WO2013187211A1 - リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびそれらの製造方法 - Google Patents

リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびそれらの製造方法 Download PDF

Info

Publication number
WO2013187211A1
WO2013187211A1 PCT/JP2013/064430 JP2013064430W WO2013187211A1 WO 2013187211 A1 WO2013187211 A1 WO 2013187211A1 JP 2013064430 W JP2013064430 W JP 2013064430W WO 2013187211 A1 WO2013187211 A1 WO 2013187211A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
ion secondary
lithium ion
secondary battery
active material
Prior art date
Application number
PCT/JP2013/064430
Other languages
English (en)
French (fr)
Inventor
博史 春名
真人 水谷
登志雄 阿部
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Publication of WO2013187211A1 publication Critical patent/WO2013187211A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a method for producing them.
  • Patent Document 1 describes that a negative electrode active material is treated with boric acid to form a boron-derived film to improve the high-temperature storage characteristics of the battery.
  • Patent Document 2 describes that an additive containing boron is added to the electrolytic solution to improve the cycle characteristics of the battery.
  • Patent Document 1 It is also possible to improve the high-temperature storage characteristics of a battery by forming a film having a BO bond and a film containing lithium on the negative electrode described in Patent Document 1.
  • the method of Patent Document 1 describes that a film containing a compound having a B—O bond is formed by treating an electrode with a boric acid solution.
  • a compound having a B—O bond remains on the surface of the negative electrode, and it is estimated that the compound dissolves in the electrolytic solution, and the battery characteristics may be deteriorated due to a decrease in physical properties of the positive electrode and the electrolytic solution itself.
  • a boron-containing additive when a boron-containing additive is used in the electrolytic solution, the charge is consumed due to the decomposition of the additive, which may cause a decrease in the initial capacity of the battery.
  • Patent Document 2 it is not sufficient to suppress the deterioration with time with the high capacity of batteries in recent years.
  • the object of the present invention is to suppress a decrease in battery capacity after a storage test and to improve battery life characteristics.
  • FIG. 1 is a diagram schematically showing the internal structure of a battery according to an embodiment of the present invention.
  • a battery 1 according to an embodiment of the present invention shown in FIG. 1 includes a positive electrode 10, a separator 11, a negative electrode 12, a battery can 13, a positive electrode current collecting tab 14, a negative electrode current collecting tab 15, an inner lid 16, an internal pressure release valve 17, It comprises a gasket 18, a positive temperature coefficient (PTC) resistance element 19, a battery lid 20, and an axis 21.
  • the battery lid 20 is an integrated part including the inner lid 16, the internal pressure release valve 17, the gasket 18, and the resistance element 19.
  • a positive electrode 10, a separator 11, and a negative electrode 12 are wound around the shaft core 21.
  • the separator 11 is inserted between the positive electrode 10 and the negative electrode 12, and the electrode group wound around the shaft core 21 is produced.
  • the shaft core 21 any known one can be used as long as it can support the positive electrode 10, the separator 11, and the negative electrode 12.
  • the electrode group is formed by stacking strip-shaped electrodes, or the positive electrode 10 and the negative electrode 12 are wound into an arbitrary shape such as a flat shape, or the separator 11 has a bag shape.
  • the positive electrode 10 and the negative electrode 12 can be housed in this, and these can be sequentially stacked to form a multilayer structure.
  • the shape of the battery can 13 may be selected from shapes such as a cylindrical shape, a flat oval shape, a flat oval shape, and a square shape according to the shape of the electrode group.
  • the material of the battery can 13 is selected from materials that are corrosion resistant to non-aqueous electrolytes, such as aluminum, stainless steel, and nickel-plated steel. Further, when the battery can 13 is electrically connected to the positive electrode 10 or the negative electrode 12, the material is not deteriorated due to corrosion of the battery can 13 or alloying with lithium ions in the portion in contact with the nonaqueous electrolyte. Thus, the material of the battery can 13 is selected.
  • Stainless steel is resistant to corrosion because a passive film is formed on the surface, and since it is steel, it has high strength and can withstand the increase in the internal pressure of gas vaporized from the electrolyte in the battery can 13 or the like.
  • Aluminum is characterized by its high energy density per weight due to its light weight.
  • the electrode group is housed in the battery can 13, the negative electrode current collecting tab 15 is connected to the inner wall of the battery can 13, and the positive electrode current collecting tab 14 is connected to the bottom surface of the battery lid 20.
  • the electrolyte is injected into the battery can 13 before the battery is sealed.
  • a method for injecting the electrolyte there are a method of adding directly to the electrode group in a state where the battery cover 20 is released, or a method of adding from an injection port installed in the battery cover 20.
  • a positive current collecting tab 14 and a negative current collecting tab 15 for drawing current are formed on each of the positive electrode 10 and the negative electrode 12 by spot welding or ultrasonic welding.
  • the positive electrode current collecting tab 14 and the negative electrode current collecting tab 15 are made of a metal foil of the same material as the positive electrode current collector and the negative electrode current collector plate each having a rectangular shape, and for taking out current from the positive electrode 10 and the negative electrode 12. It is a member to install.
  • the present invention can be applied to a lithium secondary battery for a mobile object such as an automobile, and since these are required to pass a large current, a plurality of lithium secondary batteries for a mobile object such as an automobile are used. It is necessary to provide a tab.
  • the battery lid 20 is brought into close contact with the battery can 13 and the whole battery is sealed. If there is an electrolyte inlet, seal it as well.
  • a method for sealing the battery there are known techniques such as welding and caulking.
  • the battery lid 20 is provided with a relief valve that is opened when the pressure inside the battery rises and releases the pressure inside the battery.
  • the lithium ion secondary battery according to an embodiment of the present invention can be manufactured by, for example, disposing the following negative electrode and positive electrode facing each other via a separator and injecting an electrolyte.
  • the structure of the lithium ion battery according to an embodiment of the present invention is not particularly limited.
  • the positive electrode and the negative electrode and the separator separating them are wound into a wound electrode group, or the positive electrode, the negative electrode, and the separator are combined.
  • a stacked electrode group can be formed by stacking.
  • a boron-containing compound reacts with a surface functional group such as a C ⁇ O, C—OH, and —COOH bond in which a carbon edge portion as a negative electrode active material exists.
  • the negative electrode active material can be immobilized on the surface, that is, the negative electrode active material and the boron-containing compound can be covalently bonded.
