WO2013187092A1 - 建設機械の油圧回路及びその制御装置 - Google Patents

建設機械の油圧回路及びその制御装置 Download PDF

Info

Publication number
WO2013187092A1
WO2013187092A1 PCT/JP2013/056195 JP2013056195W WO2013187092A1 WO 2013187092 A1 WO2013187092 A1 WO 2013187092A1 JP 2013056195 W JP2013056195 W JP 2013056195W WO 2013187092 A1 WO2013187092 A1 WO 2013187092A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
construction machine
passage
hydraulic circuit
bleed
Prior art date
Application number
PCT/JP2013/056195
Other languages
English (en)
French (fr)
Inventor
浩文 橋本
Original Assignee
住友建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友建機株式会社 filed Critical 住友建機株式会社
Priority to EP13803591.0A priority Critical patent/EP2863065B1/en
Priority to KR1020147028304A priority patent/KR101681248B1/ko
Priority to CN201380020040.6A priority patent/CN104220763B/zh
Publication of WO2013187092A1 publication Critical patent/WO2013187092A1/ja
Priority to US14/538,920 priority patent/US9932994B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • F15B11/10Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor in which the servomotor position is a function of the pressure also pressure regulators as operating means for such systems, the device itself may be a position indicating system
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/162Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for giving priority to particular servomotors or users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B13/0402Valve members; Fluid interconnections therefor for linearly sliding valves, e.g. spool valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3052Shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31576Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31582Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40507Flow control characterised by the type of flow control means or valve with constant throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41509Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41554Flow control characterised by the connections of the flow control means in the circuit being connected to a return line and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/45Control of bleed-off flow, e.g. control of bypass flow to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members
    • F15B2211/781Control of multiple output members one or more output members having priority

