WO2013186474A1 - Procede de preparation d'un catalyseur au nickel supporte, utilisation de ce catalyseur pour la production d'hydrogene - Google Patents

Procede de preparation d'un catalyseur au nickel supporte, utilisation de ce catalyseur pour la production d'hydrogene Download PDF

Info

Publication number
WO2013186474A1
WO2013186474A1 PCT/FR2013/051337 FR2013051337W WO2013186474A1 WO 2013186474 A1 WO2013186474 A1 WO 2013186474A1 FR 2013051337 W FR2013051337 W FR 2013051337W WO 2013186474 A1 WO2013186474 A1 WO 2013186474A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
catalyst
solid support
solution
reducing agent
Prior art date
Application number
PCT/FR2013/051337
Other languages
English (en)
Inventor
Abdulkader ALBARAZI
Patrick Da Costa
Original Assignee
Universite Pierre Et Marie Curie (Paris 6)
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Pierre Et Marie Curie (Paris 6), Centre National De La Recherche Scientifique filed Critical Universite Pierre Et Marie Curie (Paris 6)
Publication of WO2013186474A1 publication Critical patent/WO2013186474A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method of preparing a supported nickel catalyst, as well as to the use of this catalyst for the production of hydrogen.
  • the invention belongs to the technical field of the production of hydrogen, or more precisely of hydrogen (H 2 ) by re-forming methane.
  • Natural gas composed mainly of methane, is today one of the best energy compromises in terms of sustainable development, compared to other non-renewable energy sources.
  • the valorization of this raw material has led to a great deal of research in recent years, particularly in order to develop efficient production, transport, storage and transformation processes, especially for the production of synthesis gas (dihydrogen and carbon monoxide: H 2 and CO).
  • synthesis gas dihydrogen and carbon monoxide: H 2 and CO
  • the production of these synthesis gases from methane is called reforming.
  • Dihydrogen has many applications in industry: synthesis of ammonia, methanol, textile fibers, liquid fuel, etc ... Dihydrogen is also a promising fuel for the development of fuel cells, power plants and non-polluting vehicles. Hydrogen is the most abundant element on earth, but it does not exist in the form of dihydrogen in its natural state. It must therefore be synthesized.
  • the methane dry reforming reaction is as follows:
  • thermodynamically favorable temperature range generally being between 600 and 800 ° C. It leads in principle to dihydrogen and carbon monoxide in a close ratio generally ranging from 1 to 5.
  • This reaction requires the use of catalysts generally consisting of a metal or a metal oxide deposited on a stable refractory support in the conditions of carrying out the reforming reaction, the active phase of the catalyst consisting of reduced metal species.
  • the most efficient metals in terms of catalytic activity are noble metals and nickel. However, they have the major disadvantage of being very expensive.
  • nickel-based catalysts tend to deactivate rapidly due to carbonization (or coking) and sintering of the nickel-metal phase and the support as the nickel particles tend to agglomerate when the temperature exceeds 600 ° C.
  • the ceramic methods are the oldest. They consist in finely grinding solid compounds, usually metal oxides or metal carbonates and then calcining the powder thus obtained at the crystallization temperature of the selected compound. These preparation methods are, however, expensive and lead to catalysts with small specific surface areas (ie low yield) and which do not always have sufficient homogeneity.
  • the soft chemistry methods propose, for their part, a molecular mixture of the different cations by passing in solution of the metal salts. This makes it possible to obtain more homogeneous crystalline phases at lower temperatures.
  • the most used methods include impregnation and precipitation.
  • the impregnation consists in impregnating a porous support with a solution of a catalyst precursor, either dry, when the volume of the precursor solution corresponds to the pore volume of the support, or in excess, when the volume of the precursor solution is greater than the pore volume of the support.
  • a solution of a catalyst precursor either dry
  • IWI method Incipient Wetness Impregnation method
  • Precipitation consists in dissolving the metal precursors in water and then precipitating the metal cations on the support by adding a precipitation-promoting agent such as oxalic acid, ammonia or even urea as described. for example in the article by Liu H. et al, Applied Catalysis A: General, 2008, 337, 138-147.
  • the inventors have set themselves the goal of providing a nickel-based supported catalyst, which can in particular be used to catalyze the methane reforming reaction in a more stable manner over time than the nickel-based catalysts obtained according to the processes described in US Pat. the prior art, in particular according to the impregnation or precipitation methods, and this, according to a simple preparation process, fast, reliable and inexpensive to implement.
  • the present invention relates to a process for the preparation of a nickel-supported catalyst comprising a solid support and metallic nickel, said process comprising a step of impregnating a solid support with a solution of at least one nickel salt in a reaction solvent, a drying step and a calcination step, said method being characterized in that said impregnating step is carried out in the presence of a reducing agent of said nickel salt, and in that said process does not include any reduction step after the steps of drying and calcining the support.
  • the process according to the invention is fast, simple and inexpensive to implement. It makes it possible to obtain a supported nickel catalyst which, when used to catalyze the methane reforming reaction, leads to dihydrogen and carbon monoxide in a H 2 / CO ratio similar to those of the prior art. but whose activity over time is much more stable than that of the nickel catalysts obtained by simply impregnating a porous support with a solution of a nickel salt. Indeed, as it is demonstrated in the comparative examples illustrating the present application, the catalyst obtained by implementing the preparation process of the invention makes it possible to carry out the methanol reforming reaction in a much greater manner. stable over time that a nickel-based catalyst obtained by impregnation of a porous solid support with a nickel salt solution without this impregnation taking place presence of a reducing agent.
  • the nature of the solid support that can be used according to the method of the invention is not critical.
  • the solid support can for example be chosen porous or non-porous supports based on silica, colloidal silica, calcium silicate, mixed silica oxides such as for example SiO 2 -TiO 2 , SiO 2 -ZrO 2 ; supports made of silica carbide (SiC), zeolite, zirconium, kaolinite, porous glass, alumina, etc.
  • a particularly preferred support according to the invention is a support in the form of mesostructured silica particles (for example an SBA-15 silica).
  • the nickel salts that can be used according to the process of the invention may, for example, be chosen from nickel nitrate and its hydrates, nickel acetate, nickel chloride and nickel carbonate.
  • the reaction solvent may be aqueous or organic such as ethanol or toluene.
  • the amount of nickel salt in the solution varies from 1 to 20%, more preferably from at 15%.
  • the nature of the reducing agent that can be used according to the process according to the invention is not critical. It is for example selected from hydrides such as for example LiBH 4 and NaBH 4 ; phosphites and hypophosphites, as well as among the compounds of formula (I) below:
