WO2013187546A1 - 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법 - Google Patents

하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법 Download PDF

Info

Publication number
WO2013187546A1
WO2013187546A1 PCT/KR2012/004849 KR2012004849W WO2013187546A1 WO 2013187546 A1 WO2013187546 A1 WO 2013187546A1 KR 2012004849 W KR2012004849 W KR 2012004849W WO 2013187546 A1 WO2013187546 A1 WO 2013187546A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid composite
prepreg
inner diameter
composite material
mechanical sealing
Prior art date
Application number
PCT/KR2012/004849
Other languages
English (en)
French (fr)
Inventor
김광곡
정유진
유준일
Original Assignee
(주)동서기연
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)동서기연 filed Critical (주)동서기연
Publication of WO2013187546A1 publication Critical patent/WO2013187546A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/203Multilayer structures, e.g. sleeves comprising a plastic lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/208Methods of manufacture, e.g. shaping, applying coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/24Brasses; Bushes; Linings with different areas of the sliding surface consisting of different materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/28Shaping by winding impregnated fibres

Definitions

  • the present invention relates to a hybrid composite plane bearing or a method of manufacturing a mechanical seal, and more particularly, the hybrid composite liner is placed on the inner side of a metal housing having a circular cross-sectional space, so that The present invention relates to a method for manufacturing a hybrid composite plain bearing or mechanical seal used to improve wear or strength characteristics, or to block external leakage of a coolant or lubricant such as water or oil.
  • Rotating shafts which are the core components of rotating equipment used in ships, power generation systems, and turbo compressors, help smooth rotation and block external leakage such as plain bearings or liquid lubricants or coolants, which are the key components supporting the rotating shafts. It has been used in conjunction with a mechanical seal ring.
  • plain bearings or mechanical sealings are conventionally made of a white metal alloy containing tin, lead, copper, antimony, etc., which have a smaller coefficient of friction and relatively weaker hardness than the rotating shaft to prevent damage to the rotating shaft. It has been mainly used by laminating (casting fusion) on the inner surface of a metal housing.
  • polymer type hybrid composite materials such as carbon fiber and phenol resin composite carbon fiber or glass fiber and epoxy composite, which are new materials that can perform their functions under severe operating conditions.
  • Attempts have been made to develop and apply a plain bearing having a structure in which a liner of the film is molded and laminated on an inner surface of the housing.
  • the patent document first wraps a prepreg made of a composite material on a mandrel and hardens and molds it in a pressurizing and heating apparatus such as an autoclave to bond a composite liner to a bearing metal housing using an adhesive to produce a bearing.
  • a method is disclosed.
  • the patent document wraps the prepreg on the mandrel, inserts it into the inner surface of the bearing metal housing, removes the mandrel, wraps the vacuum bag, and then applies a vacuum to closely adhere the prepreg to the inner surface of the bearing metal housing, and then presses such as autoclave and
  • Another method for fabricating bearings is to bond a composite liner fabricated by curing and molding in a heating device to the bearing metal housing simultaneously through simultaneous curing.
  • the patent document discloses a method of manufacturing a bearing by laminating a composite liner which is produced by the above method and then separated using an adhesive on an inner surface of another bearing metal housing.
  • the technical problem to be solved by the present invention is to solve the above problems by using a conventional vacuum bag or autoclavable manufacturing process is very simple and manufacturing compared to the method of complex stacking the composite material liner on the inner surface of the bearing metal housing
  • high pressure and pressure uniformity can be ensured during the lamination of the composite liner, and control variables can be reduced to produce high quality hybrid composite plain bearings or mechanical seals.
  • Hybrid composite material plain bearing or mechanical sealing method for solving the above problems is the step of applying an adhesive to the inner diameter of the cylindrical metal housing, the adhesive is applied to the metal housing Inserting a prepreg of a hybrid composite material having a predetermined thickness into an inner diameter of the rotating material; uniformly rotating pressing the entire inner diameter surface of the prepreg by direct contact in the outer diameter direction for simultaneous curing; and through the rotating pressing And a liner of the hybrid composite material completes the metal housing bonded to the inner diameter.
  • the rotating pressing may be performed using a rotating pressure roller or a pressing pad.
  • the pressing roller or the pressing pad may be capable of length shrinkage when inserted into the inner diameter of the prepreg, and may be extended in the outer diameter direction of the prepreg in the rotation pressing process.
  • the rotation speed is preferably 10 to 4000rpm.
  • the pressing force is preferably 2 to 1000 kg / cm 3.
  • the ambient temperature of the prepreg is preferably 30 to 200 °C in consideration of the curing temperature of the prepreg.
  • the thickness of the prepreg to be inserted is preferably 0.25 to 15 mm.
  • the hybrid composite material plain bearing or mechanical sealing method according to another embodiment of the present invention for solving the above problems is the step of applying a release agent to the inner diameter of the cylindrical metal, the mold is coated with the release agent Inserting a prepreg of a hybrid composite material having a predetermined thickness into an inner diameter of the rotating material; uniformly rotating pressing the entire inner diameter surface of the prepreg by direct contact in an outer diameter direction for molding; and Completing a liner of a hybrid composite material located at an inner diameter of a mold, separating the completed liner from the mold, inserting the separated liner into an inner diameter of a cylindrical metal housing coated with an adhesive, and Through the pressing process, the liner is completed to the metal housing bonded to the inner diameter Steps.
  • the rotating pressing may be performed using a rotating pressure roller or a pressing pad.
  • the pressing roller or the pressing pad may be capable of length shrinkage when inserted into the inner diameter of the prepreg, and may be extended in the outer diameter direction of the prepreg in the rotation pressing process.
  • the rotation speed is preferably 10 to 4000rpm.
  • the pressing force is preferably 2 to 1000 kg / cm 3.
  • the ambient temperature of the prepreg is preferably 30 to 200 °C in consideration of the curing temperature of the prepreg.
  • the thickness of the prepreg to be inserted is preferably 0.25 to 15 mm.
  • the precision control process and the process parameters can be reduced, so that the manufacturing process of the hybrid composite material plain bearing or mechanical sealing is very simple. It is easy to manufacture and excellent in manufacturing efficiency, and it is possible to secure high pressing force and uniformity of pressurization, and it is possible to use high quality composite plain bearing or mechanical sealing which is more compact and does not contain defects such as bubbles and pores. There is an advantageous effect that can be easily produced.
  • FIG. 1 is a flow chart sequentially showing a method of manufacturing a hybrid composite material plain bearing or mechanical sealing according to an embodiment of the present invention
  • FIGS. 2 to 13 are views for explaining a manufacturing process of a hybrid composite material plain bearing or a mechanical sealing product according to a method for manufacturing a hybrid composite material plain bearing or mechanical sealing according to an embodiment of the present invention
  • FIG. 2 is a perspective view of a metal housing used in the manufacture of a hybrid composite plain bearing and mechanical sealing according to an embodiment of the present invention
  • FIG. 3 is a state diagram showing a state of applying an adhesive to the inner diameter of the metal housing
  • FIG. 4 is a state diagram showing a state where the hybrid composite material prepreg laminated on the inner diameter of the metal housing to which the adhesive is applied is inserted;
  • 5 and 6 are a perspective view and a side view showing a state in which the prepreg accommodated inside the rotation pressing device system is inserted into the inner diameter of the metal housing inserted into the inner diameter,
  • FIG. 7 is a perspective view illustrating a state in which a roller-type rotation pressing device is inserted into an inner diameter of a metal housing in which a prepreg is inserted into an inner diameter to pressurize the prepreg from an inner diameter to an outer diameter at the same time as the rotation;
  • FIG. 8 is a rear view of FIG. 7;
  • FIG. 9 is a cross-sectional view taken along line A-A of FIG. 8;
  • FIG. 10 is a perspective view of a metal housing in which a hybrid composite material liner is laminated on an inner diameter by simultaneous curing of prepreg and simultaneous curing;
  • FIG. 11 is a cross-sectional view taken along the line B-B of FIG. 10;
  • FIG. 12 is a perspective view of a hybrid composite plane bearing finally produced by machining the outer surface of a metal housing in which a hybrid composite liner is laminated to an inner diameter through a rotational press;
  • FIG. 13 is a perspective view of a hybrid composite material mechanical seal finally manufactured by surface processing the inner diameter of the hybrid composite material liner laminated formed on the inner diameter of the metal housing through the rotational press,
  • FIG. 14 is a perspective view illustrating a state in which a pad type rotation pressing device is inserted into an inner diameter of a metal housing in which a prepreg is inserted into an inner diameter to pressurize the prepreg from an inner diameter to an outer diameter in a rotational manner;
  • FIG. 15 is a rear view of FIG. 14;
  • 16 is a cross-sectional view taken along the line C-C of FIG. 15;
  • 17 is a flowchart sequentially showing a method of manufacturing a hybrid composite material plain bearing or mechanical sealing according to another embodiment of the present invention.
  • FIG. 18 illustrates a process of separating a completed hybrid composite material liner from a mold by inserting a hybrid composite material prepreg laminated to an inner diameter of a mold to which a release agent is applied, and then molding the prepreg by rotating pressure using a rotation pressing device.
  • 19 is a state diagram for explaining a process of completing the hybrid composite material plain bearing finally manufactured by inserting the separated hybrid composite material liner into the inner diameter of the metal housing to which the adhesive is applied.
  • metal housing 111 surface-treated metal housing
  • cooling unit 315 cooling unit 315, 325: connection piping
  • the hybrid composite plain bearing 100 is fixed to the rotating machine system and has a surface treated interior having a circular cross-sectional space.
  • the metal housing 111 and the inner diameter that is the inner surface thereof is laminated with a uniform thickness to prevent friction with the rotating shaft and is composed of a hybrid composite material liner 121 supporting the rotating shaft.
  • the hybrid composite material mechanical seal 101 is fixed to the end of the rotating machine system and has a uniform thickness in the inner diameter, the inner side of the metal housing 110 having a circular cross-sectional space therein, and an inner side thereof.
  • the hybrid composite plane bearing 100 and the hybrid composite mechanical sealing 101 are different in function, only the process is added depending on whether the recessed groove 122a needs to be treated. It is noted that it is possible to manufacture by the same manufacturing method except for the additional process.
  • the shape and specification of the hybrid composite plain bearing 100 and the hybrid composite mechanical sealing 101 are determined by the size of the vessel, the capacity of the turbine / generator for power generation, the capacity of the turbo compressor, and the capacity and use of other rotating equipment. According to the present invention, it is obvious that various modifications are possible.
  • FIG. 1 is a flow chart sequentially showing a method for manufacturing a hybrid composite material plain bearing or mechanical sealing according to an embodiment of the present invention
  • Figures 2 to 13 is a hybrid composite material plain bearing according to an embodiment of the present invention
  • FIG. 2 is a view for explaining a manufacturing process of a hybrid composite plain bearing or a mechanical sealing product according to a manufacturing method of mechanical sealing
  • FIG. 2 is a hybrid composite plain bearing and mechanical according to an embodiment of the present invention.
  • 3 is a perspective view showing a state of applying an adhesive to the inner diameter of the metal housing
  • FIG. 4 is a hybrid composite material prepreg laminated on the inner diameter of the metal housing to which the adhesive is applied.
  • 5 and 6 show a state in which the inserted state is shown.
  • FIG. 7 is a roller type rotating pressing device inserted into an inner diameter of a metal housing in which a prepreg is inserted into an inner diameter.
  • FIG. 8 is a rear view of FIG. 7
  • FIG. 9 is a cross-sectional view taken along the line AA of FIG. 8, and
  • FIG. 10 is a rotational pressurization of the prepreg.
  • FIG. 11 is a cross-sectional view taken along the line BB of FIG. 10