Definitions

  • the present invention relates to a hydraulic circuit of a construction machine and a control device thereof.
  • Some construction machines perform control (bleed-off control) for returning a part (for example, surplus) of pressure oil discharged from a hydraulic pump to a hydraulic oil tank.
  • control bleed-off control
  • some construction machines have a clearance (bleed opening) for returning pressure oil in the spool of the direction control valve.
  • the construction machine performs bleed-off control by changing the opening area of the bleed opening (for example, Patent Document 1).
  • a spool of a directional control valve Vm is provided with a plurality of bleed openings Sbo. At this time, the hydraulic circuit performs bleed-off control by changing the opening area of the bleed opening Sbo.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-257302
  • an embodiment of the present invention is a hydraulic circuit of a construction machine or a control device thereof, which includes a center bypass passage to which pressure oil discharged from a hydraulic pump is supplied and performs bleed-off control. It is an object of the present invention to provide a hydraulic circuit of a construction machine or a control device thereof that can reduce pressure loss of pressure oil passing through a bypass passage.
  • a hydraulic circuit for a construction machine including a plurality of directional control valves arranged in tandem in a center bypass passage of the construction machine, and the directional control valve group.
  • a bleed-off valve disposed in the downstream center bypass passage and a control valve for controlling the amount of pressure oil supplied to the directional control valve, the directional control valve being supplied to the directional control valve
  • a first internal passage for allowing pressure oil to flow into the center bypass passage; and a second internal passage for supplying the pressure oil to a hydraulic actuator of the construction machine, wherein the first internal passage is the hydraulic pump
  • the pressure oil discharged from the directional control valve is caused to flow into the center bypass passage downstream of the direction control valve, so that the center bypass passage and the first internal passage are connected in parallel.
  • a passage Forming a passage, and the bleed-off valve performs bleed-off control of pressure oil supplied through the parallel passage by changing an opening area of the bleed-off valve, and the control valve
  • a hydraulic circuit for a construction machine that controls the amount of pressure oil supplied to the second internal passage by changing the opening.
  • the pressure loss of the pressure oil passing through the center bypass passage can be reduced.
  • FIG. 1 is a schematic external view illustrating an example of a construction machine according to an embodiment of the present invention. It is a hydraulic circuit diagram explaining an example of the hydraulic circuit of the construction machine which concerns on embodiment of this invention. It is a hydraulic circuit diagram explaining the other example of the hydraulic circuit of a construction machine. It is a schematic block diagram explaining an example of the direction control valve and control valve of the hydraulic circuit which concerns on the Example of this invention. It is a schematic sectional drawing explaining an example of the cross section (AA cross section of FIG. 4) of the direction control valve of the hydraulic circuit which concerns on the Example of this invention. It is a schematic block diagram explaining the other example of the direction control valve of a hydraulic circuit. It is a schematic sectional drawing explaining an example of the cross section (BB cross section of FIG. 6) of the other example of the direction control valve of a hydraulic circuit.
  • this invention is a construction machine provided with a center bypass passage (center bypass line) other than this embodiment, and tanks a part of pressure oil using a cut valve (bleed-off valve, flow control valve, etc.). As long as it is refluxed (bleed-off control), any of them can be used.
  • Construction machines that can use the present invention include hydraulic excavators, crane cars, bulldozers, wheel loaders and dump trucks, pile driving machines, pile removers, water jets, mud drainage treatment equipment, grout mixers, depth machines. Includes foundation and drilling machines.
  • Construction machine configuration A schematic configuration of a construction machine 100 in which the present invention can be used will be described with reference to FIG.
  • the construction machine is a machine that performs a desired operation using a hydraulic actuator in the present embodiment.
  • the construction machine 100 includes, as hydraulic actuators, a boom 11 whose base end is pivotally supported on the upper swing body 10Up, an arm 12 pivotally supported on the distal end of the boom 11, and a distal end of the arm 12. And a bucket 13 that is pivotally supported.
  • the construction machine 100 extends and contracts the boom cylinder 11c in the longitudinal direction by supplying hydraulic oil to the boom cylinder 11c disposed in the gap between the boom 11 and the upper swing body 10Up. At this time, the boom 11 is driven in the vertical direction by expansion and contraction of the boom cylinder 11c.
  • the construction machine 100 is controlled by a boom direction control valve (for example, Vb1 and Vb2 in FIG. 2 (described later)) that is controlled according to an operation amount (and an operation direction) of an operation lever of an operator (operator, operator).
  • the hydraulic oil supplied to the boom cylinder 11c is controlled.
  • the construction machine 100 performs a desired operation according to the operation amount of the operation lever of the operator.
  • the construction machine 100 drives the arm 12 and the bucket 13 by the expansion and contraction of the arm cylinder 12c and the bucket cylinder 13c as in the case of the boom 11.
  • the construction machine 100 uses an arm direction control valve (for example, Va1 and Va2 in FIG. 2) and a bucket direction control valve (for example, Vbk in FIG. 2) to form an arm cylinder 12c and a bucket cylinder 13c.
  • the hydraulic fluid supplied to the is controlled.
  • the construction machine 100 travels (moves back and forth, left and right) and rotates (turns, etc.) the main body of the construction machine 100 using wheels and a turning device.
  • the construction machine 100 uses, for example, a traveling direction control valve (for example, Vt1, Vt2, and Vst in FIG. 2) to run the construction machine 100 according to the amount of operation of the operation lever of the operator.
  • a traveling direction control valve for example, Vt1, Vt2, and Vst in FIG. 2
  • a construction machine 100 that can use the present invention includes a hydraulic circuit (described later) 20 that supplies hydraulic oil (pressure oil) from a hydraulic pump to a hydraulic actuator, and a control device (described later) that controls the operation of each component of the construction machine 100. 30).
  • the hydraulic circuit 20 of the construction machine 100 will be described with reference to FIG.
  • the solid line described in FIG. 2 indicates an oil passage (pressure oil passage).
  • a solid line added with // indicates an electric control system.
  • the hydraulic circuit to which the present invention can be applied is not limited to that shown in FIG. That is, the present invention can be applied to any hydraulic circuit as long as it is provided with a center bypass passage and a cut valve is arranged in the center bypass passage on the downstream side of the direction control valve.
  • the hydraulic circuit to which the present invention can be applied is not limited to one having two hydraulic pumps. That is, you may use this invention for a hydraulic circuit (construction machine) provided with 1 or 3 or more hydraulic pumps.
  • the hydraulic circuit 20 of the construction machine 100 includes two hydraulic pumps mechanically connected to an output shaft of a power source (a prime mover, an engine, a motor, etc.) not shown.
  • P first hydraulic pump P1 and second hydraulic pump P2
  • two center bypass passages RC first hydraulic pump supplied with pressure oil (operating oil) respectively discharged from the two hydraulic pumps P
  • a direction control valve such as the first traveling direction control valve Vt1 that controls the hydraulic actuator (such as the boom 11 in FIG. 1)
  • a control valve (straight-running valve) Vst.
  • the hydraulic circuit 20 includes a bleed-off valve Vbo (a first bleed-off valve Vbo1 and a second bleed-off valve Vbo2) disposed downstream (for example, the most downstream) of the center bypass passage RC. Further, the hydraulic circuit 20 generates a pressure to be input to the pilot port (control port) of the bleed-off valve Vbo (discharges the pressure oil) pilot pump Pp (first pilot pump Pp1 and second pilot pump Pp2).
  • a bleed-off valve Vbo a first bleed-off valve Vbo1 and a second bleed-off valve Vbo2 disposed downstream (for example, the most downstream) of the center bypass passage RC. Further, the hydraulic circuit 20 generates a pressure to be input to the pilot port (control port) of the bleed-off valve Vbo (discharges the pressure oil) pilot pump Pp (first pilot pump Pp1 and second pilot pump Pp2).
  • a directional control valve (Vt1 or the like) is arranged in series with the center bypass passage RC, and a bleed-off valve Vbo is arranged downstream of the center bypass passage RC.
  • the hydraulic circuit 20 includes a first traveling direction control valve (for example, a left traveling direction control valve) Vt1 and a preliminary direction in a first center bypass passage RC1 corresponding to the first hydraulic pump P1.
  • the control valve Vop, the turning direction control valve Vsw, the second boom direction control valve Vb2, the first arm direction control valve Va1, and the first bleed-off valve Vbo1 are arranged in series.
  • the hydraulic circuit 20 includes a second traveling direction control valve (for example, a right traveling direction control valve) Vt2 and a bucket direction control valve Vbk in the second center bypass passage RC2 corresponding to the second hydraulic pump P2.
  • the first boom direction control valve Vb1, the second arm direction control valve Va2, and the second bleed-off valve Vbo2 are arranged in series.
  • the hydraulic circuit 20 has a straight running valve Vst disposed upstream of the second center bypass passage RC2.
  • the hydraulic circuit 20 has a plurality of directional control valves arranged in series in the center bypass passage RC. Further, the hydraulic circuit 20 arranges the directional control valves in tandem by arranging a plurality of directional control valves in series in the two center bypass passages RC1, RC2.
  • a group composed of a plurality of directional control valves arranged in tandem in the center bypass passage RC is referred to as a “directional control valve group”.
  • the hydraulic circuit 20 further includes a control valve (throttle valve, flow rate control valve, etc.) Vth for controlling the flow rate of pressure oil supplied to a second internal passage RV2 (described later) of the directional control valve.
  • the hydraulic circuit 20 can arrange
  • the hydraulic circuit 20 has a remote control pressure (secondary pressure of the remote control valve) generated according to operation information (for example, information about the operation amount, information about the operation direction) corresponding to the operation of the operator's operation lever. Is input to the directional control valve (Vt1, etc.) corresponding to the operated operating lever. At this time, the direction control valve switches the position of the spool in accordance with the remote control pressure introduced at both ends of the spool (flow rate control spool), and the flow rate (operation amount) and direction (operation direction) of the pressure oil (hydraulic oil) To control.
  • operation information for example, information about the operation amount, information about the operation direction
  • operation information for example, information about the operation amount, information about the operation direction
  • the direction control valve switches the position of the spool in accordance with the remote control pressure introduced at both ends of the spool (flow rate control spool), and the flow rate (operation amount) and direction (operation direction) of the pressure oil (hydraulic oil) To control.
  • the hydraulic circuit 20 uses the bleed-off valve Vbo (for example, Vbo1) disposed downstream of the center bypass passage RC (for example, RC1), and the pressure oil discharged from the hydraulic pump P (for example, P1). Part (surplus) of the oil is returned to the hydraulic oil tank Tnk (bleed-off control is performed). Accordingly, the construction machine 100 can control the flow rate of the hydraulic oil (pressure oil) supplied to the hydraulic cylinder (for example, 11c), and can control the drive (operation) of the hydraulic actuator (for example, 11 in FIG. 1). .
  • Vbo for example, Vbo1
  • the bleed-off valve Vbo includes an unload position where the opening area is maximized and a block position where the opening area is zero.
  • the bleed-off valve Vbo is switched from the unload position to the block position using the pressure oil of the pilot pump Pp controlled by the control device 30 described later, and its opening area is changed. Accordingly, the bleed-off valve Vbo can return (return) the pressure oil having a desired flow rate corresponding to the changed opening area to the hydraulic oil tank.
  • the hydraulic circuit 20 includes a directional control valve group (a plurality of directional control valves). Further, the directional control valve according to the present embodiment has, as the internal passage RV, a first internal passage that flows the supplied pressure oil to the center bypass passage RC, and a second that supplies the supplied pressure oil to the hydraulic actuator. And an internal passage. That is, the plurality of directional control valves constituting the directional control valve group are each provided with a first internal passage and a second internal passage.
  • the first internal passage causes the pressure oil discharged from the hydraulic pump to flow out to the center bypass passage RC downstream of the direction control valve, whereby a parallel passage is formed by the center bypass passage RC and the first internal passage.
  • a parallel passage is formed by the center bypass passage RC and the first internal passage.
  • the shape of the internal passage of the direction control valve (the shape of the spool) or the like may be the shape of an embodiment (FIG. 4) described later.
  • the first internal passage is an internal passage (for example, RV1 in FIG. 2) for supplying pressure oil to the bleed-off valve Vbo.
  • the first internal passage flows the pressure oil discharged from the hydraulic pump P connected upstream of the center bypass passage RC to the center bypass passage RC downstream of the direction control valve (Va1 and the like).
  • the opening of the first internal passage is not fully closed even when the spool position of the directional control valve is switched. That is, in the present embodiment, the first internal passage has substantially the same passage area regardless of the spool position of the direction control valve. Note that substantially the same passage area means that the effective passage area through which the pressure oil actually passes does not change substantially compared to the increase / decrease amount of the passage area that changes due to the displacement of the spool position.
  • the hydraulic circuit 20 according to the embodiment of the present invention can form a parallel passage by the center bypass passage RC and the first internal passage. Further, the hydraulic circuit 20 according to the embodiment of the present invention can form a parallel passage corresponding to the passage area of the first internal passage. Furthermore, the hydraulic circuit 20 according to the embodiment of the present invention can supply pressure oil to the directional control valve group (a plurality of directional control valves) only from the formed parallel passage.
  • the traveling direction control valves (for example, Vt1 and Vt2 in FIG. 2) among the plurality of direction control valves may have a configuration in which the opening of the first internal passage is fully closed (for example, RV1t in FIG. 2).
  • the construction machine 100 (the hydraulic circuit 20 thereof) can ensure traveling stability (flow rate of hydraulic oil necessary for traveling) during traveling.
  • the first internal passage (spool) of the directional control valve according to the present embodiment does not include a gap (hereinafter referred to as “bleed opening”) for returning the pressure oil to the hydraulic oil tank.
  • bleed opening a gap
  • the hydraulic circuit 20 according to the present embodiment can perform bleed-off control (unified bleed-off control) using the bleed-off valve Vbo disposed on the most downstream side of the center bypass passage RC. .
  • the second internal passage according to the embodiment of the present invention is an internal passage (for example, RV2 in FIG. 2) for supplying pressure oil to a hydraulic cylinder (for example, the arm cylinder 12c in FIG. 2).
  • the second internal passage supplies pressure oil discharged from the hydraulic pump P to a hydraulic cylinder (such as the arm cylinder 12c in FIG. 2).