  • R 1 represents a carbon atom or a group chosen from the groups, alkylene, alkyleneoxy, fluoroalkylene, cycloalkylene, heterocycloalkylene, arylene, aralkylene, aryleneoxy, heteroarylene, heteroaralkylene, alkenylene, alkynylene, or amide, and
  • - 2 represents a hydrogen atom or a group chosen from hydroxyl, alkyl, mono- or polyhydroxyalkyl, alkoxy, fluoroalkyl, cycloalkyl, heterocycloalkyl, cycloalkyloxy, aryl, aralkyl, aryloxy, aralkyloxy, heteroaryl, heteroaralkyl, alkenyl, alkynyl, amine, and alkyleneamine, optionally as a base addition salt.
  • the reducing agent used is chosen from the compounds of formula (I) among which mention may in particular be made of ascorbic acid, ascorbates such as sodium ascorbate, erythorbic acid and erythorbates such as sodium erythorbate.
  • ascorbic acid is particularly preferred.
  • the molar ratio reducing agent / nickel precursor is preferably greater than or equal to 1 and even more preferably, this ratio varies from 3 to 5.
  • the duration of the step of impregnating the solid support with the nickel salt solution can vary from 5 minutes to 5 hours.
  • the step of impregnating the solid support with the nickel salt solution is carried out at a temperature ranging from 20 to 90 ° C, preferably at a temperature of about 80 ° C.
  • the preparation process further comprises a step during which is added to the nickel salt solution at least one base in an amount sufficient to adjust the pH of the solution.
  • nickel salt at a value greater than or equal to 9, preferably between 9 and 1 1.
  • the base or bases that can be used in the nickel salt solution are preferably chosen from urea, and ammonia, urea being particularly preferred.
  • a base When a base is used, it is preferably added to the nickel salt solution containing the solid support and the reducing agent after the temperature of said solution has been raised to at least 80 ° C.
  • the solution containing the solid support is preferably filtered to recover the nickel catalyst, which is then washed to remove excess unreacted nickel salt, preferably with distilled water.
  • the catalyst is then dried and calcined, preferably at a temperature of about 500 to 600 ° C for about 5 to 8 hours.
  • the drying before calcination can for example be carried out in an oven at a temperature of about 100 to 120 ° C for about 5 to 10 hours.
  • the present invention also relates to the use of a supported nickel catalyst obtained by the implementation of the method as defined above, for catalyzing the decomposition reaction of methane to hydrogen.
  • the subject of the invention is also the use of a supported nickel catalyst obtained by the implementation of the process as defined above, for the production of dihydrogen from natural gas, and in particular methane in the form of mixed with carbon dioxide.
  • the subject of the present invention is a process for the catalytic reforming of natural gas, and in particular of methane, comprising a step of reaction of methane in the presence of carbon dioxide and of a catalyst, characterized in that the catalyst is a catalyst. supported nickel obtained by the implementation of the method as defined above.
  • the catalytic reforming reaction may for example be carried out in a fixed bed quartz tube reactor according to the methods well known to those skilled in the art.
  • the present invention is illustrated by the following exemplary embodiments, to which it is however not limited.
  • Poly (ethylene glycol) -poly (propylene glycol) -poly (ethylene glycol) triblock copolymer having a molecular mass of 5800 g / mol, sold under the trade name Pluronic® PI 23 by the company BASF; 98% Tetraethylorthosilicate (TEOS) (Aldrich);
  • Nickel nitrate hexahydrate Ni (NO 3 ) 2 , 6H 2 O (Sigma Aldrich);
  • SBA-15 type silica was synthesized according to the method described by Zhao, D., et al. (Science, 1998, 279 (5350), 548-552).
  • Suspension-1 was then added to Solution-1 and the resulting mixture was heated to 80 ° C with stirring. 3.6 g of urea were then added and the reaction medium was kept at 80 ° C. for 20 hours with stirring. The final mixture was filtered and washed with a sufficient volume of distilled water. The powder was then dried in an oven for 6 hours at 110 ° C and then calcined in a muffle furnace at a temperature of 550 ° C for 6 hours.
  • a nickel-based solid catalyst supported on silica SBA-15 comprising about 10% by weight of nickel based on the total mass of catalyst was obtained.
  • Catalysts Cat-1 and Cat-2 Prior to their use, Catalysts Cat-1 and Cat-2 were pretreated with a flow of hydrogen at 3% argon for 3 hours at 800 ° C., at 50 ml / min, 800 ° C having previously been reached with a ramp temperature rise of 10 ° C / min.
  • the gas mixture used for the catalytic test consisted of CH 4 : CO 2 : Ar (1: 1.3 / 7.7, v: v: v). It was introduced into the reactor at a constant speed of 100 ml / min, in order to have gas hourly space velocity (GHSV) of 20,000 ml / h per gram of catalyst.
  • GHSV gas hourly space velocity
  • the reactor temperature was raised to 900 ° C at a rate of 2 ° C / min to record catalytic activity of the catalysts.
  • the gases emitted at the outlet of the reactor were analyzed using a gas micro-chromatograph sold under the reference CP-4900 by the company Varian Inc., equipped with a gas chromatographic (COX) column and a thermal conductivity detector.
  • COX gas chromatographic
  • Figure 1 shows the evolution of the conversion rate of methane (in%) as a function of temperature (in ° C) for each of the catalysts (Cat-1: light gray triangles, Cat-2: black squares).
  • Figure 2 shows the evolution of the H 2 / CO ratio as a function of temperature (in ° C) for each of the catalysts (Cat-1: light gray triangles, Cat-2: black squares).
  • FIGS. 3 and 4 The stability results of the catalytic activity of Catalysts Cat-1 and Cat-2 at the temperature of 600 ° C. are reported in FIGS. 3 and 4 appended.
  • Figure 3 gives the evolution of the conversion rate of methane (in%) as a function of time (in hh: mm) for each of the catalysts (Cat-1: high curve in light gray, Cat-2: low curve in black ).
  • FIG. 4 shows the evolution of the H 2 / CO ratio as a function of time (in hh: mm) for each of the catalysts (Cat-1: high curve in light gray, Cat-2: low curve in black).
  • Alumina Al 2 O 3 was obtained by calcining a boehmite powder (AIO (OH)) (sold by SASOL) at 850 ° C. for 6 hours.
  • the final mixture was filtered and washed with a sufficient volume of distilled water.
  • the powder was then dried in an oven for 6 hours at 110 ° C and then calcined under argon in a muffle furnace at a temperature of 550 ° C for 6 hours.
  • Ni-Al-1 supported on Al 2 O 3 alumina was obtained.
  • an alumina supported nickel catalyst was also prepared according to the process described in this example but without the use of ascorbic acid (Ni-Al-2).
  • FIGS. 5 and 6 show the evolution of the conversion rate of methane (in%) as a function of temperature (in ° C) for each of the catalysts (Ni-Al-1: curve with stars, Ni-Al-2: curves with empty circles) and FIG. 6 shows the degree of conversion of methane (in%) as a function of time (in hh: mm) at the temperature of 600 ° C. for each of the catalysts (Ni-Al-1: curve with stars, Ni-Al-2: curves with empty circles).
  • the catalyst Ni-Al-1 according to the invention has a catalytic activity similar to that of the catalyst Ni-Al-2 obtained according to a preparation method not forming part of the invention in terms of efficiency, but that this activity is stable over time, which is not the case for the Ni-Al-2 catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