  • FIG. 13 is a perspective view of the hybrid composite material mechanical sealing finally produced by surface processing the inner diameter of the hybrid composite material liner laminated formed on the inner diameter of the metal housing through the rotational pressurization.
  • a method for manufacturing a hybrid composite plain bearing or mechanical mechanical sealing is as follows. First, as shown in FIGS. 1 and 2, a hybrid composite plain bearing or mechanical mechanical sealing is used. A cylindrical metal housing 110 corresponding to the basic shape is provided and an adhesive is applied to the inner diameter thereof (S110).
  • the metal housing 110 may be formed using a metal material, such as steel or cast iron, in accordance with the product specifications and shapes of the hybrid composite material plain bearing 100 or the mechanical sealing 101 to be illustrated in FIGS. 12 and 13. It may be manufactured by a general forging method or a casting method.
  • the metal housing 110 may be embodied in various ways according to the product specifications and shapes of the hybrid composite plain bearing 100 or the mechanical sealing 101 to be manufactured, and the chemical composition and the heat treatment method are particularly limited. Instead, the existing methods can be selectively applied to meet the required product specifications.
  • the metal housing 110 is adhesively formed while the hybrid composite material liner 121 is hardened at the same time as the inner surface, that is, the inner diameter thereof, so that the hybrid composite material plain bearing 100 or the mechanical sealing 101 is formed.
  • the cross-sectional area can be increased to increase the adhesive strength with the composite liner 121 layer in the inner diameter.
  • the cross-sectional area can be increased using methods such as blasting and serration processing. You can.
  • the composite material prepreg 120 prepreg having several layers stacked in a predetermined thickness is inserted and attached.
  • the adhesive 210 is applied to the inner diameter of the housing 110 using the adhesive applying device 200 as shown in FIG. 3.
  • the composite material prepreg 120 laminated to a predetermined thickness at a predetermined position of the inner diameter of the metal housing 110 to which the adhesive is applied is inserted and attached through the opening (S120).
  • the hybrid composite material prepreg 120 to be inserted and inserted should have a hardness lower than or equal to the maximum of the rotating shaft for protection of the rotating shaft, and may be manufactured using various kinds of fibers and resins according to the driving conditions of the rotating device.
  • the prepreg 120 is a carbon fiber phenolic composite material composed of carbon fiber and phenolic resin, a carbon fiber epoxy composite material composed of carbon fiber and epoxy, a glass fiber epoxy composite material composed of glass fiber and epoxy, glass fiber and The glass fiber polyester composite material etc. which consist of polyester can be laminated
  • the thickness of the composite material prepreg 120 is preferably 0.25 to 15 mm, more preferably 1 to 7 mm, in consideration of physical properties and use conditions of the composite material liner manufactured by the simultaneous curing process. Although not limited thereto, it may be variously implemented according to the thickness of the composite material liner 121 layer required for each operating condition.
  • a composite material prepreg 120 having a thickness of 0.27 mm is laminated by simply stacking 1 to 60 sheets or winding 1 to 60 times in the inner diameter of the metal housing 110.
  • the cooling device capable of cooling the ambient temperature to 10 degrees or less
  • a heating device capable of preheating to 30 degrees or more can be used. In this embodiment, as shown in FIGS.
  • a cooling device 310 and a heating device 320 are provided on one side of the rotating pressurization device system 300 to be described later, and supported by the connecting pipes 315 and 325.
  • the composite material prepreg 120 mounted on the transport device 305 cools or heats the metal housing 110 inserted into the inner diameter, but instead of the cooling device 310 or the heating device 320, the metal housing 110.
  • it can be replaced with a cooling jacket or a heat jacket that covers the outer diameter of).
  • the rotary pressurization device system 300 was first used as shown in FIGS. 5 and 6 to provide the rotational pressing force.
  • the rotation pressurization system 300 is provided with the rotation pressurization apparatus 330 separately developed in addition to the above-mentioned support and conveying apparatus 305, the cooling apparatus 310, and the heating apparatus 320. As shown in FIG.
  • the rotation pressurizing device 330 may move relative to the support and conveying device 305 in a dashed-dotted direction, so that the composite material prepreg 120 has an inner diameter.
  • the insert may be inserted into or detached from the inner metal housing 110.
  • the rotation pressurization device 330 is composed of a rotational force supply unit 332, a rotation shaft 334, a connecting portion 336, the pressure roller 338, as shown in Figs.
  • the present applicant intends to file a separate application from the present application.
  • the rotational force supply unit 332 rotates at a predetermined angle or rotates 360 degrees to the pressure roller 338 in a solid arrow direction through the rotation shaft 334 and the connecting portion 336.
  • the pressing force is generated in the direction of the arrow.
  • the connecting portion 336 has a central portion connected to one end of the rotation shaft 334, and couples a plurality of pressure rollers 338 to the ends of the plurality of supports protruding from the inner diameter to the outer diameter direction.
  • the connecting portion 336 is provided to enable the contraction and expansion as shown by the dotted line arrow from the inner diameter to the outer diameter direction to secure and expand the convenience of insertion into the inner diameter of the composite material prepreg 120 of the pressure roller 338 through the contraction. It is preferable to provide uniform rotational pressing force to the entire inner diameter of the prepreg 120 from the inner diameter of the composite material prepreg 120 of the pressure roller 338 through the outer diameter direction.
  • the expansion and contraction of the connection portion 336 may be used, such as an elastic spring structure, a hinge structure or a toggle structure that can be expanded and contracted.
  • the pressure roller 338 is coupled to the end of the connecting portion 336 so as to be free to rotate in a cylindrical shape in the longitudinal direction, and in contact with the inner diameter of the composite material prepreg 120 by the expansion of the connecting portion 336 By rotating at, the entire inner diameter of the prepreg 120 is uniformly pressed in the outer diameter direction.
  • the pressure applied to the entire inner diameter surface of the prepreg 120 by the pressure roller 338 prevents porosity such as bubbles between the stacked prepreg 120 layers while excessive friction or pressure of the prepreg 120 occurs.
  • the thickness is preferably 2 to 1000 kg / cm 3, and more preferably 50 to 3000 kg / cm 3.
  • the rotation speed of 338) is preferably 10 to 4000 rpm, more preferably 50 to 150 rpm.
  • the ambient temperature of the prepreg 120 during the pressurization process using the heating device 320 to secure the efficiency of the simultaneous curing is to be cured in order for the prepreg 120 to have suitable physical properties as the liner 121 layer It is preferable to keep at 30 to 200 degreeC in consideration of hardening temperature.
  • the metal housing 110 may be directly heated by utilizing the above-described heat jacket.
  • the pressure roller 338 rotates the entire inner diameter surface of the composite material prepreg 120 attached to the inner diameter of the metal housing 110 in the outer diameter direction. It is possible to provide a rotational pressing force evenly by direct contact. Therefore, the composite material liner 121 can be easily and simply adhered to the inner diameter of the metal housing 110 and can be easily and easily bonded to the inner diameter of the metal housing 110 as compared with the conventional vacuum bag or autoclave pressing process. Physical properties are also very good compared to conventional methods.
  • the surface of the metal housing 111 is cleaned or processed to a required size and shape, and then subjected to a process (S150).
  • the composite material liner 121 is adhesively formed on the inner diameter, and the surface treatment is performed.
  • Hybrid composite material plain bearing 100 according to an embodiment of the present invention composed of a metal housing 111 is completed (S160).
  • the uneven groove 122a may be formed through the serration process described above with respect to the inner diameter surface of the composite material liner 121, depending on the use condition. .
  • the pressure roller 338 of the rotary pressurizing device 330 to provide the rotary pressing force used in one embodiment of the present invention, if necessary, the pressing pad of the rotary pressurizing device 331 shown in Figs. 339) may be used.
  • FIG. 14 is a perspective view illustrating a state in which a pad type rotation pressing device is inserted into an inner diameter of a metal housing in which a prepreg is inserted into an inner diameter to pressurize the prepreg from an inner diameter to an outer diameter direction simultaneously with rotation;
  • FIG. 15 is a rear view of FIG. 14.
  • 16 is a cross-sectional view taken along the line CC of FIG. 15.
  • the pressure pad 339 does not rotate even when the rotating shaft 334 rotates to generate a resistance, and thus has an advantage of adding pressure in the rotating direction.
  • the pressure pad 339 is typically made of stainless steel or steel but may be subjected to low friction coefficient surface treatments such as chromium plating, Teflon coating, etc. to prevent adhesion to the prepreg 120.
  • FIG. 17 is a flowchart sequentially illustrating a method of manufacturing a hybrid composite material plain bearing or mechanical sealing according to another embodiment of the present invention.
  • FIG. 18 is a hybrid composite material prepreg laminated to an inner diameter of a mold to which a release agent is applied. And a state diagram for explaining a process of separating the completed hybrid composite material liner from the mold by molding the prepreg through the rotary press using a rotary pressurizing device, and FIG. 19 shows an adhesive of the separated hybrid composite material liner. It is a state diagram for demonstrating the process of completing the hybrid composite material plain bearing manufactured finally by inserting into the inner diameter of the apply
  • a method for manufacturing a hybrid composite material plain bearing or mechanical sealing is to manufacture a hybrid composite material plain bearing or mechanical sealing by a co-curing method as in one embodiment of the present invention. Instead of forming a mold corresponding to the metal housing, inserting the composite material prepreg into the inner diameter and molding, forming a composite liner layer first, separating it from the mold, and then bonding it to the metal housing using a molding method. Note the differences in the fundamental manufacturing methods for producing hybrid composite plain bearings or mechanical seals.
  • the metal housing and the mold are similar in shape, but in the case of the metal housing, it is directly used for the manufacture of the plain bearing or the mechanical sealing, but in the case of the mold, the metal housing and the mold are used only as a mold for forming the composite liner layer. different.
  • a method of manufacturing a hybrid composite plain bearing or a mechanical mechanical seal according to another embodiment of the present invention is similar to the metal housing 110 as shown in FIG. 17 and only as a mold for forming a composite liner layer.
  • a mold release agent (not shown) is applied to the mold 400 to be used instead of the adhesive (S111).
  • the reason for applying the release agent rather than the adhesive is to easily separate the composite material liner 121 from the mold 400 when the molding of the composite material liner 121 is completed.
  • the composite material prepreg laminated to a predetermined thickness at a predetermined position inside the mold 400 to which the release agent is applied is inserted and attached through the opening (S121).
  • the hybrid composite material composite liner 121 is separated from the mold 400 (S135), and the hybrid composite material liner is disposed on the inner diameter of the metal housing 110 to which the adhesive is applied as shown in FIG. 19. (121) is inserted (S138).
  • the metal housing 110 to which the hybrid composite material liner 121 is adhered is completed by a known method or a rotating pressurization process introduced in one embodiment of the present invention (S141).
  • the rotational pressurization devices 330 and 331 as described above are not provided with the rotational pressing force, but are rotated to the entire inner diameter surface of the composite material prepreg 120 inserted into the inner diameter of the metal housing 110.
  • the pressing force can be provided to perform a simultaneous curing or molding process uniformly, other rotating pressing force generating means may be used.
  • the manufacturing method of the hybrid composite plain bearing or mechanical sealing according to the present invention can reduce the precision control process and the process variable, so the manufacturing process of the hybrid composite plain bearing or the mechanical sealing is very simple and easy to manufacture In addition to excellent manufacturing efficiency, high pressure and pressure uniformity can be ensured, making it possible to manufacture high quality composite plain bearings or mechanical seals that are more compact and contain no defects such as bubbles and pores. It is an industrially useful invention.

