WO2013186954A1 - 光源ユニット、投射型表示装置、照明器具及び光出射方法 - Google Patents

光源ユニット、投射型表示装置、照明器具及び光出射方法 Download PDF

Info

Publication number
WO2013186954A1
WO2013186954A1 PCT/JP2012/082354 JP2012082354W WO2013186954A1 WO 2013186954 A1 WO2013186954 A1 WO 2013186954A1 JP 2012082354 W JP2012082354 W JP 2012082354W WO 2013186954 A1 WO2013186954 A1 WO 2013186954A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
incident
wavelength band
light emitting
Prior art date
Application number
PCT/JP2012/082354
Other languages
English (en)
French (fr)
Inventor
瑞穂 冨山
鈴木 尚文
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/406,819 priority Critical patent/US20150167906A1/en
Priority to JP2014521198A priority patent/JPWO2013186954A1/ja
Publication of WO2013186954A1 publication Critical patent/WO2013186954A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/14Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing polarised light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Definitions

  • the present invention relates to a light source unit, a projection display device, a lighting fixture, and a light emitting method.
  • LEDs and LDs are made of semiconductor and can generate blue light by using an InGaN-based semiconductor material, and can generate red light by using an AlGaInP-based semiconductor material. ing.
  • LEDs or LDs using InGaN-based and AlGaInP-based semiconductor materials have a problem called a green gap, which has a low emission efficiency of green light.
  • a light source unit in which an LED or LD and a phosphor are combined has been proposed.
  • Patent Document 1 describes a high-output light source unit that suppresses self-heating of a phosphor.
  • the light source unit includes a light emitting unit and a wavelength converting unit including a phosphor that emits light having a different wavelength by absorbing at least a part of the light from the light emitting unit, and further includes a heat radiating unit in contact with the wavelength converting unit.
  • the temperature rise of the phosphor can be suppressed by the heat dissipating means in contact with the wavelength converting means.
  • the light source unit described in Patent Document 1 has a problem that light leakage occurs and light utilization efficiency is low.
  • An object of the present invention is to provide a light source unit, a projection display device, a lighting fixture, and a light emitting method with high light use efficiency.
  • the light source unit of the present invention comprises: A light emitting means, a wavelength converting means, and a first wavelength selecting means,
  • the light emitting means has a light emitting surface that emits light in the first wavelength band and reflects and emits incident light, When the light of the first wavelength band is incident, the wavelength converting means emits light of the second wavelength band on the same side as the light incident side of the first wavelength band, and the incident light An incident / exit surface that reflects and emits light in the second wavelength band;
  • the first wavelength selection unit includes a first reflection surface that reflects the light in the first wavelength band and transmits the light in the second wavelength band,
  • the light emitting means and the first wavelength selecting means are the light of the first wavelength band emitted from the light emitting surface of the light emitting means, and the light reflected by the first reflecting surface of the first wavelength selecting means.
  • the light in the first wavelength band and the light in the first wavelength band that is incident on and reflected by the light emitting surface of the light emitting means are disposed so as
  • the light source unit of the present invention is A light emitting means, a wavelength converting means, a first wavelength selecting means, and a second wavelength selecting means
  • the light emitting means has a light emitting surface that emits light in the first wavelength band and reflects and emits incident light, When the light of the first wavelength band is incident, the wavelength converting means emits light of the second wavelength band on the same side as the light incident side of the first wavelength band, and the incident light An incident / exit surface that reflects and emits light in the second wavelength band;
  • the first wavelength selection unit includes a first reflection surface that reflects the light in the first wavelength band and transmits the light in the second wavelength band,
  • the second wavelength selection means has a second reflection surface that reflects the light of the second wavelength band and transmits the light of the first wavelength band,
  • the light emitting means, the first wavelength selecting means, and the second wavelength selecting means are the light of the first wavelength band emitted from the light emitting surface of the light emitting means, and the first wavelength selecting means of the first wavelength selecting means
  • Light of the first wavelength band reflected by one reflection surface, light of the first wavelength band transmitted through the second reflection surface of the second wavelength selection means, and the light emission of the light emission means The light of the first wavelength band that is incident on and reflected by the surface is disposed so as to be incident on the incident / exit surface of the wavelength converting means.
  • the projection display device of the present invention includes the light source unit of the present invention.
  • the lighting fixture of the present invention includes the light source unit of the present invention.
  • the light emission method of the present invention includes: A light emitting means, a wavelength converting means, and a first wavelength selecting means,
  • the light emitting means has a light emitting surface that emits light in the first wavelength band and reflects and emits incident light, When the light of the first wavelength band is incident, the wavelength conversion unit emits the light of the second wavelength band as reflected light on the same side as the light incident side of the first wavelength band; and An incident / exit surface that reflects and emits light of the second wavelength band incident again;
  • the first wavelength selection unit uses a light source unit having a first reflection surface that reflects light in the first wavelength band and transmits light in the second wavelength band, A first light emitting step of emitting light in the first wavelength band from the light emitting surface of the light emitting means;
  • the light of the first wavelength band emitted from the light emitting surface of the light emitting means that has entered the first reflecting surface of the first wavelength selecting means is the first wavelength of the first wavelength selecting means.
  • a first reflecting step of reflecting on the reflecting surface The light of the first wavelength band reflected by the first reflecting surface of the first wavelength selecting unit that is incident again on the light emitting surface of the light emitting unit is reflected by the light emitting surface of the light emitting unit.
  • Two reflection processes The light in the first wavelength band emitted from the light emitting surface of the light emitting means incident on the incident / exit surface of the wavelength converting means, reflected by the first reflecting surface of the first wavelength selecting means.
  • the first wavelength band light and the light of the first wavelength band reflected by the light emitting surface of the light emitting means are wavelength-converted, and the second light is reflected from the light incident / exiting surface of the wavelength converting means.
  • a second light emitting step for emitting light in the wavelength band A third reflection step of reflecting the light of the second wavelength band incident on the light emitting surface of the light emitting means by the light emitting surface of the light emitting means; A fourth reflection step of reflecting the light in the second wavelength band, which is incident again on the incident / exit surface of the wavelength converter, on the incident / exit surface of the wavelength converter; Light of the second wavelength band emitted from the incident / exit surface of the wavelength converting means incident on the first wavelength selecting means, of the second wavelength band reflected by the light emitting surface of the light emitting means.
  • the light and the light of the second wavelength band reflected by the incident / exit surface of the wavelength converting means are opposite to the side on which the light of the first wavelength band of the first wavelength selecting means is incident. And a third light emitting step of emitting from the light source.
  • the present invention it is possible to provide a light source unit, a projection display device, a lighting fixture, and a light emitting method with high light use efficiency.
  • FIG. 1 is a perspective view illustrating a light source unit according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating the light source unit according to the first embodiment.
  • FIG. 3 is a perspective view showing the light source unit of the second embodiment.
  • FIG. 4 is a cross-sectional view showing the light source unit of the second embodiment.
  • FIG. 5 is a cross-sectional view showing the light source unit of the third embodiment.
  • FIG. 6 is a cross-sectional view illustrating the light source unit of the fourth embodiment.
  • FIG. 7 is a perspective view showing the light source unit of the fifth embodiment.
  • FIG. 8 is a cross-sectional view of the light source unit of Embodiment 5 shown in FIG. 7 as seen in the II direction.
  • FIG. 8 is a cross-sectional view of the light source unit of Embodiment 5 shown in FIG. 7 as seen in the II direction.
  • FIG. 8 is a cross-sectional view of the light source unit of Embodiment 5 shown in
  • FIG. 9 is a cross-sectional view illustrating the light source unit of the sixth embodiment.
  • FIG. 10 is a cross-sectional view showing the light source unit of the seventh embodiment.
  • FIG. 11 is a cross-sectional view illustrating the light source unit according to the eighth embodiment.
  • FIG. 12 is a cross-sectional view illustrating a light source unit according to the ninth embodiment.
  • FIG. 13 is a cross-sectional view illustrating the light source unit of the tenth embodiment.
  • FIG. 14 is a cross-sectional view illustrating the light source unit according to the eleventh embodiment.
  • FIG. 15 is a cross-sectional view illustrating a light source unit according to the twelfth embodiment.
  • FIG. 16 is a cross-sectional view illustrating a light source unit according to the thirteenth embodiment.
  • FIG. 17 is a cross-sectional view illustrating a light source unit according to a fourteenth embodiment.
  • FIG. 1 is a perspective view showing a light source unit of the present embodiment.
  • FIG. 2 is a cross-sectional view showing the light source unit of the present embodiment.
  • the light source unit 110 of this embodiment includes a light emitting unit 1, four wavelength converting units 2, and a first wavelength selecting unit 4 as main components.
  • the light emitting means 1, the four wavelength converting means 2 and the first wavelength selecting means 4 are all rectangular in cross section.
  • the light source unit 110 of the present embodiment has an internal space, and the inner surface of the inner space has a columnar shape.
  • the light emitting surface 41 of the light emitting means 1 is disposed on the bottom surface of the inner surface, and the upper surface of the inner surface shape is the first surface.
  • the first reflection surface 44 a of one wavelength selection unit 4 is arranged, and all of the side surfaces of the inner surface shape are the incident / exit surfaces 42 of the wavelength conversion unit 2.
  • the direction of the light source unit is not limited. For example, even if the light source unit is turned upside down as shown in FIGS. 1 and 2 (the light emitting means 1 is on the top and the first wavelength selecting means 4 is on the bottom) Or may be rotated by 90 degrees (the light emitting means 1 and the first wavelength selecting means 4 may be arranged on the side). The same applies to Embodiments 2 to 14 described later.
  • the light emitting surface 41 of the light emitting means 1 is referred to as a bottom surface
  • the first reflecting surface 44a of the first wavelength selecting means 4 is referred to as an upper surface.
  • the light emitting means 1 has a light emitting surface 41 that emits light 30 in the first wavelength band and reflects and emits incident light.
  • a surface emitting solid light source such as an LED or an LD, or a surface light emitting device including a light source and a light guide plate can be used.
  • the light 30 in the first wavelength band may be light in a wavelength band of a desired color (for example, red, green, blue, etc.), and is preferably light in the blue wavelength band.
  • the wavelength conversion means 2 When the light 30 in the first wavelength band is incident, the wavelength conversion means 2 emits the light 31 in the second wavelength band on the same side as the side on which the light 30 in the first wavelength band is incident. It has an incident / exit surface 42 that reflects and emits light 31 in the second wavelength band.
  • the light 31 in the second wavelength band may be any light as long as it is in a wavelength band different from that of the light 30 in the first wavelength band, and is preferably light in the green wavelength band.
  • the wavelength conversion means 2 preferably includes a phosphor that absorbs the light 30 in the first wavelength band and emits the light 31 in the second wavelength band.
  • the wavelength conversion means 2 can be manufactured, for example, by fixing the phosphor with a binder such as a resin.
  • Examples of the phosphor include YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, (Y 0.8 Gd 0.2 ) 3 Al 5 O 12 : Ce, Y 3 (Al 0.8 Ga 0.2) 5 O 12: Ce, Tb 2.95 Ce 0.05 Al 5 O 12, Y 2.90 Ce 0.05 Tb 0.05 Al 5 O 12, Y 2.
  • Ce (Re is at least one element selected from the group consisting of Y, Gd, and La, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), etc., aluminum such as yttrium, aluminum, garnet phosphor, etc.
  • garnet-based phosphor (Lu -A-b R a M b) 3 (Al 1-c Ga c) 5 O 12 (R is at least one or more rare earth elements essentially containing Ce, M is composed of Sc, Y, from La and Gd At least one element selected from the group, 0.0001 ⁇ a ⁇ 0.5, 0 ⁇ b ⁇ 0.5, 0.0001 ⁇ a + b ⁇ 1, 0 ⁇ c ⁇ 0.8), etc.
  • Inorganic phosphors such as alkaline earth metal aluminate-based phosphors; rare earth oxysulfide phosphors such as La 2 O 2 S: Eu, Y 2 O 2 S: Eu, Gd 2 O 2 S: Eu; Be .
  • the phosphor is not limited to the above-described inorganic phosphor, and for example, an organic phosphor or a semiconductor quantum dot phosphor can be used.
  • the phosphors may be used alone or in combination of two or more.
  • the first wavelength selection means 4 reflects the light 30 in the first wavelength band and transmits the light 31 in the second wavelength band on the side opposite to the first reflection surface 44a. And a first emission surface 44b that transmits and emits the light 31 in the second wavelength band.
  • the first wavelength selection means 4 for example, a dielectric multilayer film, a holographic element, a photonic crystal, or the like is used to transmit light in a specific wavelength band and reflect other light. Can be used.
  • the light source unit 110 of the present embodiment has an internal space.
  • the inner surface shape of the internal space is a quadrangular prism (cuboid).
  • a light emitting surface 41 of the light emitting means 1 is disposed on the bottom surface of the inner surface shape.
  • a first reflection surface 44a of the first wavelength selection means 4 is disposed on the upper surface of the inner surface shape.
  • the incident / exit surfaces 42 of the four wavelength converting means 2 are arranged on the side surface of the inner surface shape.
  • the light emitting unit 1 and the first wavelength selecting unit 4 include the light 30 in the first wavelength band emitted from the light emitting surface 41 of the light emitting unit 1 and the first wavelength selecting unit 4.
  • the first wavelength band light 30 reflected by the first reflection surface 44a and the first wavelength band light 30 incident on and reflected by the light emitting surface 41 of the light emitting means 1 are incident / exit surfaces of the wavelength converting means 2 42 so as to be incident on 42.
  • the light 30 in the first wavelength band is emitted from the light emitting surface 41 of the light emitting means 1 (first light emitting step).
  • the light 30 in the first wavelength band emitted from the light emitting surface 41 of the light emitting means 1 incident on the first reflecting surface 44 a of the first wavelength selecting means 4 is reflected by the first wavelength selecting means 4. Reflected by the surface 44a (first reflection step).
  • the light 30 in the first wavelength band reflected by the first reflecting surface 44a of the first wavelength selecting unit 4 that has entered the light emitting surface 41 of the light emitting unit 1 again is reflected by the light emitting surface 41 of the light emitting unit 1 ( Second reflection step).
  • the light 30 in the first wavelength band emitted from the light emitting surface 41 of the light emitting unit 1 and incident on the incident / exiting surface 42 of the wavelength converting unit 2 is reflected by the first reflecting surface 44 a of the first wavelength selecting unit 4.