La présente invention a pour objet un procédé de préparation d'un catalyseur supporté au nickel comprenant un support solide et du nickel métallique, ledit procédé comportant une étape d'imprégnation d'un support solide avec une solution d'au moins un sel de nickel dans un solvant réactionnel en présence d'un agent réducteur. L'invention concerne également l'utilisation de ce catalyseur pour la production d'hydrogène.

Description

PROCEDE DE PREPARATION D'UN CATALYSEUR AU NICKEL SUPPORTE, UTILISATION DE CE CATALYSEUR POUR LA
PRODUCTION D'HYDROGENE
La présente invention est relative à un procédé de préparation d'un catalyseur au nickel supporté, ainsi qu'à l'utilisation de ce catalyseur pour la production d'hydrogène.
L'invention appartient au domaine technique de la production d'hydrogène, ou plus exactement de dihydrogène (H2) par re formage du méthane.
Le gaz naturel, composé principalement de méthane, représente aujourd'hui un des meilleurs compromis énergétiques au regard du développement durable, par rapport aux autres sources d'énergie non renouvelable. La valorisation de cette matière première a engendré de nombreuses recherches ces dernières années, notamment afin de mettre au point des procédés efficaces de production, transport, de stockage et de transformation, notamment pour la production de gaz de synthèse (dihydrogène et monoxyde de carbone : H2 et CO). La production de ces gaz de synthèse à partir du méthane est appelée reformage.
Le dihydrogène trouve de nombreuses applications dans l'industrie : synthèse d'ammoniac, de méthanol, de fibres textiles, de carburant liquide, etc ... Le dihydrogène est par ailleurs un carburant prometteur pour la mise au point de piles à combustible, de centrales électriques et de véhicules non polluants. L'hydrogène est l'élément le plus abondant sur terre, mais il n'existe pas sous forme de dihydrogène à l'état naturel. Il faut donc en réaliser la synthèse.
Il existe différents procédés permettant de réaliser le reformage du méthane pour produire de l'hydrogène : i) le reformage en présence de vapeur d'eau, ii) le reformage mettant en œuvre une réaction d'oxydation partielle du méthane, et iii) le reformage sec en présence de dioxyde de carbone.
La réaction de reformage sec du méthane est la suivante :
CH4 (g) + CO2 (g) - 2 CO (g) + 2 H2 (g)
Un intérêt croissant est accordé à la réaction par reformage sec du méthane car, en en plus de conduire à la production de dihydrogène avec un rendement élevé, cette réaction présente un intérêt d'un point de vue écologique dans la mesure où sa mise en œuvre contribue à réduire la concentration de ces deux gaz à effet de serre (méthane et dioxyde de carbone) dans l'atmosphère. Il s'agit d'une réaction endo thermique, le domaine de températures thermodynamiquement favorable se situant généralement entre 600 et 800°C. Elle conduit en principe au dihydrogène et au monoxyde de carbone dans un rapport proche variant généralement de 1 à 5. Cette réaction nécessite l'emploi de catalyseurs généralement constitués d'un métal ou d'un oxyde métallique déposé sur un support réfractaire stable dans les conditions de réalisation de la réaction de reformage, la phase active du catalyseur étant constituée d'espèces métalliques réduites. Les métaux les plus performants en termes d'activité catalytique sont des métaux nobles et le nickel. Ils ont cependant comme inconvénient majeur d'être très onéreux. De plus, les catalyseurs à base de nickel ont tendance à se désactiver rapidement en raison d'un phénomène de carbonisation (ou cokage) et de frittage de la phase de nickel métallique et du support dans la mesure où les particules de nickel ont tendance à s'agglomérer lorsque la température dépasse 600°C.
Par ailleurs, quelle que soit la nature du métal utilisé à titre de catalyseur, le choix d'une méthode de préparation adéquate peut s'avérer d'une grande importance car elle peut influer sur les propriétés catalytiques du catalyseur correspondant. Il existe principalement deux grandes voies de synthèse de ces catalyseurs supportés : les méthodes céramiques et les méthodes de chimie douce.
Les méthodes céramiques sont les plus anciennes. Elles consistent à broyer finement des composés solides, en général des oxydes métalliques ou des carbonates métalliques puis à calciner la poudre ainsi obtenue à la température de cristallisation du composé retenu. Ces méthodes de préparation sont cependant onéreuses et conduisent à des catalyseurs de faibles surfaces spécifiques (donc à faible rendement) et ne présentant pas toujours une homogénéité suffisante.
Les méthodes de chimie douce proposent quant à elles, un mélange moléculaire des différents cations par passage en solution des sels métalliques. Ceci permet l'obtention de phases cristallines plus homogènes à des températures plus basses. Parmi les méthodes les plus utilisées figurent notamment l'imprégnation et la précipitation.
L'imprégnation consiste à imprégner un support poreux par une solution d'un précurseur du catalyseur, soit à sec, lorsque le volume de la solution de précurseurs correspond au volume poreux du support, soit en excès, lorsque le volume de la solution de précurseurs est supérieur au volume poreux du support. On parle alors d'imprégnation humide ou « Incipient Wetness Imprégnation method : IWI method » en anglais. Dans ce cas, la solution de précurseurs est simplement mise en contact avec le support de façon à ce qu'elle imprègne les pores par capillarité, le support est ensuite séché pour évaporer le solvant de la solution. A titre d'exemple, A. Carrero et al. (Applied Catalysis A: General, 2007, 327, 82-94) décrivent la préparation d'un catalyseur à base de Cu et de Ni, supporté sur de la silice mésoporeuse SBA-15 par la méthode d'imprégnation humide, ainsi que son utilisation pour le reformage de l'éthanol. Plus récemment, P. Wu et al, (Catalysis Today, 2009, 146, 82-86) ont décrit la préparation de différents catalyseurs supportés à base de nickel par la méthode d'imprégnation, ainsi que leur utilisation pour le re formage du méthane.
