一种靶向性分子成像探针及活体分子成像方法
<130> OP 120331
<160> 5
<170> Patentln version 3.3
<210> 1
<211> 37
<212> PRT
<213> artificail sequence
<400> 1
Asp Val Pro Gly Arg Asp Pro Gly Tyr lie Lys Gly Gly Gly Ser Ala 1 5 10 15
His Ala Arg Val Pro Phe Phe Ser His Ser Leu Asn Arg Asn Arg Lys
20 25 30
Pro Ser Leu Tyr Gin
35
<210> 2
<211> 37
<212> PRT
<213> artificail sequence
<400> 2
Glu lie Gin Pro Arg Ser Pro Leu Met Phe Ser Gly Gly Gly Ser Ala 1 5 10 15
Figure imgf000040_0001
oe <i OZ
STH §-iV 0Jd -19S SIR 丄 ΐ¾Λ ^IV siH ^丄 NIO ς ι οι ς ι
Y -is S ^ΐθ ^ID ^ΐθ -is S 19]^ 丄 OJJ gjy WD o di丄
P <00P> 90U9tib9S |ΐΒομτμ¾ <£\Z>
I¾d <Z\Z>
6£ <I IZ> V <0\Z>
risq J9§ sA ¾|γ〇
oe 9Z OZ
s q §jy di丄 ns dsy ¾V siH J9S 9lld o^d ΐ^Λ ¾V ^IV siH 01 S ΐ
W ^19 ^ID dsv STH -is S usy oi^ n\o ιγ Έ\γ Έ\γ an ^ιο
Figure imgf000040_0002
90U9nb9S |ΐ¾ο¾ιμ¾ <£ \Ζ>
l¾d <Ζ\Ζ>
Li <UZ>
£ <01Ζ>
¾V S|H ^IV ο
Figure imgf000040_0003
£11681/£Ϊ0Ζ OAV <210> 5
<211> 34
<212> PRT
<213> artificail sequence
<400> 5
Ser Asp Asp Leu Arg Ser Pro Gin Leu His Asn Gly Gly Gly Ser Ala 1 5 10 15
Val Pro Phe Tyr Ser His Ser His Met Val Arg Arg Lys Pro Arg Asn
20 25 30
Pro Arg