  • the wavelength 30 of the first wavelength band 30 and the light 30 of the first wavelength band reflected by the light emitting surface 41 of the light emitting means 1 are wavelength-converted, and the second light is reflected from the incident / exit surface 42 of the wavelength converting means 2 as reflected light.
  • the light 31 in the wavelength band is emitted (second light emission step).
  • the light 31 in the second wavelength band incident on the light emitting surface 41 of the light emitting means 1 is reflected by the light emitting surface 41 of the light emitting means 1 (third reflection step).
  • the light 31 in the second wavelength band that is incident again on the incident / exit surface 42 of the wavelength converting means 2 is reflected by the incident / exit surface 42 of the wavelength converting means 2 (fourth reflecting step).
  • the light is emitted from the first emission surface 44b (third light emission step).
  • the light 30 in the first wavelength band emitted from the light emitting surface 41 of the light emitting unit 1 incident on the first reflecting surface 44a of the first wavelength selecting unit 4 is After being reflected by the first reflecting surface 44a of the first wavelength selecting means 4, the light can be incident on the incident / exiting surface 42 of the wavelength converting means 2 and converted into the light 31 of the second wavelength band. The utilization efficiency of is increased. Further, according to the light source unit 110 of the present embodiment, the light 31 in the second wavelength band incident on the light emitting surface 41 of the light emitting means 1 and the second wavelength band incident again on the incident / exit surface 42 of the wavelength converting means 2.
  • the light 31 After being reflected by the light emitting surface 41 of the light emitting means 1 and the light incident / exiting surface 42 of the wavelength converting means 2, the light 31 can be emitted from the first emitting surface 44 b of the first wavelength selecting means 4 without leakage. It is. Furthermore, according to the light source unit 110 of the present embodiment, since the light utilization efficiency is high, the output of the light emitting means 1 can be lowered. As a result, it is possible to suppress the temperature rise of the wavelength conversion means 2 and convert the wavelength of the light 30 in the first wavelength band to the light 31 in the second wavelength band without causing temperature quenching of the phosphor. .
  • the areas of the first reflection surface 44 a and the first emission surface 44 b of the first wavelength selection unit 4 are the same as the area of the light emission surface 41 of the light emission unit 1. .
  • the present invention is not limited to this.
  • the areas of the first reflecting surface 44 a and the first emitting surface 44 b of the first wavelength selecting unit 4 may be less than the area of the light emitting surface 41 of the light emitting unit 1.
  • the area of the surface 41 may be exceeded.
  • it is preferable that the areas of the first reflection surface 44 a and the first emission surface 44 b of the first wavelength selection unit 4 are not more than the area of the light emission surface 41 of the light emission unit 1.
  • the first wavelength band in which the etendue of the light 31 in the second wavelength band emitted from the first emission surface 44 b of the first wavelength selection means 4 is emitted from the light emission surface 41 of the light emission means 1. Or less than the etendue of the light 30.
  • etendue is calculated
  • the light use efficiency of the optical system of the projector is improved as the etendue of the light source unit 110 is lower.
  • the etendue of the light source unit 110 (the etendue of the light 31 in the second wavelength band emitted from the first emission surface 44 b of the first wavelength selection unit 4) is emitted from the light emission surface 41 of the light emission unit 1.
  • the fluorescence in the wavelength conversion unit 2 is suppressed in order to prevent the light 30 in the first wavelength band and the light 31 in the second wavelength band from passing through the wavelength conversion unit 2.
  • the transmittance of the wavelength converting means 2 may be lowered by increasing the concentration of the body, mixing a scatterer in the wavelength converting means 2, increasing the thickness of the wavelength converting means 2, or the like.
  • a reflection layer having reflection characteristics for the light 30 in the first wavelength band and the light 31 in the second wavelength band may be disposed on the surface opposite to the incident / exit surface 42 of the wavelength conversion means 2.
  • the amount of light transmitted through the wavelength conversion unit 2 is reduced, and the light amount of the light 31 in the second wavelength band emitted from the first emission surface 44b of the first wavelength selection unit 4 in the light source unit 110, that is, the light source unit.
  • the luminous efficiency of 110 can be improved.
  • the material for forming the reflective layer include alumina, silver, white silicone resin, and barium sulfate.
  • a dielectric multilayer film or the like may be used for the reflective layer.
  • part of the light 30 in the first wavelength band incident on the light emitting surface 41 of the light emitting means 1 is absorbed by the light emitting means 1.
  • the length of the wavelength conversion means 2 in the Z direction in FIGS. 1 and 2 may be increased. Thereby, the light quantity of the light 30 of the 1st wavelength band which injects into the light emission surface 41 of the light emission means 1 can be reduced.
  • the shapes of the light emitting means 1, the four wavelength converting means 2 and the first wavelength selecting means 4 are all rectangular, and the inner surface shape of the internal space of the light source unit 110 is It is a quadrangular prism (cuboid) shape.
  • the light source unit of this embodiment is not limited to this.
  • the inner surface shape of the inner space of the light source unit may be a columnar shape in which the light emitting surface of the light emitting unit is disposed on the bottom surface and the first reflecting surface of the first wavelength selecting unit is disposed on the top surface.
  • n is an integer greater than or equal to 5
  • Any columnar shape such as, for example, may be used.
  • the first reflection surface 44 a and the first emission surface 44 b of the first wavelength selection unit 4 are arranged on the opposite sides of the first wavelength selection unit 4. ing.
  • the present invention is not limited to this example.
  • the first reflecting surface is disposed on the same surface as the first emitting surface, and the first emitting surface is provided. May also serve as the first reflecting surface.
  • FIG. 3 is a perspective view showing the light source unit of the present embodiment.
  • FIG. 4 is a cross-sectional view showing the light source unit of the present embodiment.
  • the light source unit 110 of the first embodiment shown in FIGS. 1 and 2 further includes four heat radiating means 3.
  • the light source unit 120 of the present embodiment has four heat radiating means 3 disposed on the surfaces opposite to the light incident / exit surfaces 42 of the four wavelength converting means 2.
  • the configuration is the same as that of the light source unit 110 of the first embodiment shown in FIGS. 1 and 2.
  • the heat radiating means 3 may be connected to a heat sink or a heat pipe.
  • the heat radiating means 3 is in contact with the wavelength converting means 2 over a wide area, the temperature increase of the wavelength converting means 2 is further suppressed, and the first wavelength band is more efficiently obtained. It is possible to convert the wavelength of the light 30 into the light 31 in the second wavelength band.
  • the wavelength conversion is performed by increasing the concentration of the phosphor in the wavelength conversion unit 2, mixing a scatterer in the wavelength conversion unit 2, or increasing the thickness of the wavelength conversion unit 2.
  • the transmittance of the means 2 may be reduced.
  • the first wavelength band is interposed between the wavelength converting means 2 and the heat radiating means 3.
  • a reflective layer having reflection characteristics for the light 30 and the light 31 in the second wavelength band may be disposed. Thereby, the light absorption loss by the heat radiation means 3 is reduced, and the light quantity of the light 31 in the second wavelength band emitted from the first emission surface 44b of the first wavelength selection means 4 in the light source unit 120, that is, the light source unit.
  • the luminous efficiency of 120 can be improved.
  • the material for forming the reflective layer include alumina, silver, white silicone resin, and barium sulfate.
  • a dielectric multilayer film or the like may be used for the reflective layer.
  • FIG. 5 is a cross-sectional view showing the light source unit of the present embodiment.
  • the light source unit 120 of the second embodiment shown in FIGS. 3 and 4 is further provided with the second wavelength selection means 5.
  • the light source unit 130 of the present embodiment is shown in FIGS. 3 and 4 except that the light source unit 130 further includes the second wavelength selection means 5 disposed on the light emitting surface 41 of the light emitting means 1.
  • the configuration is the same as that of the light source unit 120 of the second embodiment.
  • the heat dissipation means 3 is an arbitrary constituent member and may not be included. However, it is preferable to include this, and this is the same for the fourth and subsequent embodiments.
  • the second wavelength selection unit 5 reflects the light 31 in the second wavelength band and transmits the light 30 in the first wavelength band, and a side opposite to the second reflection surface 45a ( In FIG. 5, it has the 2nd output surface 45b which permeate
  • the second wavelength selection means 5 for example, a dielectric multilayer film or the like can be used.
  • the second reflection surface 45 a and the second emission surface 45 b of the second wavelength selection unit 5 are disposed on the opposite sides of the second wavelength selection unit 5.
  • the present invention is not limited to this example.
  • the second reflecting surface is disposed on the same surface as the second emitting surface, and the second emitting surface is provided. May also serve as the second reflecting surface.
  • the light 31 in the second wavelength band incident on the light emitting surface 41 of the light emitting means 1 is reflected by the second wavelength selecting means 5. For this reason, according to this embodiment, absorption of the light 31 of the 2nd wavelength band by the light emission means 1 can be suppressed, and a light source unit with higher luminous efficiency can be obtained.
  • the light source units of Embodiments 4 to 9 and 11 to 13 described later may include the second wavelength selection unit 5.
  • FIG. 6 is a cross-sectional view showing the light source unit of the present embodiment.
  • the light source unit 140 of this embodiment a part of the wavelength converting means 2 and the heat radiating means 3 of the light source unit 120 of the second embodiment shown in FIG. 3 and FIG.
  • the light source unit 140 of the present embodiment is shown in FIGS. 3 and 4 except that one of the four sets of wavelength conversion means 2 and heat dissipation means 3 is replaced with the reflection means 7.
  • the configuration is the same as that of the light source unit 120 of the second embodiment.
  • the reflecting means 7 has a third reflecting surface 47 that reflects the light 30 in the first wavelength band and the light 31 in the second wavelength band.
  • Examples of the material for forming the reflecting means 7 include alumina, silver, white silicone resin, and barium sulfate.
  • a dielectric multilayer film or the like may be used.
  • the number of the heat radiating means 3 is reduced by replacing one of the four sets of the wavelength converting means 2 and the heat radiating means 3 with the reflecting means 7, and the configuration of the light source unit is simplified. And miniaturization.
  • the light source unit 140 shown in FIG. 6 one set of the four sets of wavelength conversion means 2 and heat dissipation means 3 is replaced with the reflection means 7.
  • the light source unit of this embodiment is not limited to this.
  • two or three sets of the four sets of wavelength conversion means 2 and heat dissipation means 3 may be replaced with the reflection means 7. If there is at least one wavelength converting means 2, the first wavelength selection is performed by converting the wavelength of the light 30 in the first wavelength band emitted from the light emitting surface 41 of the light emitting means 1 to the light 31 in the second wavelength band. The light can be emitted from the first emission surface 44b of the means 4.
  • FIG. 7 is a perspective view showing the light source unit of the present embodiment.
  • FIG. 8 is a cross-sectional view of the light source unit of the present embodiment shown in FIG. 7 as seen in the II direction.
  • the light source unit 141 of the present embodiment has a triangular cross section in the internal space.
  • the light source unit 141 of the present embodiment has an internal space, and the cross-sectional shape of the internal space is triangular, and the light emission is performed so as to be positioned at the bottom of the cross-sectional shape.
  • the light emitting surface 41 of the means 1 is disposed, and the incident / exit surface 42 of the wavelength converting means 2 and the first reflecting surface 44a of the first wavelength selecting means 4 are respectively positioned so as to be located on the remaining two sides of the cross-sectional shape.
  • the third reflecting surfaces 47 of the two reflecting means 7 are arranged on both sides of the incident / exit surface 42 of the wavelength converting means 2 and the first reflecting face 44a of the first wavelength selecting means 4. None) is arranged.
  • the light emitting means 1 and the wavelength converting means 2 are arranged so as to face each other, so that the light emitting surface of the light emitting means 1 is compared with the light source unit 140 of the fourth embodiment shown in FIG.
  • the light 30 in the first wavelength band incident on 41 decreases. For this reason, according to this embodiment, absorption of the light 30 of the 1st wavelength band by the light emission means 1 can be suppressed, and a light source unit with higher luminous efficiency can be obtained.
  • FIG. 9 is a cross-sectional view showing the light source unit of the present embodiment.
  • the incident / exit surface 42 of the wavelength conversion means 2 of the light source unit 141 of Embodiment 5 shown in FIGS. 7 and 8 is a curved surface.
  • the light source unit 142 of the present embodiment is the same as the light source unit 141 of the fifth embodiment shown in FIGS. 7 and 8 except that the incident / exit surface 42 of the wavelength converting means 2 is a curved surface. It is a configuration.
  • the light source unit 142 of the present embodiment by making the incident / exit surface 42 of the wavelength converting means 2 into a curved surface, the area of the incident / exit surface 42 can be increased. Thereby, the incident light quantity of the light 30 of the 1st wavelength band per unit area of the entrance / exit surface 42 can be decreased, and the temperature rise of the wavelength conversion means 2 can be suppressed.
  • FIG. 10 is a cross-sectional view showing the light source unit of the present embodiment.
  • FIGS. 1 to 9 are shown rotated 90 degrees to the right.
  • the light emitting means 1 is on the left and the first wavelength selecting means 4 is on the right. Yes.
  • the light source unit 150 of the present embodiment the light source unit 120 of the second embodiment shown in FIGS. 3 and 4 further includes a first light guide unit 27.
  • the light source unit 150 of the present embodiment has the same configuration as the light source unit 120 of the second embodiment shown in FIGS. 3 and 4 except that it further includes a first light guide means 27. is there.
  • the 1st light guide means 27 is the cylinder shape same shape as the side surface of the inner surface shape of the internal space of the said light source unit.
  • the first light guide means 27 has a fourth reflecting surface 57 that reflects the light 30 in the first wavelength band and the light 31 in the second wavelength band.
  • the first wavelength selection unit 4 is arranged on the upper surface (the right side in FIG. 10) via the fourth reflection surface 57 of the first light guide unit 27 in the inner surface shape.
  • a first reflecting surface 44a is disposed.
  • the first light guide unit 27 operates as a light pipe for the light 31 in the second wavelength band. That is, the light 31 in the second wavelength band emitted from the incident / exiting surface 42 of the wavelength converting unit 2 is repeatedly specularly reflected by the fourth reflecting surface 57 of the first light guiding unit 27, and the first wavelength selecting unit 4 is emitted from the first emission surface 44b. Thereby, the intensity distribution of the light 31 in the second wavelength band emitted from the first emission surface 44b of the first wavelength selection unit 4 is made more uniform.