La précipitation, consiste à dissoudre les précurseurs métalliques dans l'eau puis à faire précipiter les cations métalliques sur le support par addition d'un agent favorisant la précipitation tel que l'acide oxalique, l'ammoniaque ou bien encore l'urée comme décrit par exemple dans l'article de Liu H. et al, Applied Catalysis A : General, 2008, 337, 138-147.
Les Inventeurs se sont donné pour but de pourvoir à un catalyseur supporté à base de nickel, pouvant notamment être utilisé pour catalyser la réaction de reformage du méthane de façon plus stable dans le temps que les catalyseurs à base de nickel obtenus selon les procédés décrits dans l'art antérieur, en particulier selon les procédés par imprégnation ou par précipitation, et ce, selon un procédé de préparation simple, rapide, fiable et peu onéreux à mettre en œuvre.
Ce but est atteint par le procédé de préparation du catalyseur au nickel supporté qui va être décrit ci-après et qui fait l'objet de la présente invention.
La présente invention a pour objet un procédé de préparation d'un catalyseur supporté au nickel comprenant un support solide et du nickel métallique, ledit procédé comportant une étape d'imprégnation d'un support solide avec une solution d'au moins un sel de nickel dans un solvant réactionnel, une étape de séchage et une étape de calcination, ledit procédé étant caractérisé en ce que ladite étape d'imprégnation est réalisée en présence d'un agent réducteur dudit sel de nickel, et en ce que ledit procédé ne comprend aucune étape de réduction après les étapes de séchage et de calcination du support.
Le procédé conforme à l'invention est rapide, simple et peu onéreux à mettre en œuvre. Il permet d'obtenir un catalyseur au nickel supporté qui, lorsqu'il est utilisé pour catalyser la réaction de reformage du méthane, conduit au dihydrogène et au monoxyde de carbone dans un rapport H2/CO similaires à ceux de l'art antérieur, mais dont l'activité dans le temps est beaucoup plus stable que celle des catalyseurs au nickel obtenus par simple imprégnation d'un support poreux à l'aide d'une solution d'un sel de nickel. En effet, ainsi que cela est démontré dans les exemples comparatifs illustrant la présente demande, le catalyseur obtenu en mettant en œuvre le procédé de préparation faisant l'objet de l'invention, permet de réaliser la réaction de reformage du méthanol de façon beaucoup plus stable dans le temps qu'un catalyseur à base de nickel obtenu par imprégnation d'un support solide poreux à l'aide d'une solution d'un sel de nickel sans que cette imprégnation ait lieu présence d'un agent réducteur.
La nature du support solide utilisable selon le procédé de l'invention n'est pas critique. Le support solide peut par exemple être choisi les supports poreux ou non poreux à base de silice, de silice colloïdale, de silicate de calcium, d'oxydes de silice mixtes tels que par exemple SiO2-TiO2, SiO2-ZrO2 ; les supports en carbure de silice (SiC), en zéolithe, zirconium, kaolinite, verre poreux, alumine, etc. Un support particulièrement préféré selon l'invention est un support se présentant sous la forme de particules de silice mésostructurée (comme par exemple une silice SBA-15).
Les sels de nickel utilisables selon le procédé de l'invention peuvent par exemple être choisis parmi le nitrate de nickel et ses hydrates, l'acétate de nickel, le chlorure de nickel et le carbonate de nickel.
Le solvant réactionnel peut être aqueux ou organique tel que de l'éthanol ou du toluène.
Selon une forme de réalisation préférée de l'invention, la quantité de sel de nickel au sein de la solution, exprimée en % en masse de nickel par rapport à la masse totale de catalyseur, varie de 1 à 20 %, plus préférentiellement de 5 à 15 %.
La nature de l'agent réducteur utilisable selon le procédé conforme à l'invention n'est pas critique. Il est par exemple choisi parmi les hydrures tels que par exemple LiBH4 et NaBH4 ; les phosphites et hypophosphites, ainsi que parmi les composés de formule (I) suivante :
»VV
HO OH
dans laquelle :
- R1 représente un atome de carbone ou un groupement choisi parmi les groupements, alkylène, alkylèneoxy, fluoroalkylène, cycloalkylène, hétérocycloalkylène, arylène, aralkylène, arylèneoxy, hétéroarylène, hétéroaralkylène, alkénylène, alkynylène, ou amide, et
- 2 représente un atome hydrogène ou un groupement choisi parmi les groupements hydroxyle, alkyle, mono- ou polyhydroxyalkyle, alkoxy, fluoroalkyle, cycloalkyle, hétérocycloalkyle, cycloalkyloxy, aryle, aralkyle, aryloxy, aralkyloxy, hétéroaryle, hétéroaralkyle, alkényle, alkynyle, aminé, et alkylèneamine, éventuellement sous forme de sel d'addition avec une base.
Selon une forme de réalisation préférée de l'invention, l'agent réducteur utilisé est choisi parmi les composés de formule (I) parmi lesquels on peut notamment citer l'acide ascorbique, les ascorbates tels que l'ascorbate de sodium, l'acide érythorbique et les érythorbates tels que l'érythorbate de sodium.
Parmi les agents réducteurs utilisables selon l'invention, l'acide ascorbique est particulièrement préféré.
Le rapport molaire agent réducteur/précurseur de nickel est de préférence supérieur ou égal à 1 et encore plus préférentiellement, ce rapport varie de 3 à 5.
La durée de l'étape d'imprégnation du support solide avec la solution de sel de nickel peut varier de 5 minutes à 5 heures.