  • the second internal passage according to the present embodiment changes the path of the internal passage and supplies the hydraulic oil (hydraulic oil) supplied to the hydraulic cylinder. ) Is changed in flow rate (operation amount) and direction (operation direction).
  • the direction control valve construction machine 100
  • the flow rate of the supplied pressure oil is controlled by the control valve Vth arranged upstream of the direction control valve (second internal passage) in the second internal passage. That is, the hydraulic circuit 20 controls the amount of pressure oil supplied to the second internal passage by controlling the opening degree of the control valve Vth.
  • the hydraulic circuit 20 (construction machine 100) controls the operation of the hydraulic cylinder (hydraulic actuator) to which the pressure oil (hydraulic oil) is supplied by controlling the amount of the pressure oil supplied to the second internal passage. Can be controlled.
  • Fig. 3 shows another example of the hydraulic circuit of a construction machine.
  • bleed openings for example, Sbo of FIG. 6
  • Va1 of FIG. 3, etc. the construction machine including the hydraulic circuit of FIG. 3 can perform bleed-off control by changing the opening area of the bleed opening.
  • the pressure loss of the pressure oil passing through the directional control valve may occur. That is, in the construction machine provided with the hydraulic circuit of FIG. 3, even when the opening degree of the bleed opening of the direction control valve is the upper limit, the opening degree of the internal passage of the direction control valve is designed to be narrowed. Compared with the case of the hydraulic circuit according to (FIG. 2), the pressure loss of the pressure oil passing through the center bypass passage may increase.
  • the directional control valve of the hydraulic circuit of FIG. 3 since the bleed opening is provided in the spool of the directional control valve, the length of the directional control valve in the longitudinal direction increases. That is, in the directional control valve of the hydraulic circuit of FIG. 3, since the bleed opening is provided in the spool of the directional control valve, the directional control valve becomes larger than the hydraulic circuit according to the present invention (FIG. 2). , Making it uneasy.
  • the controller 30 of the construction machine 100 uses a controller 30C (FIG. 2) that is mounted to control the operation of the entire construction machine 100.
  • the controller 30 ⁇ / b> C is a device that instructs each component of the construction machine 100 to operate and controls the operation of each component.
  • the controller 30C (control device 30) can be configured by an arithmetic processing device including a CPU (Central Processing Unit), a memory, and the like.
  • the controller 30C controls the operation of the regulator R (R1, R2) based on information input to the construction machine 100 (for example, operation information regarding the operation amount and operation direction of the operation lever).
  • the discharge amount of the hydraulic pump P (P1, P2) is controlled by the regulator R.
  • the controller 30C generates a remote control pressure using a remote control valve or the like based on information input to the construction machine 100.
  • the controller 30C inputs the generated remote control pressure to the direction control valve (Vt1 etc.) using the remote control circuit.
  • the direction control valve can switch the spool position and control the hydraulic oil supplied to the hydraulic actuator by using the input remote control pressure.
  • the controller 30C controls the opening degree of the control valve Vth based on information input to the construction machine 100.
  • the controller 30C may control the opening degree of the control valve Vth according to, for example, a predetermined operation situation.
  • the controller 30C can control the flow rate of the pressure oil supplied to the second internal passage of the direction control valve V using the control valve Vth. Further, the controller 30C improves the operability during complex operation (for example, simultaneously operating a plurality of hydraulic actuators) by controlling (adjusting) the opening degree of the control valve Vth corresponding to the arbitrary direction control valve V. Can be made. For example, in the combined operation, the controller 30C increases the opening degree of the control valve Vth corresponding to the hydraulic actuator that prioritizes the operation and decreases the opening degree of the control valve Vth corresponding to the hydraulic actuator that does not prioritize the operation. The operability during the combined operation can be improved.
  • the controller 30C may control the opening of the control valve Vth by changing the pressure input to the control valve Vth (control port thereof) based on the information input to the construction machine 100. Further, the controller 30C may detect the discharge pressure of the hydraulic pump, the pressure of hydraulic oil of the hydraulic actuator, or other operation status of the construction machine, and may control the opening degree of the control valve Vth based on the detected result. .
  • the controller 30C changes the pressure oil pressure of the pilot pump Pp (Pp1, Pp2) input to the bleed-off valves Vbo (Vbo1, Vbo2) based on the information input to the construction machine 100.
  • the bleed-off valve Vbo can change the opening degree using the input pressure.
  • the bleed-off valve Vbo can control the flow rate of the pressure oil that returns to the hydraulic oil tank by changing the opening degree.
  • controller 30C can reduce the pressure loss of the pressure oil passing through the center bypass passage RC during the single operation using the bleed-off valve Vbo, and at the time of combined operation (for example, so-called floor digging work)
  • the operability of the construction machine can be improved by adjusting (increasing or decreasing) the opening degree of the control valve Vth corresponding to any hydraulic actuator (arm 12 and bucket 13 in FIG. 1).
  • the bleed-off control is not performed by the directional control valve, and the first internal passage of the directional control valve is used. Since the pressure oil discharged from the hydraulic pump P can be supplied downstream of the center bypass passage RC, the pressure loss of the pressure oil passing through the center bypass passage RC can be reduced.
  • the bleed-off control is performed by the directional control valve using the bleed-off valve Vbo disposed downstream of the center bypass passage RC. Without the bleed opening in each directional control valve, the bleed-off control can be performed downstream of the center bypass passage RC.
  • the internal passage (for example, the first internal passage) of the directional control valve is compared with the case where the bleed-off control is performed by the plurality of directional control valves. ), The pressure loss of the pressure oil passing through the center bypass passage RC can be reduced.
  • the directional control valve since the directional control valve is not provided with the bleed opening, the size of the directional control valve in the longitudinal direction can be reduced. it can.
  • the direction control valve can be reduced in size compared to the case where the direction control valve is provided with a bleed opening, and the manufacture thereof is facilitated. can do.
  • the opening degree of the control valve Vth corresponding to an arbitrary hydraulic actuator is adjusted (larger or smaller) during the combined operation. Can do.
  • the hydraulic circuit 20 which concerns on this embodiment, or its control apparatus 30, while using the bleed-off valve Vbo, while being able to reduce the pressure loss of the pressure oil which passes the center bypass passage RC at the time of single operation,
  • the operability of the construction machine 100 can be improved by adjusting the opening of the control valve Vth corresponding to an arbitrary hydraulic actuator during the combined operation.
  • the configuration and the like of the construction machine 100E according to the present example are basically the same as the configuration and the like of the construction machine 100 of the embodiment, and thus description thereof is omitted.
  • FIG. 4 shows a schematic configuration diagram of the directional control valve V and the control valve Vth arranged in the hydraulic circuit 20 of the construction machine 100E according to the present embodiment.
  • FIG. 4A shows a case where the control valve Vth is closed (for example, a position of Vth1 in FIG. 2).
  • FIG. 4B shows a case where the control valve Vth is open (for example, a position of Vth1 in FIG. 2).
  • FIG. 4C shows a case where the control valve Vth is throttled (for example, the b position of Vth1 in FIG. 2).
  • the directional control valve V of the hydraulic circuit 20 is supplied from the inlet port PIprt supplied with pressure oil via the center bypass passage RC and the inlet port PIprt.
  • Outlet port POprt for flowing the pressurized oil into the center bypass passage RC
  • cylinder port Cprt for supplying the pressure oil supplied to the directional control valve V to the hydraulic cylinder, and hydraulic oil discharged from the hydraulic cylinder for the hydraulic oil tank
  • a tank port Tprt for discharging to the tank.
  • the control valve (throttle valve, flow rate control valve, etc.) Vth is disposed at the inlet of a path for supplying pressure oil to the second internal passage RV2.
  • the directional control valve V controls the pressure oil (hydraulic oil) Oc supplied from the center bypass passage RC when the spool is displaced (for example, Mb in the figure).
  • a hydraulic cylinder (for example, 11c in FIGS. 1 and 2) is supplied from the cylinder port CprtB through the valve Vth and the second internal passage RV2.
  • the pressure oil (hydraulic oil) Ot discharged from the hydraulic cylinder to the cylinder port CprtA is discharged from the tank port Tprt to the hydraulic oil tank.
  • the direction control valve V (hydraulic circuit 20) according to the present embodiment controls the flow rate of the pressure oil supplied to the second internal passage RV2 using the control valve Vth.
  • the control valve Vth uses the switch mechanism Sw that can fix the poppet Ppt at a predetermined position, and the pressure oil supplied to the second internal passage RV2 when the switch mechanism Sw is turned on. The flow rate can be controlled (squeezed).
  • FIG. 4B shows the poppet Ppt when the switch mechanism Sw is off.
  • the hydraulic circuit 20 of the construction machine 100E according to the embodiment of the present invention does not perform bleed-off control with the directional control valve V (because the directional control valve V does not have a bleed opening).
  • the opening area of the first internal passage RV1 of the direction control valve V can be increased.
  • the directional control valve V according to the present embodiment can increase the opening area of the first internal passage RV1 of the directional control valve V, thereby reducing the pressure loss of the pressure oil passing through the center bypass passage RC. can do.
  • the hydraulic circuit 20 of the construction machine 100E arranges a plurality of directional control valves V in series with the center bypass passage RC, whereby the center bypass passage RC and the plurality of first internal passages RV1 (directions).
  • the passage formed by the control valve V) can function as a parallel passage.
  • the hydraulic circuit 20 according to the present embodiment does not need to provide a separate parallel passage, and can reduce the size of the direction control valve V (reducing the size of the spool in the axial direction and the radial direction).
  • the hydraulic circuit 20 according to the present embodiment can reduce the size of the bridge passage Rb (FIG. 4A), for example.
  • the hydraulic circuit 20 of the construction machine 100E flows the pressure oil into the center bypass passage RC using the direction control valve group Gv.
  • the hydraulic circuit 20 in which the directional control valve group Gv (a plurality of directional control valves V) is arranged has the same passage area regardless of the spool position of the directional control valve.
  • a parallel passage can be formed by one internal passage and the center bypass passage RC.
  • the hydraulic circuit 20 flows out the pressure oil Op supplied from the inlet port PIprt to the outlet port POprt via the first internal passage RV1 of the direction control valve V, and flows out to the center bypass passage RC.
  • the hydraulic circuit 20 of the construction machine 100E according to the embodiment of the present invention does not need to provide a plurality of bleed openings in the spools of the plurality of directional control valves V (directional control valve group Gv).
  • the shape of RC can be simplified.
  • the hydraulic circuit 20 according to the present embodiment can reduce the bent portion of the center bypass passage RC, the pressure loss of the pressure oil passing through the center bypass passage RC can be reduced.
  • Control device for construction machinery The configuration and operation of the control device 30 of the construction machine 100E according to the present embodiment are basically the same as the configuration and the like of the control device 30 of the construction machine 100 of the embodiment, and thus different parts will be mainly described.
  • the control device 30 controls the control valve Vth (the opening degree) based on the information input to the construction machine 100E. Thereby, the control device 30 can control the amount of pressure oil supplied to the second internal passage RV2 (cylinder port Cprt) of the direction control valve V.
  • the control device 30 can perform the following control, for example. Note that the control operation of the control device 30 is not limited to the control exemplified below.
  • the control device 30 increases the opening degree of the control valve Vth corresponding to the hydraulic actuator that prioritizes the operation during, for example, a combined operation (FIG. 4B), and corresponds to the hydraulic actuator that does not prioritize the operation.
  • the opening degree of Vth can be reduced (FIG. 4C).
  • the control device 30 reduces the opening of the control valve Vth or sets the opening to zero. can do.
  • the control valve Vth can fix the position of the poppet Ppt at a position where the opening is reduced, for example, using the switch mechanism Sw (FIG. 4).
  • the control apparatus 30 construction machine 100E
  • the control device 30 for example, the sum of the opening degree of the control valve Vth and the opening degree of the direction control valve V (the spool thereof) (for example, the total opening area) is a conventional circuit (for example, the direction control valve Vm in FIG. 6) And the opening degree of the direction control valve V (spool thereof) can be made as large as possible.
  • the control apparatus 30 construction machine 100E
  • the control apparatus 30 can reduce the pressure loss of the pressure oil when passing the direction control valve V compared with the conventional circuit.
  • the control device 30 can detect, for example, the operation status of the construction machine 100E and control the opening degree of the control valve Vth based on the detected operation status. As a result, both low loss (during single operation) and improvement in operability (due to flow distribution during combined operation) can be achieved.
  • the control device 30 may, for example, as the operation status, discharge pressure (discharge amount) of the hydraulic pump, hydraulic oil pressure (pressure fluctuation) or hydraulic oil temperature, hydraulic oil temperature, hydraulic cylinder thrust (acceleration), hydraulic actuator pressure, You may detect combining suitably the information regarding speed, acceleration, or an angle (position), or the other state of a construction machine.
  • the hydraulic circuit 20 of the construction machine 100E or the control device 30 thereof by arranging the plurality of directional control valves V in series in the center bypass passage RC, A passage formed by one internal passage RV1 (direction control valve V) can function as a parallel passage. Furthermore, according to the hydraulic circuit 20 or the control device 30 according to the present embodiment, the passage formed by the center bypass passage RC and the plurality of first internal passages RV1 can function as a parallel passage. There is no need to provide a separate passage, and the direction control valve V can be reduced in size. Thereby, the hydraulic circuit 20 of the construction machine 100E according to the embodiment of the present invention or the control device 30 thereof has an advantageous effect on downsizing, facilitating manufacture, and cost reduction of the entire construction machine 100E.
  • control valve Vth (the opening degree thereof) can be controlled.
  • the amount of pressure oil supplied to the passage RV2 (cylinder port Cprt) can be controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 建設機械の油圧回路であって、前記建設機械のセンターバイパス通路にタンデムに配置された複数の方向制御弁からなる方向制御弁グループと、前記方向制御弁グループの下流の該センターバイパス通路に配置されたブリードオフ弁と、前記方向制御弁に供給する圧油の量を制御する制御弁とを有し、前記方向制御弁は、該方向制御弁に供給された圧油を前記センターバイパス通路に流出する第1の内部通路と、前記圧油を前記建設機械の油圧アクチュエータに供給する第2の内部通路とを備え、前記第1の内部通路は、前記油圧ポンプから吐出された圧油を該方向制御弁に対して下流の該センターバイパス通路に流出させることにより、該センターバイパス通路と該第1の内部通路とによってパラレル通路を形成し、前記ブリードオフ弁は、該ブリードオフ弁の開口面積を変化させることによって、前記パラレル通路を介して供給される圧油をブリードオフ制御し、前記制御弁は、該制御弁の開度を変更することによって、前記第2の内部通路に供給する圧油の量を制御する。