  • the surface functional group present on the surface of the negative electrode active material reacts irreversibly with the electrolytic solution in a battery reaction, thereby forming a surface film called an SEI film.
  • SEI film surface film
  • the generation of the surface coating consumes electric charge and contributes to a decrease in battery capacity.
  • the lifetime can be extended by forming a film that suppresses the reaction with the electrolyte over time.
  • a boron compound having a BO bond is immobilized on a part or all of the surface of the negative electrode active material, thereby suppressing deterioration with time of the battery. , Found to improve life.
  • immobilizing the compound on part or all of the surface of the negative electrode active material it is possible to reduce the concern of elution into the electrolyte and to suppress the deterioration of the characteristics of the positive electrode, contributing to the improvement of battery characteristics. it is conceivable that.
  • the raw material of the negative electrode active material in one embodiment of the present invention can be used as long as it has a surface functional group. That is, if a material is analyzed by X-ray photoelectron spectroscopy or the like, any material that can detect a peak derived from an O atom can be used. Specifically, graphitized materials obtained from natural graphite, petroleum coke, coal pitch coke, etc., processed at a high temperature of 2500 ° C.
  • the carbon material carrying a metal include a metal or an alloy selected from lithium, aluminum, tin, silicon, indium, gallium, and magnesium.
  • the said metal or metal oxide can be utilized as a negative electrode active material. Of these negative electrode active material candidates, one kind can be used alone, or two or more kinds can be used in combination.
  • MB (OR) is produced by reacting R-OM produced by the reaction of monovalent or divalent alkali metal (M) with alcohol (R—OH) and alkyl borate (B— (OR) 3 ). A compound containing 4 is obtained.
  • M is a monovalent alkali metal, it can be isolated as an intermediate in the chemical reaction formula.
  • M is a divalent alkali metal, such as Ca ion, it is considered that an association pair is formed to match the charge balance, but solvates in the solution.
  • R is an organic group.
  • the hydrogen of R may be substituted with a halogen element such as fluorine, chlorine or bromine.
  • a branched alkyl group such as an isopropyl group may also be used.
  • the obtained MB (OR) 4 and the surface functional group of the negative electrode active material are stirred and reacted in a more polar solvent such as alcohol or acetonitrile or dimethyl sulfoxide, thereby containing boron and an alkali metal.
  • a negative electrode material in which the coated film agent is formed on the surface of the negative electrode active material can be obtained. From the viewpoint of facilitating solvent removal after the reaction, it is desirable to use a solvent having a lower boiling point.
  • the details of the formation mechanism and reaction product on the surface of the negative electrode active material are unknown, but when a carbon-based negative electrode active material is used, Li—B (—OCH 3 ) 2 -C 2 (derived from a functional group present on the surface of the active material).
  • a material having —OH or —COOH is considered suitable.
  • MB as the compound (O-R) 4 only may be but, MB (O-R) may contain 4 else.
  • R-OM, B- (OR) 3 , and MB (O—R) 4 are substances that easily react with moisture, so that they can be reacted in an inert atmosphere such as Ar or N 2. Although it is desirable, even in the atmosphere, the reaction yield is only slightly reduced, and it is possible to maintain the yield by selecting process conditions such as subsequent stirring time with the negative electrode active material and heating. is there.
  • boron compounds include trimethyl borate (B (OCH 3 ) 3 ), triethyl borate (B (OCH 2 CH 3 ) 3 ), and tripropyl borate (B (OCH 2 CH 2 CH 3 ) 3 ).
  • alkyl borate From the viewpoint of low boiling point and easy removal, it is desirable to use trimethyl borate having a short alkyl group.
  • the above negative electrode material is used, mixed with a binder such as carboxymethyl cellulose and a styrene butadiene copolymer, and applied and pressed to produce an electrode.
  • the thickness of the negative electrode mixture layer is preferably 50 to 200 ⁇ m.
  • the battery capacity can be increased by fixing the coating agent to the negative electrode active material in advance before forming the negative electrode 12.
  • the total amount of the dispersing agent / binder such as carboxymethyl cellulose and styrene butadiene copolymer is about 3 wt%.
  • the binder component increases, the internal resistance value increases and the battery capacity decreases.
  • preparation of electrode peeling may become difficult, storage of a battery, and the fall of a cycle life may be caused.
  • the positive electrode 10 includes a positive electrode active material, a conductive agent, a binder, and a positive electrode current collector.
  • a positive electrode active material that reversibly absorbs and releases lithium, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), etc.
  • the above positive electrode active material is mixed with a carbon material powder conductive agent and a binder such as polyvinylidene fluoride (PVDF) to prepare a slurry.
  • the mixing ratio of the conductive agent to the positive electrode active material is preferably 5 to 20 wt%.
  • the mixture is sufficiently kneaded using a mixer equipped with stirring means such as a rotary blade so that the powder particles of the positive electrode active material are uniformly dispersed in the slurry.
  • the sufficiently mixed slurry is applied on both sides onto a positive electrode current collector made of aluminum foil having a thickness of 15 to 25 ⁇ m, for example, by a roll transfer type coating machine. After coating on both sides, a positive electrode 10 was obtained by press drying.
  • the thickness of the positive electrode mixture layer applied on the positive electrode current collector is preferably 50 to 250 ⁇ m.
  • non-aqueous solvent examples include ethylene carbonate, propylene carbonate, gamma butyrolactone, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate.
  • solvents may be used alone or in combination of two or more.
  • Lithium salt such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 2 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) N, etc. should be used as the lithium salt. Can do. These lithium salts may be used alone or in combination of two or more.
  • As the electrolytic solution it is desirable to use a solution of LiPF 6 or LiBF 4 as an electrolyte in a solvent such as ethylene carbonate, propylene carbonate, or dimethyl carbonate.
  • the electrolyte concentration is preferably between 0.6 and 1.5 mol / L.
  • vinylene carbonate a compound having a carboxylic acid anhydride group, a compound having a sulfur element such as propane sultone, or a compound having boron as a third component other than a solvent and a solute in the electrolytic solution.
  • a compound having a carboxylic acid anhydride group a compound having a sulfur element such as propane sultone
  • a compound having boron a third component other than a solvent and a solute in the electrolytic solution.
  • two or more compounds in addition to the solvent and solute is not only to suppress reductive decomposition on the surface of the negative electrode active material, but also to suppress Mn elution from the positive electrode active material, improve the ionic conductivity of the electrolyte, make the electrolyte non-flammable, flame retardant, etc. Select according to purpose.
  • a coating agent that forms a coating on the surface of a negative electrode active material such as vinylene carbonate / propane sultone
  • an overcharge prevention additive such as cyclohexylbenzene, phosphoric acid type or halogen substitution