Selon une forme de réalisation préférée, l'étape d'imprégnation du support solide avec la solution de sel de nickel est réalisée à une température variant de 20 à 90°C, préférentiellement à une température d'environ 80°C.
Afin d'augmenter l'efficacité de l'agent réducteur, il est possible d'ajouter dans la solution de sel de nickel, au moins une base afin d'augmenter le pH de la solution. Ainsi, selon une forme de réalisation préférée de l'invention, le procédé de préparation comporte en outre une étape au cours de laquelle on ajoute à la solution de sel de nickel au moins une base en une quantité suffisante pour ajuster le pH de la solution de sel de nickel à une valeur supérieure ou égale à 9, de préférence comprise entre 9 et 1 1. La ou les bases utilisables dans la solution de sel de nickel sont de préférence choisies parmi l'urée, et l'ammoniaque, l'urée étant particulièrement préférée.
Lorsqu'une base est utilisée, celle-ci est de préférence ajoutée à la solution de sel de nickel renfermant le support solide et l'agent réducteur après que la température de ladite solution ait été portée à au moins 80°C.
Lorsque la réaction est terminée, la solution contenant le support solide est de préférence filtrée pour récupérer le catalyseur au nickel, puis celui-ci est ensuite lavé pour éliminer l'excès de sel de nickel qui n'aurait pas réagi, de préférence à l'eau distillée.
Le catalyseur est ensuite séché puis calciné, de préférence à une température d'environ 500 à 600°C pendant environ 5 à 8 heures. Le séchage avant calcination peut par exemple être effectué dans un four à une température d'environ 100 à 120°C pendant environ 5 à 10 heures.
La présente invention a également pour objet l'utilisation d'un catalyseur supporté au nickel obtenu par la mise en œuvre du procédé tel que défini précédemment, pour catalyser la réaction de décomposition du méthane en dihydrogène.
Cette utilisation conduit à la production de dihydrogène dans un rapport H2/CO similaire à celui qui est obtenu avec les catalyseurs connus de l'état de la technique mais de façon beaucoup plus stable dans le temps.
Par conséquent, l'invention a également pour objet l'utilisation d'un catalyseur supporté au nickel obtenu par la mise en œuvre du procédé tel que défini précédemment, pour la production de dihydrogène à partir de gaz naturel, et en particulier du méthane en mélange avec du dioxyde de carbone.
Enfin la présente invention a pour objet un procédé de reformage catalytique du gaz naturel, et en particulier du méthane, comportant une étape de réaction du méthane en présence de dioxyde de carbone et d'un catalyseur, caractérisé en ce que le catalyseur est un catalyseur supporté au nickel obtenu par la mise en œuvre du procédé tel que défini précédemment.
La réaction de reformage catalytique peut par exemple être réalisée dans un réacteur tubulaire en quartz à lit fixe selon les méthodes bien connues de l'homme du métier.
La présente invention est illustrée par les exemples de réalisation suivants, auxquels elle n'est cependant pas limitée.
EXEMPLES
Les matières premières utilisées dans les exemples qui suivent sont listées ci-après :
Copolymère tri-bloc poly(éthylène glycol)-poly(propylène glycol)- poly(éthylène glycol), de masse moléculaire 5800 g/mol, vendu sous la dénomination commerciale Pluronic ® PI 23 par la société BASF ; - Tetraéthylorthosilicate (TEOS) à 98 % (Aldrich) ;
- Nitrate de nickel hexahydrate (Ni(NO3)2, 6H2O) (Sigma Aldrich) ;
- Urée (Sigma Aldrich).
Ces matières premières ont été utilisées telles que reçues des fabricants, sans purification supplémentaire.
Exemple 1 :
Préparation d'un catalyseur supporté au nickel selon le procédé de préparation conforme à l'invention
Dans cet exemple, on illustre la préparation d'un catalyseur au nickel supporté sur de la silice mésoporeuse de type SBA-15 selon le procédé de préparation conforme à l'invention
1) Synthèse de la silice SBA-15 (support)
La silice de type SBA-15 a été synthétisée selon la méthode décrite par Zhao, D., et al. (Science, 1998, 279(5350), 548-552).
72 g de Pluronic ® 123 ont été dissous dans 2150 mL d'une solution aqueuse d'HCl à 2 mol.L"1, avant d'y ajouter 170 mL de TEOS. Le mélange résultant a été agité pendant 24 heures à 35°C, puis chauffé à 90°C pendant 24 heures. Le précipité de silice mésoporeuse a été récupéré par filtration, lavé, séché et finalement calciné à 550°C pendant 6 heures. On a ainsi obtenu une poudre de particules de silice mésoporeuse de type SBA-15.
2) Synthèse du catalyseur au nickel
1 g de silice de type SBA-15 obtenue ci-dessus à l'étape précédente, et 0,75 g d'acide ascorbique ont été mis en suspension dans 50 mL d'eau distillée. La suspension a été soumise à une agitation sous ultra-sons pendant 10 min (Suspension- 1).
0,89 g de Ni(NO )2, 6H2O ont été dissous dans 200 mL d'eau distillée (Solution- 1).
La Suspension- 1 a ensuite été ajoutée à la Solution- 1 et le mélange résultant a été porté à 80°C sous agitation. On a ensuite ajouté 3,6 g d'urée et le milieu réactionnel a été maintenu à 80°C pendant 20 heures sous agitation. Le mélange final a été filtré et lavé avec un volume suffisant d'eau distillée. La poudre a ensuite été séchée dans un four pendant 6 heures à 1 10°C puis calcinée dans un four à moufle à une température de 550°C pendant 6 heures.
On a obtenu un catalyseur solide à base de nickel supporté sur de la silice SBA-15 comprenant environ 10 % en masse de nickel par rapport à la masse totale de catalyseur.
Exemple 2 :
Mise en évidence des propriétés catalytiques du catalyseur préparé à l'exemple 1