Description

建設機械の油圧回路及びその制御装置
 本発明は、建設機械の油圧回路及びその制御装置に関する。
 建設機械には、油圧ポンプから吐出された圧油の一部(例えば余剰分)を作動油タンクに戻す制御(ブリードオフ制御)を行うものがある。ブリードオフ制御を行うために、建設機械では、圧油を戻すための隙間(ブリード開口)を方向制御弁のスプールに設けているものがある。建設機械は、このブリード開口の開口面積を変化させることによって、ブリードオフ制御を行う(例えば、特許文献1)。
 従来の建設機械の油圧回路では、例えば図6に示すように、方向制御弁Vmのスプールに複数のブリード開口Sboを備える。このとき、油圧回路は、ブリード開口Sboの開口面積を変化させることによって、ブリードオフ制御を行う。
 特許文献1:特開平11-257302号公報
 しかしながら、特許文献1に開示されている建設機械の油圧回路では、複数の方向制御弁のスプールに夫々ブリード開口を設けているため、センターバイパス通路を通過する圧油の圧力損失が増加する場合があった。例えば図7に示すように、方向制御弁Vmを複数配置した従来の油圧回路では、複数の方向制御弁Vmのスプールに夫々複数のブリード開口Sboを設ける必要があるため、センターバイパス通路RCmの形状が複雑になり(曲がり部が多くなり)、センターバイパス通路RCmを通過する圧油の圧力損失が増加する場合があった。また、従来の油圧回路では、方向制御弁Vmのスプールの長手方向の大きさが大きくなる場合があった。更に、従来の油圧回路では、パラレル通路(例えば図6のRP)を設けるときに、方向制御弁Vm(又はブリッジ通路Rb)が大型化する場合があった。
 上記事情の下、本発明の一実施例は、油圧ポンプから吐出される圧油が供給されるセンターバイパス通路を備え、ブリードオフ制御を行う建設機械の油圧回路又はその制御装置であって、センターバイパス通路を通過する圧油の圧力損失を低減することができる建設機械の油圧回路又はその制御装置を提供することを課題とする。
 本発明の一実施例によるところ、建設機械の油圧回路であって、前記建設機械のセンターバイパス通路にタンデムに配置された複数の方向制御弁からなる方向制御弁グループと、前記方向制御弁グループの下流の該センターバイパス通路に配置されたブリードオフ弁と、前記方向制御弁に供給する圧油の量を制御する制御弁と を有し、前記方向制御弁は、該方向制御弁に供給された圧油を前記センターバイパス通路に流出する第1の内部通路と、前記圧油を前記建設機械の油圧アクチュエータに供給する第2の内部通路とを備え、前記第1の内部通路は、前記油圧ポンプから吐出された圧油を該方向制御弁に対して下流の該センターバイパス通路に流出させることにより、該センターバイパス通路と該第1の内部通路とによってパラレル通路を形成し、前記ブリードオフ弁は、該ブリードオフ弁の開口面積を変化させることによって、前記パラレル通路を介して供給される圧油をブリードオフ制御し、 前記制御弁は、該制御弁の開度を変更することによって、前記第2の内部通路に供給する圧油の量を制御する建設機械の油圧回路が提供されている。
 本発明の実施例によれば、例えば、ブリードオフ制御を行う建設機械において、センターバイパス通路を通過する圧油の圧力損失を低減することができる。
本発明の実施形態に係る建設機械の一例を説明する概略外観図である。 本発明の実施形態に係る建設機械の油圧回路の一例を説明する油圧回路図である。 建設機械の油圧回路のその他の例を説明する油圧回路図である。 本発明の実施例に係る油圧回路の方向制御弁及び制御弁の一例を説明する概略構成図である。 本発明の実施例に係る油圧回路の方向制御弁の断面(図4のAA断面)の一例を説明する概略断面図である。 油圧回路の方向制御弁のその他の例を説明する概略構成図である。 油圧回路の方向制御弁のその他の例の断面(図6のBB断面)の一例を説明する概略断面図である。
  添付の図面を参照しながら、本発明の限定的でない例示の実施形態について説明する。なお、添付の全図面の中の記載で、同一又は対応する部材又は部品には、同一又は対応する参照符号を付し、重複する説明を省略する。また、図面は、部材もしくは部品間の相対比を示すことを目的としない。したがって、具体的な寸法は、以下の限定的でない実施形態に照らし、当業者により決定することができる。
 以後に、本発明の実施形態に係る油圧回路20を備える建設機械100を用いて、本発明を説明する。なお、本発明は、本実施形態以外でも、センターバイパス通路(センターバイパスライン)を備える建設機械であって、カット弁(ブリードオフ弁、流量制御弁など)を用いて圧油の一部をタンクに還流(ブリードオフ制御)するものであれば、いずれのものにも用いることができる。また、本発明を用いることができる建設機械には、油圧ショベル、クレーン車、ブルドーザ、ホイールローダ及びダンプトラック、並びに、杭打ち機、杭抜き機、ウォータージェット、泥排水処理設備、グラウトミキサ、深礎工用機械及びせん孔機械などが含まれる。
 (建設機械の構成)
 本発明を用いることができる建設機械100の概略構成を、図1を用いて説明する。ここで、建設機械とは、本実施形態では、油圧アクチュエータを用いて、所望の作業を実施する機械である。
 図1に示すように、建設機械100は、油圧アクチュエータとして、上部旋回体10Upに基端部を軸支されたブーム11と、ブーム11の先端に軸支されたアーム12と、アーム12の先端に軸支されたバケット13とを備える。
 建設機械100は、ブーム11と上部旋回体10Upとの間隙に配置されたブームシリンダ11cに作動油を供給することによって、ブームシリンダ11cを長手方向に伸縮する。このとき、ブーム11は、ブームシリンダ11cの伸縮によって、上下方向に駆動される。また、建設機械100は、オペレータ(運転者、作業者)の操作レバーの操作量(及び操作方向)に応じて制御されるブーム用方向制御弁(例えば図2(後述)のVb1及びVb2)によって、ブームシリンダ11cに供給される作動油を制御する。この結果、建設機械100は、オペレータの操作レバーの操作量等に応じて、所望の作業を実施する。
 また、建設機械100は、ブーム11の場合と同様に、アームシリンダ12c及びバケットシリンダ13cの伸縮によって、アーム12及びバケット13を駆動する。建設機械100は、ブームシリンダ11cの場合と同様に、アーム用方向制御弁(例えば図2のVa1及びVa2)及びバケット用方向制御弁(例えば図2のVbk)によって、アームシリンダ12c及びバケットシリンダ13cに供給される作動油を制御する。
 更に、建設機械100は、車輪及び旋回装置等を用いて、建設機械100本体の走行(前後左右の移動)及び回転(旋回など)を行う。建設機械100は、例えば走行用の方向制御弁など(例えば図2のVt1、Vt2及びVst)を用いて、オペレータの操作レバーの操作量などに応じて、建設機械100の走行などを実施する。
 本発明を用いることができる建設機械100は、油圧ポンプから油圧アクチュエータに作動油(圧油)を供給する油圧回路(後述)20と、建設機械100の各構成の動作を制御する制御装置(後述)30と、を更に備える。
 以下に、本発明の実施形態に係る建設機械100の油圧回路20及び制御装置30を具体的に説明する。
 (建設機械の油圧回路)
 本発明の実施形態に係る建設機械100の油圧回路20を、図2を用いて説明する。ここで、図2に記載した実線は、油路(圧油の通路)を示す。また、//を付加している実線は、電気制御系を示す。
 なお、本発明を適用することができる油圧回路は、図2に示すものに限定されない。すなわち、センターバイパス通路を備え、方向制御弁の下流側のセンターバイパス通路にカット弁を配置している油圧回路であれば、いずれの油圧回路にも本発明を適用することができる。
 また、図2に示す油圧回路20は2個の油圧ポンプを備えるが、本発明を適用することができる油圧回路は2個の油圧ポンプを備えるものに限定されない。すなわち、1個又は3個以上の油圧ポンプを備える油圧回路(建設機械)に本発明を用いてもよい。
 図2に示すように、本発明の実施形態に係る建設機械100の油圧回路20は、図示しない動力源(原動機、エンジン、モータなど)の出力軸に機械的に接続された2個の油圧ポンプP(第1の油圧ポンプP1及び第2の油圧ポンプP2)と、2個の油圧ポンプPから夫々吐出された圧油(作動油)を供給される2個のセンターバイパス通路RC(第1のセンターバイパス通路RC1及び第2のセンターバイパス通路RC2)と、油圧アクチュエータ(図1のブーム11等)を制御する方向制御弁(第1の走行用方向制御弁Vt1等)と、走行直進用の方向制御弁(走直弁)Vstと、を有する。また、油圧回路20は、センターバイパス通路RCの下流(例えば最下流)に配置されたブリードオフ弁Vbo(第1のブリードオフ弁Vbo1及び第2のブリードオフ弁Vbo2)を有する。更に、油圧回路20は、ブリードオフ弁Vboのパイロットポート(制御ポート)に入力する圧力を生成する(圧油を吐出する)パイロットポンプPp(第1のパイロットポンプPp1及び第2のパイロットポンプPp2)を有する。
 本実施形態に係る油圧回路20は、方向制御弁(Vt1等)をセンターバイパス通路RCに直列に配置し、センターバイパス通路RCの下流にブリードオフ弁Vboを配置している。具体的には、油圧回路20は、第1の油圧ポンプP1に対応する第1のセンターバイパス通路RC1に、第1の走行用方向制御弁(例えば左走行用方向制御弁)Vt1、予備用方向制御弁Vop、旋回用方向制御弁Vsw、第2のブーム用方向制御弁Vb2及び第1のアーム用方向制御弁Va1、並びに、第1のブリードオフ弁Vbo1を直列に配置している。また、油圧回路20は、第2の油圧ポンプP2に対応する第2のセンターバイパス通路RC2に、第2の走行用方向制御弁(例えば右走行用方向制御弁)Vt2、バケット用方向制御弁Vbk、第1のブーム用方向制御弁Vb1及び第2のアーム用方向制御弁Va2、並びに、第2のブリードオフ弁Vbo2を直列に配置している。更に、油圧回路20は、第2のセンターバイパス通路RC2の上流側に、走直弁Vstを配置している。
 すなわち、油圧回路20は、センターバイパス通路RCに複数の方向制御弁を直列に配置している。また、油圧回路20は、2つのセンターバイパス通路RC1、RC2に複数の方向制御弁を夫々直列に配置することで、方向制御弁をタンデムに配置している。
 なお、以後の説明において、センターバイパス通路RCにタンデムに配置された複数の方向制御弁からなるグループを「方向制御弁グループ」という。
 本実施形態に係る油圧回路20は、方向制御弁の第2の内部通路RV2(後述)に供給する圧油の流量を制御する制御弁(絞り弁、流量制御弁など)Vthを更に有する。ここで、油圧回路20は、複数の方向制御弁のうちの任意の方向制御弁に、制御弁Vthを配置することができる。油圧回路20は、例えば第1のアーム用方向制御弁Va1に制御弁Vthを配置すること(図2)ができる。
 本実施形態に係る油圧回路20は、オペレータの操作レバーの操作に対応する操作情報(例えば、操作量に関する情報、操作方向に関する情報)に応じて生成されたリモコン圧(リモコン弁の二次圧)を、操作された操作レバーに対応する方向制御弁(Vt1等)に入力する。このとき、方向制御弁は、スプール(流量制御スプール)の両端に導入されるリモコン圧に応じて、スプールの位置を切り替え、圧油(作動油)の流量(操作量)及び方向(操作方向)を制御する。