  • the intensity distribution of the light 31 in the second wavelength band emitted from the light source unit 150 is uniform, so that light is emitted from the projector to the screen or the like. When projected, unevenness in illuminance on the screen can be suppressed.
  • FIG. 11 is a cross-sectional view showing the light source unit of the present embodiment.
  • FIG. 11 as in FIG. 10, for convenience, FIGS. 1 to 9 are shown rotated 90 degrees to the right.
  • the light emitting means 1 is on the left and the first wavelength selecting means 4 is on the left.
  • the light source unit 120 of the second embodiment shown in FIGS. 3 and 4 further includes a second light guide unit 37.
  • the light source unit 160 of the present embodiment has the same configuration as the light source unit 120 of the second embodiment shown in FIGS. 3 and 4 except that it further includes a second light guide unit 37. is there.
  • the first shape of the first wavelength selection unit 4 is formed on the upper surface (right side in FIG. 11) via the second light guide unit 37 in the inner surface shape of the internal space of the light source unit.
  • the reflective surface 44a is disposed.
  • the aperture of the second light guide unit 37 extends from the light emitting surface 41 of the light emitting unit 1 toward the first reflecting surface 44 a of the first wavelength selecting unit 4.
  • the second light guiding means 37 is formed of a medium that can transmit light (for example, glass, resin, etc.).
  • the refractive index of the medium is different from the refractive index of the atmosphere (for example, air) at the interface in contact with the medium. Thereby, the interface can reflect the light transmitted through the inside of the medium, and the second light guide unit 37 is formed with the fifth reflecting surface 15 that reflects a part of the incident light.
  • the fifth light-reflecting surface 15 of the second light-guiding unit 37 has a high refractive index with respect to the surrounding atmosphere (for example, air). A part of the incident light may be Fresnel reflected or totally reflected by the fifth reflecting surface 15.
  • the second light guiding means 37 has an incident surface 13 on the four wavelength converting means 2 side and an emitting surface 14 on the first wavelength selecting means 4 side.
  • the entrance surface 13 and the exit surface 14 transmit the light 30 in the first wavelength band and the light 31 in the second wavelength band.
  • the entrance surface 13 and the exit surface 14 for example, a configuration in which reflection of light at the interface is suppressed by a dielectric multilayer film, a fine structure, or the like can be used.
  • the second light guiding means 37 operates as a rod integrator for the light 31 in the second wavelength band. That is, the light 31 in the second wavelength band emitted from the incident / exit surface 42 of the wavelength conversion means 2 is repeatedly specularly reflected by the fifth reflection surface 15 of the second light guide means 37, and the first wavelength selection means 4 is emitted from the first emission surface 44b. Thereby, the intensity distribution of the light 31 in the second wavelength band emitted from the first emission surface 44b of the first wavelength selection unit 4 is made more uniform.
  • the aperture of the second light guide unit 37 extends from the incident surface 13 toward the output surface 14.
  • the light source unit of this embodiment is not limited to this.
  • the aperture of the second light guide unit may be constant from the incident surface toward the exit surface, or may be narrowed from the entrance surface toward the exit surface.
  • the emission surface 14 of the second light guide unit 37 and the first wavelength selection unit 4 have a first area relative to the area of the incident surface 13 of the second light guide unit 37.
  • the emitted light from the first emission surface 44 b of the first wavelength selection unit 4 is incident on the incident surface 13 of the second light guide unit 37.
  • the emission angle is narrower than the light that is transmitted. This is because when the light is reflected by the fifth reflecting surface 15 of the tapered second light guide unit 37, the light emission angle becomes narrower. As a result, the etendue of the light source unit 160 does not increase.
  • the intensity distribution of the light 31 in the second wavelength band emitted from the light source unit 160 is uniform, so that light is emitted from the projector to the screen or the like.
  • unevenness in illuminance on the screen can be suppressed.
  • the light source unit 160 of this embodiment there are about several hundred ⁇ m between the emission surface 14 of the second light guide unit 37 and the first reflection surface 44 a of the first wavelength selection unit 4. There may be a slight gap (air layer). In order to prevent light leakage, the reflecting means may be arranged at both ends (upper and lower ends in FIG. 11) of the gap.
  • the emission surface 14 of the second light guide unit 37 and the first reflection surface 44a of the first wavelength selection unit 4 may be in close contact with each other. Further, the emission surface 14 of the second light guide unit 37 may also serve as the first reflection surface 44 a of the first wavelength selection unit 4.
  • the first wavelength selection means 4 is disposed on the emission surface 14 side of the second light guide means 37.
  • the light source unit of this embodiment is not limited to this.
  • the first wavelength selection unit 4 may be disposed on the incident surface 13 side of the second light guide unit 37.
  • the first wavelength selection unit 4 is disposed on the emission surface 14 side of the second light guide unit 37 as shown in FIG. Is preferred.
  • FIG. 12 is a cross-sectional view showing the light source unit of the present embodiment.
  • the light source unit 120 of the second embodiment shown in FIGS. 3 and 4 further includes a polarizer 16.
  • the light source unit 170 of the present embodiment further includes a polarizer 16 disposed on the first emission surface 44 b of the first wavelength selection unit 4, as shown in FIG. 3 and FIG.
  • the polarizer 16 has a transmission axis, and is a reflective polarizer that transmits light having a polarization direction parallel to the transmission axis and reflects light having a polarization direction perpendicular to the transmission axis.
  • a wire grid polarizer, a multilayer film using an organic material, or the like can be used as the polarizer 16.
  • the light 31 in the second wavelength band incident on the polarizer 16 passes through the polarizer 16 and is orthogonal to the transmission axis.
  • the light 31 in the second wavelength band having a polarization component parallel to the direction is reflected by the polarizer 16.
  • the light 31 in the second wavelength band reflected by the polarizer 16 passes through the first wavelength selection unit 4 and is returned to the internal space of the light source unit 170.
  • the light 31 returned to the internal space is reflected a plurality of times in the internal space and the polarization direction is changed, and then enters the polarizer 16 again.
  • the light 31 in the second wavelength band emitted from the light source unit 170 can be converted into linearly polarized light having a polarization component parallel to the transmission axis of the polarizer 16, and the polarizer 16 and the internal space By repeating the reflection in between, the amount of light 31 transmitted through the polarizer 16 can be increased.
  • the light source unit 170 of this embodiment is applied to a projector using a liquid crystal panel as a display element that spatially modulates transmitted light
  • the light use efficiency of the projector is improved and the amount of light emitted from the projector is improved.
  • the liquid crystal panel has polarization dependency, and spatially modulates only the light of the polarization component in a specific direction, and does not modulate the light of the polarization component in a direction orthogonal to the specific direction. For this reason, light having a polarization component in a direction orthogonal to the specific direction cannot be used in a projector using the above-described liquid crystal panel.
  • the light emitted from the light source unit 170 is linearly polarized light having a polarization component in a specific direction, and is repeatedly reflected between the polarizer 16 and the internal space to cause the light in the specific direction. Since the ratio of the light of the polarization component is high, the amount of light that is not used in the optical system as described above can be reduced, and the amount of light emitted from the projector can be improved.
  • the light source units of the above-described Embodiments 1 and 3 to 8 and Embodiments 10 to 14 to be described later may include a polarizer 16.
  • FIG. 13 is a cross-sectional view showing the light source unit of the present embodiment.
  • the light source unit 180 of the present embodiment is an example in which an LED is used as the light emitting unit 1.
  • the light source unit 180 of the present embodiment includes a substrate 17, a light emitting means (LED in this example) 1 disposed on the substrate 17, and a second disposed on the light emitting surface 41 of the LED 1.
  • the first wavelength selection means 4 arranged on the upper part of the means 3 is included as a main component.
  • the substrate 17 is electrically connected to a power supply device (not shown).
  • the LED 1 is electrically connected to the substrate 17 via the bonding wire 24.
  • the reflection means 7 is arranged so as to surround the LED 1. Further, the reflection means 7 may have a role of fixing the substrate 17 and the second wavelength selection means 5.
  • the substrate 17 and the four heat dissipating means 3 are mechanically connected by an adhesive or the like.
  • the second wavelength selection means 5 and the four reflection means 7 and the first wavelength selection means 4 and the four heat dissipation means 3 are also mechanically connected by an adhesive or the like.
  • the size of the second wavelength selection unit 5 and the first wavelength selection unit 4 is set larger than the size necessary for closing the inner portions of the four wavelength conversion units 2.
  • the second wavelength selection unit 5 and the four reflection units 7 and the first wavelength selection unit 4 and the four heat dissipation units 3 can be easily mechanically connected, and light leakage can be suppressed.
  • the luminous efficiency of the unit 180 can be further increased.
  • the area inside the portion in contact with the four wavelength converting means 2 is the surface of the second wavelength selecting means 5 on the four wavelength converting means 2 side. Of these, it is preferable that the area is the same as or smaller than the area inside the portion in contact with the four wavelength conversion means 2.
  • the area inside the portion in contact with the four wavelength converting means 2 is the same as the area of the light emitting surface 41 of the LED 1, or It is preferable to set it narrowly.
  • the LED 1 generates light 30 of the first wavelength band in a light emitting layer (not shown) inside the LED 1 according to the current value supplied from the power supply device, and emits the light from the light emitting surface 41 (first light emission). Process).
  • the light 30 in the first wavelength band emitted from the light emitting surface 41 of the LED 1 incident on the first reflecting surface 44 a of the first wavelength selecting unit 4 is converted into the first reflecting surface 44 a of the first wavelength selecting unit 4. (First reflection process).
  • the light 30 in the first wavelength band reflected by the first reflecting surface 44a of the first wavelength selecting unit 4 that has entered the light emitting surface 41 of the LED 1 again is reflected by the light emitting surface 41 of the LED 1 (second reflection). Process).
  • the light 30 in the first wavelength band emitted from the light emitting surface 41 of the LED 1 and incident on the incident / exiting surface 42 of the wavelength converting means 2 is reflected by the first reflecting surface 44 a of the first wavelength selecting means 4.
  • the light 30 in the first wavelength band and the light 30 in the first wavelength band reflected by the light emitting surface 41 of the LED 1 are wavelength-converted, and the light in the second wavelength band is reflected from the incident / exit surface 42 of the wavelength converting means 2. 31 is emitted (second light emission step).
  • the light 31 in the second wavelength band incident on the light emitting surface 41 of the LED 1 is reflected by the light emitting surface 41 of the LED 1 (third reflection step).
  • the light 31 in the second wavelength band that is incident again on the incident / exit surface 42 of the wavelength converting means 2 is reflected by the incident / exit surface 42 of the wavelength converting means 2 (fourth reflecting step).
  • the light 31 in the second wavelength band reflected by the incident / exit surface 42 of the wavelength converting means 2 is on the side opposite to the side on which the light 30 in the first wavelength band of the first wavelength selecting means 4 is incident.
  • FIG. 14 is a cross-sectional view showing the light source unit of the present embodiment.
  • the angle formed by a part of the wavelength converting means 2 of the light source unit 120 of the second embodiment shown in FIGS. 3 and 4 and the light emitting means 1 and the first wavelength selecting means 4 is changed. Is.
  • the light source unit 190 of the present embodiment is different from that shown in FIG. 3 except that the angle formed between two of the four wavelength conversion means 2 and the light emitting means 1 and the first wavelength selection means 4 is not a right angle. And it is the same structure as the light source unit 120 of Embodiment 2 shown in FIG.
  • the ratio of the light 30 in the first wavelength band incident on the light emitting means 1 can be suppressed, and the light emission efficiency of the light source unit 190 can be further increased.
  • FIG. 15 is a cross-sectional view showing the light source unit of the present embodiment.
  • the light source unit 200 of the present embodiment is obtained by changing the shape of the first wavelength selection unit 4 of the light source unit 120 of the second embodiment shown in FIGS. 3 and 4.
  • the light source unit 200 of the present embodiment is the second embodiment shown in FIGS. 3 and 4 except that the first wavelength selection unit 4 has a shape in which the first reflecting surface 44 a is raised.
  • the light source unit 120 has the same configuration.
  • the ratio of the light 30 in the first wavelength band incident on the light emitting means 1 can be suppressed, and the light emission efficiency of the light source unit 200 can be further increased.
  • FIG. 16 is a cross-sectional view showing the light source unit of the present embodiment.
  • the light source unit 210 of the present embodiment has a plurality of light emitting means 1.
  • the light source unit 210 of the present embodiment has an internal space, and the inner surface of the internal space has a quadrangular prism shape (a rectangular parallelepiped shape).
  • An incident / exit surface 42 of the wavelength converting means 2 is disposed on the bottom surface of the inner surface shape.
  • a first reflection surface 44a of the first wavelength selection means 4 is disposed on the upper surface of the inner surface shape.
  • Four second wavelength selection means 5 are arranged on the side surface of the inner surface shape, and four light emitting means 1 are arranged outside the four second wavelength selection means 5.
  • the intensity of the light 30 in the first wavelength band can be improved and the light emission efficiency of the light source unit 210 can be further increased.
  • FIG. 17 is a cross-sectional view showing the light source unit of the present embodiment.
  • the light source unit of the present embodiment is obtained by changing the size of the four reflecting means 7 of the light source unit 180 of the tenth embodiment shown in FIG.
  • the light source unit 220 of the present embodiment is the light source of the tenth embodiment shown in FIG. 13 except that the second wavelength selection unit 5 is sized to fit inside the four reflection units 7.
  • the configuration is the same as that of the unit 180.
  • the light source unit 220 of the present embodiment by providing the four reflecting means 7 on the side surface of the second wavelength selecting means 5, light leakage can be further suppressed and the light emission efficiency of the light source unit 220 can be further increased. it can.
  • Light emission means 2 Wavelength conversion means 3 Heat radiation means 4 1st wavelength selection means 5 2nd wavelength selection means 7 Reflection means 13 Incident surface 14 Outgoing surface 15 5th reflection surface 16 Polarizer 17 Substrate 24 Bonding wire 27 1st Light guide means 30 First wavelength band light 31 Second wavelength band light 37 Second light guide means 41 Light emitting surface 42 Incoming / exiting surface 44a First reflecting surface 44b First emitting surface 45a Second Reflective surface 45b Second exit surface 47 Third reflective surface 57 Fourth reflective surface 110, 120, 130, 140, 141, 142, 150, 160, 170, 180, 190, 200, 210, 220 Light source unit