Abstract

본 발명인 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법은 원통 형상의 금속 하우징의 내경에 접착제를 도포하는 단계, 접착제가 도포된 상기 금속 하우징의 내경에 소정 두께의 하이브리드 복합 소재의 프리프레그를 삽입하는 단계, 동시 경화를 위해 상기 프리프레그의 내경면 전체를 외경 방향으로 직접 접촉에 의해 균일하게 회동 가압하는 단계, 그리고, 상기 회동 가압을 통해 하이브리드 복합 소재의 라이너가 내경에 접착된 금속 하우징을 완성하는 단계를 포함한다.

Description

하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법
본 발명은 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법에 관한 것으로써, 보다 상세하게는 원형 단면 공간을 갖는 금속 하우징의 내측면에 하이브리드 복합 소재 라이너를 적층 위치시켜 회동축과의 마찰이나 마모 또는 강도 특성 등을 향상시키거나 물이나 오일 등의 냉각제 또는 윤활제의 외부 유출을 차단하는데 사용하는 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법에 관한 것이다.
선박, 발전 시스템이나 터보 컴프레셔 등에 사용되는 회동 기기의 핵심 구성인 회동축은 원활한 회동을 돕고 회동축을 지지하는 핵심 구성 요소인 플레인 베어링(plain bearing)이나 액상의 윤활제나 냉각제 등의 외부 유출을 차단하는 미케니컬 씰링(mechanical seal ring)과 함께 결합되어 사용되어 오고 있다. 이러한 플레인 베어링이나 미케니컬 씰링은 종래에는 회동축의 손상을 방지하기 위해 회동 축보다 작은 마찰 계수와 상대적으로 경도가 약한 주석, 납, 구리, 안티몬 등을 함유하는 화이트메탈(white metal) 합금을 금속 하우징 내면에 적층(주조 융착)하여 주로 사용하여 왔다. 그러나 이러한 화이트메탈(white metal) 합금을 금속 하우징 내면에 적층한 플레인 베어링이나 미케니컬 씰링은 저융점, 낮은 압축 강도, 금속간 마찰 시 발생하는 급 마모 현상이나 열 충격에 의한 용융 또는 고착 등의 물리적 특성의 한계가 있는 문제점이 있었다.
이러한 문제점을 해결하기 위해 최근에는 가혹한 운용 조건하에서 그 기능을 수행할 수 있는 새로운 소재인 카본 섬유와 페놀 수지 구성된 탄소 섬유 페놀 복합 소재나 글래스 화이버와 에폭시로 구성된 복합 소재와 같은 고분자 타입의 하이브리드 복합 소재의 라이너를 성형하여 하우징 내면에 적층하는 구조의 플레인 베어링을 개발하여 적용하기 위한 시도가 이루어 지고 있다.
이러한 복합 소재의 라이너가 적층된 플레인 베어링 및 그 제조 방법의 대표적인 예로 선행기술문헌 중 특허문헌인 대한민국 등록특허공보 제10-0707977호에 개시된 “수윤활식 하이브리드 복합재료 저널베어링 및 그 제조방법”등이 있다.
상기 특허 문헌은 먼저 맨드릴에 복합 재료로 이루어진 프리프레그를 감아 오토크래이브와 같은 가압 및 가열 장치에서 경화 및 성형하여 제작된 복합소재 라이너를 베어링 금속 하우징에 접착제를 활용하여 접착시켜 베어링을 제작하는 방법을 개시하고 있다. 또한 상기 특허 문헌은 맨드릴에 프리프레그를 감아 베어링 금속 하우징 내면에 삽입한 후 맨드릴을 제거하고 진공백을 감싼 후 진공을 가해 베어링 금속 하우징 내면에 프리프레그를 밀착시키고 다시 오토크래이브와 같은 가압 및 가열 장치에서 경화 및 성형을 통해 제작된 복합소재 라이너를 동시 경화법을 통해 베어링 금속 하우징에 동시에 바로 접착하여 베어링을 제작하는 다른 방법을 개시하고 있다. 뿐만 아니라 상기 특허 문헌은 상기 방법으로 제작된 후 분리시킨 복합소재 라이너를 다른 베어링 금속 하우징의 내면에 접착제를 활용하여 적층함으로써 베어링을 제작하는 방법을 개시하고 있다.
그런데 이러한 특허 문헌에 따른 종래 기술은 진공백 또는 오토크래이브를 이용한 제작 방법이 갖는 가압력 및 가압 균일성의 한계와 복잡한 제조 공정 과정에서 발생하는 품질 편차와 같은 제약에 의해 각 프리프레그 층간에 기포가 잔존하거나 견고하고 치밀한 복합 소재의 성형이 용이하지 않은 문제점이 있다. 이러한 문제점은 플레인 베어링의 사용 환경에서 열이 인가되거나 높은 하중이 인가 되었을 때 층간 매트릭스 크랙(Matrix cracking) 또는 국부적인 파손이 발생할 수 있는 원인이 된다. 이러한 원인을 제거하기 위해 베어링 금속 하우징을 제외하고 복합소재만으로 베어링을 제작하여 사용하기도 하나 이 또한 그 두꺼운 두께로 인해 물리적 특성이 저하되고 그 내부로 오일이 흡수되어 치수 정밀도를 저하시키는 다른 문제점을 유발한다. 또한 이러한 문제점들은 최종적으로 플레인 베어링은 물론 플레인 베어링이 적용된 전체 시스템의 중단 사고와 같은 치명적인 시스템 파손으로 이러질 수 있는 문제점을 내재하고 있다.
따라서 본 발명이 해결하고자 하는 기술적 과제는 상기의 문제점을 해결하여 종래의 진공백 또는 오토크레이브를 활용하여 베어링 금속 하우징의 내면에 복합 소재 라이너를 복잡하게 적층하는 방법에 비해 제조 공정이 매우 간단하고 제조가 용이하여 제조 효율이 우수할 뿐만 아니라, 복합 소재 라이너의 적층 과정에서 높은 가압력과 가압 균일성의 확보가 가능하고 제어 변수를 감소시킴으로써 고품질의 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링을 제조할 수 있는 방법을 제공하는 것이다.
상기의 과제 해결을 위한 본 발명의 한 실시예에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법은 원통 형상의 금속 하우징의 내경에 접착제를 도포하는 단계, 상기 접착제가 도포된 상기 금속 하우징의 내경에 소정 두께의 하이브리드 복합 소재의 프리프레그를 삽입하는 단계, 동시 경화를 위해 상기 프리프레그의 내경면 전체를 외경 방향으로 직접 접촉에 의해 균일하게 회동 가압하는 단계, 그리고, 상기 회동 가압을 통해 하이브리드 복합 소재의 라이너가 내경에 접착된 금속 하우징을 완성하는 단계를 포함한다.
상기 회동 가압 단계에서, 상기 회동 가압은 회동하는 가압 롤러 또는 가압 패드를 이용하여 수행될 수 있다.
상기 가압 롤러 또는 상기 가압 패드는 상기 프리프레그의 내경에 삽입 시 길이 수축이 가능하고, 회동 가압 공정 시에서 상기 프리프레그의 외경 방향으로 길이 확장이 가능한 것이 바람직하다.
상기 회동 가압 단계에서, 회동 속도는 10 내지 4000rpm 인 것이 바람직하다.
상기 회동 가압 단계에서, 가압력은 2 내지 1000 kg/㎤인 것이 바람직하다.
상기 회동 가압 단계에서, 상기 프리프레그의 주변 온도는 프리프래그의 경화 온도를 고려하여 30 내지 200℃인 것이 바람직하다.
상기 프리프레그를 삽입하는 단계에서, 삽입되는 상기 프리프레그의 두께는 0.25 내지 15 mm인 것이 바람직하다.
또한, 상기의 과제 해결을 위한 본 발명의 다른 실시예에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법은 원통 형상의 금속의 내경에 이형제를 도포하는 단계, 상기 이형제가 도포된 상기 금형의 내경에 소정 두께의 하이브리드 복합 소재의 프리프레그를 삽입하는 단계, 성형을 위해 상기 프리프레그의 내경면 전체를 외경 방향으로 직접 접촉에 의해 균일하게 회동 가압하는 단계, 그리고, 상기 회동 가압을 통해 상기 금형의 내경에 위치하는 하이브리드 복합 소재의 라이너를 완성하는 단계, 완성된 상기 라이너를 상기 금형으로부터 분리하는 단계, 접착제가 도포된 원통 형상의 금속 하우징의 내경에 분리된 상기 라이너를 삽입하는 단계, 그리고, 가압 공정을 통해 상기 라이너가 내경에 접착된 금속 하우징을 완성하는 단계를 포함한다.
상기 회동 가압 단계에서, 상기 회동 가압은 회동하는 가압 롤러 또는 가압 패드를 이용하여 수행될 수 있다.
상기 가압 롤러 또는 상기 가압 패드는 상기 프리프레그의 내경에 삽입 시 길이 수축이 가능하고, 회동 가압 공정 시에서 상기 프리프레그의 외경 방향으로 길이 확장이 가능한 것이 바람직하다.
상기 회동 가압 단계에서, 회동 속도는 10 내지 4000rpm 인 것이 바람직하다.
상기 회동 가압 단계에서, 가압력은 2 내지 1000 kg/㎤인 것이 바람직하다.
상기 회동 가압 단계에서, 상기 프리프레그의 주변 온도는 프리프래그의 경화 온도를 고려하여 30 내지 200 ℃인 것이 바람직하다.