Dans cet exemple on a testé les propriétés catalytiques du catalyseur préparé ci-dessus à l'exemple 1 (Cat-1) pour le reformage du méthane comparativement à un catalyseur non conforme à l'invention Cat-2 préparé selon la méthode d'imprégnation à sec en utilisant la silice SBA-15 et pour lequel le volume de la solution de nickel qui correspond au volume poreux du support, a été ajouté au goutte à goutte sur la silice SBA-15 sous agitation manuelle. Le produit a ensuite été séché et calciné.
Le reformage catalytique du méthane a été réalisé dans un réacteur tabulaire en quartz à lit fixe (hauteur = 4 cm, diamètre = 2 cm), à la pression atmosphérique.
Avant leur utilisation, les catalyseurs Cat-1 et Cat-2 ont été soumis à un prétraitement par un flux d'hydrogène à 3% d'argon pendant 3 heures à 800°C, à raison de 50 mL/min, la température de 800°C ayant préalablement été atteinte avec une rampe de montée en température de 10°C/min.
Le mélange de gaz utilisé pour le test catalytique était composé de CH4:CO2:Ar (1 : 1,3/7,7 ; v :v :v). Il a été introduit dans le réacteur à une vitesse constante de 100 mL/min, afin d'avoir vitesse spatiale horaire gazeuse (ou en anglais « Gaz Hourly Space Velocity » : GHSV) de 20,000mL/h par gramme de catalyseur. La température du réacteur a été portée à 900°C à une vitesse de 2°C/min afin d'enregistrer l'activité catalytique des catalyseurs. Les gaz émis en sortie du réacteur ont été analysés à l'aide d'un micro-chromatographe à gaz vendu sous la référence CP-4900 par la société Varian Inc., équipé d'une colonne de chromatographie gazeuse (COX) et d'un détecteur de conductivité thermique.
Les résultats obtenus avec les catalyseurs testés sont reportés sur les figures 1 à 4 annexées. La figure 1 montre l'évolution du taux de conversion du méthane (en %) en fonction de la température (en °C) pour chacun des catalyseurs (Cat-1 : triangles gris clair, Cat-2 : carrés noirs). La figure 2 montre l'évolution du rapport H2/CO en fonction de la température (en °C) pour chacun des catalyseurs (Cat-1 : triangles gris clair, Cat-2 : carrés noirs). Ces résultats montrent que le catalyseur Cat-1 obtenu selon le procédé de préparation conforme à la présente invention permet de catalyser la réaction de reformage du méthane de façon plus efficace que le catalyseurs Cat-2 ne faisant pas partie de l'invention, dans la mesure ou il conduit à un taux de conversion du méthane supérieur à celui du catalyseur Cat-2 dans l'intervalle de température compris entre 600 et 800°C, les taux de conversion en dehors de cette gamme de température étant par ailleurs comparables.
Les résultats de stabilité de l'activité catalytique des catalyseurs Cat-1 et Cat-2 à la température de 600°C sont reportés sur les figures 3 et 4 annexées. La figure 3 donne l'évolution du taux de conversion du méthane (en %) en fonction du temps (en hh:mm) pour chacun des catalyseurs (Cat-1 : courbe haute en gris clair, Cat-2 : courbe basse en noir). La figure 4 montre l'évolution du rapport H2/CO en fonction du temps (en hh:mm) pour chacun des catalyseurs (Cat-1 : courbe haute en gris clair, Cat-2 : courbe basse en noir).
Ces résultats montrent que l'activité catalytique du catalyseur Cat-1 conforme à l'invention est stable au cours du temps alors que celle du catalyseur Cat-2 selon l'art antérieur diminue en fonction du temps.
Exemple 3 :
Préparation d'un catalyseur supporté au nickel selon le procédé de préparation conforme à l'invention
Dans cet exemple, on illustre la préparation d'un catalyseur au nickel supporté sur de l'alumine.
L'alumine (Al2O3) a été obtenue par la calcination d'une poudre de boehmite (AIO(OH)) (vendue par la société SASOL) à 850 °C pendant 6 heures
1 g de Al2O obtenue ci-dessus à l'étape précédente, et 1 g d'acide ascorbique ont été mis en suspension dans 50 mL d'eau distillée. La suspension a été soumise à une agitation sous ultra-sons pendant 10 min (Suspension- 1).
0,89 g de Ni(NO )2, 6H2O ont été dissous dans 200 mL d'eau distillée (Solution- 1). La Suspension- 1 a ensuite été ajoutée à la Solution- 1 et le mélange résultant a été porté à 80°C sous agitation. On a ensuite ajouté 2 ml de l'ammoniaque et le milieu réactionnel a été maintenu à 80°C pendant 4 heures sous agitation.
Le mélange final a été filtré et lavé avec un volume suffisant d'eau distillée. La poudre a ensuite été séchée dans un four pendant 6 heures à 1 10°C puis calcinée sous l'argon dans un four à moufle à une température de 550°C pendant 6 heures.
On a obtenu un catalyseur solide (Ni-Al-1) à base de nickel supporté sur de l'alumine Al2O3.
A titre comparatif, il a également été préparé un catalyseur au nickel supporté sur alumine ne faisant pas partie de l'invention, selon le procédé décrit dans cet exemple mais sans utiliser d'acide ascorbique (Ni-Al-2).
Les performances catalytiques de ces deux catalyseurs vis-à-vis de la décomposition du méthane ont été comparées et sont données sur les figures 5 et 6 annexées. La figure 5 représente l'évolution du taux de conversion du méthane (en %) en fonction de la température (en °C) pour chacun des catalyseurs (Ni-Al-1 : courbe avec les étoiles ; Ni-Al-2 : courbes avec les cercles vides) et la figure 6 représente le taux de conversion du méthane (en %) en fonction du temps (en hh:mm) à la température de 600°C pour chacun des catalyseurs (Ni-Al-1 : courbe avec les étoiles ; Ni-Al-2 : courbes avec les cercles vides).
Ces résultats montrent que le catalyseur Ni-Al-1 conforme à l'invention présente une activité catalytique similaire à celle du catalyseur Ni-Al-2 obtenu selon un procédé de préparation ne faisant pas partie de l'invention en termes d'efficacité, mais que cette activité est stable dans le temps, ce qui n'est pas le cas pour le catalyseur Ni-Al-2.