Abstract

 光の利用効率が高い光源ユニットを提供する。 本発明の光源ユニット(110)は、発光手段(1)と、波長変換手段(2)と、第1の波長選択手段(4)とを含み、発光手段(1)は、第1の波長帯域の光(30)を出射し、かつ、入射した光を反射して出射する発光面(41)を有し、波長変換手段(2)は、第1の波長帯域の光(30)が入射すると、第1の波長帯域の光(30)が入射した側と同じ側に第2の波長帯域の光(31)を出射し、かつ、再度入射した第2の波長帯域の光(31)を反射して出射する入出射面(42)を有し、第1の波長選択手段(4)は、第1の波長帯域の光(30)を反射し、第2の波長帯域の光(31)を透過させる第1の反射面(44a)を有し、発光手段(1)及び第1の波長選択手段(4)は、発光手段(1)の発光面(41)から出射した第1の波長帯域の光(30)、第1の波長選択手段(4)の第1の反射面(44a)で反射した第1の波長帯域の光(30)、及び、発光手段(1)の発光面(41)に入射し反射した第1の波長帯域の光(30)が、波長変換手段(2)の入出射面(42)に入射されるように配置される。

Description

光源ユニット、投射型表示装置、照明器具及び光出射方法
 本発明は、光源ユニット、投射型表示装置、照明器具及び光出射方法に関する。
 プロジェクタ等の投射型表示装置及び照明器具等では、高輝度かつ低消費電力で、長寿命の光源ユニットが求められている。現在、この要求を満たす光源ユニットとして、発光ダイオード(LED)又は半導体レーザ(LD)を用いたものが提案されている。LED及びLDは、半導体によって作製され、InGaN系の半導体材料を用いることで青色の光を発生させることができ、AlGaInP系の半導体材料を用いることで赤色の光を発生させることができることが知られている。しかし、InGaN系及びAlGaInP系の半導体材料を用いたLED又はLDは、緑色の光の発光効率が低い、グリーンギャップと呼ばれる課題を有している。この課題を解決する方法として、LED又はLDと、蛍光体とを組み合わせた光源ユニットが提案されている。
 例えば、特許文献1には、蛍光体の自己発熱を抑制した、高出力の光源ユニットが記載されている。この光源ユニットは、発光手段と、前記発光手段からの光の少なくとも一部を吸収し異なる波長を有する光を発する蛍光体を含む波長変換手段とを備え、さらに前記波長変換手段と接する放熱手段を有する。この光源ユニットによれば、前記波長変換手段と接する放熱手段により、蛍光体の温度上昇を抑制することができる。
特開2005-294185号公報
 しかしながら、特許文献1に記載の光源ユニットには、光漏れが生じ、光の利用効率が低いという問題があった。
 本発明の目的は、光の利用効率が高い光源ユニット、投射型表示装置、照明器具及び光出射方法を提供することにある。
 前記目的を達成するために、本発明の光源ユニットは、
発光手段と、波長変換手段と、第1の波長選択手段とを含み、
前記発光手段は、第1の波長帯域の光を出射し、かつ、入射した光を反射して出射する発光面を有し、
前記波長変換手段は、前記第1の波長帯域の光が入射すると、前記第1の波長帯域の光が入射した側と同じ側に第2の波長帯域の光を出射し、かつ、入射した前記第2の波長帯域の光を反射して出射する入出射面を有し、
前記第1の波長選択手段は、前記第1の波長帯域の光を反射し、前記第2の波長帯域の光を透過させる第1の反射面を有し、
前記発光手段及び前記第1の波長選択手段は、前記発光手段の前記発光面から出射した前記第1の波長帯域の光、前記第1の波長選択手段の前記第1の反射面で反射した前記第1の波長帯域の光、及び、前記発光手段の前記発光面に入射し反射した前記第1の波長帯域の光が、前記波長変換手段の前記入出射面に入射されるように配置される。
 また、本発明の光源ユニットは、
発光手段と、波長変換手段と、第1の波長選択手段と、第2の波長選択手段とを含み、
前記発光手段は、第1の波長帯域の光を出射し、かつ、入射した光を反射して出射する発光面を有し、
前記波長変換手段は、前記第1の波長帯域の光が入射すると、前記第1の波長帯域の光が入射した側と同じ側に第2の波長帯域の光を出射し、かつ、入射した前記第2の波長帯域の光を反射して出射する入出射面を有し、
前記第1の波長選択手段は、前記第1の波長帯域の光を反射し、前記第2の波長帯域の光を透過させる第1の反射面を有し、
前記第2の波長選択手段は、前記第2の波長帯域の光を反射し、前記第1の波長帯域の光を透過させる第2の反射面を有し、
前記発光手段、前記第1の波長選択手段及び前記第2の波長選択手段は、前記発光手段の前記発光面から出射した前記第1の波長帯域の光、前記第1の波長選択手段の前記第1の反射面で反射した前記第1の波長帯域の光、前記第2の波長選択手段の前記第2の反射面を透過した前記第1の波長帯域の光、及び、前記発光手段の前記発光面に入射し反射した前記第1の波長帯域の光が、前記波長変換手段の前記入出射面に入射されるように配置される。
 本発明の投射型表示装置は、前記本発明の光源ユニットを含む。
 本発明の照明器具は、前記本発明の光源ユニットを含む。
 本発明の光出射方法は、
発光手段と、波長変換手段と、第1の波長選択手段とを含み、
前記発光手段は、第1の波長帯域の光を出射し、かつ、入射した光を反射して出射する発光面を有し、
前記波長変換手段は、前記第1の波長帯域の光が入射すると、前記第1の波長帯域の光が入射した側と同じ側に反射光として第2の波長帯域の光を出射し、かつ、再度入射した前記第2の波長帯域の光を反射して出射する入出射面を有し、
前記第1の波長選択手段は、前記第1の波長帯域の光を反射し、前記第2の波長帯域の光を透過させる第1の反射面を有する光源ユニットを用い、
前記発光手段の前記発光面から前記第1の波長帯域の光を出射する第1の光出射工程と、
前記第1の波長選択手段の前記第1の反射面に入射した前記発光手段の前記発光面から出射された前記第1の波長帯域の光を、前記第1の波長選択手段の前記第1の反射面で反射する第1の反射工程と、
前記発光手段の前記発光面に再度入射した前記第1の波長選択手段の前記第1の反射面で反射された前記第1の波長帯域の光を、前記発光手段の前記発光面で反射する第2の反射工程と、
前記波長変換手段の前記入出射面に入射した前記発光手段の前記発光面から出射された前記第1の波長帯域の光、前記第1の波長選択手段の前記第1の反射面で反射された前記第1の波長帯域の光及び前記発光手段の前記発光面で反射された前記第1の波長帯域の光を波長変換し、前記波長変換手段の前記入出射面から反射光として前記第2の波長帯域の光を出射する第2の光出射工程と、
前記発光手段の前記発光面に入射した第2の波長帯域の光を、前記発光手段の前記発光面で反射する第3の反射工程と、
前記波長変換手段の前記入出射面に再度入射した前記第2の波長帯域の光を、前記波長変換手段の前記入出射面で反射する第4の反射工程と、
前記第1の波長選択手段に入射した前記波長変換手段の前記入出射面から出射された前記第2の波長帯域の光、前記発光手段の前記発光面で反射された前記第2の波長帯域の光及び前記波長変換手段の前記入出射面で反射された前記第2の波長帯域の光を、前記第1の波長選択手段の前記第1の波長帯域の光が入射する側とは反対の側から出射する第3の光出射工程とを含む。
 本発明によれば、光の利用効率が高い光源ユニット、投射型表示装置、照明器具及び光出射方法を提供することができる。
図1は、実施形態1の光源ユニットを示す斜視図である。 図2は、実施形態1の光源ユニットを示す断面図である。 図3は、実施形態2の光源ユニットを示す斜視図である。 図4は、実施形態2の光源ユニットを示す断面図である。 図5は、実施形態3の光源ユニットを示す断面図である。 図6は、実施形態4の光源ユニットを示す断面図である。 図7は、実施形態5の光源ユニットを示す斜視図である。 図8は、図7に示す実施形態5の光源ユニットのI-I方向に見た断面図である。 図9は、実施形態6の光源ユニットを示す断面図である。 図10は、実施形態7の光源ユニットを示す断面図である。 図11は、実施形態8の光源ユニットを示す断面図である。 図12は、実施形態9の光源ユニットを示す断面図である。 図13は、実施形態10の光源ユニットを示す断面図である。 図14は、実施形態11の光源ユニットを示す断面図である。 図15は、実施形態12の光源ユニットを示す断面図である。 図16は、実施形態13の光源ユニットを示す断面図である。 図17は、実施形態14の光源ユニットを示す断面図である。
 以下、本発明の光源ユニットについて、例を挙げて詳細に説明する。ただし、本発明は、以下の実施形態に限定されない。なお、以下の図において、同一部分には、同一符号を付している。また、図面においては、説明の便宜上、各部の構造は適宜簡略化して示す場合があり、各部の寸法比等は、実際とは異なる場合がある。
[実施形態1]
 図1は、本実施形態の光源ユニットを示す斜視図である。図2は、本実施形態の光源ユニットを示す断面図である。図1及び図2に示すように、本実施形態の光源ユニット110は、発光手段1と、4つの波長変換手段2と、第1の波長選択手段4とを主要な構成要素として含む。本例において、発光手段1、4つの波長変換手段2及び第1の波長選択手段4の断面形状は、いずれも矩形である。本実施形態の光源ユニット110は、内部空間を有し、前記内部空間の内面形状は柱状であり、前記内面形状の底面に発光手段1の発光面41が配置され、前記内面形状の上面に第1の波長選択手段4の第1の反射面44aが配置され、前記内面形状の側面の全部が、波長変換手段2の入出射面42である。本発明において、光源ユニットの向きに制限はなく、例えば、図1及び図2に示したのと上下を反転させても(発光手段1を上に、第1の波長選択手段4を下にしても)よいし、90度回転させても(発光手段1及び第1の波長選択手段4を側部に配置しても)よい。これについては、後述の実施形態2~14においても同様である。なお、便宜上、本発明においては、発光手段1の発光面41を底面と、第1の波長選択手段4の第1の反射面44aを上面と記載する。
 発光手段1は、第1の波長帯域の光30を出射し、かつ、入射した光を反射して出射する発光面41を有する。発光手段1としては、例えば、LED又はLD等の面発光型の固体光源、又は光源及び導光板からなる面発光デバイス等を用いることができる。第1の波長帯域の光30は、例えば、所望の色(例えば、赤、緑、青等)の波長帯域の光とすればよく、好ましくは、青色の波長帯域の光である。