  • Additives that impart flame retardancy, self-extinguishing additives, electrode / separator wettability improving additives, and the like may be added according to their respective purposes.
  • a separator 11 is used for the purpose of preventing a short circuit due to direct contact between the positive electrode 10 and the negative electrode 12, and the separator 11 includes a microporous polymer film such as polyethylene, polypropylene, and aramid resin, and alumina particles and the like on this polymer film.
  • a film having a surface coated with a heat-resistant substance can be used.
  • the positive electrode active material Li 1.02 Mn 1.98 Al 0.02 O 4 having an average particle diameter of 10 ⁇ m and a specific surface area of 1.5 m 2 / g was used.
  • a mixture of 9: 2 of massive graphite and acetylene black mixed with 85% by weight of the positive electrode active material is used as a conductive agent, and the conductive agent is dispersed in an NMP solution that has been previously adjusted to 5% by weight PVDF as a binder. did.
  • the mixing ratio of the positive electrode active material, the conductive agent, and PVDF was 85: 10: 5 by weight.
  • the slurry was applied as uniformly and evenly as possible to an aluminum foil (positive electrode current collector) having a thickness of 20 ⁇ m. After the application, the film was dried at a temperature of 80 ° C., and applied and dried on both sides of the aluminum foil in the same procedure. Thereafter, it was compression-molded by a roll press machine, cut to a coating width of 5.4 cm and a coating length of 50 cm, and an aluminum foil lead piece for taking out the current was welded to produce the positive electrode 10.
  • the negative electrode active material natural graphite having an interplanar spacing of 0.368 nm, an average particle diameter of 20 ⁇ m, and a specific surface area of 5 m 2 / g obtained by X-ray diffraction measurement was used.
  • methanol alkoxide formed by reaction of lithium metal and methanol was obtained, and then reacted with trimethyl borate to synthesize LiB (O—CH 3 ) 4 .
  • LiB (O—CH 3 ) 4 By reacting the obtained LiB (O—CH 3 ) 4 with the surface functional group of the negative electrode active material, a negative electrode material containing boron and an alkali metal was obtained.
  • the negative electrode material and an aqueous dispersion of carboxymethyl cellulose were sufficiently mixed, and the aqueous dispersion of styrene-butadiene copolymer was dispersed to obtain a negative electrode slurry.
  • the mixing ratio of the negative electrode material, carboxymethyl cellulose, and styrene butadiene was 98: 1: 1 by weight.
  • This slurry was applied substantially uniformly to a rolled copper foil (negative electrode current collector) having a thickness of 10 ⁇ m.
  • the coating and drying were performed on both sides of the rolled copper foil in the same procedure as the positive electrode 10. Thereafter, it was compression-molded by a roll press machine, cut so as to have a coating width of 5.6 cm and a coating length of 54 cm, and a lead piece made of copper foil was welded to prepare the negative electrode 12.
  • a cylindrical battery 1 shown in FIG. 1 was produced using the produced positive electrode 10 and negative electrode 12.
  • a positive electrode 1 and a negative electrode 2 shown in FIG. 1 are formed, and a positive electrode lead 7 and a negative electrode lead 5 of a tab portion for drawing out current are formed by ultrasonic welding.
  • the positive electrode lead 7 and the negative electrode lead 5 in the tab portion are made of metal foils of the same material as the current collector having a rectangular shape, and are members installed to take out current from the electrodes.
  • a separator 11, which is a polyethylene single layer film, is sandwiched between the tabbed positive electrode 1 and negative electrode 2, and this is rolled into a cylindrical shape (spiral) as shown in FIG.
  • the battery can 13 was housed in a cylindrical container.
  • an electrolytic solution was injected into the battery can 13 and sealed with a gasket.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the thus-prepared electrolyte is poured into a battery can 13 through a gasket 18 and a battery lid 20 for sealing, to which a positive electrode terminal is attached, and is sealed by caulking to form a cylindrical shape having a diameter of 18 mm and a length of 650 mm. Battery 1 was obtained.
  • the cylindrical battery 1 manufactured in this way was charged in a constant temperature bath at 25 ° C. with a charging current of 150 mA, a voltage of 4.2 V, and a constant current and a constant voltage of 5 hours, and discharging was performed at a discharging current of 1500 mA and a battery voltage of 3.
  • a constant current was discharged to 0V.
  • This charging / discharging process was defined as one cycle, for a total of 3 cycles.
  • the discharge capacity at the third cycle was defined as 100%, and the ratio with the 1500 mA discharge capacity after the 60-day storage test was calculated. This ratio is defined as a discharge capacity maintenance rate.
  • the storage test was conducted at a voltage of 4.2 V in a constant temperature bath at 50 ° C.
  • the measurement of the battery capacity after 60 days was left in a constant temperature bath at 25 ° C. for 10 hours or more, and the test was started after removing heat.
  • a cylindrical battery was prepared and tested in the same manner as in Example 1 except that triethyl borate was used instead of trimethyl borate as the reactant of the negative electrode active material.
  • Example 1 A cylindrical battery was produced and tested in the same manner as in Example 1 except that solid natural graphite not subjected to boron treatment was used.
  • Comparative Example 2 A cylindrical battery was prepared and tested in the same manner as in Comparative Example 1 except that LiB (O—CH 3 ) 4 was dissolved in the electrolyte at a concentration of 1 wt%.
  • Comparative Example 3 A cylindrical battery was prepared and tested in the same manner as in Comparative Example 1 except that LiB (O—CH 3 ) 4 was dissolved in the electrolyte at a concentration of 2 wt%.
  • Table 1 shows the high temperature storage characteristics after 60 days as a result of each of the battery tests described above.
  • Example 2 As described in Example 2, when triethyl borate was used as a starting material, the capacity after storage after 60 days was improved by 4.3% as compared with Comparative Example 1. It was found that the capacity was improved even when the alkyl bonded to the boric acid group was changed.
  • Example 2 the batteries after the 60-day storage test described in Example 1 and Example 2 were disassembled and the positive electrode / electrolyte was analyzed.
  • the boron-containing material was used as the negative electrode active material because boron element was not detected. By fixing, it is thought that it was able to contribute to the improvement of battery life.
  • the storage characteristics of the battery can be greatly improved by immobilizing a compound containing boron, lithium, carbon, and oxygen on the surface of the negative electrode active material.
  • the battery performance may decrease due to the increase in the viscosity of the electrolytic solution or high concentration dissolution may be difficult. I understood. Therefore, according to the present invention, it is possible to suppress deterioration over time and to significantly improve the life characteristics of the battery as compared with the conventional lithium ion battery using the negative electrode active material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電池性能の経時劣化が小さいリチウム二次電池を提供する。負極活物質と、負極活物質に固定化された被覆剤と、を有するリチウムイオン二次電池用負極材であって、被覆剤に、ホウ素およびアルカリ金属元素が含まれ、被覆剤と前記負極活物質の表面官能基とを反応させることで被覆剤は負極活物質に固定化され、被覆剤としてホウ酸トリメチルなどが挙げられるリチウムイオン二次電池用負極材またはリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池。