Claims

1. 一种活体分子成像的方法, 所述方法包括:
提供 Cx43靶向性分子探针,所述 Cx43靶向性分子探针由信号组分、 Cx43 靶向亲和组分以及连接体三部分组成,所述信号组分为可供影像学设备检测的 部分, 所述 Cx43靶向亲和组分为与 Cx43特异性结合的多肽部分, 所述连接 体将信号组分和靶向亲和组分连接起来;
用所述的 Cx43靶向性分子探针对所述患者待测位置实施光学成像、 正电 子发射断层成像、 单光子发射断层成像、 磁共振成像、 光声成像、 超声成像或 其他活体影像学融合成像技术优选 PET/CT或 PET/MRL
2. 权利要求 1的方法, 其特征在于, 所述 Cx43靶向亲和组分与 Cx43的 羧基末端特异性结合。
3. 权利要求 1或 2的方法, 其特征在于, 所述 Cx43的靶向亲和组分选 自:
I 、 Cx43SP 1 , Gly- Ala -Pro- Gly-4 Hyp- Pro- Tyr
II、 Cx43SP2, Gly -D-Tyr-D-Pro-D-Hyp-Gly-D-Ala-Gly
III、 Cx43SP3 , 结构式如下:
Figure imgf000042_0001
IV、 Cx43SP4, 是一组基于 RXP-X结构的多肽, 共有 5个相似的序歹 ll :
RXP-A 其氨基酸序列如 SEQ ID No.1所示;
RXP-B 其氨基酸序列如 SEQ ID No.2所示;
RXP-C 其氨基酸序列如 SEQ ID No.3所示;
RXP-D 其氨基酸序列如 SEQ ID No.4所示; RXP-E, 其氨基酸序列如 SEQ ID No.5所示。
4. 权利要求 1- 3任一项的方法, 其特征在于, 所述 Cx43靶向性探针的 信号组分选自放射性同位素、荧光染料、量子点、顺磁性材料、磁性纳米粒子、 超顺磁性材料、 超声微泡、 光声纳米颗粒的一种或几种材料组合。
5. 权利要求 1-4中任一项的方法, 所述连接体选自 DTPA、 DOTA、
DOTAGA、 NOTA、 NODAGA、 TETA、 CB-TE2A、 Sar、 NOD A等螯合剂, 或利用其他直接的化学反应将信号组件和 Cx43亲和组件直接连接。
6. Cx43的靶向性分子探针, 由信号组分、 Cx43靶向亲和组分以及将信 号组分和靶向亲和组分连接起来的连接体三部分组成,所述信号组分为可供影 像学设备检测的部分, 所述靶向亲和组分为与 Cx43特异性结合的部分, 所述 连接体将信号组分和靶向亲和组分连接起来。
7.权利要求 6的靶向性分子探针,其特征在于,所述靶向亲和组分与 Cx43 的羧基末端特异性结合。
8. 权利要求 7的靶向性分子探针, 其特征在于, 所述靶向亲和组分选自: I 、 Cx43 SP 1 , Gly- Ala -Pro- Gly-4 Hyp- Pro- Tyr
II、 Cx43SP2, Gly -D-Tyr-D-Pro-D-Hyp-Gly-D-Ala-Gly
III、 Cx43SP3 , 结构式如下:
Figure imgf000043_0001
IV、 Cx43SP4, 是一组基于 RXP-X结构的多肽, 共有 5个相似的序歹 ll :
RXP-A 其氨基酸序列如 SEQ ID No.1所示;
RXP-B 其氨基酸序列如 SEQ ID No.2所示;
RXP-C 其氨基酸序列如 SEQ ID No.3所示;
RXP-D 其氨基酸序列如 SEQ ID No.4所示; RXP-E, 其氨基酸序列如 SEQ ID No.5所示。
9. 权利要求 6-8任一项所述的靶向性分子探针, 其特征在于, 所述信号 组分选自放射性同位素、 荧光染料、 量子点、 顺磁性性材料、 磁性纳米粒子、 超顺磁性材料、 超声微泡、 光声纳米颗粒的一种或几种。
10. 权利要求 6-9任一项所述的靶向性分子探针, 其特征在于, 所述连接 体选自 DTPA、 DOTA、 DOTAGA、 NOTA、 NODAGA、 TETA、 CB-TE2A、 Sar、 NODA等螯合剂, 或利用其他直接的化学反应将信号组件和 Cx43亲和 组件直接连接。
11. 一种分子成像探针的组合物, 包含权利要求 6- 10任一项所述的靶向 性分子探针。
12.权利要求 6-10任一项所述靶向性分子探针在制备诊断 Cx43表达异常 相关疾病的试剂中的用途。
13. 根据权利要求 12所述的用途, 其特征在于, 所述 Cx43表达异常相 关疾病为所有伴随 Cx43表达和功能异常的先天性或后天获得性疾病。
14、 根据权利要求 13所述的用途, 其特征在于, 所述 Cx43表达异常相 关疾病为肿瘤或心血管系统疾病优选为心律失常。
PCT/CN2012/079344 2012-06-18 2012-07-30 一种靶向性分子成像探针及活体分子成像方法 WO2013189113A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/353,111 US9764048B2 (en) 2012-06-18 2012-07-30 Targeted molecular imaging probe and method for in vivo molecular imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210200690.6A CN102743770B (zh) 2012-06-18 2012-06-18 一种靶向性分子成像探针及活体分子成像方法
CN201210200690.6 2012-06-18

Publications (1)

Publication Number Publication Date
WO2013189113A1 true WO2013189113A1 (zh) 2013-12-27

Family

ID=47024490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079344 WO2013189113A1 (zh) 2012-06-18 2012-07-30 一种靶向性分子成像探针及活体分子成像方法

Country Status (3)

Country Link
US (1) US9764048B2 (zh)
CN (1) CN102743770B (zh)
WO (1) WO2013189113A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333079B (zh) * 2013-07-03 2016-08-17 广东回旋医药科技股份有限公司 亚氨基酸类pet显像剂及其制备方法与应用
US10441669B2 (en) 2013-10-04 2019-10-15 Illinois Institute Of Technology Multifunctional chelators, complexes, and compositions thereof, and methods of using same
CN104483296B (zh) * 2014-12-01 2018-07-13 无锡市人民医院 乳腺癌分子探针及其制造方法
FR3043398B1 (fr) * 2015-11-09 2017-12-29 Arc Int France Procede de fabrication d’un article en verre creux
CN107137060B (zh) * 2017-04-14 2019-11-05 同济大学 一种易代谢的金纳米球/鸡卵清蛋白复合纳米光声探针及其制备
BR112019023246B1 (pt) 2017-05-05 2023-11-14 Centre For Probe Development And Commercialization Compostos compreendendo uma fração quelante, métodos para produção dos mesmos e usos dos mesmos
AU2018261890A1 (en) 2017-05-05 2019-11-28 Centre For Probe Development And Commercialization IGF-1R monoclonal antibodies and uses thereof
US10093741B1 (en) 2017-05-05 2018-10-09 Fusion Pharmaceuticals Inc. IGF-1R monoclonal antibodies and uses thereof
CN107669659B (zh) * 2017-09-20 2020-12-29 华中科技大学同济医学院附属协和医院 一种叶酸受体靶向的载底物纳米微泡的制备方法
CN107647852B (zh) * 2017-11-16 2020-05-12 重庆医科大学 一种在生物体组织内成像的系统与方法
CN108451507A (zh) * 2018-04-28 2018-08-28 国家纳米科学中心 探针检测变温装置及小动物光声断层扫描系统
KR20230026991A (ko) * 2020-06-23 2023-02-27 브라코 이미징 에스.피.에이. 근적외선 시아닌 염료 및 그것의 콘쥬게이트
CN112876538B (zh) * 2021-02-04 2022-09-30 福建医科大学 靶向新生血管标记物cd105的多肽及其应用
CN113943243B (zh) * 2021-10-14 2023-08-01 南开大学 一种用于同时鉴定和定量氨基酸的氟探针的制备与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009010733A2 (en) * 2007-07-15 2009-01-22 Zealand Pharma A/S Peptide gap junction modulators