상기 프리프레그를 삽입하는 단계에서, 삽입되는 상기 프리프레그의 두께는 0.25 내지 15 mm인 것이 바람직하다.
이상과 같이 본 발명에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법에 의하면, 정밀 제어 공정 및 공정 변수를 감소시킬 수 있어 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 공정이 매우 간단하고 그 제조가 용이하여 제조 효율이 우수할 뿐만 아니라, 높은 가압력과 가압의 균일성 확보가 가능하여 보다 치밀하고 기포와 기공 등과 같은 결함을 포함하지 않는 고품질의 복합 소재 플레인 베어링 또는 미케니컬 씰링을 용이하게 제조할 수 있는 유리한 효과가 있다.
도 1은 본 발명의 한 실시예에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법을 순차적으로 나타낸 순서도,
도 2 내지 도 13는 본 발명의 한 실시예에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링 제품의 제조 과정을 설명하기 위한 도면으로써,
도 2는 본 발명의 한 실시예에 따른 하이브리드 복합소재 플레인 베어링 및 미케니컬 씰링의 제조에 사용되는 금속 하우징의 사시도,
도 3은 금속 하우징의 내경에 접착제를 도포하는 상태를 도시한 상태도,
도 4는 접착제가 도포된 금속 하우징의 내경에 적층된 하이브리드 복합 소재 프리프레그를 삽입시킨 상태를 도시한 상태도,
도 5 및 도 6은 회동 가압 장치 시스템의 내부에 수용된 프리프레그가 내경에 삽입된 금속 하우징의 내경에 회동 가압 장치를 삽입시킨 상태를 도시한 사시도 및 측면도,
도 7은 프리프레그가 내경에 삽입된 금속 하우징의 내경에 롤러 타입의 회동 가압 장치가 삽입되어 회동과 동시에 프리프레그를 내경에서 외경 방향으로 가압하는 상태를 도시한 사시도,
도 8은 도 7의 배면도,
도 9는 도 8의 A-A 선을 따라 잘라 도시한 단면도,
도 10은 프리프레그의 회동 가압이 완료되어 동시 경화에 의해 하이브리드 복합 소재 라이너가 내경에 적층 형성된 금속 하우징의 사시도,
도 11은 도 10의 B-B 선을 따라 잘라 도시한 단면도,
도 12는 회동 가압을 통해 하이브리드 복합 소재 라이너가 내경에 적층 형성된 금속 하우징의 외부 표면 가공을 통해 최종적으로 제조된 하이브리드 복합 소재 플레인 베어링의 사시도,
도 13은 회동 가압을 통해 금속 하우징의 내경에 적층 형성된 하이브리드 복합 소재 라이너의 내경을 표면 가공을 통해 최종적으로 제조된 하이브리드 복합 소재 미케니컬 씰링의 사시도,
도 14는 프리프레그가 내경에 삽입된 금속 하우징의 내경에 패드 타입의 회동 가압 장치가 삽입되어 회동과 동시에 프리프레그를 내경에서 외경 방향으로 가압하는 상태를 도시한 사시도,
도 15는 도 14의 배면도,
도 16은 도 15의 C-C 선을 따라 잘라 도시한 단면도,
도 17은 본 발명의 다른 실시예에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법을 순차적으로 나타낸 순서도,
도 18은 이형제를 도포시킨 금형의 내경에 적층된 하이브리드 복합 소재 프리프레그를 삽입시킨 다음 회동 가압 장치를 이용하여 프리프레그를 회동 가압을 통해 성형하여 완성된 하이브리드 복합 소재 라이너를 금형으로부터 분리하는 과정을 설명하기 위한 상태도, 그리고,
도 19는 분리된 하이브리드 복합 소재 라이너를 접착제가 도포된 금속 하우징의 내경에 삽입하여 최종적으로 제조된 하이브리드 복합 소재 플레인 베어링을 완성하는 과정을 설명하기 위한 상태도이다.
<도면의 주요 부분에 관한 부호의 설명>
100 : 하이브리드 복합 소재 플레인 베어링
101 : 하이브리드 복합 소재 미케니컬 씰링
110 : 금속 하우징 111 : 표면 처리된 금속 하우징
120 : 하이브리드 복합 소재 프리프래그
121, 122 : 하이브리드 복합 소재 라이너
122a : 요철홈
200 : 접착제 도포 장치 210 : 접착제
300 : 회동 가압 장치 시스템305 : 지지 및 운반 장치
310 : 냉각 장치 315, 325 : 연결 배관
320 : 가열 장치 330, 331 : 회동 가압 장치
332 : 회동력 공급부 334 : 회동축
336 : 연결부 338 : 가압 롤러
339 : 가압 패드 400 : 금형
본 발명의 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 발명의 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 순서도, 사시도, 상태도, 배면도 및 단면도를 참고하여 설명될 것이다.
이하, 첨부한 도면인 도 1 내지 도 19을 참고로 하여 본 발명의 여러 실시예들에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법을 설명한다.
설명에 앞서 본 발명에 따른 하이브리드 복합 소재 플레인 베어링 및 미케니컬 씰링 중 도 12에 도시된 바와 같이 하이브리드 복합 소재 플레인 베어링(100)은 회동 기기 시스템에 고정되며 내부가 원형 단면 공간을 갖는 표면 처리된 금속 하우징(111)과 그 내측면인 내경에 균일한 두께로 적층되어 회전축과의 마찰을 방지하고 회전축을 지지하는 하이브리드 복합 소재 라이너(121)로 구성됨을 밝혀둔다. 또한, 도 13에 도시된 바와 같이 하이브리드 복합 소재 미케니컬 씰링(101)은 회동 기기 시스템의 끝단에 고정되며 내부에 원형 단면 공간을 갖는 금속 하우징(110)과 그 내측면인 내경에 균일한 두께로 적층된 후 내경 표면에 요철홈(122a) 가공 처리를 통해 물이나 오일 등의 냉각제 또는 윤활제의 외부 유출을 차단하는데 사용되는 하이브리드 복합 소재 라이너(122) 층으로 구성됨을 밝혀둔다.
또한, 하이브리드 복합 소재 플레인 베어링(100)과 하이브리드 복합 소재 미케니컬 씰링(101)은 그 기능은 다르나 요철홈(122a) 처리를 할 필요가 있느냐에 따라 공정이 추가되는 것일 뿐이므로 그 형상은 유사한 것으로 추가 공정을 제외하고는 동일 제조 방법으로 제조가 가능함을 미리 밝혀둔다. 또한 하이브리드 복합 소재 플레인 베어링(100)과 하이브리드 복합 소재 미케니컬 씰링(101)의 형상 및 규격은 선박의 크기, 발전용 터빈/제너레이터의 용량, 터보 컴프레셔의 용량이나 그 외 회동기기의 용량 및 용도에 따라 다양하게 변형 가능함은 물론임을 미리 밝혀둔다.
이하에서는 먼저 본 발명의 한 실시예에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법을 도 1 내지 13을 참조로 하여 상세히 설명한다.
도 1은 본 발명의 한 실시예에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법을 순차적으로 나타낸 순서도, 도 2 내지 도 13는 본 발명의 한 실시예에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링 제품의 제조 과정을 설명하기 위한 도면으로써, 도 2는 본 발명의 한 실시예에 따른 하이브리드 복합소재 플레인 베어링 및 미케니컬 씰링의 제조에 사용되는 금속 하우징의 사시도, 도 3은 금속 하우징의 내경에 접착제를 도포하는 상태를 도시한 상태도, 도 4는 접착제가 도포된 금속 하우징의 내경에 적층된 하이브리드 복합 소재 프리프레그를 삽입시킨 상태를 도시한 상태도, 도 5 및 도 6은 회동 가압 장치 시스템의 내부에 수용된 프리프레그가 내경에 삽입된 금속 하우징의 내경에 회동 가압 장치를 삽입시킨 상태를 도시한 사시도 및 측면도, 도 7은 프리프레그가 내경에 삽입된 금속 하우징의 내경에 롤러 타입의 회동 가압 장치가 삽입되어 회동과 동시에 프리프레그를 내경에서 외경 방향으로 가압하는 상태를 도시한 사시도, 도 8은 도 7의 배면도, 도 9는 도 8의 A-A 선을 따라 잘라 도시한 단면도, 도 10은 프리프레그의 회동 가압이 완료되어 동시 경화에 의해 하이브리드 복합 소재 라이너가 내경에 적층 형성된 금속 하우징의 사시도, 도 11은 도 10의 B-B 선을 따라 잘라 도시한 단면도, 도 12는 회동 가압을 통해 하이브리드 복합 소재 라이너가 내경에 적층 형성된 금속 하우징의 외부 표면 가공을 통해 최종적으로 제조된 하이브리드 복합 소재 플레인 베어링의 사시도, 그리고, 도 13은 회동 가압을 통해 금속 하우징의 내경에 적층 형성된 하이브리드 복합 소재 라이너의 내경을 표면 가공을 통해 최종적으로 제조된 하이브리드 복합 소재 미케니컬 씰링의 사시도이다.