Description

リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびそれらの製造方法
 本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびそれらの製造方法に関するものである。
 近年の携帯電話や携帯用パソコンなどの移動体通信用電源はますます小型化、高エネルギー密度化が要望されるとともに、深夜電力の貯蔵のみならず、太陽電池や風力発電と組み合わせた電力貯蔵用電源の開発も進んでいる。また、カルフォルニア州規制に代表されるように環境問題から電気自動車や電力を動力の一部に利用したハイブリッド車、ハイブリッド電車の実用化が進んでいる。しかしながら、非水電解液二次電池は、充放電を繰り返すことで、充放電効率の低下を示すため、電池性能の経時劣化が小さいリチウム二次電池が求められている。
 特許文献1には、負極活物質をホウ酸処理することにより、ホウ素由来の被膜を形成させ、電池の高温保存特性を向上させることが記載されている。また、特許文献2には、電解液にホウ素を含有する添加剤を添加し、電池のサイクル特性を向上させることが記載されている。
特開2003-151539号公報 特開2010-192430号公報
 特許文献1に記載の負極にB-O結合を有する被膜とリチウムを含む被膜を形成することでも電池の高温保存特性を向上することは可能である。しかしながら、特許文献1の方法では、電極をホウ酸溶液で処理することで、B-O結合を有する化合物を含有する被膜を形成させることが記載されている。この方法では、負極表面にB-O結合を有する化合物が残存しており、電解液に溶解することが推定され、正極および電解液自体の物性低下による電池特性の低下が考えられる。また、特許文献1に記載の方法では、電解液にホウ素含有添加剤を用いると、添加剤の分解により電荷が消費されるので、電池の初期容量低下を招くことが考えられる。
 特許文献2の技術では、近年の電池の高容量で経時劣化を抑制することは十分ではない。
 本発明は、保存試験後の電池容量の低下を抑制し、電池の寿命特性を向上させることを目的とする。
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。
 負極活物質と、負極活物質に固定化された被覆剤と、を有するリチウムイオン二次電池用負極材であって、被覆剤にホウ素およびアルカリ金属元素が含まれるリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびそれらの製造方法。
 本発明により、保存試験後の電池容量の低下を抑制し、電池の寿命特性を向上できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
本発明の一実施形態に係る電池の内部構造を模式的に表す図。
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 図1は、本発明の一実施形態に係る電池の内部構造を模式的に表す図である。図1に示す本発明の一実施形態に係る電池1は、正極10、セパレータ11、負極12、電池缶13、正極集電タブ14、負極集電タブ15、内蓋16、内圧開放弁17、ガスケット18、正温度係数(Positive temperature coefficient;PTC)抵抗素子19、及び電池蓋20、軸芯21から構成される。電池蓋20は、内蓋16、内圧開放弁17、ガスケット18、及び抵抗素子19からなる一体化部品である。また、軸芯21には、正極10、セパレータ11及び負極12が捲回されている。
 セパレータ11を正極10及び負極12の間に挿入し、軸芯21に捲回した電極群を作製する。軸芯21は、正極10、セパレータ11及び負極12を担持できるものであれば、公知の任意のものを用いることができる。電極群は、図1に示した円筒形状の他に、短冊状電極を積層したもの、又は正極10と負極12を扁平状等の任意の形状に捲回したもの、セパレータ11に袋状のものを用いてこの中に正極10と負極12を収納しこれらを順次重ねて多層構造としたもの等、種々の形状にすることができる。電池缶13の形状は、電極群の形状に合わせ、円筒形、偏平長円形状、扁平楕円形状、角形等の形状を選択してもよい。
 電池缶13の材質は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製等、非水電解質に対し耐食性のある材料から選択される。また、電池缶13を正極10又は負極12に電気的に接続する場合は、非水電解質と接触している部分において、電池缶13の腐食やリチウムイオンとの合金化による材料の変質が起こらないように、電池缶13の材料の選定を行う。ステンレス鋼は、表面に不働態皮膜が形成されるので腐食しにくくまた鋼であるので強度が高く電池缶13内の電解液等が気化したガスの内圧上昇に耐えられる。アルミニウムは、軽量なので重量当りのエネルギー密度が高いという特徴を有する。
 電池缶13に電極群を収納し、電池缶13の内壁に負極集電タブ15を接続し、電池蓋20の底面に正極集電タブ14を接続する。電解液は、電池の密閉の前に電池缶13の内部に注入する。電解液の注入方法は、電池蓋20を解放した状態にて電極群に直接添加する方法、又は電池蓋20に設置した注入口から添加する方法がある。正極10および負極12のそれぞれに電流引き出し用の正極集電タブ14、負極集電タブ15をスポット溶接または超音波溶接により形成する。正極集電タブ14、負極集電タブ15は、長方形の形状をした正極集電体、負極集電板とそれぞれ同じ材質の金属箔からできており、正極10および負極12から電流を取り出すために設置する部材である。本発明は自動車などの移動体用リチウム二次電池に適用することができ、これらは、大電流を流すことが要求されるため、自動車などの移動体用リチウム二次電池に適用する場合複数のタブを設ける必要がある。
 その後、電池蓋20を電池缶13に密着させ、電池全体を密閉する。電解液の注入口がある場合は、それも密封する。電池を密閉する方法には、溶接、かしめ等公知の技術がある。なお、電池蓋20には電池内の圧力が上昇すると開裂して電池内部の圧力を逃がす逃し弁が設けられている。
 本発明の一実施形態に係るリチウムイオン二次電池は、例えば、下記のような負極と正極とをセパレータを介して対向して配置し、電解質を注入することによって製造することができる。本発明の一実施形態に係るリチウムイオン電池の構造は特に限定されないが、通常、正極及び負極とそれらを隔てるセパレータとを捲回して捲回式電極群にするか、又は正極、負極及びセパレータを積層させて積層型の電極群とすることができる。
<負極>
 本発明の一実施形態に係る負極材は、負極活物質である炭素のエッジ部分の存在するC=O、C-OH、-COOH結合等の表面官能基とホウ素を含有する化合物が反応することで、負極活物質表面に固定化、つまり負極活物質とホウ素を含有する化合物が共有結合化することが可能になる。この負極活物質の表面に存在する表面官能基は電池反応で電解液と不可逆に反応することで、SEI被膜という表面被膜を形成する。この表面被膜の生成のためには、電荷が消費され、電池の容量低下の一因になる。さらには、電池の経時劣化を抑制するためには、電解液との経時的な反応を抑制するような被膜を形成することで長寿命化が可能になると考えられる。
 本発明の一実施形態における負極材にリチウム二次電池を作製すると、B-O結合をもつホウ素化合物を負極活物質表面の一部または全部に固定化することで、電池の経時劣化を抑制し、寿命向上することを見出した。負極活物質表面の一部または全部に化合物を固定化することで、電解液への溶出の懸念が低下するとともに、正極の特性低下も抑制することが可能になり、電池特性向上に寄与したものと考えられる。