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10925977B2 (en) * 2006-10-05 2021-02-23 Ceil>Point, LLC Efficient synthesis of chelators for nuclear imaging and radiotherapy: compositions and applications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009010733A2 (en) * 2007-07-15 2009-01-22 Zealand Pharma A/S Peptide gap junction modulators

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAKLAUSHEV, V.P. ET AL.: "Immunofluorescent Analysis of Connexin-43 Using Monoclonal Antibodies to Its Extracellular Domain", BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, vol. 148, no. 4, 1 October 2009 (2009-10-01), pages 236 - 241 *
BAKLAUSHEV, V.P. ET AL.: "Visualization of Connexin 43-positive cells of glioma and the periglioma zone by means of intravenously injected monoclonal antibodies", DRUG DELIVERY, vol. 18, no. 5, July 2011 (2011-07-01), pages 331 - 337 *

Also Published As

Publication number Publication date
US9764048B2 (en) 2017-09-19
US20150202335A1 (en) 2015-07-23
CN102743770B (zh) 2017-07-21
CN102743770A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2013189113A1 (zh) 一种靶向性分子成像探针及活体分子成像方法
Kuil et al. Hybrid peptide dendrimers for imaging of chemokine receptor 4 (CXCR4) expression
Hu et al. In vivo cancer dual-targeting and dual-modality imaging with functionalized quantum dots
BRPI1006246A2 (pt) &#34;kit para imagem médica marcada e/ou terapias, sonda efetora e método&#34;
JP2012512233A (ja) PDGF−Rβ結合剤
Galibert et al. RGD–cyclam conjugate: synthesis and potential application for positron emission tomography
EP3978033A1 (en) Rk polypeptide radiopharmaceutical targeting her2, and preparation method therefor
TWI765195B (zh) 雙靶向碳酸酐酶第九型複合物及其造影劑
CN114773433A (zh) 一种cd25靶向多肽、分子探针及应用
CN106039327A (zh) 一种grpr靶向性分子探针及其制备方法
JP2010513476A (ja) 造影剤
Kang et al. A vascular endothelial growth factor 121 (VEGF121)-based dual PET/optical probe for in vivo imaging of VEGF receptor expression
US20130209361A1 (en) Process for producing radiohalogenated bioconjugates and products thereof
Jin et al. Target exploration of rhein as a small-molecule necrosis avid agent by post-treatment click modification
CN110357945A (zh) 一种靶向肿瘤的柯萨奇病毒/腺病毒的模拟肽及其应用
Wang et al. " Click Chemistry" for Molecular Imaging
WO2023044965A1 (zh) 一种SNAP-tag探针及其制备方法与应用
Yang et al. The preparation of 99mTc-DTPA–LSA and its instant lyophilized kit for hepatic receptor imaging
CN116063379A (zh) EphA2靶向多肽及其应用
Lu et al. Preliminary biological evaluation of 18F-AlF-NOTA-MAL-Cys-Annexin V as a novel apoptosis imaging agent
CN113368264B (zh) 放射性标记肉桂霉素,其制备方法及其用途
Wu et al. Synthesis and evaluation of radioiodine-labeled pH (low) insertion peptide variant 7-like peptide as a noninvasive tumor microenvironment imaging agent in a mouse MDA-MB-231 triple-negative breast cancer model
US9044505B2 (en) Multimeric biotinidase resistant multimodality probes
Xia et al. Apoptosis imaging by radionuclide probes
Zhao et al. A novel Buthus martensii Karsch chlorotoxin derivative for glioma SPECT imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879233

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14353111

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205 DATED 12/06/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12879233

Country of ref document: EP

Kind code of ref document: A1