 波長変換手段2は、第1の波長帯域の光30が入射すると、第1の波長帯域の光30が入射した側と同じ側に第2の波長帯域の光31を出射し、かつ、入射した第2の波長帯域の光31を反射して出射する入出射面42を有する。第2の波長帯域の光31は、第1の波長帯域の光30と異なる波長帯域の光であればいかなる光であってもよく、好ましくは、緑色の波長帯域の光である。波長変換手段2は、第1の波長帯域の光30を吸収し、第2の波長帯域の光31を出射する蛍光体を含むことが好ましい。波長変換手段2は、例えば、前記蛍光体を樹脂等の結着剤で固着させることで製造することができる。前記蛍光体としては、例えば、YAlO:Ce、YAl12:Ce、YAl:Ce、(Y0.8Gd0.2Al12:Ce、Y(Al0.8Ga0.212:Ce、Tb2.95Ce0.05Al12、Y2.90Ce0.05Tb0.05Al12、Y2.94Ce0.05Pr0.01Al12、Y2.90Ce0.05Pr0.05Al12、(Re1-xSm(Al1-yGa12:Ce(Reは、Y、Gd及びLaからなる群から選択される少なくとも一種の元素、0≦x<1、0≦y<1)等のイットリウム・アルミニウム・ガーネット系蛍光体等のアルミニウム・ガーネット系蛍光体;(Lu1-a-b(Al1-cGa12(Rは、Ceを必須とする少なくとも1種以上の希土類元素、Mは、Sc、Y、La及びGdからなる群から選択される少なくとも1種の元素、0.0001≦a≦0.5、0≦b≦0.5、0.0001≦a+b≦1、0≦c≦0.8)等のルテチウム・アルミニウム・ガーネット系蛍光体;SrSi:Eu,Pr、BaSi:Eu,Pr、MgSi:Eu,Pr、ZnSi:Eu,Pr、SrSi10Eu,Pr、BaSi10:Eu,Ce、MgSi10:Eu,Ce、ZnSi10:Eu,Ce、SrGe:Eu,Ce、BaGe:Eu,Pr、MgGe:Eu,Pr、ZnGe:Eu,Pr、SrGe10:Eu,Ce、BaGe10:Eu,Pr、MgGe10:Eu,Pr、ZnGe10:EuCe、Sr1.8Ca0.2Si:Eu,Pr、Ba1.8Ca0.2Si:Eu,Ce、Mg1.8Ca0.2Si:Eu,Pr、Zn1.8Ca0.2Si:Eu,Ce、Sr0.8Ca0.2Si10:Eu,La、Ba0.8Ca0.2Si10:Eu,La、Mg0.8Ca0.2Si10:Eu,Nd、Zn0.8Ca0.2Si10:Eu,Nd、Sr0.8Ca0.2Ge10:Eu,Tb、Ba0.8Ca0.2Ge10:Eu,Tb、Mg0.8Ca0.2Ge10:Eu,Pr、Zn0.8Ca0.2Ge10:Eu,Pr、Sr0.8Ca0.2SiGeN10:Eu,Pr、Ba0.8Ca0.2SiGeN10:Eu,Pr、Mg0.8Ca0.2SiGeN10:Eu,Y、Zn0.8Ca0.2SiGeN10:Eu,Y、SrSi:Pr、BaSi:Pr、SrSi:Tb、BaGe10:Ce等の窒化物系蛍光体;L{(2/3)x+(4/3)y-(2/3)z}:R(Lは、Be、Mg、Ca、Sr、Ba及びZnからなる群から選択される少なくとも一種の元素、Mは、C、Si、Ge、Sn、Ti、Zr及びHfからなる群から選択される少なくとも一種の元素、Rは、希土類元素、x、y及びzは、x=2、4.5≦y≦6、0.01<z<1.5;又はx=1、6.5≦y≦7.5、0.01<z<1.5;又はx=1、1.5≦y≦2.5、1.5≦z≦2.5を満足する)等の酸窒化物系蛍光体;(2-x-y)SrO・x(Ba,Ca)O・(1-a-b-c-d)SiO・aPbAlcBdGeO:yEu2+(0<x<1.6、0.005<y<0.5、0<a、b、c、d<0.5)、(2-x-y)BaO・x(Sr,Ca)O・(1-a-b-c-d)SiO・aPbAlcBdGeO:yEu2+(0.01<x<1.6、0.005<y<0.5、0<a、b、c、d<0.5)等のアルカリ土類金属ケイ酸塩蛍光体;M(PO(Cl,Br):Eu(Mは、Sr、Ca、Ba及びMgからなる群から選択される少なくとも一種の元素)、Ca10(POClBr:Mn,Eu等のアルカリ土類金属ハロゲンアパタイト蛍光体;BaMgAl1627:Eu、BaMgAl1627:Eu,Mn、SrAl1425:Eu、SrAl:Eu、CaAl:Eu、BaMgAl1017:Eu、BaMgAl1017:Eu,Mn等のアルカリ土類金属アルミン酸塩系蛍光体;LaS:Eu、YS:Eu、GdS:Eu等の希土類酸硫化物蛍光体;等の無機蛍光体があげられる。また、前記蛍光体としては、前述の無機蛍光体に限らず、例えば、有機蛍光体や半導体量子ドット蛍光体等を用いることができる。前記蛍光体は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
 第1の波長選択手段4は、第1の波長帯域の光30を反射し、第2の波長帯域の光31を透過させる第1の反射面44aと、第1の反射面44aと反対側に位置し第2の波長帯域の光31を透過して出射する第1の出射面44bとを有する。第1の波長選択手段4としては、例えば、誘電体多層膜やホログラフィック素子、フォトニック結晶等を使用した、特定の波長帯域の光を透過させ、それ以外の光を反射する特性を有するものを用いることができる。
 図2に示すように、本実施形態の光源ユニット110は、内部空間を有する。前記内部空間の内面形状は、四角柱(直方体)状である。前記内面形状の底面には、発光手段1の発光面41が配置されている。前記内面形状の上面には、第1の波長選択手段4の第1の反射面44aが配置されている。前記内面形状の側面には、4つの波長変換手段2の入出射面42が配置されている。このように、光源ユニット110では、発光手段1と第1の波長選択手段4とは、発光手段1の発光面41から出射した第1の波長帯域の光30と、第1の波長選択手段4の第1の反射面44aで反射した第1の波長帯域の光30と、発光手段1の発光面41に入射し反射した第1の波長帯域の光30が、波長変換手段2の入出射面42に入射されるように配置されている。
 つぎに、図2を参照して、本実施形態の光源ユニット110を用いた光出射方法について説明する。
 まず、発光手段1の発光面41から第1の波長帯域の光30を出射する(第1の光出射工程)。
 第1の波長選択手段4の第1の反射面44aに入射した発光手段1の発光面41から出射された第1の波長帯域の光30を、第1の波長選択手段4の第1の反射面44aで反射する(第1の反射工程)。
 発光手段1の発光面41に再度入射した第1の波長選択手段4の第1の反射面44aで反射された第1の波長帯域の光30を、発光手段1の発光面41で反射する(第2の反射工程)。
 波長変換手段2の入出射面42に入射した、発光手段1の発光面41から出射された第1の波長帯域の光30、第1の波長選択手段4の第1の反射面44aで反射された第1の波長帯域の光30及び発光手段1の発光面41で反射された第1の波長帯域の光30を波長変換し、波長変換手段2の入出射面42から反射光として第2の波長帯域の光31を出射する(第2の光出射工程)。
 発光手段1の発光面41に入射した第2の波長帯域の光31を、発光手段1の発光面41で反射する(第3の反射工程)。
 波長変換手段2の入出射面42に再度入射した第2の波長帯域の光31を、波長変換手段2の入出射面42で反射する(第4の反射工程)。
 第1の波長選択手段4に入射した波長変換手段2の入出射面42から出射された第2の波長帯域の光31、発光手段1の発光面41で反射された第2の波長帯域の光31及び波長変換手段2の入出射面42で反射された第2の波長帯域の光31を、第1の波長選択手段4の第1の波長帯域の光30が入射する側とは反対の側の第1の出射面44bから出射する(第3の光出射工程)。
 本実施形態の光源ユニット110を用いた光出射方法において、前記第1の光出射工程及び前記第3の光出射工程を除く各工程の実施順序に制限はなく、同時に行われる工程があってもよい。
 本実施形態の光源ユニット110によれば、第1の波長選択手段4の第1の反射面44aに入射した発光手段1の発光面41から出射された第1の波長帯域の光30を、第1の波長選択手段4の第1の反射面44aで反射した後、波長変換手段2の入出射面42に入射させて第2の波長帯域の光31に波長変換することが可能であり、光の利用効率が高まる。また、本実施形態の光源ユニット110によれば、発光手段1の発光面41に入射した第2の波長帯域の光31及び波長変換手段2の入出射面42に再度入射した第2の波長帯域の光31を、発光手段1の発光面41及び波長変換手段2の入出射面42で反射させた後、漏れなく第1の波長選択手段4の第1の出射面44bから出射させることが可能である。さらに、本実施形態の光源ユニット110によれば、光の利用効率が高いので、発光手段1の出力を低くすることができる。この結果、波長変換手段2の温度上昇を抑制し、蛍光体の温度消光を生じることなく、第1の波長帯域の光30を第2の波長帯域の光31に波長変換することが可能である。
 図1及び図2に示す光源ユニット110では、第1の波長選択手段4の第1の反射面44a及び第1の出射面44bの面積は、発光手段1の発光面41の面積と同じである。ただし、本発明は、これに限定されない。本発明において、第1の波長選択手段4の第1の反射面44a及び第1の出射面44bの面積は、発光手段1の発光面41の面積未満であってもよく、発光手段1の発光面41の面積を超えていてもよい。本発明において、第1の波長選択手段4の第1の反射面44a及び第1の出射面44bの面積は、発光手段1の発光面41の面積以下であることが好ましい。このようにすれば、第1の波長選択手段4の第1の出射面44bから出射する第2の波長帯域の光31のエテンデュを、発光手段1の発光面41から出射する第1の波長帯域の光30のエテンデュ以下とすることができる。なお、エテンデュは、発光面積×出射角度で求められる。
 本実施形態の光源ユニット110を、例えば、プロジェクタに適用する場合、光源ユニット110のエテンデュが低いほど、プロジェクタの光学系の光利用効率が向上する。そのため、光源ユニット110のエテンデュ(第1の波長選択手段4の第1の出射面44bから出射する第2の波長帯域の光31のエテンデュ)を、発光手段1の発光面41から出射する第1の波長帯域の光30のエテンデュ以下とすることにより、プロジェクタの光学系の光利用効率の低下を抑制できる。
 図1及び図2に示す光源ユニット110において、第1の波長帯域の光30及び第2の波長帯域の光31が波長変換手段2を透過するのを抑制するために、波長変換手段2における蛍光体の濃度を高くする、波長変換手段2内に散乱体を混入させる、波長変換手段2の厚さを厚くする等により、波長変換手段2の透過率を低下させてもよい。また、波長変換手段2の入出射面42と反対側の面に第1の波長帯域の光30及び第2の波長帯域の光31に対して反射特性を有する反射層を配置してもよい。これにより、波長変換手段2を透過する光を低減し、光源ユニット110における第1の波長選択手段4の第1の出射面44bから出射する第2の波長帯域の光31の光量、すなわち光源ユニット110の発光効率を向上させることができる。前記反射層の形成材料としては、例えば、アルミナ、銀、白色のシリコーン樹脂、硫酸バリウム等があげられる。前記反射層は、例えば、誘電体多層膜等を用いてもよい。
 図1及び図2に示す光源ユニット110において、発光手段1の発光面41に入射する第1の波長帯域の光30は、その一部が発光手段1に吸収される。これを抑制するために、波長変換手段2の図1及び図2におけるZ方向の長さを長くしてもよい。これにより、発光手段1の発光面41に入射する第1の波長帯域の光30の光量を低減することができる。
 図1及び図2に示す光源ユニット110では、発光手段1、4つの波長変換手段2及び第1の波長選択手段4の形状がいずれも矩形であり、光源ユニット110の内部空間の内面形状は、四角柱(直方体)状である。ただし、本実施形態の光源ユニットは、これに限定されない。本実施形態の光源ユニットにおいて、光源ユニットの内部空間の内面形状は、底面に発光手段の発光面が配置され、上面に第1の波長選択手段の第1の反射面が配置された柱状であればよく、発光手段及び第1の波長選択手段の形状、並びに波長変換手段の数及び形状を変更することで、円柱状、三角柱状、立方体状、n角柱状(nは、5以上の整数)等の任意の柱状とすればよい。
 図1及び図2に示す光源ユニット110において、第1の波長選択手段4の第1の反射面44aと第1の出射面44bとは、互いに第1の波長選択手段4において反対側に配置されている。ただし、本発明はこの例には限定されず、例えば、前記第1の波長選択手段において、前記第1の反射面が前記第1の出射面と同じ面に配置され、前記第1の出射面が前記第1の反射面を兼ねていてもよい。
[実施形態2]
 図3は、本実施形態の光源ユニットを示す斜視図である。図4は、本実施形態の光源ユニットを示す断面図である。本実施形態の光源ユニット120は、図1及び図2に示す実施形態1の光源ユニット110が、さらに、4つの放熱手段3を備えたものである。図3及び図4に示すように、本実施形態の光源ユニット120は、4つの波長変換手段2の各入出射面42と反対側の面上にそれぞれ配置された4つの放熱手段3を有すること以外は、図1及び図2に示す実施形態1の光源ユニット110と同様の構成である。
 放熱手段3の形成材料としては、熱伝導率の高い材料が好ましく、例えば、銅、アルミニウム等を用いることができる。また、放熱手段3は、ヒートシンク又はヒートパイプ等と接続されていてもよい。
 本実施形態の光源ユニット120によれば、放熱手段3が、波長変換手段2と広い面積で接しているため、波長変換手段2の温度上昇を更に抑制し、より効率的に第1の波長帯域の光30を第2の波長帯域の光31に波長変換することが可能である。