 本発明の一実施形態における負極活物質の原料は、表面官能基を有する物質であれば用いることができる。つまり、X線光電子分光法等で、材料を分析すると、O原子由来のピークを検出できる材料であれば用いることができる。具体的には、天然黒鉛、石油コークスや石炭ピッチコークス等から得られる易黒鉛化材料を2500℃以上の高温で処理したもの、メソフェーズカーボンあるいは、非晶質炭素、黒鉛の表面に非晶質炭素を被覆したもの、天然あるいは人造黒鉛表面を機械的処理により表面の結晶性を低下させた炭素材、高分子など有機物を炭素表面に被覆・吸着した材料、炭素繊維、リチウム金属、リチウムと合金化する金属、シリコンあるいは炭素粒子表面に金属を担持した材料が用いられる。金属を担持した炭素材として、例えば、リチウム、アルミニウム、スズ、ケイ素、インジウム、ガリウム、マグネシウムより選ばれた金属あるいは合金が挙げられる。また上記金属または金属の酸化物を負極活物質として利用できる。これら負極活物質の候補の内、一種単独または二種以上混合させても用いることができる。
 1価あるいは2価のアルカリ金属(M)とアルコール(R-OH)との反応により生成するR-OMとホウ酸アルキル(B-(OR)3)とを反応させ、MB(O-R)4を含む化合物が得られる。Mが1価のアルカリ金属の場合、化学反応式の中間体として単離できる。Mが2価のアルカリ金属、例えば、Caイオンの場合、電荷バランスの整合をとるため会合対が生成するものと考えられるが、溶液中では溶媒和する。
 Rは有機基である。Rが直鎖の場合、メチル基、エチル基、ブチル基、プロピル基などの一般式Cnm(ただし、m=2n+1、nは1以上の整数)などが挙げられる。Rの水素について、フッ素、塩素、臭素等のハロゲン元素で置換してもよい。また、イソプロピル基等の分岐型のアルキル基等を用いても良い。Rが環状の場合、フェノール基などの一般式Cnm(ただし、m=n-1、nは4以上の整数)などが挙げられる。n=3以下の環状化合物は非常に不安定なので、nは4以上の整数であることが望ましい。
 この得られたMB(O-R)4と負極活物質の表面官能基とをアルコール中あるいはアセトニトリル、ジメチルスルホキシド等のより極性の高い溶媒中で撹拌し反応させることで、ホウ素およびアルカリ金属を含有した被膜剤が負極活物質の表面に形成された負極材を得ることができる。反応後の溶媒除去を容易にするという観点から、より低沸点の溶媒を用いることが望ましい。負極活物質表面での生成メカニズムおよび反応生成物については、詳細は不明であるが、炭素系の負極活物質を用いると、負極活物質の表面には、被膜剤としてLi-B(-OCH3)2-C2(活物質表面に存在する官能基由来)の形で生成するものと考えられる。表面官能基としては、-OHや-COOHを有する材料が好適であると考えられる。化合物としてMB(O-R)4のみでも良いが、MB(O-R)4以外のものが含まれていても良い。
 また、反応条件として、R-OMとB-(OR)3、MB(O-R)4は水分と反応しやすい物質であるので、ArあるいはN2等の不活性雰囲気化で反応させることが望ましいが、大気中であっても、反応収率が幾分低下するのみで、その後の負極活物質との撹拌時間、加熱等の工程条件を選定することでも収率を維持することが可能である。
 ホウ素化合物として具体的には、ホウ酸トリメチル(B(OCH3)3)、ホウ酸トリエチル(B(OCH2CH3)3)、ホウ酸トリプロピル(B(OCH2CH2CH3)3)などのホウ酸アルキルなどが挙げられる。沸点が低く、除去しやすいという観点で、アルキル基の短いホウ酸トリメチルを用いることが望ましい。
 負極12は、例えば上記の負極材を用い、カルボキシメチルセルロースおよびスチレンブタジエン共重合体等のバインダと混合して塗布プレスし、電極を作製する。負極合剤層の厚さは50~200μmとするのが望ましい。負極12の場合は、負極集電体として厚さ7~20μmの銅箔を用いることが望ましい。このように、負極12を作成する前に負極活物質に被膜剤を事前に固定しておくことで電池の高容量化を達成できる。
 カルボキシメチルセルロースやスチレンブタジエン共重合体等の分散材・バインダは、合計で3wt%程度とすることが望ましい。バインダ成分が多くなると内部抵抗値の増加や電池容量の低下につながる。また、バインダ成分が少なすぎると、電極剥離の作製が困難になったり、電池の保存、サイクル寿命の低下を招いたりする可能性がある。また、有機系バインダを用いる場合も3-6wt%程度にすることが望ましいが、電池の保存、サイクル寿命の試験結果を基に、配合比を決定することがより望ましい。
<正極>
 正極10は、正極活物質、導電剤、バインダ、及び正極集電体から構成される。本発明の一実施形態における負極活物質をリチウムイオン二次電池に用いる場合は、リチウムを可逆的に吸蔵放出する正極活物質として、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)などの層状化合物、またはこれらの一種以上を遷移金属で置換したもの、あるいはマンガン酸リチウムLi1+xMn2-x4(ただしx=0~0.33)、Li1+xMn2-x-yy4(ただし、MはNi、Co、Fe、Cu、Al、Mgより選ばれた少なくとも一種の金属を含み、x=0~0.33、y=0~1.0、2-x-y>0)、LiMnO4、LiMn24、LiMnO2、LiMn2-xx4(ただし、MはNi、Co、Fe、Cu、Al、Mgより選ばれた少なくとも一種の金属を含み、x=0.01~0.1)、Li2Mn3MO8(ただし、MはNi、Co、Fe、Cu、Al、Mgより選ばれた少なくとも一種の金属を含む)、銅-Li酸化物(LiCuO2)、ジスルフィド化合物、Fe2(MoO4)3などを含む混合物、あるいはポロアニリン、ポリピロール、ポリチオフェンなどの一種または二種以上の混合物を用いることができる。
 上記の正極活物質を炭素材料粉末の導電剤、ポリフッ化ビニリデン(PVDF)等のバインダとともに混合しスラリーを作製する。上記正極活物質に対する上記導電剤の混合比は、5~20wt%が好ましい。このとき、上記の正極活物質の粉末粒子がスラリー中で均一に分散するように、回転翼のような撹拌手段を備えた混合機を用いて十分に混錬する。
 十分に混合したスラリーは、例えばロール転写式の塗布機などによって厚さ15~25μmのアルミ箔からなる正極集電体上に両面塗布する。両面塗布した後、プレス乾燥することよって正極10とした。正極集電体上に塗布された正極合剤層の厚さは50~250μmとするのが望ましい。
<電解質>
 非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ガンマブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートが挙げられる。また、これら溶媒については、フッ素置換体などのハロゲン化物や硫黄元素で置換したものを用いてもよい。これら溶媒は、単独で用いても二種以上混合して用いてもよい。なお、二種類以上の溶媒を用いる場合は、環状カーボネートや環状ラクトンのような粘度の大きい溶媒と、鎖状カーボネートや鎖状エステルのような粘度の小さい溶媒との混合溶媒系を用いるのが好ましい。
 リチウム塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO2、Li(CF3SO2)2N、Li(C25SO2)N、等のリチウム塩を用いることができる。これらリチウム塩は、単独で用いても、二種以上混合して用いてもよい。電解液としては、エチレンカーボネートやプロピレンカーボネート、ジメチルカーボネート等の溶媒に電解質としてLiPF6、LiBF4を溶解させたものを用いることが望ましい。電解質濃度としては、0.6~1.5mol/Lの間とするのが望ましい。