본 발명의 한 실시예에 따른 하이브리드 복합소재 플레인 베어링 또는 미케니컬 미케니컬 씰링의 제조 방법은 먼저 도 1 및 도 2에 도시한 바와 같이 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 미케니컬 씰링의 기본 형상에 대응하는 원통 형상의 금속 하우징(110)을 마련하여 그 내경에 접착제를 도포한다(S110).
금속 하우징(110)은 도 12 및 도 13에 도시된 제조하고자 하는 하이브리드 복합 소재 플레인 베어링(100) 또는 미케니컬 씰링(101)의 제품 규격 및 형상에 맞추어 강 또는 주철 등의 금속 재질을 사용하여 일반적인 단조 방법이나 주조 방법으로 제조될 수 있다. 금속 하우징(110)은 제조하고자 하는 하이브리드 복합 소재 플레인 베어링(100) 또는 미케니컬 씰링(101)의 제품 규격 및 형상에 따라 다양하게 구현될 수 있으며, 그 화학 조성 성분 및 열처리 방법은 특정하게 구애됨이 없이 요구되는 제품 사양에 맞추어 기존의 방법이 다양하게 선택적으로 적용될 수 있다.
금속 하우징(110)은 그 내측면 즉 내경에 하이브리드 복합 소재 라이너(121) 가 성형과 동시에 경화가 이루어지면서 접착 형성되어 하이브리드 복합 소재 플레인 베어링(100) 또는 미케니컬 씰링(101)이 형성되는 방법인 동시 경화법에 사용되는 경우 내경에 복합 소재 라이너(121) 층과의 접착 강도를 높이기 위해 그 단면적을 증가시킬 수 있는데 이 경우 블라스팅 및 세레이션(serration) 가공 등의 방법을 이용하여 단면적을 증가시킬 수 있다.
이렇게 제조된 금속 하우징(110)의 내경에 하이브리드 복합 소재 라이너(121)를 동시 경화법에 의해 접착 형성시키기 위해 소정 두께로 여러 겹이 적층된 복합 소재 프리프레그(120, prepreg)가 삽입 부착될 금속 하우징(110)의 내경에 도 3에 도시된 바와 같이 접착제 도포 장치(200)를 이용하여 접착제(210)를 도포한다.
그런 다음, 도 4에 도시된 바와 같이 접착제가 도포된 금속 하우징(110)의 내경 소정 위치에 소정 두께로 적층된 복합 소재 프리프레그(120)를 개구부를 통해 삽입 부착한다(S120).
삽입 부착되는 하이브리드 복합 소재 프리프레그(120)는 회전축의 보호를 위해 회전축보다 경도가 낮거나 최대 같아야 하며, 회동 기기의 구동 조건에 따라 다양한 종류의 섬유와 수지를 사용하여 제작될 수 있다. 예를 들어, 프리프레그(120)는 탄소 섬유와 페놀 수지로 구성된 탄소 섬유 페놀 복합 소재, 탄소 섬유와 에폭시로 구성된 탄소 섬유 에폭시 복합 소재, 유리 섬유와 에폭시로 구성된 유리 섬유 에폭시 복합 소재, 유리 섬유와 폴리에스터로 구성된 유리 섬유 폴리에스터 복합 소재 등을 여러겹 적층하여 제작할 수 있다.
하이브리드 복합 소재 프리프레그(120)는 이 중 특히 탄소 섬유 페놀 복합소재가 가장 바람직하며 이는 우수한 윤활 특성과 높은 압축 강도 그리고 높은 열전도율과 같은 우수한 물리적 특성을 보유하고 있음으로부터 기인한다. 또한 이러한 특성에 의해 다른 복합 소재 보다 얇은 두께로 사용이 가능하여 제조 원가를 절감할 수 있는 장점이 있다. 일반적으로 동시 경화 공정에 의해 제조되는 복합 소재 라이너의 물리적 특성 및 사용 조건 등을 고려하여 복합 소재 프리프레그(120)의 두께는 0.25 내지 15 mm 가 바람직하며, 더욱 바람직하게는 1 내지 7 mm의 두께를 가지나 이에 한정되는 것은 아니며 각 운용 조건별로 요구되는 복합 소재 라이너(121) 층의 두께에 따라 다양하게 구현이 가능하다.
예를 들어 탄소 섬유 페놀 복합 소재의 경우 0.27 mm의 두께의 복합 소재 프리프레그(120)를 금속 하우징(110) 내경에 1 내지 60장을 단순 적층하거나 1 내지 60회로 감아서 적층한다. 이 때 복합 소재 프리프레그(120)에 함유된 수지의 점도에 의한 적층 시 발생하는 가압 전 각 복합 소재 프리프레그(120) 간의 접착을 방지하기 위해 분위기 온도를 10도 이하로 냉각할 수 있는 냉각 장치나 후술할 회동 가압 성형 공정에서 동시 경화를 용이하게 하기 위해 30도 이상으로 예열할 수 있는 가열 장치를 사용할 수 있다. 본 실시예에서는 도 5 및 도 6에 도시된 바와 같이 후술할 회동 가압 장치 시스템(300)의 일측에 냉각 장치(310)와 가열 장치(320)를 구비하여 연결 배관(315, 325)을 통해 지지 및 운반 장치(305)에 안착된 복합 소재 프리프레그(120)가 내경에 삽입 부착된 금속 하우징(110)을 냉각하거나 가열하도록 하였으나, 냉각 장치(310)나 가열 장치(320) 대신 금속 하우징(110)의 외경을 감싸는 쿨링 쟈켓이나 히트 쟈켓으로 대체하여도 무방함은 물론이다.
다음으로, 금속 하우징(110)의 내경에 삽입 부착된 복합 소재 프리프레그(120)의 내경면 전체를 외경 방향으로 균일하게 회동 가압하는 동시 경화 공정을 수행한다(S130).
본 실시예에서는 회동 가압력을 제공하기 위해 먼저 도 5 및 도 6에 도시된 바와 같이 회동 가압 장치 시스템(300)을 사용하였다.
회동 가압 장치 시스템(300)은 상술한 지지 및 운반 장치(305), 냉각 장치(310) 및 가열 장치(320) 외에 별도로 개발된 회동 가압 장치(330)를 구비하고 있다.
회동 가압 장치(330)는 도 6에 도시된 바와 같이 일점 쇄선 방향으로 지지 및 운반 장치(305)와 상대 이동을 할 수 있어 후술할 가압 롤러(338)를 복합 소재 프리프레그(120)가 내경에 삽입 부착된 금속 하우징(110) 내경으로 삽입하거나 이탈시킬 수 있다. 회동 가압 장치(330)는 도 7 내지 도 9에 도시된 바와 같이 회동력 공급부(332), 회동축(334), 연결부(336), 가압 롤러(338)로 구성되어 있으며, 이들의 상세한 구성 및 기술적 특징에 관해서는 본 출원인에 의해 본 출원과 별도의 출원을 예정하고 있다.
회동력 공급부(332)는 도 7 및 도 8에 도시된 바와 같이 회동축(334) 및 연결부(336)를 통해 가압 롤러(338)에 실선 화살표 방향으로 소정 각도로 회동하거나 360도 회동을 하면서 점선 화살표 방향으로 가압력을 발생시킨다.
연결부(336)는 중심 부분이 회동축(334)의 일단에 연결되어 있으며, 내경에서 외경 방향으로 돌출된 복수개의 지지체의 끝단에 가압 롤러(338)를 복수개 결합하고 있다. 연결부(336)는 내경에서 외경 방향으로 점선 화살표와 같이 수축과 확장이 가능하도록 마련되는 것이 수축을 통한 가압 롤러(338)의 복합 소재 프리프레그(120)의 내경 안으로의 삽입의 편의성 확보와 확장을 통한 가압 롤러(338)의 복합 소재 프리프레그(120)의 내경에서 외경 방향으로의 프리프레그(120) 내경 전체에 균일한 회동 가압력을 제공하기 위해 바람직하다. 연결부(336)의 확장 및 수축은 탄성 스프링 구조, 수축 확장이 가능한 힌지 구조나 토글(toggle) 구조 등이 사용될 수 있다.
가압 롤러(338)는 길이 방향으로 긴 원기둥 형상으로 자유 회전이 가능하도록 연결부(336)의 끝단에 결합되어 있으며, 연결부(336)의 확장에 의해 복합 소재 프리프레그(120)의 내경에 접촉된 상태에서 회동을 함으로써 프리프레그(120)의 내경 전체면을 외경 방향으로 균일하게 가압한다.
이때 가압 롤러(338)에 의해 프리프레그(120)의 내경 전체면에 가해지는 압력은 적층된 프리프레그(120)층 간에 기포와 같은 기공이 발생하지 않도록 하면서 프리프레그(120)의 과도한 마찰이나 압력에 의한 저항이나 열 발생 등에 의한 물리적 특성 저하를 방지하기 위해 2 내지 1000 kg/㎤인 것이 바람직하며, 50 내지 3000 kg/㎤ 인 것이 더욱 바람직하다. 또한 프리프레그(120)의 내경 전체면에 균일한 가압을 하면서 과도한 마찰에 의한 저항이나 열 발생 등에 의한 프리프레그(120)의 물리적 특성 저하를 방지하기 위해 회동력 공급부(332)에 의한 가압 롤러(338)의 회동 속도는 10 내지 4000rpm 인 것이 바람직하며, 50 내지 150 rpm 인 것이 더욱 바람직하다.
이때 동시 경화의 효율성 확보를 위해 가열 장치(320)를 이용하여 가압 공정 중에 프리프레그(120)의 주변 온도는 프리프레그(120)가 라이너(121) 층으로써 적합한 물리적 특성을 가지기 위해 경화되어야 하므로 그 경화 온도를 고려하여 30℃ 내지 200℃로 유지하는 것이 바람직하다. 이때 가열장치(320)을 활용하여 주변 온도를 상기 수치 범위 내로 유지하는 방법 이외에도 상술한 히트 자켓을 활용하여 금속 하우징(110)을 직접 가열할 수도 있다.