 本実施形態の光源ユニット120において、第1の波長帯域の光30及び第2の波長帯域の光31が波長変換手段2を透過し、放熱手段3に吸収されるのを抑制するために、実施形態1の光源ユニット110と同様に、波長変換手段2における蛍光体の濃度を高くする、波長変換手段2内に散乱体を混入させる、波長変換手段2の厚さを厚くする等により、波長変換手段2の透過率を低下させてもよい。また、放熱手段3による第1の波長帯域の光30及び第2の波長帯域の光31の吸収を抑制するために、波長変換手段2と放熱手段3との間に、第1の波長帯域の光30及び第2の波長帯域の光31に対して反射特性を有する反射層を配置してもよい。これにより、放熱手段3による光の吸収損失を低減し、光源ユニット120における第1の波長選択手段4の第1の出射面44bから出射する第2の波長帯域の光31の光量、すなわち光源ユニット120の発光効率を向上させることができる。前記反射層の形成材料としては、例えば、アルミナ、銀、白色のシリコーン樹脂、硫酸バリウム等があげられる。前記反射層は、例えば、誘電体多層膜等を用いてもよい。
[実施形態3]
 図5は、本実施形態の光源ユニットを示す断面図である。本実施形態の光源ユニット130は、図3及び図4に示す実施形態2の光源ユニット120が、さらに、第2の波長選択手段5を備えたものである。図5に示すように、本実施形態の光源ユニット130は、さらに、発光手段1の発光面41上に配置された第2の波長選択手段5を含むこと以外は、図3及び図4に示す実施形態2の光源ユニット120と同様の構成である。なお、本実施形態の光源ユニット130において、放熱手段3は、任意の構成部材であり、含まれなくともよいが、含むことが好ましく、この点については、実施形態4以降についても同様である。
 第2の波長選択手段5は、第2の波長帯域の光31を反射し、第1の波長帯域の光30を透過させる第2の反射面45aと、第2の反射面45aと反対側(図5において、発光手段1側)に第1の波長帯域の光30を透過して出射する第2の出射面45bとを有する。これにより、第2の波長選択手段5は、第1の波長帯域の光30を透過するとともに、第2の波長帯域の光31を反射する。第2の波長選択手段5としては、例えば、誘電体多層膜等を用いることができる。図5に示す光源ユニット130において、第2の波長選択手段5の第2の反射面45aと第2の出射面45bとは、互いに第2の波長選択手段5において反対側に配置されている。ただし、本発明はこの例には限定されず、例えば、前記第2の波長選択手段において、前記第2の反射面が前記第2の出射面と同じ面に配置され、前記第2の出射面が前記第2の反射面を兼ねていてもよい。
 本実施形態の光源ユニット130では、発光手段1の発光面41に入射する第2の波長帯域の光31が第2の波長選択手段5で反射される。このため、本実施形態によれば、発光手段1による第2の波長帯域の光31の吸収を抑制し、発光効率のより高い光源ユニットを得ることができる。
 本実施形態の光源ユニット130と同様に、後述の実施形態4~9及び11~13の光源ユニットは、第2の波長選択手段5を含んでもよい。
[実施形態4]
 図6は、本実施形態の光源ユニットを示す断面図である。本実施形態の光源ユニット140は、図3及び図4に示す実施形態2の光源ユニット120の波長変換手段2及び放熱手段3の一部が、反射手段7に置き換えられたものである。図6に示すように、本実施形態の光源ユニット140は、4組の波長変換手段2及び放熱手段3のうちの1組を反射手段7に置き換えたこと以外は、図3及び図4に示す実施形態2の光源ユニット120と同様の構成である。
 反射手段7は、第1の波長帯域の光30及び第2の波長帯域の光31を反射する第3の反射面47を有する。反射手段7の形成材料としては、例えば、アルミナ、銀、白色のシリコーン樹脂、硫酸バリウム等があげられる。反射手段7は、例えば、誘電体多層膜等を用いてもよい。
 本実施形態の光源ユニット140によれば、4組の波長変換手段2及び放熱手段3のうちの1組を反射手段7に置き換えることで、放熱手段3の数を減らし、光源ユニットの構成を簡略化及び小型化することができる。
 図6に示す光源ユニット140では、4組の波長変換手段2及び放熱手段3のうちの1組を反射手段7に置き換えている。ただし、本実施形態の光源ユニットは、これに限定されない。本実施形態の光源ユニットにおいて、4組の波長変換手段2及び放熱手段3のうち2組又は3組を反射手段7に置き換えてもよい。少なくとも1つの波長変換手段2があれば、発光手段1の発光面41から出射した第1の波長帯域の光30を、第2の波長帯域の光31に波長変換して、第1の波長選択手段4の第1の出射面44bから出射することが可能である。
[実施形態5]
 図7は、本実施形態の光源ユニットを示す斜視図である。図8は、図7に示す本実施形態の光源ユニットのI-I方向に見た断面図である。本実施形態の光源ユニット141は、内部空間の断面形状が三角形状のものである。図7及び図8に示すように、本実施形態の光源ユニット141は、内部空間を有し、前記内部空間の断面形状は、三角形状であり、前記断面形状の底辺に位置するように、発光手段1の発光面41が配置され、前記断面形状の残りの二辺に位置するように、波長変換手段2の入出射面42及び第1の波長選択手段4の第1の反射面44aがそれぞれ配置され、波長変換手段2の入出射面42及び第1の波長選択手段4の第1の反射面44aの両側部に、2つの反射手段7の第3の反射面47(図8には図示なし)が配置されている。
 本実施形態の光源ユニット141によれば、発光手段1と波長変換手段2とが向かい合うように配置されているため、図6に示す実施形態4の光源ユニット140に比べ、発光手段1の発光面41に入射する第1の波長帯域の光30が減少する。このため、本実施形態によれば、発光手段1による第1の波長帯域の光30の吸収を抑制し、発光効率のより高い光源ユニットを得ることができる。
[実施形態6]
 図9は、本実施形態の光源ユニットを示す断面図である。本実施形態の光源ユニット142は、図7及び図8に示す実施形態5の光源ユニット141の波長変換手段2の入出射面42が曲面であるものである。図9に示すように、本実施形態の光源ユニット142は、波長変換手段2の入出射面42が曲面であること以外は、図7及び図8に示す実施形態5の光源ユニット141と同様の構成である。
 本実施形態の光源ユニット142によれば、波長変換手段2の入出射面42を曲面とすることで、入出射面42の面積を広くすることができる。これにより、入出射面42の単位面積当たりの第1の波長帯域の光30の入射光量を減少させ、波長変換手段2の温度上昇を抑制することができる。
[実施形態7]
 図10は、本実施形態の光源ユニットを示す断面図である。なお、図10においては、便宜上、図1~9を右方向に90度回転させた状態を示しており、発光手段1が左方に、第1の波長選択手段4が右方に位置している。本実施形態の光源ユニット150は、図3及び図4に示す実施形態2の光源ユニット120が、さらに、第1の導光手段27を備えたものである。図10に示すように、本実施形態の光源ユニット150は、さらに、第1の導光手段27を含むこと以外は、図3及び図4に示す実施形態2の光源ユニット120と同様の構成である。第1の導光手段27は、前記光源ユニットの内部空間の内面形状の側面と同一形状の筒状である。また、第1の導光手段27は、第1の波長帯域の光30及び第2の波長帯域の光31を反射する第4の反射面57を有する。本実施形態の光源ユニット150では、前記内面形状において、第1の導光手段27の第4の反射面57を介して、上面(図10においては右側面)に第1の波長選択手段4の第1の反射面44aが配置されている。
 本実施形態の光源ユニット150において、第1の導光手段27は、第2の波長帯域の光31に対して、ライトパイプとして動作する。すなわち、波長変換手段2の入出射面42から出射した第2の波長帯域の光31は、第1の導光手段27の第4の反射面57で鏡面反射を繰り返し、第1の波長選択手段4の第1の出射面44bから出射される。これにより、第1の波長選択手段4の第1の出射面44bから出射される第2の波長帯域の光31は、強度分布がより均一化される。
 本実施形態の光源ユニット150を、例えば、プロジェクタに適用すれば、光源ユニット150から出射される第2の波長帯域の光31の強度分布が均一化されているため、プロジェクタからスクリーン等に光を投射した場合、スクリーン上での照度ムラを抑制することができる。
[実施形態8]
 図11は、本実施形態の光源ユニットを示す断面図である。なお、図11においては、図10と同様に、便宜上、図1~9を右方向に90度回転させた状態を示しており、発光手段1が左方に、第1の波長選択手段4が右方に位置している。本実施形態の光源ユニット160は、図3及び図4に示す実施形態2の光源ユニット120が、さらに、第2の導光手段37を備えたものである。図11に示すように、本実施形態の光源ユニット160は、さらに、第2の導光手段37を含むこと以外は、図3及び図4に示す実施形態2の光源ユニット120と同様の構成である。本実施形態の光源ユニット160では、前記光源ユニットの内部空間の内面形状において、第2の導光手段37を介して、上面(図11では右側面)に第1の波長選択手段4の第1の反射面44aが配置されている。第2の導光手段37の口径は、発光手段1の発光面41から第1の波長選択手段4の第1の反射面44aに向けて広がっている。
 第2の導光手段37は、光を透過可能な媒体(例えば、ガラス、樹脂等)で形成されている。前記媒体の屈折率は、前記媒体と接する界面の雰囲気(例えば、空気等)の屈折率と異なっている。これにより、前記界面は、前記媒体の内部を透過する光を反射可能であり、第2の導光手段37には、入射した光の一部を反射する第5の反射面15が形成される。第2の導光手段37の第5の反射面15は、例えば、第2の導光手段37が周囲の雰囲気(例えば、空気等)に対して屈折率が高く、第5の反射面15に入射した光の一部が、第5の反射面15でフレネル反射又は全反射するようにしてもよい。
 第2の導光手段37は、4つの波長変換手段2側に入射面13を、第1の波長選択手段4側に出射面14を有する。入射面13及び出射面14は、第1の波長帯域の光30及び第2の波長帯域の光31を透過する。入射面13及び出射面14としては、例えば、誘電体多層膜や微細構造等により、界面での光の反射を抑制する構成を用いることができる。
 第2の導光手段37は、第2の波長帯域の光31に対してロッドインテグレータとして動作する。すなわち、波長変換手段2の入出射面42から出射した第2の波長帯域の光31は、第2の導光手段37の第5の反射面15で鏡面反射を繰り返し、第1の波長選択手段4の第1の出射面44bから出射される。これにより、第1の波長選択手段4の第1の出射面44bから出射される第2の波長帯域の光31は、強度分布がより均一化される。
 図11に示す光源ユニット160では、第2の導光手段37の口径は、入射面13から出射面14に向けて広がっている。ただし、本実施形態の光源ユニットは、これに限定されない。本実施形態の光源ユニットにおいて、第2の導光手段の口径は、入射面から出射面に向けて一定としてもよいし、入射面から出射面に向けて狭まっていてもよい。なお、図11に示す光源ユニット160では、第2の導光手段37の入射面13の面積に対し、第2の導光手段37の出射面14並びに第1の波長選択手段4の第1の反射面44a及び第1の出射面44bの面積が広くなるが、第1の波長選択手段4の第1の出射面44bからの出射光は、第2の導光手段37の入射面13に入射する光よりも、出射角度は狭まる。これは、テーパのついた第2の導光手段37の第5の反射面15で光が反射する際に、光の出射角度が狭くなるためである。この結果、光源ユニット160のエテンデュは、増加しない。
 本実施形態の光源ユニット160を、例えば、プロジェクタに適用すれば、光源ユニット160から出射される第2の波長帯域の光31の強度分布が均一化されているため、プロジェクタからスクリーン等に光を投射した場合、スクリーン上での照度ムラを抑制することができる。