 ビニレンカーボネートやカルボン酸無水基を有する化合物、プロパンサルトン等硫黄元素を有する化合物やホウ素を有する化合物を溶媒、溶質以外の第3成分として電解液に混合させることも可能である。混合する場合も溶媒、溶質以外に二種以上の化合物を混合させることも可能である。これら、化合物の添加目的は、負極活物質表面での還元分解の抑制以外にも、正極活物質からのMn溶出抑制や、電解液のイオン導電性を向上、電解液の不燃、難燃化等目的に応じ選択する。さらに、電池の諸特性向上のため、例えば、ビニレンカーボネート・プロパンサルトン等の負極活物質の表面に被膜を形成する被膜剤、シクロヘキシルベンゼン等の過充電防止添加剤、リン酸系やハロゲン置換により難燃性を付与させる添加剤、自己消化性添加剤、電極・セパレータ濡れ性改善添加剤等を、それぞれの目的に応じて添加してもよい。
<セパレータ>
 正極10および負極12の直接接触による短絡防止を目的にセパレータ11を用いるが、このセパレータ11には、ポリエチレン、ポリプロピレン、アラミド樹脂等の微多孔質の高分子フィルムやこの高分子フィルムにアルミナ粒子等の耐熱性物質を表面に被覆した膜等も使用することができる。
 以下、本発明の実施例、および比較例によって本発明をさらに具体例を挙げ説明する。
 正極活物質には、平均粒径10μm、比表面積1.5m2/gのLi1.02Mn1.98Al0.024を用いた。正極活物質85重量%に、塊状黒鉛とアセチレンブラックを9:2に混合したものを導電剤とし、結着剤として予め5重量%PVDFに調整されたNMP溶液に導電剤を分散させてスラリーにした。正極活物質、導電剤、PVDFの混合比は、重量比で85:10:5にした。
 このスラリーを厚さ20μmのアルミニウム箔(正極集電体)にできるだけ均一かつ均等に塗布した。塗布後、80℃の温度で乾燥し、同じ手順でアルミニウム箔の両面に塗布乾燥を行った。その後ロールプレス機により圧縮成形し、塗布幅5.4cm、塗布長さ50cmとなるよう切断し、電流を取り出すためのアルミニウム箔製のリード片を溶接し正極10を作製した。
 負極活物質にはX線回折測定で得られた面間隔が0.368nm、平均粒径が20μm、比表面積が5m2/gの天然黒鉛を用いた。先ず、リチウム金属とメタノールとの反応により生成するメタノールアルコキサイドを得、次いでホウ酸トリメチルと反応させ、LiB(O-CH3)4を合成した。この得られたLiB(O-CH3)4と負極活物質の表面官能基とを反応させることで、ホウ素およびアルカリ金属を含有した負極材が得られた。得られた負極材をX線光電子分光分析で測定すると、ホウ素に基づく192-193eVにホウ素原子を確認できた。また、Li由来のピークを55-56eVに確認することができた。このホウ素由来のピークとリチウム由来のピークのピーク強度比から求められる元素比率は1:1であった。
 負極材とカルボキシメチルセルロースの水分散液と充分に混合し、スチレンブタジエン共重合体の水分散液を分散させて負極スラリーとした。負極材、カルボキシメチルセルロース、スチレンブタジエンの混合比は、重量比で98:1:1にした。このスラリーを厚さ10μmの圧延銅箔(負極集電体)に実質的に均一塗布した。
 正極10と同様の手順で圧延銅箔の両面に塗付乾燥を行った。その後ロールプレス機により圧縮成形し、塗布幅5.6cm、塗布長さ54cmとなるよう切断し、銅箔製のリード片を溶接し負極12を作製した。
 作製した正極10と負極12を用いて図1に示す円筒型の電池1を作製した。図1に示す正極1と負極2とし、それぞれ電流引き出し用のタブ部の正極リード7、負極リード5を超音波溶接により形成する。タブ部の正極リード7、負極リード5は、長方形の形状をした集電体とそれぞれ同じ材質の金属箔からできており、電極から電流を取り出すために設置する部材である。タブ付けされた正極1及び負極2の間にポリエチレンの単層膜であるセパレータ11を挟んで重ね、これを、図1に示すように、円筒状(螺旋状)に捲いて電極群とし、円筒状容器の電池缶13に収納した。電極群を電池缶13に収納した後、電池缶13内に電解液を注入し、ガスケットで密封させた。 
 電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を重量比でEC:EMC=1:2の割合で混合した混合溶液に電解質としてLiPF6を濃度が1.0mol/Lになるように溶解させた。さらに、ビニレンカーボネートをこの混合溶液の重量に対して1wt%になるように混合させた。このように作製した電解液を正極端子が取り付けられた密閉用の電池蓋20をガスケット18を介して電池缶13に注液し、かしめにより密閉して、径18mm、長さ650mmの円筒型の電池1とした。
 このように作製した円筒型の電池1について、25℃の恒温槽内で、充電電流150mA、電圧4.2V、5時間の定電流定電圧充電をし、放電は放電電流1500mAで電池電圧3.0Vまで定電流放電した。この充電、放電プロセスを1サイクルとし、合計3サイクルした。3サイクル目の放電容量を100%として、60日保存試験後の1500mA放電容量との比を算出した。この比を放電容量維持率とする。保存試験の条件は、4.2Vの電圧で、50℃の恒温槽内に放置した。60日後の電池容量の測定は、25℃の恒温槽内に10時間以上放置し、除熱してから試験開始した。
 負極活物質の反応物質にホウ酸トリメチルの代わりにホウ酸トリエチルを用いた以外は、実施例1と同様にして円筒型電池を作製して試験した。
〔比較例1〕
 ホウ素処理をしていない無垢な天然黒鉛を用いた以外は、実施例1と同様にして円筒型電池を作製して電池試験した。
〔比較例2〕
 電解液にLiB(O-CH3)4を1wt%の濃度で溶解させた以外は、比較例1と同様に円筒型電池を作製して電池試験した。
〔比較例3〕
 電解液にLiB(O-CH3)4を2wt%の濃度で溶解させた以外は、比較例1と同様に円筒型電池を作製して電池試験した。
 表1には、上述の各電池試験の結果として、60日後の高温保存特性を示す。
Figure JPOXMLDOC01-appb-T000001
<考察>
 先ず、ホウ素処理をしていない無垢な天然黒鉛を用いた場合(比較例1)を基準にして、実施例1のホウ酸トリメチルを出発原料の一つにした負極活物質を用いて、電池試験をしたところ、60日後の放電容量は5.2%向上していた。負極活物質表面にホウ素・リチウムを含有する被膜を形成したため、負極活物質界面での電解液の分解による性能低下を抑制することで、電池経時劣化を抑制したものと考えられる。
 実施例2に記載のように、ホウ酸トリエチルを出発原料にした場合は、60日後保存後の容量は、比較例1と比較して4.3%向上していた。ホウ酸基に結合するアルキルが変化しても、容量向上することが判った。
 また、実施例1と実施例2に記載の60日後保存試験後の電池を解体し、正極・電解液を分析したところ、ホウ素元素を検出できなかったことからもホウ素含有物質を負極活物質に固定化することで、電池寿命向上に寄与できたものと考えられる。
 比較例2に記載の電解液にホウ素・リチウムを含有した物質を溶解させる方法では、比較例1と比較して、60日後の放電容量は6.2%低下していた。本現象については、詳細なメカニズムは不明であるが、ホウ素・リチウムを含有した物質の電解液への溶解性が低く電解液粘度上昇による特性低下あるいは電解液に添加した場合は、電解液の接触する正極への悪影響も懸念されるので、それら要因が重なりあった結果であると考えられる。
本現象は、比較例2の実験結果からも支持できる結果である。
 以上の実施例および比較例によれば、ホウ素・リチウム・炭素・酸素を含有する化合物を負極活物質表面に固定化することによって、電池の保存特性を大幅に改善できることが判った。一方で、電解液に同様の化合物を溶解した場合、添加する化合物により、電解液の粘度上昇による、電池性能低下あるいは高濃度溶解が困難な場合があり、何れの場合も電池特性は低下することが判った。したがって、本発明によれば、従来の負極活物質を用いたリチウムイオン電池よりも経時劣化を抑制し、電池の寿命特性を顕著に向上させることができる。
10 正極
11 セパレータ
12 負極
13 電池缶
14 正極集電タブ
15 負極集電タブ
16 内蓋
17 内圧開放弁
18 ガスケット
19 抵抗素子
20 電池蓋
21 軸芯