 また、本実施形態に係る油圧回路20は、センターバイパス通路RC(例えばRC1)の下流に配置したブリードオフ弁Vbo(例えばVbo1)を用いて、油圧ポンプP(例えばP1)から吐出された圧油の一部(余剰分)を作動油タンクTnkに還流する(ブリードオフ制御する)。これにより、建設機械100は、油圧シリンダ(例えば11c)に供給される作動油(圧油)の流量を制御し、油圧アクチュエータ(例えば図1の11)の駆動(動作)を制御することができる。
 ここで、ブリードオフ弁Vboは、本実施形態では、その開口面積が最大となるアンロード位置と、開口面積がゼロとなるブロック位置とを備える。ブリードオフ弁Vboは、後述する制御装置30によって制御されるパイロットポンプPpの圧油(の圧力)を用いて、アンロード位置からブロック位置に切り換えられ、その開口面積を変化される。これにより、ブリードオフ弁Vboは、変化された開口面積に対応する所望の流量の圧油を作動油タンクに還流する(戻す)ことができる。
 (方向制御弁の内部通路)
 本発明の実施形態に係る建設機械100の油圧回路20に配置された方向制御弁の内部通路RVを、下記に説明する。
 本実施形態に係る油圧回路20は、方向制御弁グループ(複数の方向制御弁)を備える。また、本実施形態に係る方向制御弁は、内部通路RVとして、供給された圧油をセンターバイパス通路RCに流出する第1の内部通路と、供給された圧油を油圧アクチュエータに供給する第2の内部通路とを備える。すなわち、方向制御弁グループを構成する複数の方向制御弁は、第1の内部通路及び第2の内部通路を夫々備える。
 更に、第1の内部通路は、油圧ポンプから吐出された圧油を方向制御弁に対して下流のセンターバイパス通路RCに流出させることにより、センターバイパス通路RCと第1の内部通路とによってパラレル通路を形成することができる。ここで、方向制御弁の内部通路の形状(スプールの形状)等は、後述する実施例(図4)の形状を用いてもよい。
 本発明の実施形態に係る第1の内部通路は、ブリードオフ弁Vboに圧油を供給するための内部通路(例えば図2のRV1)である。第1の内部通路は、センターバイパス通路RCの上流に接続された油圧ポンプPから吐出された圧油を、方向制御弁(Va1等)に対して下流のセンターバイパス通路RCに流出する。
 第1の内部通路は、本実施形態では、方向制御弁のスプール位置が切り替えられた場合でも、その通路の開口を全閉されない。すなわち、第1の内部通路は、本実施形態では、方向制御弁のスプール位置に関わらず略同一の通路面積を有する。なお、略同一の通路面積とは、スプール位置変位により変化する通路面積の増減量に比して、圧油が実際に通過する有効通路面積が実質的に大きく変化しないことを意味する。
 これにより、本発明の実施形態に係る油圧回路20は、センターバイパス通路RCと第1の内部通路とによって、パラレル通路を形成することができる。また、本発明の実施形態に係る油圧回路20は、第1の内部通路の通路面積に対応するパラレル通路を形成することができる。更に、本発明の実施形態に係る油圧回路20は、形成されたパラレル通路のみから方向制御弁グループ(複数の方向制御弁)に圧油を供給することができる。
 なお、複数の方向制御弁のうちの走行用方向制御弁(例えば図2のVt1、Vt2)は、第1の内部通路の開口を全閉される構成(例えば図2のRV1t)としてもよい。これにより、建設機械100(の油圧回路20)は、走行時に、走行の安定性(走行に必要な作動油の流量)を確保することができる。
 また、本実施形態に係る方向制御弁の第1の内部通路(のスプール)は、作動油タンクに圧油を戻すための隙間(以下、「ブリード開口」という。)を備えない。なお、本実施形態に係る油圧回路20は、前述の通り、センターバイパス通路RCの最下流側に配置したブリードオフ弁Vboを用いて、ブリードオフ制御(統一ブリードオフ制御)を実施することができる。
 本発明の実施形態に係る第2の内部通路は、油圧シリンダ(例えば図2のアームシリンダ12c)に圧油を供給するための内部通路(例えば図2のRV2)である。第2の内部通路は、油圧ポンプPから吐出された圧油を、油圧シリンダ(図2のアームシリンダ12c等)に供給する。本実施形態に係る第2の内部通路は、入力されたリモコン圧によって方向制御弁のスプール位置を切り替えられた場合に、その内部通路の経路を変化させ、油圧シリンダに供給する圧油(作動油)の流量(操作量)及び方向(操作方向)を変化させる。これにより、方向制御弁(建設機械100)は、油圧シリンダ(油圧アクチュエータ)の動作を制御することができる。
 また、第2の内部通路は、本実施形態では、方向制御弁(第2の内部通路)の上流に配置された制御弁Vthによって、供給される圧油の流量を制御される。すなわち、油圧回路20は、制御弁Vthの開度を制御することによって、第2の内部通路に供給する圧油の量を制御する。これにより、油圧回路20(建設機械100)は、第2の内部通路に供給する圧油の量を制御することで、圧油(作動油)が供給される油圧シリンダ(油圧アクチュエータ)の動作を制御することができる。
 図3に、建設機械の油圧回路のその他の例を示す。図3の油圧回路では、ブリードオフ制御を実施するために、方向制御弁(図3のVa1等)のスプールにブリード開口(例えば図6のSbo)を夫々設けることができる。すなわち、図3の油圧回路を備える建設機械は、このブリード開口の開口面積を変化させることによって、ブリードオフ制御を行うことができる。
 ここで、図3の油圧回路を備える建設機械では、方向制御弁のスプールに夫々ブリード開口を設けているため、本発明に係る油圧回路(図2)の場合と比較して、センターバイパス通路を通過する圧油の圧力損失が増加する場合がある。
 また、図3の油圧回路を備える建設機械では、方向制御弁のブリード開口の開度が上限の場合においても、方向制御弁を通過する圧油の圧力損失が発生する場合がある。すなわち、図3の油圧回路を備える建設機械では、方向制御弁のブリード開口の開度が上限の場合においても、方向制御弁の内部通路の開度を絞り気味に設計しているため、本発明に係る油圧回路(図2)の場合と比較して、センターバイパス通路を通過する圧油の圧力損失が増加する場合がある。
 更に、図3の油圧回路の方向制御弁では、方向制御弁のスプールにブリード開口を設けているため、方向制御弁の長手方向の長さが増加する。すなわち、図3の油圧回路の方向制御弁では、方向制御弁のスプールにブリード開口を設けているため、本発明に係る油圧回路(図2)の場合と比較して、方向制御弁が大型化し、その製作が非容易化する。
 (建設機械の制御装置)
 建設機械100の制御装置30は、本実施形態では、建設機械100全体の動作を制御するために搭載されているコントローラ30C(図2)を用いる。ここで、コントローラ30C(制御装置30)は、建設機械100の各構成に動作を指示し、各構成の動作を制御する装置である。コントローラ30C(制御装置30)は、CPU(Central Processing Unit)及びメモリ等を含む演算処理装置で構成することができる。
 コントローラ30Cは、本実施形態では、建設機械100に入力された情報(例えば操作レバーの操作量、操作方向などに関する操作情報)に基づいて、レギュレータR(R1、R2)の動作を制御する。これにより、油圧ポンプP(P1、P2)は、レギュレータRによって、その吐出量を制御される。
 また、コントローラ30Cは、建設機械100に入力された情報に基づいて、リモコン弁等を用いて、リモコン圧を生成する。次いで、コントローラ30Cは、リモコン回路を用いて、生成したリモコン圧を方向制御弁(Vt1等)に入力する。これにより、方向制御弁は、入力されたリモコン圧を用いて、スプール位置を切り換え、油圧アクチュエータに供給する作動油を制御することができる。
 更に、コントローラ30Cは、本発明の実施形態では、建設機械100に入力された情報に基づいて、制御弁Vthの開度を制御する。コントローラ30Cは、例えば予め決められた特定の操作状況に応じて、制御弁Vthの開度を制御してもよい。
 これにより、コントローラ30Cは、制御弁Vthを用いて、方向制御弁Vの第2の内部通路に供給する圧油の流量を制御することができる。また、コントローラ30Cは、任意の方向制御弁Vに対応する制御弁Vthの開度を制御(調整)することにより、複合動作時(例えば複数の油圧アクチュエータを同時に操作する時)の操作性を向上させることができる。コントローラ30Cは、例えば、複合動作時において、動作を優先させる油圧アクチュエータに対応する制御弁Vthの開度を大きくし、動作を優先させない油圧アクチュエータに対応する制御弁Vthの開度を小さくすることによって、複合動作時の操作性を向上させることができる。
 なお、コントローラ30Cは、建設機械100に入力された情報に基づいて、制御弁Vth(の制御ポート)に入力する圧力を変化させることにより、制御弁Vthの開度を制御してもよい。また、コントローラ30Cは、油圧ポンプの吐出圧若しくは油圧アクチュエータの作動油の圧力又はその他建設機械の操作状況を検出し、検出した検出結果に基づいて、制御弁Vthの開度を制御してもよい。
 コントローラ30Cは、本発明の実施形態では、建設機械100に入力された情報に基づいて、ブリードオフ弁Vbo(Vbo1、Vbo2)に入力するパイロットポンプPp(Pp1、Pp2)の圧油の圧力を変化させる。これにより、ブリードオフ弁Vboは、入力された圧力を用いて、開度を変化させることができる。また、ブリードオフ弁Vboは、開度を変化させることによって、作動油タンクに還流する圧油の流量を制御することができる。
 また、コントローラ30Cは、ブリードオフ弁Vboを用いて単独操作時のセンターバイパス通路RCを通過する圧油の圧力損失を低減することができるとともに、複合動作時(例えば、いわゆる床堀り作業など)に任意の油圧アクチュエータ(図1のアーム12及びバケット13)に対応する制御弁Vthの開度を調整(大きく又は小さく)することによって、建設機械の操作性を向上することができる。
 以上により、本発明の実施形態に係る建設機械100の油圧回路20又はその制御装置30によれば、方向制御弁でブリードオフ制御をしないで、方向制御弁の第1の内部通路を用いて、油圧ポンプPから吐出された圧油をセンターバイパス通路RCの下流に供給することができるので、センターバイパス通路RCを通過する圧油の圧力損失を低減することができる。
 また、本発明の実施形態に係る建設機械100の油圧回路20又はその制御装置30によれば、センターバイパス通路RCの下流に配置したブリードオフ弁Vboを用いて、方向制御弁でブリードオフ制御をしないで(各方向制御弁にブリード開口を備えないで)、センターバイパス通路RCの下流でブリードオフ制御をすることができる。これにより、本実施形態に係る油圧回路20又はその制御装置30によれば、複数の方向制御弁で夫々ブリードオフ制御する場合と比較して、方向制御弁の内部通路(例えば第1の内部通路)の開口面積を大きくすることができるので、センターバイパス通路RCを通過する圧油の圧力損失を低減することができる。