 図11に示すとおり、本実施形態の光源ユニット160では、第2の導光手段37の出射面14と第1の波長選択手段4の第1の反射面44aとの間に、数百μm程度の僅かな隙間(空気層)があってもよい。光漏れを防止するために、この隙間の両端部(図11における上端部及び下端部)に前記反射手段を配置してもよい。
 また、第2の導光手段37の出射面14と第1の波長選択手段4の第1の反射面44aとが密着していてもよい。また、第2の導光手段37の出射面14が第1の波長選択手段4の第1の反射面44aを兼ねていてもよい。
 図11に示す光源ユニット160では、第1の波長選択手段4は、第2の導光手段37の出射面14側に配置されている。ただし、本実施形態の光源ユニットは、これに限定されない。本実施形態の光源ユニットにおいて、第1の波長選択手段4は、第2の導光手段37の入射面13側に配置してもよい。ただし、第1の波長選択手段4に角度依存性がある場合には、第1の波長選択手段4は、図11に示すとおり、第2の導光手段37の出射面14側に配置することが好ましい。
[実施形態9]
 図12は、本実施形態の光源ユニットを示す断面図である。本実施形態の光源ユニット170は、図3及び図4に示す実施形態2の光源ユニット120が、さらに、偏光子16を備えたものである。図12に示すように、本実施形態の光源ユニット170は、さらに、第1の波長選択手段4の第1の出射面44b上に配置された偏光子16を含むこと以外は、図3及び図4に示す実施形態2の光源ユニット120と同様の構成である。
 偏光子16は透過軸を有しており、前記透過軸と平行な方向の偏光方向の光を透過させ、前記透過軸と直交する方向の偏光方向の光を反射する反射型偏光子である。偏光子16としては、例えば、ワイヤグリッド偏光子や、有機材料を用いた多層膜等を用いることができる。
 偏光子16に入射した第2の波長帯域の光31のうち、前記透過軸と平行な偏光成分を有する第2の波長帯域の光31は、偏光子16を透過し、前記透過軸と直交する方向と平行な偏光成分を有する第2の波長帯域の光31は、偏光子16で反射される。偏光子16で反射された第2の波長帯域の光31は、第1の波長選択手段4を透過して光源ユニット170の前記内部空間に戻される。内部空間に戻された光31は、内部空間内で複数回反射されて偏光方向が変換された後、再度偏光子16に入射する。これにより、光源ユニット170から出射される第2の波長帯域の光31を、偏光子16の透過軸と平行な偏光成分を有する直線偏光とすることができ、また、偏光子16と内部空間との間で、反射を繰り返すことにより、偏光子16を透過する光31の光量を増加できる。
 本実施形態の光源ユニット170を、例えば、透過した光を空間的に変調する表示素子として液晶パネルを用いたプロジェクタに適用すれば、プロジェクタの光利用効率を向上させ、プロジェクタからの出射光量を向上させることができる。液晶パネルは、偏光依存性を有しており、特定の方向の偏光成分の光のみを空間的に変調し、前記特定の方向と直交する方向の偏光成分の光は変調されない。このため、前記特定の方向と直交する方向の偏光成分の光は、前述の液晶パネルを用いたプロジェクタでは使用することができない。一方、本実施形態の光源ユニット170から出射する光は、特定の方向の偏光成分を有する直線偏光であり、かつ偏光子16と内部空間との間で、反射を繰り返すことで前記特定の方向の偏光成分の光の割合が高いため、前述のような、光学系で使用されない光の量を低減でき、プロジェクタからの出射光量を向上させることができる。
 本実施形態の光源ユニット170と同様に、前述の実施形態1及び3~8並びに後述の実施形態10~14の光源ユニットは、偏光子16を含んでもよい。
[実施形態10]
 図13は、本実施形態の光源ユニットを示す断面図である。本実施形態の光源ユニット180は、発光手段1としてLEDを用いたものの一例である。図13に示すとおり、本実施形態の光源ユニット180は、基板17と、基板17上に配置された発光手段(本例では、LED)1と、LED1の発光面41上部に配置された第2の波長選択手段5と、基板17と第2の波長選択手段5との間に配置された4つの反射手段7と、第2の波長選択手段5のLED1とは反対側に配置された4つの波長変換手段2と、4つの波長変換手段2の各入出射面42と反対側の面及び基板17に接する4つの断面L字状の放熱手段3と、4つの波長変換手段2及び4つの放熱手段3の上部に配置された第1の波長選択手段4とを、主要な構成部材として含む。
 基板17は、図示しない電源装置と電気的に接続されている。また、LED1はボンディングワイヤ24を介して基板17と電気的に接続されている。
 反射手段7は、LED1を取り囲むように配置されている。また、反射手段7は、基板17と第2の波長選択手段5とを固定する役割を有してもよい。
 基板17と4つの放熱手段3とは、接着剤等により機械的に接続されている。また、第2の波長選択手段5と4つの反射手段7、及び第1の波長選択手段4と4つの放熱手段3も、接着剤等により機械的に接続されている。このとき、図13に示すように、第2の波長選択手段5及び第1の波長選択手段4の大きさを4つの波長変換手段2の内側部分を塞ぐのに必要な大きさよりも大きく設定すれば、第2の波長選択手段5と4つの反射手段7、及び第1の波長選択手段4と4つの放熱手段3を機械的に接続しやすくなり、光漏れも抑制することができるため、光源ユニット180の発光効率をより高くすることができる。
 第1の波長選択手段4の第1の反射面44aのうち、4つの波長変換手段2と接する部分より内側の面積は、第2の波長選択手段5の4つの波長変換手段2側の面のうち、4つの波長変換手段2と接する部分より内側の面積と同じであるか、それより狭く設定されていることが好ましい。
 第2の波長選択手段5の4つの波長変換手段2側の面のうち、4つの波長変換手段2と接する部分より内側の面積は、LED1の発光面41の面積と同じであるか、それより狭く設定されていることが好ましい。
 つぎに、本実施形態の光源ユニット180を用いた光出射方法について説明する。
 まず、LED1は、前記電源装置から供給される電流値に応じて、LED1内部の図示しない発光層で第1の波長帯域の光30を発生させ、発光面41から出射する(第1の光出射工程)。
 第1の波長選択手段4の第1の反射面44aに入射したLED1の発光面41から出射された第1の波長帯域の光30を、第1の波長選択手段4の第1の反射面44aで反射する(第1の反射工程)。
 LED1の発光面41に再度入射した第1の波長選択手段4の第1の反射面44aで反射された第1の波長帯域の光30を、LED1の発光面41で反射する(第2の反射工程)。
 波長変換手段2の入出射面42に入射した、LED1の発光面41から出射された第1の波長帯域の光30、第1の波長選択手段4の第1の反射面44aで反射された第1の波長帯域の光30及びLED1の発光面41で反射された第1の波長帯域の光30を波長変換し、波長変換手段2の入出射面42から反射光として第2の波長帯域の光31を出射する(第2の光出射工程)。
 LED1の発光面41に入射した第2の波長帯域の光31を、LED1の発光面41で反射する(第3の反射工程)。
 波長変換手段2の入出射面42に再度入射した第2の波長帯域の光31を、波長変換手段2の入出射面42で反射する(第4の反射工程)。
 第1の波長選択手段4に入射した、波長変換手段2の入出射面42から出射された第2の波長帯域の光31、LED1の発光面41で反射された第2の波長帯域の光31及び波長変換手段2の入出射面42で反射された第2の波長帯域の光31を、第1の波長選択手段4の第1の波長帯域の光30が入射する側とは反対の側の第1の出射面44bから出射する(第3の光出射工程)。
 本実施形態の光源ユニット180を用いた光出射方法において、前記第1の光出射工程及び前記第3の光出射工程を除く各工程の実施順序に制限はなく、同時に行われる工程があってもよい。
[実施形態11]
 図14は、本実施形態の光源ユニットを示す断面図である。本実施形態の光源ユニット190は、図3及び図4に示す実施形態2の光源ユニット120の波長変換手段2の一部と発光手段1及び第1の波長選択手段4とのなす角度を変更したものである。図14に示すとおり、本実施形態の光源ユニット190は、4つの波長変換手段2のうちの2つと発光手段1及び第1の波長選択手段4とがなす角度が直角でないことを除き、図3及び図4に示す実施形態2の光源ユニット120と同様の構成である。
 本実施形態の光源ユニット190によれば、発光手段1に入射する第1の波長帯域の光30の割合を抑制し、光源ユニット190の発光効率をより高くすることができる。
[実施形態12]
 図15は、本実施形態の光源ユニットを示す断面図である。本実施形態の光源ユニット200は、図3及び図4に示す実施形態2の光源ユニット120の第1の波長選択手段4の形状を変更したものである。図15に示すとおり、本実施形態の光源ユニット200は、第1の波長選択手段4が、第1の反射面44aが隆起した形状であることを除き、図3及び図4に示す実施形態2の光源ユニット120と同様の構成である。
 本実施形態の光源ユニット200によれば、発光手段1に入射する第1の波長帯域の光30の割合を抑制し、光源ユニット200の発光効率をより高くすることができる。
[実施形態13]
 図16は、本実施形態の光源ユニットを示す断面図である。本実施形態の光源ユニット210は、発光手段1を複数有するものである。図16に示すとおり、本実施形態の光源ユニット210は、内部空間を有し、前記内部空間の内面形状は、四角柱状(直方体状)である。前記内面形状の底面には、波長変換手段2の入出射面42が配置されている。前記内面形状の上面には、第1の波長選択手段4の第1の反射面44aが配置されている。前記内面形状の側面には、4つの第2の波長選択手段5が配置されており、4つの第2の波長選択手段5の外側に4つの発光手段1が配置されている。
 本実施形態の光源ユニット210によれば、発光手段1を複数用いることにより、第1の波長帯域の光30の強度を向上させ、光源ユニット210の発光効率をより高くすることができる。
[実施形態14]
 図17は、本実施形態の光源ユニットを示す断面図である。本実施形態の光源ユニットは、図13に示す実施形態10の光源ユニット180の4つの反射手段7の大きさを変更したものである。図17に示すとおり、本実施形態の光源ユニット220は、第2の波長選択手段5が、4つの反射手段7の内側に収まる大きさであること以外は、図13に示す実施形態10の光源ユニット180と同様の構成である。
 本実施形態の光源ユニット220によれば、4つの反射手段7を第2の波長選択手段5の側面に設けることにより、光漏れをさらに抑制し、光源ユニット220の発光効率をさらに高くすることができる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は、上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解しうる様々な変更をすることができる。
 この出願は、2012年6月11日に出願された日本出願特願2012-131836を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1   発光手段
2   波長変換手段
3   放熱手段
4   第1の波長選択手段
5   第2の波長選択手段
7   反射手段
13  入射面
14  出射面
15  第5の反射面
16  偏光子
17  基板
24  ボンディングワイヤ
27  第1の導光手段
30  第1の波長帯域の光
31  第2の波長帯域の光
37  第2の導光手段
41  発光面
42  入出射面
44a 第1の反射面
44b 第1の出射面
45a 第2の反射面
45b 第2の出射面
47  第3の反射面
57  第4の反射面
110、120、130、140、141、142、150、160、170、180、190、200、210、220 光源ユニット