Claims (10)

  1.  負極活物質と、
     前記負極活物質に固定化された被覆剤と、を有するリチウムイオン二次電池用負極材であって、
     前記被覆剤にホウ素およびアルカリ金属元素が含まれるリチウムイオン二次電池用負極材。
  2.  請求項1において、
     前記負極活物質に-OHまたは-COOHが含まれるリチウムイオン二次電池用負極材。
  3.  請求項1乃至2のいずれかにおいて、
     前記被覆剤にMB(O-R)4(Mは1価あるいは2価のアルカリ金属元素、Rは有機基)が含まれるリチウムイオン二次電池用負極材。
  4.  請求項1乃至3のいずれかにおいて、
     前記負極活物質は天然黒鉛質であるリチウムイオン二次電池用負極材。
  5.  請求項1乃至4のいずれかにおいて、
     前記被覆剤の原材料にB-(OR)3(Rは有機基)が含まれるリチウムイオン二次電池用負極材。
  6.  請求項1乃至5のいずれかのリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池用負極。
  7.  請求項6のリチウムイオン二次電池用負極と、
     リチウムイオン二次電池用正極と、
     電解液と、を含むリチウムイオン二次電池。
  8.  請求項7において、
     前記リチウムイオン二次電池用正極および前記電解液にはホウ素が検出されないリチウムイオン二次電池。
  9.  負極活物質と、
     前記負極活物質に固定化された被覆剤と、を有するリチウムイオン二次電池用負極材の製造方法であって、
     前記被覆剤にホウ素およびアルカリ金属元素が含まれ、
     前記被覆剤と前記負極活物質の表面官能基とを反応させることで前記被覆剤は前記負極活物質に固定化されるリチウムイオン二次電池用負極材の製造方法。
  10.  負極活物質と、
     前記負極活物質に固定化された被覆剤と、を有するリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池用負極の製造方法であって、
     前記被覆剤が固定化された前記負極活物質をバインダと混合してスラリーを作製する工程と、
     前記スラリーを負極集電体に塗布する工程と、
     前記負極集電体に塗布された前記スラリーをプレスする工程と、を含むイオン二次電池用負極の製造方法。
PCT/JP2013/064430 2012-06-15 2013-05-24 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびそれらの製造方法 WO2013187211A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-135294 2012-06-15
JP2012135294A JP2014002834A (ja) 2012-06-15 2012-06-15 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびそれらの製造方法