이처럼 회동 가압 장치(330)를 이용한 직접 접촉에 의한 회동 가압 방식은 금속 하우징(110)의 내경에 삽입 부착된 복합 소재 프리프레그(120)의 내경면 전체를 외경 방향으로 가압 롤러(338)가 회동을 하면서 직접 접촉에 의해 균일하게 회동 가압력을 제공할 수 있다. 따라서 종래의 진공백이나 오토크래이브에 의한 가압 공정에 비해 금속 하우징(110)의 내경에 복합 소재 라이너(121)를 용이하고 간편하게 접착 형성할 수 있을 뿐만 아니라 접착 형성된 복합 소재 라이너(121)의 물리적 특성 또한 종래의 방법에 비해 매우 우수하다.
이와 같이 회동 가압을 통한 동시 경화 공정을 수행하면, 도 10 및 도 11에 도시된 바와 같이 기포와 같은 기공이 없고 더욱 치밀할 뿐만 아니라 균일한 두께를 가지며 물리적 특성이 매우 우수한 경화된 복합 소재 라이너(121)가 내경에 접착 형성된 금속 하우징(110)이 완성된다(S140).
이 후 금속 하우징(111) 표면을 클리닝하거나 필요한 규격 및 형상으로 가공 처리하는 후 공정을 거치면(S150), 도 12에 도시된 바와 같이 복합 소재 라이너(121)가 내경에 접착 형성되어 있으며, 표면 처리된 금속 하우징(111)으로 구성된 본 발명의 한 실시예에 따른 하이브리드 복합 소재 플레인 베어링(100)이 완성되게 된다(S160).
한편, 상기 공정들(S140 또는 S150) 다음에 상술한 세레이션 공정 등을 이용하여 복합 소재 라이너(121)의 내경 표면 가공 공정을 통해 요철홈(122a)을 형성시키면(S155), 본 발명의 한 실시예에 따른 하이브리드 복합 소재 미케니컬 씰링(101)이 완성되게 된다(S165).
한편, 사용 조건에 따른 필요에 의해 하이브리드 복합 소재 플레인 베어링(100)의 경우에도 복합 소재 라이너(121)의 내경 표면을 상술한 세레이션 공정을 통해 요철홈(122a)을 형성할 수도 있음은 물론이다.
한편, 본 발명의 한 실시예에서 사용되는 회동 가압력을 제공하는 회동 가압 장치(330)의 가압 롤러(338)는 필요에 따라 도 14 내지 도 16에 도시된 회동 가압 장치(331)의 가압 패드(339)로 변경하여 사용할 수도 있다.
도 14는 프리프레그가 내경에 삽입된 금속 하우징의 내경에 패드 타입의 회동 가압 장치가 삽입되어 회동과 동시에 프리프레그를 내경에서 외경 방향으로 가압하는 상태를 도시한 사시도, 도 15는 도 14의 배면도, 그리고, 도 16은 도 15의 C-C 선을 따라 잘라 도시한 단면도이다.
회동축(334)의 회동과 동시에 프리프레그(120)와 접하는 가압 롤러(338)는 같이 회동하므로 감겨져 있는 프리프레그(120)에 대해 회동 방향으로 힘이 잘 전달되지 않아 압착력이 다소 떨어질 염려가 있을 수 있다. 가압 패드(339)는 회동축(334)의 회동 시에도 회동하지 않아 저항을 발생시킬 수 있어 회동 방향으로의 압력을 부가시킬 수 있는 장점이 있다. 가압 패드(339)는 통상 스텐레스 스틸 또는 강으로 만들어지나 프리프레그(120)와의 접착을 방지하기 위해 표면에 크롬 도금, 테프론 코팅 등과 같은 저 마찰 계수 표면 처리를 실시할 수 있다.
이하에서는 본 발명의 다른 실시예에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법을 도 17 내지 도 19을 참조하여 본 발명의 한 실시예에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법과의 차이점을 중심으로 설명한다.
도 17은 본 발명의 다른 실시예에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법을 순차적으로 나타낸 순서도, 도 18은 이형제를 도포시킨 금형의 내경에 적층된 하이브리드 복합 소재 프리프레그를 삽입시킨 다음 회동 가압 장치를 이용하여 프리프레그를 회동 가압을 통해 성형하여 완성된 하이브리드 복합 소재 라이너를 금형으로부터 분리하는 과정을 설명하기 위한 상태도, 그리고, 도 19는 분리된 하이브리드 복합 소재 라이너를 접착제가 도포된 금속 하우징의 내경에 삽입하여 최종적으로 제조된 하이브리드 복합 소재 플레인 베어링을 완성하는 과정을 설명하기 위한 상태도이다.
설명에 앞서 본 발명의 다른 실시예에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법은 본 발명의 한 실시예와 같이 동시 경화법이 의해 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링을 제조하는 것이 아니라, 금속 하우징에 대응하는 금형을 제작하여 복합 소재 프리프레그를 내경에 삽입한 후 성형하여 우선 복합 소재 라이너층을 형성한 후 이를 금형으로부터 분리한 다음 금속 하우징에 접착하는 성형 방법을 사용하여 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링을 제조하는 근본적인 제조 방법상의 차이가 있음을 밝혀둔다. 여기서, 금속 하우징과 금형은 그 형상은 유사하나 금속 하우징의 경우는 이를 플레인 베어링 또는 미케니컬 씰링의 제조에 직접 사용하지만, 금형의 경우는 복합소재 라이너층을 성형하는 틀로써만 사용되는 점이 크게 다르다.
본 발명의 다른 실시예에 따른 하이브리드 복합소재 플레인 베어링 또는 미케니컬 미케니컬 씰링의 제조 방법은 먼저 도 17에 도시한 바와 금속 하우징(110)과 유사하며 복합 소재 라이너층을 성형하는 틀로써만 사용되는 금형(400)에 접착제 대신 이형제(미도시)를 도포한다(S111).
접착제가 아닌 이형제를 도포하는 이유는 복합 소재 라이너(121)의 성형이 완성된 경우 금형(400)으로부터 복합 소재 라이너(121)를 용이하게 분리해 내기 위함이다.
그런 다음, 이형제가 도포된 금형(400)의 내경 소정 위치에 소정 두께로 적층된 복합 소재 프리프레그를 개구부를 통해 삽입 부착한다(S121).
다음으로, 금형(440)의 내경에 삽입 부착된 복합 소재 프리프레그의 내경면 전체를 외경 방향으로 균일하게 회동 가압하는 성형 공정을 수행한다(S131).
이를 통해 금형(440)의 내경에 복합 소재 라이너(121)의 성형을 완성한다(S133).
그런 다음 도 18에 도시된 바와 같이 하이브리드 복합 소재 복합 소재 라이너(121)를 금형(400)으로부터 분리하고(S135), 도 19와 같이 접착제가 도포된 금속 하우징(110)의 내경에 하이브리드 복합 소재 라이너(121)를 삽입한다(S138).
이 후 공지의 방법이나 상술한 본 발명의 한 실시예에서 소개한 회동 가압 공정을 통해 하이브리드 복합 소재 라이너(121)가 접착된 금속 하우징(110)을 완성한다(S141).
그런 다음 본 발명의 한 실시예에 따른 공정과 동일한 공정(S150, S160, S155, S165)을 수행하면 본 발명의 다른 실시예에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링이 제조된다.
한편 상술한 본 실시예들과 같은 회동 가압 장치(330, 331)만이 회동 가압력을 제공하는 것은 아니며, 금속 하우징(110)의 내경에 삽입 부착된 복합 소재 프리프레그(120)의 내경면 전체에 회동 가압력을 제공하여 균일하게 동시 경화나 성형 공정을 수행할 수 있으면, 다른 회동 가압력 발생 수단을 변경 사용할 수 도 있음은 물론이다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세히 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태의 공정 또한 본 발명의 권리범위에 속하는 것이다.
본 발명에 따른 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법은 정밀 제어 공정 및 공정 변수를 감소시킬 수 있어 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 공정이 매우 간단하고 그 제조가 용이하여 제조 효율이 우수할 뿐만 아니라, 높은 가압력과 가압의 균일성 확보가 가능하여 보다 치밀하고 기포와 기공 등과 같은 결함을 포함하지 않는 고품질의 복합 소재 플레인 베어링 또는 미케니컬 씰링을 용이하게 제조할 수 있는 산업상 유용한 발명이다.