 また、本発明の実施形態に係る建設機械100の油圧回路20又はその制御装置30によれば、方向制御弁にブリード開口を備えないので、方向制御弁の長手方向の大きさを小さくすることができる。これにより、本実施形態に係る油圧回路20又はその制御装置30によれば、方向制御弁にブリード開口を備える場合と比較して、方向制御弁を小型化することができ、その製作を容易化することができる。
 更に、本発明の実施形態に係る建設機械100の油圧回路20又はその制御装置30によれば、複合動作時に任意の油圧アクチュエータに対応する制御弁Vthの開度を調整(大きく又は小さく)することができる。これにより、本実施形態に係る油圧回路20又はその制御装置30によれば、ブリードオフ弁Vboを用いて単独操作時のセンターバイパス通路RCを通過する圧油の圧力損失を低減することができるとともに、複合動作時に任意の油圧アクチュエータに対応する制御弁Vthの開度を調整することによって、建設機械100の操作性を向上することができる。
 建設機械100Eの例を用いて、本発明の実施例を説明する。
 (建設機械の構成)及び(建設機械の油圧回路)
 本実施例に係る建設機械100Eの構成等は、実施形態の建設機械100の構成等と基本的に同様のため、説明を省略する。
 (方向制御弁の内部通路)
 本実施例に係る建設機械100Eの油圧回路20に配置された方向制御弁V及び制御弁Vthの概略構成図を図4に示す。ここで、図4(a)は、制御弁Vthの閉口時(例えば図2のVth1のa位置)の場合である。図4(b)は、制御弁Vthの開口時(例えば図2のVth1のa位置)の場合である。図4(c)は、制御弁Vthの絞り時(例えば図2のVth1のb位置)の場合である。
 図4(a)に示すように、本発明の実施例に係る油圧回路20の方向制御弁Vは、センターバイパス通路RCを介して圧油を供給される入口ポートPIprtと、入口ポートPIprtから供給された圧油をセンターバイパス通路RCに流出する出口ポートPOprtと、方向制御弁Vに供給された圧油を油圧シリンダに供給するシリンダポートCprtと、油圧シリンダから排出された圧油を作動油タンクに排出するタンクポートTprtと、を有する。また、本実施例に係る制御弁(絞り弁、流量制御弁など)Vthは、第2の内部通路RV2に圧油を供給する経路の入口に配置されている。
 図4(b)に示すように、本実施例に係る方向制御弁Vは、スプール変位時(例えば図中のMb)に、センターバイパス通路RCから供給された圧油(作動油)Ocを制御弁Vth及び第2の内部通路RV2を介して、シリンダポートCprtBから油圧シリンダ(例えば図1及び図2の11c等)に供給する。このとき、油圧シリンダからシリンダポートCprtAに排出された圧油(作動油)Otは、タンクポートTprtから作動油タンクに排出される。
 図4(c)に示すように、本実施例に係る方向制御弁V(油圧回路20)は、制御弁Vthを用いて、第2の内部通路RV2に供給する圧油の流量を制御する。具体的には、制御弁Vthは、ポペットPptを予め定められた位置で固定することができるスイッチ機構Swを用いて、スイッチ機構Swのオン時に、第2の内部通路RV2に供給する圧油の流量を制御する(絞る)ことができる。なお、図4(b)に、スイッチ機構Swのオフ時のポペットPptを示す。
 本発明の実施例に係る建設機械100Eの油圧回路20は、図4(a)に示すように、方向制御弁Vでブリードオフ制御をしないため(方向制御弁Vにブリード開口を有しないため)、方向制御弁Vの第1の内部通路RV1の開口面積を大きくすることができる。これにより、本実施例に係る方向制御弁Vは、方向制御弁Vの第1の内部通路RV1の開口面積を大きくすることができるので、センターバイパス通路RCを通過する圧油の圧力損失を低減することができる。
 また、本実施例に係る建設機械100Eの油圧回路20は、センターバイパス通路RCに複数の方向制御弁Vを直列に配置することによって、センターバイパス通路RCと複数の第1の内部通路RV1(方向制御弁V)とで形成される通路をパラレル通路として機能させることができる。このため、本実施例に係る油圧回路20は、パラレル通路を別に設ける必要がなく、方向制御弁Vを小型化(スプールの軸方向及び径方向の大きさを小さく)することができる。本実施例に係る油圧回路20は、例えばブリッジ通路Rb(図4(a))を小型化することができる。
 本発明の実施例に係る建設機械100Eの油圧回路20は、方向制御弁グループGvを用いて、センターバイパス通路RCに圧油を流出する。具体的には、図5に示すように、方向制御弁グループGv(複数の方向制御弁V)を配置した油圧回路20は、方向制御弁のスプール位置に関わらず略同一の通路面積を有する第1の内部通路とセンターバイパス通路RCとによってパラレル通路を形成することができる。ここで、油圧回路20は、方向制御弁Vの第1の内部通路RV1を経由して、入口ポートPIprtから供給された圧油Opを出口ポートPOprtに流出し、センターバイパス通路RCに流出する。
 これにより、本発明の実施例に係る建設機械100Eの油圧回路20は、複数の方向制御弁V(方向制御弁グループGv)のスプールに複数のブリード開口を夫々設ける必要がないため、センターバイパス通路RCの形状を単純にすることができる。また、本実施例に係る油圧回路20は、センターバイパス通路RCの曲がり部等を少なくすることができるので、センターバイパス通路RCを通過する圧油の圧力損失を低減することができる。
 (建設機械の制御装置)
 本実施例に係る建設機械100Eの制御装置30の構成及び動作は、実施形態の建設機械100の制御装置30の構成等と基本的に同様のため、異なる部分を主に説明する。
 制御装置30(コントローラ30C)は、建設機械100Eに入力された情報に基づいて、制御弁Vth(の開度)を制御する。これにより、制御装置30は、方向制御弁Vの第2の内部通路RV2(シリンダポートCprt)に供給される圧油の量を制御することができる。
 制御装置30は、例えば下記の制御を行うことができる。なお、制御装置30の制御の動作は、下記に例示する制御に限定されるものではない。
 (1)制御装置30は、例えば複合動作時に、動作を優先させる油圧アクチュエータに対応する制御弁Vthの開度を大きくし(図4(b))、動作を優先させない油圧アクチュエータに対応する制御弁Vthの開度を小さくすること(図4(c))ができる。これにより、制御装置30(建設機械100E)は、任意の油圧アクチュエータの動作を優先することができる。
 (2)制御装置30は、例えば操作情報が建設機械100Eに入力されていない場合(操作レバーが操作されていない場合)に、制御弁Vthの開度を小さくする、又は、開度をゼロにすることができる。制御弁Vthは、例えばスイッチ機構Sw(図4)を用いて、ポペットPptの位置を開度が小さくなる位置に固定することができる。これにより、制御装置30(建設機械100E)は、建設機械100Eの非操作時に、油圧アクチュエータの動作を制限することができる(フェールセーフ)。
 (3)制御装置30は、例えば制御弁Vthの開度と方向制御弁V(のスプール)の開度の合算(例えば開口面積の合計)が、従来回路(例えば図6の方向制御弁Vm)の開度(又は開口面積)と同等にし、且つ、方向制御弁V(のスプール)の開度を可能な限り大きくすることができる。これにより、制御装置30(建設機械100E)は、従来回路と比較して、方向制御弁Vを通過するときの圧油の圧力損失を低減することができる。
 (4)制御装置30は、例えば建設機械100Eの操作状況を検出し、検出した操作状況に基づいて、制御弁Vthの開度を制御することができる。これにより(単独操作時の)低損失と(複合操作時の流量分配による)操作性の向上とを両立させることができる。なお、制御装置30は、操作状況として、例えば、油圧ポンプの吐出圧(吐出量)、油圧アクチュエータの作動油の圧力(圧力変動)若しくは作動油温度、油圧シリンダの推力(加速度)、油圧アクチュエータの速度、加速度若しくは角度(位置)、又は、その他建設機械の状態に関する情報を適宜組み合わせて検出してもよい。
 以上により、本発明の実施例に係る建設機械100Eの油圧回路20又はその制御装置30によれば、本発明の実施形態に係る建設機械100の油圧回路20又はその制御装置30と同様の効果を得ることができる。
 また、本発明の実施例に係る建設機械100Eの油圧回路20又はその制御装置30によれば、センターバイパス通路RCに複数の方向制御弁Vを直列に配置することによって、センターバイパス通路RCと第1の内部通路RV1(方向制御弁V)とで形成される通路をパラレル通路として機能させることができる。更に、本実施例に係る油圧回路20又はその制御装置30によれば、センターバイパス通路RCと複数の第1の内部通路RV1とで形成される通路をパラレル通路として機能させることができるので、パラレル通路を別に設ける必要がなく、方向制御弁Vを小型化することができる。これにより、本発明の実施例に係る建設機械100Eの油圧回路20又はその制御装置30は、建設機械100E全体の小型化、製作容易化及び低コスト化について有利な効果を有する。
 更に、本発明の実施例に係る建設機械100Eの油圧回路20又はその制御装置30によれば、制御弁Vth(の開度)を制御することができるので、方向制御弁Vの第2の内部通路RV2(シリンダポートCprt)に供給される圧油の量を制御することができる。
 以上、建設機械の油圧回路又はその制御装置を含む本発明の好ましい実施形態及び実施例について説明したが、本発明は、上述した実施形態及び実施例に制限されるものではない。また、本発明は、添付の特許請求の範囲に照らし、種々に変形又は変更することが可能である。
  本国際出願は2012年6月15日に出願された日本国特許出願第2012-136352号に基づく優先権を主張するものであり、2012-136352号の全内容をここ本国際出願に援用する。
100,100E: 建設機械
 11  : ブーム
 11c : ブームシリンダ
 12  : アーム
 12c : アームシリンダ
 13  : バケット
 13c : バケットシリンダ
 20  : 油圧回路
 30  : 制御手段
 30C : コントローラ
 Gv  : 方向制御弁グループ
 V   : 方向制御弁(コントロールバルブ)
 Va1,Va2,Vb1,Vb2,Vbk,Vsw,Vop,Vt1,Vt2:油圧アクチュエータ用方向制御弁
 Vst : 走行直進用方向制御弁(走直弁)
 Vbo : ブリードオフ弁(カット弁)
 Vth : 制御弁(絞り弁、流量制御弁)
 Ppt : ポペット
 Sw  : スイッチ機構
 RC,RC1,RC2: センターバイパス通路(センターバイパスライン)
 RV1 : 第1の内部通路(ブリードオフ用内部通路,PT開口用内部通路)
 RV2 : 第2の内部通路(油圧アクチュエータ用内部通路,シリンダポート用内部通路)
 PIprt:入口ポート
 POprt:出口ポート
 Tprt :タンクポート
 Cprt,CprtA,CprtB :シリンダポート
 P,P1,P2: 油圧ポンプ
 R,R1,R2: レギュレータ
 Tnk : 作動油タンク(タンク)
 Pp,Pp1,Pp2: パイロットポンプ