Claims

REVENDICATIONS
1. Procédé de préparation d'un catalyseur supporté au nickel comprenant un support solide et du nickel métallique, ledit procédé comportant une étape d'imprégnation d'un support solide avec une solution d'au moins un sel de nickel dans un solvant réactionnel, une étape de séchage et une étape de calcination, ledit procédé étant caractérisé en ce que ladite étape d'imprégnation est réalisée en présence d'un agent réducteur dudit sel de nickel, et en ce que ledit procédé ne comprend aucune étape de réduction après les étapes de séchage et de calcination du support.
2. Procédé selon la revendication 1, caractérisé en ce que le support solide est choisi parmi les supports poreux ou non poreux à base de silice, de silice colloïdale, de silicate de calcium, d'oxydes de silice mixtes ; les supports en carbure de silice, en zéolithe, zirconium, kaolinite, verre poreux et alumine.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le support solide se présente sous la forme de particules de silice mésostructurée.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les sels de nickel sont choisis parmi le nitrate de nickel et ses hydrates, l'acétate de nickel, le chlorure de nickel et le carbonate de nickel.
5. Procédé selon la revendication 4, caractérisé en ce que la quantité de sel de nickel au sein de la solution, exprimée en % en masse de nickel par rapport à la masse totale de catalyseur, varie de 1 à 20 %.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'agent réducteur est choisi parmi les hydrures, les phosphites, les hypophosphites, ainsi que p le (I) suivante :
Figure imgf000012_0001
dans laquelle :
R1 représente un atome de carbone ou un groupement choisi parmi les groupements, alkylène, alkylèneoxy, fluoroalkylène, cycloalkylène, hétérocycloalkylène, arylène, aralkylène, arylèneoxy, hétéroarylène, hétéroaralkylène, alkénylène, alkynylène, ou amide, et - 2 représente un atome hydrogène ou un groupement choisi parmi les groupements hydroxyle, alkyle, mono- ou polyhydroxyalkyle, alkoxy, fluoroalkyle, cycloalkyle, hétérocycloalkyle, cycloalkyloxy, aryle, aralkyle, aryloxy, aralkyloxy, hétéroaryle, hétéroaralkyle, alkényle, alkynyle, aminé, et alkylèneamine, éventuellement sous forme de sel d'addition avec une base.
7. Procédé selon la revendication 6, caractérisé en ce que les composés de formule (I) sont choisis parmi l'acide ascorbique, les ascorbates, l'acide érythorbique et les érythorbates.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'agent réducteur est l'acide ascorbique.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le rapport molaire agent réducteur/précurseur de nickel est supérieur ou égal à 1.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape d'imprégnation du support solide avec la solution de sel de nickel est réalisée à une température variant de 20 à 90°C.
1 1. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte en outre une étape au cours de laquelle on ajoute à la solution de sel de nickel au moins une base en une quantité suffisante pour ajuster le pH de la solution de sel de nickel à une valeur supérieure ou égale à 9.
12. Procédé selon la revendication 1 1, caractérisé en ce que la base est choisie parmi l'urée et l'ammoniaque.
13. Procédé selon la revendication 1 1 ou 12, caractérisé en ce que la base est ajoutée à la solution de sel de nickel renfermant le support solide et l'agent réducteur après que la température de ladite solution ait été portée à au moins 80°C.
14. Utilisation d'un catalyseur supporté au nickel obtenu par la mise en œuvre du procédé tel que défini à l'une quelconque des revendications précédentes, pour catalyser la réaction de décomposition du méthane en dihydrogène.
15. Utilisation d'un catalyseur supporté au nickel obtenu par la mise en œuvre du procédé tel que défini à l'une quelconque des revendications 1 à 13 pour la production de dihydrogène à partir de gaz naturel.
16. Procédé de reformage catalytique du gaz naturel comportant une étape de réaction du méthane en présence de dioxyde de carbone et d'un catalyseur, caractérisé en ce que le catalyseur est un catalyseur supporté au nickel obtenu par la mise en œuvre du procédé tel que défini à l'une quelconque des revendications 1 à
PCT/FR2013/051337 2012-06-11 2013-06-10 Procede de preparation d'un catalyseur au nickel supporte, utilisation de ce catalyseur pour la production d'hydrogene WO2013186474A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1255450 2012-06-11
FR1255450A FR2991597A1 (fr) 2012-06-11 2012-06-11 Procede de preparation d'un catalyseur au nickel supporte, utilisation de ce catalyseur pour la production d'hydrogene.

Publications (1)

Publication Number Publication Date
WO2013186474A1 true WO2013186474A1 (fr) 2013-12-19

Family

ID=47227891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051337 WO2013186474A1 (fr) 2012-06-11 2013-06-10 Procede de preparation d'un catalyseur au nickel supporte, utilisation de ce catalyseur pour la production d'hydrogene

Country Status (2)

Country Link
FR (1) FR2991597A1 (fr)
WO (1) WO2013186474A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713840A (zh) * 2020-05-25 2021-11-30 台州学院 一种氮化钴-镍镓液态合金复合催化剂及其制备方法和应用
CN114471584A (zh) * 2022-02-25 2022-05-13 南方科技大学 改性硅酸钙基镍系催化剂及其制备方法、应用
CN115739092A (zh) * 2021-09-03 2023-03-07 广东工业大学 一种高活性金属镍负载催化剂及其制备方法和应用
CN115920910A (zh) * 2021-08-20 2023-04-07 中国石油化工股份有限公司 一种金属负载型催化剂制备方法
US11826727B2 (en) 2022-02-25 2023-11-28 DeCarbon Technology (Shenzhen) Co., Ltd. Modified calcium silicate based nickel catalyst and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113042068B (zh) * 2021-03-26 2022-04-05 河北工业大学 一种双功能化石墨烯负载NiAuPd纳米催化剂的制备方法及应用
CN113522295B (zh) * 2021-08-19 2022-06-24 华东理工大学 一种镍基催化剂、制备方法及其应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1231104A (fr) * 1967-05-19 1971-05-12
US5674800A (en) * 1993-07-16 1997-10-07 Hoechst Aktiengesellschaft Process of preparing vinyl acetate
US5945459A (en) * 1997-04-22 1999-08-31 Exxon Research And Engineering Co Preparation of high activity catalysts; the catalysts and their use
US6136868A (en) * 1997-04-22 2000-10-24 Exxon Research And Engineering Company Preparation of high activity catalysts; the catalysts and their use
US6331575B1 (en) * 1997-04-22 2001-12-18 Exxon Research And Engineering Company Preparation of high activity catalysts; the catalysts and their use
US20030187293A1 (en) * 2002-03-27 2003-10-02 Peter Birke Process for preparing a catalyst, the catalyst and a use of the catalyst
US20050154236A1 (en) * 2002-02-26 2005-07-14 Basf Aktiengesellschaft Method for producing shell catalysts
WO2008043060A2 (fr) * 2006-10-05 2008-04-10 Research Triangle Institute Catalyseurs d'hydrogénation à base de nickel hautement dispersés et procédés de fabrication de ceux-ci
US20090261020A1 (en) * 2005-10-20 2009-10-22 Dong Ju Moon Nickel Based Catalyst Using Hydrotalcite-Like Precursor and Steam Reforming Reaction of LPG
EP2460588A1 (fr) * 2007-04-13 2012-06-06 Showa Denko K.K. Procédé pour la production d'acétate d'allyle avec un catalyseur contenant Pd, Au, un Metal alcalin et un promoteur
WO2012107718A2 (fr) * 2011-02-07 2012-08-16 Oxford Catalysts Limited Catalyseurs