Claims (14)

  1. 원통 형상의 금속 하우징의 내경에 접착제를 도포하는 단계,
    상기 접착제가 도포된 상기 금속 하우징의 내경에 소정 두께의 하이브리드 복합 소재의 프리프레그를 삽입하는 단계,
    동시 경화를 위해 상기 프리프레그의 내경면 전체를 외경 방향으로 직접 접촉에 의해 균일하게 회동 가압하는 단계, 그리고,
    상기 회동 가압을 통해 하이브리드 복합 소재의 라이너가 내경에 접착된 금속 하우징을 완성하는 단계를 포함하는
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
  2. 제1항에서,
    상기 회동 가압 단계에서,
    상기 회동 가압은 회동하는 가압 롤러 또는 가압 패드를 이용하여 수행되는
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
  3. 제2항에서,
    상기 가압 롤러 또는 상기 가압 패드는
    상기 프리프레그의 내경에 삽입 시 길이 수축이 가능하고,
    회동 가압 공정 시에서 상기 프리프레그의 외경 방향으로 길이 확장이 가능한
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
  4. 제1항에서,
    상기 회동 가압 단계에서,
    회동 속도는 10 내지 4000 rpm 인
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
  5. 제1항에서,
    상기 회동 가압 단계에서,
    가압력은 2 내지 1000 kg/㎤인
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
  6. 제1항에서,
    상기 회동 가압 단계에서,
    상기 프리프레그의 주변 온도는 30 내지 200 ℃인
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
  7. 제1항에서,
    상기 프리프레그를 삽입하는 단계에서,
    삽입되는 상기 프리프레그의 두께는 0.25 내지 15 mm인
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
  8. 원통 형상의 금속의 내경에 이형제를 도포하는 단계,
    상기 이형제가 도포된 상기 금형의 내경에 소정 두께의 하이브리드 복합 소재의 프리프레그를 삽입하는 단계,
    성형을 위해 상기 프리프레그의 내경면 전체를 외경 방향으로 직접 접촉에 의해 균일하게 회동 가압하는 단계, 그리고,
    상기 회동 가압을 통해 상기 금형의 내경에 위치하는 하이브리드 복합 소재의 라이너를 완성하는 단계,
    완성된 상기 라이너를 상기 금형으로부터 분리하는 단계,
    접착제가 도포된 원통 형상의 금속 하우징의 내경에 분리된 상기 라이너를 삽입하는 단계, 그리고,
    가압 공정을 통해 상기 라이너가 내경에 접착된 금속 하우징을 완성하는 단계
    를 포함하는
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
  9. 제8항에서,
    상기 회동 가압 단계에서,
    상기 회동 가압은 회동하는 가압 롤러 또는 가압 패드를 이용하여 수행되는
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
  10. 제9항에서,
    상기 가압 롤러 또는 상기 가압 패드는
    상기 프리프레그의 내경에 삽입 시 길이 수축이 가능하고,
    회동 가압 공정 시에서 상기 프리프레그의 외경 방향으로 길이 확장이 가능한
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
  11. 제8항에서,
    상기 회동 가압 단계에서,
    회동 속도는 10 내지 4000 rpm 인
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
  12. 제8항에서,
    상기 회동 가압 단계에서,
    가압력은 2 내지 1000 kg/㎤인
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
  13. 제8항에서,
    상기 프리프레그의 주변 온도는 30 내지 200 ℃인
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
  14. 제8항에서,
    상기 프리프레그를 삽입하는 단계에서,
    삽입되는 상기 프리프레그의 두께는 0.25 내지 15 mm인
    하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법.
PCT/KR2012/004849 2012-06-13 2012-06-20 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법 WO2013187546A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120063051A KR101201717B1 (ko) 2012-06-13 2012-06-13 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법
KR10-2012-0063051 2012-06-13