Claims (7)

  1.  建設機械の油圧回路であって、
     前記建設機械のセンターバイパス通路にタンデムに配置された複数の方向制御弁からなる方向制御弁グループと、
     前記方向制御弁グループの下流の該センターバイパス通路に配置されたブリードオフ弁と、
     前記方向制御弁に供給する圧油の量を制御する制御弁と
     を有し、
     前記方向制御弁は、該方向制御弁に供給された圧油を前記センターバイパス通路に流出する第1の内部通路と、前記圧油を前記建設機械の油圧アクチュエータに供給する第2の内部通路とを備え、
     前記第1の内部通路は、前記油圧ポンプから吐出された圧油を該方向制御弁に対して下流の該センターバイパス通路に流出させることにより、該センターバイパス通路と該第1の内部通路とによってパラレル通路を形成し、
     前記ブリードオフ弁は、該ブリードオフ弁の開口面積を変化させることによって、前記パラレル通路を介して供給される圧油をブリードオフ制御し、
     前記制御弁は、該制御弁の開度を変更することによって、前記第2の内部通路に供給する圧油の量を制御する、
     ことを特徴とする建設機械の油圧回路。
  2.  前記第1の内部通路は、前記方向制御弁のスプール位置に関わらず略同一の通路面積を有し、該通路面積に対応する前記パラレル通路を形成し、
     前記複数の方向制御弁は、前記パラレル通路のみから圧油の供給を受ける、
     ことを特徴とする、請求項1に記載の建設機械の油圧回路。
  3.  複数の前記方向制御弁グループと複数の前記センターバイパス通路とを有し、
     複数の前記方向制御弁グループは、複数の前記センターバイパス通路毎に夫々配置され、
     複数の前記センターバイパス通路と複数の前記方向制御弁グループの各第1の内部通路とが、夫々パラレル通路を形成する、
     ことを特徴とする、請求項1に記載の建設機械の油圧回路。
  4.  請求項1に記載の建設機械の油圧回路を制御する建設機械の油圧回路の制御装置。
  5.  操作情報が前記建設機械に入力されていない場合に、前記制御弁の前記開度を小さくする、又は、前記開度をゼロにする、ことを特徴とする、請求項4に記載の建設機械の油圧回路の制御装置。
  6.  前記操作情報に応じて、前記開度を変更する、ことを特徴とする、請求項4に記載の建設機械の油圧回路の制御装置。
  7.  前記ブリードオフ弁は、前記開口面積が最大となるアンロード位置と、該開口面積がゼロとなるブロック位置とを備え、
     前記ブリードオフ弁を前記アンロード位置から前記ブロック位置へと切り換えることによってブリードオフ制御する、ことを特徴とする、請求項4に記載の建設機械の油圧回路の制御装置。
     