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1231104A (fr) * 1967-05-19 1971-05-12
US5674800A (en) * 1993-07-16 1997-10-07 Hoechst Aktiengesellschaft Process of preparing vinyl acetate
US5945459A (en) * 1997-04-22 1999-08-31 Exxon Research And Engineering Co Preparation of high activity catalysts; the catalysts and their use
US6136868A (en) * 1997-04-22 2000-10-24 Exxon Research And Engineering Company Preparation of high activity catalysts; the catalysts and their use
US6331575B1 (en) * 1997-04-22 2001-12-18 Exxon Research And Engineering Company Preparation of high activity catalysts; the catalysts and their use
US20050154236A1 (en) * 2002-02-26 2005-07-14 Basf Aktiengesellschaft Method for producing shell catalysts
US20030187293A1 (en) * 2002-03-27 2003-10-02 Peter Birke Process for preparing a catalyst, the catalyst and a use of the catalyst
US20090261020A1 (en) * 2005-10-20 2009-10-22 Dong Ju Moon Nickel Based Catalyst Using Hydrotalcite-Like Precursor and Steam Reforming Reaction of LPG
WO2008043060A2 (fr) * 2006-10-05 2008-04-10 Research Triangle Institute Catalyseurs d'hydrogénation à base de nickel hautement dispersés et procédés de fabrication de ceux-ci
EP2460588A1 (fr) * 2007-04-13 2012-06-06 Showa Denko K.K. Procédé pour la production d'acétate d'allyle avec un catalyseur contenant Pd, Au, un Metal alcalin et un promoteur
WO2012107718A2 (fr) * 2011-02-07 2012-08-16 Oxford Catalysts Limited Catalyseurs

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUNKAI SHI ET AL: "Effect of a second metal (Y, K, Ca, Mn or Cu) addition on the carbon dioxide reforming of methane over nanostructured palladium catalysts", APPLIED CATALYSIS B: ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 115, 1 December 2011 (2011-12-01), pages 190 - 200, XP028402702, ISSN: 0926-3373, [retrieved on 20111209], DOI: 10.1016/J.APCATB.2011.12.002 *
GRAF ET AL: "Comparative study of steam reforming of methane, ethane and ethylene on Pt, Rh and Pd supported on yttrium-stabilized zirconia", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 332, no. 2, 16 October 2007 (2007-10-16), pages 310 - 317, XP022300611, ISSN: 0926-860X, DOI: 10.1016/J.APCATA.2007.08.032 *
NURUNNABI M ET AL: "Oxidative steam reforming of methane under atmospheric and pressurized conditions over Pd/NiO-MgO solid solution catalysts", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 308, 10 July 2006 (2006-07-10), pages 1 - 12, XP028001734, ISSN: 0926-860X, [retrieved on 20060710], DOI: 10.1016/J.APCATA.2006.03.054 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713840A (zh) * 2020-05-25 2021-11-30 台州学院 一种氮化钴-镍镓液态合金复合催化剂及其制备方法和应用
CN113713840B (zh) * 2020-05-25 2023-07-25 台州学院 一种氮化钴-镍镓液态合金复合催化剂及其制备方法和应用
CN115920910A (zh) * 2021-08-20 2023-04-07 中国石油化工股份有限公司 一种金属负载型催化剂制备方法
CN115739092A (zh) * 2021-09-03 2023-03-07 广东工业大学 一种高活性金属镍负载催化剂及其制备方法和应用
CN114471584A (zh) * 2022-02-25 2022-05-13 南方科技大学 改性硅酸钙基镍系催化剂及其制备方法、应用
WO2023159703A1 (fr) * 2022-02-25 2023-08-31 深碳科技(深圳)有限公司 Catalyseur au nickel à base de silicate de calcium modifié, son procédé de préparation et son application
US11826727B2 (en) 2022-02-25 2023-11-28 DeCarbon Technology (Shenzhen) Co., Ltd. Modified calcium silicate based nickel catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
FR2991597A1 (fr) 2013-12-13

Similar Documents

Publication Publication Date Title
WO2013186474A1 (fr) Procede de preparation d'un catalyseur au nickel supporte, utilisation de ce catalyseur pour la production d'hydrogene
FR3065650B1 (fr) Procede de reduction photocatalytique du dioxyde de carbone mettant en œuvre un photocatalyseur sous forme de monolithe poreux
EP3780197A1 (fr) Procédé de préparation d'un matériau carboné poreux et azoté avec dopant métallique, notamment utile à titre de catalyseur pour la réduction de l'oxygène (orr)
FR3037053A1 (fr) Production de dihydrogene avec photocatalyseur supporte sur nanodiamants
CN109384750B (zh) 一种催化加氢5-羟甲基糠醛制备2,5-二甲基呋喃的方法
FR3050659A1 (fr) Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose ester
FR3050660A1 (fr) Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose comportant deux fontions acides carboxyliques et au moins trois atomes de carbone
WO2021224576A1 (fr) Procédé de préparation d'un catalyseur métallique supporté, catalyseur obtenu selon ce procédé et utilisations
FR3050662A1 (fr) Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose acide amine
EP2432591B1 (fr) Catalyseur pour le réformage de goudrons utilisables dans la vapogazéification de la biomasse
EP3223941A1 (fr) Procede de preparation d'un catalyseur fischer-tropsch avec traitement a la vapeur
WO2012164231A1 (fr) Procédé catalytique pour la conversion d'un gaz de synthèse en hydrocarbures
WO2001066246A1 (fr) Utilisation d'un solide de structure hydrotalcite integrant des ions fluorures pour la catalyse basique de reactions de michaël ou de knoevenagel
KR101487387B1 (ko) 금속 카바이드계 메탄 리포밍 촉매 제조방법 및 그 방법에 의해 제조된 메탄 리포밍 촉매
EP3643767A1 (fr) Procede de synthese fischer-tropsch comprenant un catalyseur prepare par addition d'un compose organique en phase gazeuse
FR3087672A1 (fr) Catalyseur de cobalt a base d’un support comprenant une phase d’oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d’un compose organique de la famille des carboxyanhydrides
RU2449002C2 (ru) Способ получения углеводорода путем восстановления монооксида углерода
RU2014117562A (ru) Катализатор метанизации диоксида углерода и способ его получения и использования
WO2017186405A1 (fr) Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'acide oxalique ou d'oxalate
CN108047026B (zh) 一种乙二醛催化氧化反应萃取制备乙醛酸的方法
KR102613061B1 (ko) 함산소 화합물의 수소첨가 탈산소 반응용 촉매 및 이를 이용하여 바이오매스로부터 바이오나프타를 제조하는 방법
CN114471519B (zh) 一种活性锌催化剂及其制备方法和在催化布洛芬重排反应中的应用
CN115029153B (zh) 一种催化生物质衍生物制备航空煤油的方法
KR102561034B1 (ko) 바이오매스의 액상 개질용 세리아 기반 불균일계 합금 촉매, 그 제조방법, 및 이를 이용하는 고순도 수소 생산 방법
RU2720369C1 (ru) Катализатор деоксигенирования компонентов биомассы в углеводороды и способ его получения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13733378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13733378

Country of ref document: EP

Kind code of ref document: A1