Claims (15)

  1. 発光手段と、波長変換手段と、第1の波長選択手段とを含み、
    前記発光手段は、第1の波長帯域の光を出射し、かつ、入射した光を反射して出射する発光面を有し、
    前記波長変換手段は、前記第1の波長帯域の光が入射すると、前記第1の波長帯域の光が入射した側と同じ側に第2の波長帯域の光を出射し、かつ、入射した前記第2の波長帯域の光を反射して出射する入出射面を有し、
    前記第1の波長選択手段は、前記第1の波長帯域の光を反射し、前記第2の波長帯域の光を透過させる第1の反射面を有し、
    前記発光手段及び前記第1の波長選択手段は、前記発光手段の前記発光面から出射した前記第1の波長帯域の光、前記第1の波長選択手段の前記第1の反射面で反射した前記第1の波長帯域の光、及び、前記発光手段の前記発光面に入射し反射した前記第1の波長帯域の光が、前記波長変換手段の前記入出射面に入射されるように配置される、光源ユニット。
  2. 発光手段と、波長変換手段と、第1の波長選択手段と、第2の波長選択手段とを含み、
    前記発光手段は、第1の波長帯域の光を出射し、かつ、入射した光を反射して出射する発光面を有し、
    前記波長変換手段は、前記第1の波長帯域の光が入射すると、前記第1の波長帯域の光が入射した側と同じ側に第2の波長帯域の光を出射し、かつ、入射した前記第2の波長帯域の光を反射して出射する入出射面を有し、
    前記第1の波長選択手段は、前記第1の波長帯域の光を反射し、前記第2の波長帯域の光を透過させる第1の反射面を有し、
    前記第2の波長選択手段は、前記第2の波長帯域の光を反射し、前記第1の波長帯域の光を透過させる第2の反射面を有し、
    前記発光手段、前記第1の波長選択手段及び前記第2の波長選択手段は、前記発光手段の前記発光面から出射した前記第1の波長帯域の光、前記第1の波長選択手段の前記第1の反射面で反射した前記第1の波長帯域の光、前記第2の波長選択手段の前記第2の反射面を透過した前記第1の波長帯域の光、及び、前記発光手段の前記発光面に入射し反射した前記第1の波長帯域の光が、前記波長変換手段の前記入出射面に入射されるように配置される、光源ユニット。
  3. さらに、反射手段を含み、
    前記反射手段は、前記第1の波長帯域の光及び前記第2の波長帯域の光を反射する第3の反射面を有し、
    前記反射手段は、前記発光手段、前記波長変換手段及び前記第1の波長選択手段の三つの手段の少なくとも一つの手段の一部又は前記三つの手段とは別の独立した手段である、請求項1又は2記載の光源ユニット。
  4. 前記光源ユニットは、内部空間を有し、
    前記内部空間の内面形状は、柱状であり、
    前記内面形状の底面に、前記発光手段の前記発光面が配置され、
    前記内面形状の上面に、前記第1の波長選択手段の前記第1の反射面が配置され、
    前記内面形状の側面の全部又は一部は、前記波長変換手段の前記入出射面である、請求項1から3のいずれか一項に記載の光源ユニット。
  5. さらに、反射手段を含み、
    前記内面形状の側面の一部は、前記反射手段である、請求項4記載の光源ユニット。
  6. 前記光源ユニットは、内部空間を有し、
    前記内部空間の断面形状は、三角形状であり、
    前記断面形状の底辺に位置するように、前記発光手段の前記発光面が配置され、
    前記断面形状の残り二辺に位置するように、前記波長変換手段の前記入出射面及び前記第1の波長選択手段の前記第1の反射面がそれぞれ配置され、
    前記波長変換手段の前記入出射面及び前記第1の波長選択手段の前記第1の反射面の両側部に、2つの前記反射手段の前記第3の反射面が配置されている、請求項3記載の光源ユニット。
  7. 前記波長変換手段の前記入出射面は、曲面である、請求項6記載の光源ユニット。
  8. さらに、第1の導光手段を含み、
    前記第1の導光手段は、前記光源ユニットの内部空間の内面形状の側面と同一形状の筒状であり、
    前記第1の導光手段は、前記第1の波長帯域の光及び前記第2の波長帯域の光を反射する第4の反射面を有し、
    前記内面形状において、前記第1の導光手段の前記第4の反射面を介して、上面に前記第1の波長選択手段の前記第1の反射面が配置されている、請求項4記載の光源ユニット。
  9. さらに、第2の導光手段を含み、
    前記第2の導光手段は、光を透過可能な媒体で形成され、
    前記媒体の屈折率及び前記媒体と接する界面の雰囲気の屈折率は、異なっており、
    前記界面は、前記媒体の内部を透過する光を反射可能であり、
    前記光源ユニットの内部空間の内面形状において、前記第2の導光手段を介して、上面に前記第1の波長選択手段の前記第1の反射面が配置されている、請求項4記載の光源ユニット。
  10. さらに、放熱手段を含み、
    前記放熱手段は、前記波長変換手段の前記入出射面と反対側の面上に配置される、請求項1から9のいずれか一項に記載の光源ユニット。
  11. さらに、偏光子を含み、
    前記偏光子は、前記第1の波長選択手段の前記第1の波長帯域の光が入射する側とは反対の側に配置される、請求項1から10のいずれか一項に記載の光源ユニット。
  12. 前記波長変換手段は、蛍光体を含む、請求項1から11のいずれか一項に記載の光源ユニット。
  13. 請求項1から12のいずれか一項に記載の光源ユニットを含む、投射型表示装置。
  14. 請求項1から12のいずれか一項に記載の光源ユニットを含む、照明器具。
  15. 発光手段と、波長変換手段と、第1の波長選択手段とを含み、
    前記発光手段は、第1の波長帯域の光を出射し、かつ、入射した光を反射して出射する発光面を有し、
    前記波長変換手段は、前記第1の波長帯域の光が入射すると、前記第1の波長帯域の光が入射した側と同じ側に反射光として第2の波長帯域の光を出射し、かつ、再度入射した前記第2の波長帯域の光を反射して出射する入出射面を有し、
    前記第1の波長選択手段は、前記第1の波長帯域の光を反射し、前記第2の波長帯域の光を透過させる第1の反射面を有する光源ユニットを用い、
    前記発光手段の前記発光面から前記第1の波長帯域の光を出射する第1の光出射工程と、
    前記第1の波長選択手段の前記第1の反射面に入射した前記発光手段の前記発光面から出射された前記第1の波長帯域の光を、前記第1の波長選択手段の前記第1の反射面で反射する第1の反射工程と、
    前記発光手段の前記発光面に再度入射した前記第1の波長選択手段の前記第1の反射面で反射された前記第1の波長帯域の光を、前記発光手段の前記発光面で反射する第2の反射工程と、
    前記波長変換手段の前記入出射面に入射した前記発光手段の前記発光面から出射された前記第1の波長帯域の光、前記第1の波長選択手段の前記第1の反射面で反射された前記第1の波長帯域の光及び前記発光手段の前記発光面で反射された前記第1の波長帯域の光を波長変換し、前記波長変換手段の前記入出射面から反射光として前記第2の波長帯域の光を出射する第2の光出射工程と、
    前記発光手段の前記発光面に入射した前記第2の波長帯域の光を、前記発光手段の発光面で反射する第3の反射工程と、
    前記波長変換手段の前記入出射面に再度入射した前記第2の波長帯域の光を、前記波長変換手段の前記入出射面で反射する第4の反射工程と、
    前記第1の波長選択手段に入射した前記波長変換手段の前記入出射面から出射された前記第2の波長帯域の光、前記発光手段の前記発光面で反射された前記第2の波長帯域の光及び前記波長変換手段の前記入出射面で反射された前記第2の波長帯域の光を、前記第1の波長選択手段の前記第1の波長帯域の光が入射する側とは反対の側から出射する第3の光出射工程とを含む、光出射方法。
PCT/JP2012/082354 2012-06-11 2012-12-13 光源ユニット、投射型表示装置、照明器具及び光出射方法 WO2013186954A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/406,819 US20150167906A1 (en) 2012-06-11 2012-12-13 Light source unit, projection-type display device, lighting equipment and light emission method
JP2014521198A JPWO2013186954A1 (ja) 2012-06-11 2012-12-13 光源ユニット、投射型表示装置、照明器具及び光出射方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-131836 2012-06-11
JP2012131836 2012-06-11

Publications (1)

Publication Number Publication Date
WO2013186954A1 true WO2013186954A1 (ja) 2013-12-19

Family

ID=49757810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082354 WO2013186954A1 (ja) 2012-06-11 2012-12-13 光源ユニット、投射型表示装置、照明器具及び光出射方法

Country Status (3)

Country Link
US (1) US20150167906A1 (ja)
JP (1) JPWO2013186954A1 (ja)
WO (1) WO2013186954A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135461A (ja) * 2013-12-20 2015-07-27 セイコーエプソン株式会社 光源装置及びプロジェクター
JP2019510356A (ja) * 2016-03-31 2019-04-11 スリーエム イノベイティブ プロパティズ カンパニー 低グレア自動車前照灯
JP2021047374A (ja) * 2019-09-20 2021-03-25 セイコーエプソン株式会社 波長変換素子、光源装置及びプロジェクター

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012109806A1 (de) * 2012-10-15 2014-04-17 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Bauelement
JP6637892B2 (ja) * 2014-01-02 2020-01-29 シグニファイ ホールディング ビー ヴィSignify Holding B.V. 離脱式波長変換器を含む発光デバイス
JP2016157096A (ja) * 2015-02-20 2016-09-01 株式会社リコー 照明装置及び画像投射装置
DE102017101729A1 (de) * 2017-01-30 2018-08-02 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216824A (ja) * 2008-03-07 2009-09-24 Seiko Epson Corp 表示装置および電子機器
JP2011040313A (ja) * 2009-08-14 2011-02-24 Keiji Iimura 中空導光ユニット、面光源および液晶ディスプレイ
JP2012099362A (ja) * 2010-11-02 2012-05-24 Toshiba Corp 発光装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009092041A2 (en) * 2008-01-16 2009-07-23 Abu-Ageel Nayef M Illumination systems utilizing wavelength conversion materials
WO2010090862A2 (en) * 2009-01-21 2010-08-12 Abu-Ageel Nayef M Illumination system utilizing wavelength conversion materials and light recycling
CN102449373A (zh) * 2009-05-28 2012-05-09 皇家飞利浦电子股份有限公司 具有封闭光源的罩的照明设备
JP2015506071A (ja) * 2011-12-16 2015-02-26 コーニンクレッカ フィリップス エヌ ヴェ 回折光学素子を備える光学装置
US8931922B2 (en) * 2012-03-22 2015-01-13 Osram Sylvania Inc. Ceramic wavelength-conversion plates and light sources including the same
WO2013153511A1 (en) * 2012-04-13 2013-10-17 Koninklijke Philips N.V. A light conversion assembly, a lamp and a luminaire
WO2013160796A2 (en) * 2012-04-25 2013-10-31 Koninklijke Philips N.V. A lighting assembly for providing a neutral color appearance, a lamp and a luminaire
DE102012109806A1 (de) * 2012-10-15 2014-04-17 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Bauelement
WO2014141030A1 (en) * 2013-03-11 2014-09-18 Koninklijke Philips N.V. A light emitting diode module with improved light characteristics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216824A (ja) * 2008-03-07 2009-09-24 Seiko Epson Corp 表示装置および電子機器
JP2011040313A (ja) * 2009-08-14 2011-02-24 Keiji Iimura 中空導光ユニット、面光源および液晶ディスプレイ
JP2012099362A (ja) * 2010-11-02 2012-05-24 Toshiba Corp 発光装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135461A (ja) * 2013-12-20 2015-07-27 セイコーエプソン株式会社 光源装置及びプロジェクター
JP2019510356A (ja) * 2016-03-31 2019-04-11 スリーエム イノベイティブ プロパティズ カンパニー 低グレア自動車前照灯
JP7292036B2 (ja) 2016-03-31 2023-06-16 スリーエム イノベイティブ プロパティズ カンパニー 低グレア自動車前照灯
JP2021047374A (ja) * 2019-09-20 2021-03-25 セイコーエプソン株式会社 波長変換素子、光源装置及びプロジェクター
JP7283327B2 (ja) 2019-09-20 2023-05-30 セイコーエプソン株式会社 波長変換素子、光源装置及びプロジェクター

Also Published As

Publication number Publication date
US20150167906A1 (en) 2015-06-18
JPWO2013186954A1 (ja) 2016-02-01

Similar Documents

Publication Publication Date Title
WO2013186954A1 (ja) 光源ユニット、投射型表示装置、照明器具及び光出射方法
US9574722B2 (en) Light emitting diode illumination system
RU2636410C2 (ru) Светоизлучающий прибор
JP5525537B2 (ja) 発光装置
US9459520B2 (en) Light source unit and optical engine
JP6058861B2 (ja) 固体照明装置
US10139053B2 (en) Solid-state light source device
US20120056527A1 (en) Light emitting device
CN108693690B (zh) 光源装置以及投影仪
US10698307B2 (en) Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus
JP2015072895A (ja) 光源装置、当該光源装置を備える照明装置、および車両
JP2005109289A (ja) 発光装置
JP2022545426A (ja) 高いcriを有する高強度光源
JP2011187291A (ja) 発光装置
WO2013175706A1 (ja) 光学素子、発光装置、及び投影装置
US9160997B2 (en) Display apparatus including a wavelength conversion layer
CN108767099B (zh) 波长变换设备、光源装置、照明装置及影像显示装置
US10403800B1 (en) Remote wavelength-converting member and related systems
WO2017119022A1 (ja) 発光装置
US9200200B2 (en) Phosphor, light emitting device, surface light source device, display device and illumination device
JP2018072442A (ja) 波長変換デバイス、光源装置、照明装置、及び、投写型映像表示装置
CN112859499B (zh) 光源装置和投影仪
CN111413841B (zh) 波长转换装置、光源系统与显示设备
CN220540945U (zh) 发光模组及光源装置
JPWO2020066839A1 (ja) 暖色複合蛍光体、波長変換体及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521198

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14406819

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879130

Country of ref document: EP

Kind code of ref document: A1