PCT/JP2013/056195 2012-06-15 2013-03-06 建設機械の油圧回路及びその制御装置 WO2013187092A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13803591.0A EP2863065B1 (en) 2012-06-15 2013-03-06 Construction-machinery hydraulic circuit, and control device therefor
KR1020147028304A KR101681248B1 (ko) 2012-06-15 2013-03-06 건설기계의 유압회로 및 그 제어장치
CN201380020040.6A CN104220763B (zh) 2012-06-15 2013-03-06 施工机械的液压回路及其控制装置
US14/538,920 US9932994B2 (en) 2012-06-15 2014-11-12 Hydraulic circuit for construction machine and control device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-136352 2012-06-15
JP2012136352A JP5778086B2 (ja) 2012-06-15 2012-06-15 建設機械の油圧回路及びその制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/538,920 Continuation US9932994B2 (en) 2012-06-15 2014-11-12 Hydraulic circuit for construction machine and control device therefor

Publications (1)

Publication Number Publication Date
WO2013187092A1 true WO2013187092A1 (ja) 2013-12-19

Family

ID=49757933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056195 WO2013187092A1 (ja) 2012-06-15 2013-03-06 建設機械の油圧回路及びその制御装置

Country Status (6)

Country Link
US (1) US9932994B2 (ja)
EP (1) EP2863065B1 (ja)
JP (1) JP5778086B2 (ja)
KR (1) KR101681248B1 (ja)
CN (1) CN104220763B (ja)
WO (1) WO2013187092A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026181B1 (en) * 2013-07-24 2018-11-14 Volvo Construction Equipment AB Hydraulic circuit for construction machine
JP6190763B2 (ja) * 2014-06-05 2017-08-30 日立建機株式会社 ハイブリッド式建設機械
JP6514522B2 (ja) * 2015-02-24 2019-05-15 川崎重工業株式会社 アンロード弁および油圧ショベルの油圧駆動システム
JP6463649B2 (ja) * 2015-03-13 2019-02-06 川崎重工業株式会社 建設機械の油圧駆動システム
WO2017041848A1 (de) * 2015-09-10 2017-03-16 Festo Ag & Co. Kg Fluidsystem und prozessventil
JP6304273B2 (ja) * 2016-02-05 2018-04-04 コベルコ建機株式会社 作業機械の油圧駆動装置
JP6643913B2 (ja) * 2016-02-16 2020-02-12 株式会社クボタ 油圧ブロック
WO2017164169A1 (ja) 2016-03-22 2017-09-28 住友建機株式会社 ショベル及びショベル用コントロールバルブ
EP3225583B1 (en) * 2016-03-31 2019-02-13 Cargotec Research & Development Ireland Limited A sectional hydraulic valve and a truck mounted forklift incorporating such a valve
JP6840756B2 (ja) 2016-07-29 2021-03-10 住友建機株式会社 ショベル、ショベル用コントロールバルブ
JP2018135926A (ja) * 2017-02-21 2018-08-30 川崎重工業株式会社 油圧システム
WO2018164465A1 (ko) * 2017-03-06 2018-09-13 두산인프라코어 주식회사 건설기계의 제어 시스템 및 건설기계의 제어 방법
CN107725507A (zh) * 2017-11-22 2018-02-23 江苏恒立液压科技有限公司 液压控制系统的控制方法
JP6703585B2 (ja) * 2018-11-01 2020-06-03 Kyb株式会社 流体圧制御装置
JP7198072B2 (ja) 2018-12-13 2022-12-28 キャタピラー エス エー アール エル 建設機械の油圧制御回路
JP7208701B2 (ja) 2018-12-13 2023-01-19 キャタピラー エス エー アール エル 建設機械の油圧制御回路
JP7221101B2 (ja) * 2019-03-20 2023-02-13 日立建機株式会社 油圧ショベル
IT201900007737A1 (it) * 2019-05-31 2020-12-01 Walvoil Spa Valvola oleodinamica con movimento prioritario in azionamenti simultanei
JP7365101B2 (ja) 2020-03-12 2023-10-19 キャタピラー エス エー アール エル 建設機械の油圧制御回路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257302A (ja) 1998-03-06 1999-09-21 Toshiba Mach Co Ltd 多連油圧バルブ
JPH11303809A (ja) * 1998-04-20 1999-11-02 Komatsu Ltd 油圧駆動機械のポンプ制御装置
JP2000046015A (ja) * 1998-07-28 2000-02-15 Yutani Heavy Ind Ltd 油圧回路の自己診断装置
JP2007192344A (ja) * 2006-01-20 2007-08-02 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2138986C3 (de) * 1971-08-04 1978-09-07 G.L. Rexroth Gmbh, 8770 Lohr Steuerventileinrichtung für mehrere hydraulische Antriebe
US4186771A (en) * 1977-11-03 1980-02-05 Sanyo Kiki Kabushiki Kaisha Hydraulic control apparatus
JPH076530B2 (ja) * 1986-09-27 1995-01-30 日立建機株式会社 油圧ショベルの油圧回路
DE68912305T2 (de) * 1988-06-17 1994-05-11 Kobe Steel Ltd Fluid-steuerungsmechanismus für kraftschaufeln.
KR950019256A (ko) * 1993-12-30 1995-07-22 김무 스윙 가변 우선이 가능한 중장비용 유압회로
JP2892939B2 (ja) 1994-06-28 1999-05-17 日立建機株式会社 油圧掘削機の油圧回路装置
US5586577A (en) 1994-09-28 1996-12-24 Samsung Heavy Industries Co., Ltd. Mono-block control valve with side bypass passage
CN1123373A (zh) * 1994-09-28 1996-05-29 三星重工业(株) 设有边侧旁通油路的整体组合控制阀
JPH08105405A (ja) 1994-09-29 1996-04-23 Samsung Heavy Ind Co Ltd 再生流路を持つモノブロックのコントロール弁
KR100226281B1 (ko) * 1994-09-30 1999-10-15 토니헬샴 가변우선장치
US5560387A (en) * 1994-12-08 1996-10-01 Caterpillar Inc. Hydraulic flow priority system
KR0185493B1 (ko) * 1996-03-30 1999-04-01 토니헬샴 중장비용 유량 합류장치
JP3501902B2 (ja) 1996-06-28 2004-03-02 コベルコ建機株式会社 建設機械の制御回路
JP3550260B2 (ja) * 1996-09-30 2004-08-04 コベルコ建機株式会社 アクチュエータ作動特性制御装置
US5940997A (en) * 1997-09-05 1999-08-24 Hitachi Construction Machinery Co., Ltd. Hydraulic circuit system for hydraulic working machine
JP3943779B2 (ja) * 1999-01-19 2007-07-11 日立建機株式会社 土木・建設機械の油圧駆動装置
JP3491600B2 (ja) * 2000-04-13 2004-01-26 コベルコ建機株式会社 建設機械の油圧制御回路
JP3557167B2 (ja) * 2000-11-20 2004-08-25 新キャタピラー三菱株式会社 作業用機械における油圧回路
JP3614121B2 (ja) * 2001-08-22 2005-01-26 コベルコ建機株式会社 建設機械の油圧装置
US7155909B2 (en) * 2003-05-15 2007-01-02 Kobelco Construction Machinery Co., Ltd. Hydraulic controller for working machine
US7178333B2 (en) * 2004-03-18 2007-02-20 Kobelco Construction Machinery Co., Ltd. Hydraulic control system for hydraulic excavator
US20090025380A1 (en) * 2007-07-24 2009-01-29 Parker Hannifin Corporation, An Ohio Corporation Fixed/variable hybrid system
US8607557B2 (en) * 2009-06-22 2013-12-17 Volvo Construction Equipment Holding Sweden Ab Hydraulic control system for excavator
JP5388787B2 (ja) * 2009-10-15 2014-01-15 日立建機株式会社 作業機械の油圧システム
JP5528276B2 (ja) * 2010-09-21 2014-06-25 株式会社クボタ 作業機の油圧システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257302A (ja) 1998-03-06 1999-09-21 Toshiba Mach Co Ltd 多連油圧バルブ
JPH11303809A (ja) * 1998-04-20 1999-11-02 Komatsu Ltd 油圧駆動機械のポンプ制御装置
JP2000046015A (ja) * 1998-07-28 2000-02-15 Yutani Heavy Ind Ltd 油圧回路の自己診断装置
JP2007192344A (ja) * 2006-01-20 2007-08-02 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置

Also Published As

Publication number Publication date
EP2863065A4 (en) 2015-07-22
EP2863065B1 (en) 2018-07-25
US20150059331A1 (en) 2015-03-05
EP2863065A1 (en) 2015-04-22
KR101681248B1 (ko) 2016-12-12
JP5778086B2 (ja) 2015-09-16
CN104220763A (zh) 2014-12-17
JP2014001769A (ja) 2014-01-09
KR20140138266A (ko) 2014-12-03
US9932994B2 (en) 2018-04-03
CN104220763B (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
JP5778086B2 (ja) 建設機械の油圧回路及びその制御装置
JP5758348B2 (ja) 建設機械の油圧回路
JP5985276B2 (ja) 建設機械の油圧回路及びその制御装置
EP2799723B1 (en) System for reducing fuel consumption in excavator
JP5978056B2 (ja) 建設機械の油圧回路及びその制御装置
JP6453820B2 (ja) 建設機械用方向制御弁グループ
JP6763006B2 (ja) ショベル及び建設機械用方向制御弁グループ
JP5934669B2 (ja) 建設機械の油圧駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147028304

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013803591

Country of ref document: EP