Publications (1)

Publication Number Publication Date
WO2013187546A1 true WO2013187546A1 (ko) 2013-12-19

Family

ID=47564727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004849 WO2013187546A1 (ko) 2012-06-13 2012-06-20 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법

Country Status (2)

Country Link
KR (1) KR101201717B1 (ko)
WO (1) WO2013187546A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101832066B1 (ko) 2016-09-22 2018-02-23 주식회사 티엠시 원통형 부싱 내면 상에 고분자 섬유의 접합을 통한 이중구조 부싱의 제조 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207427A (ja) * 1987-02-24 1988-08-26 Nkk Corp 拡管装置
KR20000005538A (ko) * 1996-04-18 2000-01-25 듀라맥스 인코포레이티드 부분 원호형 베어링 조립품 및 그 제조방법
KR20040099122A (ko) * 2003-05-16 2004-11-26 한국과학기술원 하이브리드 복합재료 저널베어링 구조 및 그러한 구조를갖는 저널베어링의 제조방법
US20100148408A1 (en) * 2008-12-17 2010-06-17 Hai-Chou Yen Method of manufacturing a fiber reinforced plastic (FRP) lighting pole

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932049A (en) 1996-04-18 1999-08-03 Duramax, Inc. Method of making a partial arc bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207427A (ja) * 1987-02-24 1988-08-26 Nkk Corp 拡管装置
KR20000005538A (ko) * 1996-04-18 2000-01-25 듀라맥스 인코포레이티드 부분 원호형 베어링 조립품 및 그 제조방법
KR20040099122A (ko) * 2003-05-16 2004-11-26 한국과학기술원 하이브리드 복합재료 저널베어링 구조 및 그러한 구조를갖는 저널베어링의 제조방법
US20100148408A1 (en) * 2008-12-17 2010-06-17 Hai-Chou Yen Method of manufacturing a fiber reinforced plastic (FRP) lighting pole

Also Published As

Publication number Publication date
KR101201717B1 (ko) 2012-11-16

Similar Documents

Publication Publication Date Title
US7757403B1 (en) Hybrid composite journal bearing and manufacturing method thereof
JP6817275B2 (ja) 冷却機能を備える回転子
CA2822192C (en) Method for producing brake drum and a brake drum
TWI415743B (zh) Preparation method of non-adherent aromatic polyamide-polyphenylene sulfide laminate, insulating member and insulation structure of rotary motor
EP0035782B1 (en) Bearing assembly and method for making same
JPH10204282A (ja) 湿式ラジアル軸受用摺動部材
JP5391901B2 (ja) 繊維強化樹脂製歯車の製造方法
KR101201717B1 (ko) 하이브리드 복합 소재 플레인 베어링 또는 미케니컬 씰링의 제조 방법
JPH1050300A (ja) 薄層電極製造用プレスロール、該ロールを用いた薄層電極製造用プレス装置および同薄層電極の製造方法
JP6718478B2 (ja) 円筒状複合材料の成形方法
WO2015108141A1 (ja) 転がり軸受用保持器およびその製造方法、並びに転がり軸受
WO2002058917A2 (en) Use of a liquid during centrifugal processing to improve consolidation of a composite structure
KR100707977B1 (ko) 수윤활식 하이브리드 복합재료 저널베어링 및 그 제조방법
KR100865070B1 (ko) 하이브리드 복합재료 쇼울더 베어링과 그 제조방법 및하이브리드 복합재료 쇼울더 베어링을 가지는 회전체시스템
JP7302753B2 (ja) 保持器の製造方法及び転がり軸受の製造方法
JP2000249147A (ja) 軸受装置及びその軸受の製造方法
KR100597073B1 (ko) 요철 내면이 형성된 복합재료 저널베어링 및 그 제조방법
KR102162483B1 (ko) 복합 텐션 롤러 및 그 제조방법
CN101865206B (zh) 一种由涤纶或芳纶制成的导轴承和止推盘磨擦片组成的磨擦副及其制造方法
WO2010134458A1 (ja) 焼結金属軸受と滑り軸受ユニット用軸部材、およびこの軸部材を備えた滑り軸受ユニット
CN117885252A (zh) 一种碳纤维增强热塑性回转体结构件的大张力缠绕一体化成型工艺
JP2003254333A (ja) 軸受製造装置及び軸受の製造方法
CN117425558A (zh) 复合材料成形品的制造方法、保持架及滚动轴承的制造方法、以及齿轮箱构成部件的制造方法
JPH09264327A (ja) すべり軸受装置
Gabrys Design, fabrication and testing of advanced composite energy storage flywheels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878805

Country of ref document: EP

Kind code of ref document: A1