Publications (1)

Publication Number Publication Date
WO2013187211A1 true WO2013187211A1 (ja) 2013-12-19

Family

ID=49758041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064430 WO2013187211A1 (ja) 2012-06-15 2013-05-24 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびそれらの製造方法

Country Status (2)

Country Link
JP (1) JP2014002834A (ja)
WO (1) WO2013187211A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022515012A (ja) * 2018-12-05 2022-02-17 本田技研工業株式会社 フッ化物イオン/シャトル電池のアノードへの固体電解質中間相(sei)の応用

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10110036B2 (en) 2016-12-15 2018-10-23 StoreDot Ltd. Supercapacitor-emulating fast-charging batteries and devices
US10549650B2 (en) 2014-04-08 2020-02-04 StoreDot Ltd. Internally adjustable modular single battery systems for power systems
US10293704B2 (en) 2014-04-08 2019-05-21 StoreDot Ltd. Electric vehicles with adaptive fast-charging, utilizing supercapacitor-emulating batteries
US11128152B2 (en) 2014-04-08 2021-09-21 StoreDot Ltd. Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection
US10199646B2 (en) 2014-07-30 2019-02-05 StoreDot Ltd. Anodes for lithium-ion devices
US10367192B2 (en) 2016-04-07 2019-07-30 StoreDot Ltd. Aluminum anode active material
US11205796B2 (en) 2016-04-07 2021-12-21 StoreDot Ltd. Electrolyte additives in lithium-ion batteries
US10454101B2 (en) 2017-01-25 2019-10-22 StoreDot Ltd. Composite anode material made of core-shell particles
US10355271B2 (en) 2016-04-07 2019-07-16 StoreDot Ltd. Lithium borates and phosphates coatings
US10680289B2 (en) 2016-04-07 2020-06-09 StoreDot Ltd. Buffering zone for preventing lithium metallization on the anode of lithium ion batteries
US10916811B2 (en) 2016-04-07 2021-02-09 StoreDot Ltd. Semi-solid electrolytes with flexible particle coatings
US11594757B2 (en) 2016-04-07 2023-02-28 StoreDot Ltd. Partly immobilized ionic liquid electrolyte additives for lithium ion batteries
US10818919B2 (en) 2016-04-07 2020-10-27 StoreDot Ltd. Polymer coatings and anode material pre-lithiation
JP2019511103A (ja) 2016-04-07 2019-04-18 ストアドット リミテッド リチウムイオンセルおよびそのためのアノード
US10367191B2 (en) 2016-04-07 2019-07-30 StoreDot Ltd. Tin silicon anode active material
US10199677B2 (en) 2016-04-07 2019-02-05 StoreDot Ltd. Electrolytes for lithium ion batteries
US10608463B1 (en) 2019-01-23 2020-03-31 StoreDot Ltd. Direct charging of battery cell stacks
US11831012B2 (en) 2019-04-25 2023-11-28 StoreDot Ltd. Passivated silicon-based anode material particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250288A (ja) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd 非水電解質二次電池の製造方法
JP2011023343A (ja) * 2009-06-18 2011-02-03 Sumitomo Chemical Co Ltd 非水電解液二次電池用負極材料およびそれを備える非水電解液二次電池
WO2012039477A1 (ja) * 2010-09-24 2012-03-29 日立化成工業株式会社 リチウムイオン電池、及びそれを利用した電池モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250288A (ja) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd 非水電解質二次電池の製造方法
JP2011023343A (ja) * 2009-06-18 2011-02-03 Sumitomo Chemical Co Ltd 非水電解液二次電池用負極材料およびそれを備える非水電解液二次電池
WO2012039477A1 (ja) * 2010-09-24 2012-03-29 日立化成工業株式会社 リチウムイオン電池、及びそれを利用した電池モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022515012A (ja) * 2018-12-05 2022-02-17 本田技研工業株式会社 フッ化物イオン/シャトル電池のアノードへの固体電解質中間相(sei)の応用

Also Published As

Publication number Publication date
JP2014002834A (ja) 2014-01-09

Similar Documents

Publication Publication Date Title
WO2013187211A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびそれらの製造方法
JP7116311B2 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP6231817B2 (ja) リチウム二次電池用電解液及びリチウム二次電池
JP4423277B2 (ja) リチウム二次電池
JP6015653B2 (ja) 非水電解液およびリチウムイオン電池
JP6372823B2 (ja) リチウム二次電池、リチウム二次電池用電解液、及び、リチウム二次電池の電解液用添加剤
KR20160110380A (ko) 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법
CN111448704B (zh) 非水电解液电池用电解液和使用其的非水电解液电池
JP5357517B2 (ja) リチウムイオン二次電池
JP6138922B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池、およびそれらの製造方法
JP2014179247A (ja) 非水電解質二次電池、及び蓄電装置
CN105493330A (zh) 非水电解质二次电池
CN109935905B (zh) 电解液和锂离子电池
JP2012138319A (ja) リチウムイオン二次電池
JP2013175410A (ja) リチウム二次電池
WO2015029248A1 (ja) 負極活物質被覆材並びにこれを用いた負極材料、負極、リチウムイオン二次電池及び電池システム並びにモノマー及びその合成方法
JP2019029184A (ja) リチウム二次電池及びその製造方法
CN117954689A (zh) 非水电解液电池用电解液和使用其的非水电解液电池
JP6258180B2 (ja) リチウム二次電池用電解液の添加剤及びそれを用いたリチウム二次電池用電解液、リチウム二次電池
JP6960760B2 (ja) リチウム二次電池用添加剤、それを用いたリチウム二次電池用電解液、それを用いたリチウム二次電池及びリチウム二次電池用添加剤の製造方法
CN116830310A (zh) 非水电解质电池及电池包
JP6003086B2 (ja) リチウム二次電池
JP2011034698A (ja) 非水電解液および非水電解液を用いたリチウム二次電池
WO2020004398A1 (ja) 正極用活物質、正極、蓄電デバイス、及び正極用活物質の製造方法
WO2014188474A1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池、およびそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803621

Country of ref document: EP

Kind code of ref document: A1