WO2013185697A1 - 一种有源天线系统无线指标的测试方法及装置 - Google Patents

一种有源天线系统无线指标的测试方法及装置 Download PDF

Info

Publication number
WO2013185697A1
WO2013185697A1 PCT/CN2013/080124 CN2013080124W WO2013185697A1 WO 2013185697 A1 WO2013185697 A1 WO 2013185697A1 CN 2013080124 W CN2013080124 W CN 2013080124W WO 2013185697 A1 WO2013185697 A1 WO 2013185697A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
antenna system
active antenna
antenna
testing
Prior art date
Application number
PCT/CN2013/080124
Other languages
English (en)
French (fr)
Inventor
王博明
李香玲
王鹏
黄沛瑜
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013185697A1 publication Critical patent/WO2013185697A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems

Definitions

  • the invention relates to the technical field of testing wireless indicators of active antenna systems, and in particular to a method and a device for testing wireless indicators of active antenna systems.
  • the Active Antenna System is a base station communication subsystem integrated with a multi-channel transceiver and a base station antenna. It is an integrated device for antennas and multi-channel transceivers. The interface between them is an internal interface. It is difficult to directly perform RF port testing, which poses a challenge to its testing.
  • the tests of traditional base stations are generally divided into base station antenna test and base station equipment test.
  • test environment In order to meet the requirements of test accuracy and repeatability, there are certain requirements for the test environment, such as indoor far field test, which requires a certain size of darkroom; outdoor far field test is susceptible to weather and external interference signals. This will cause problems in terms of test cost and test efficiency;
  • test items of AAS such as reliability test in CE certification experiment, need to be carried out in a closed high and low temperature environment, which is difficult to complete in the OTA test environment;
  • the test of the radio frequency index of the traditional base station equipment mostly uses the conduction test method.
  • the reference point of the test is in the RF port of the active part. If the RF index of the AAS is tested by this method, the active antenna system needs to be The source portion is separated from the antenna array portion, and the coupling test RF port is added to the active portion, which causes the following problems: 1) Increasing the coupling test port, destroying the AAS-bodyized topology; at the same time increasing the complexity of the design, affecting the device integration, and the coupling method will generate unnecessary loss;
  • test needs to be equipped with suitable connectors and equipment. In order to be approved by the user, a large number of instructions for the certification of the test process and test parameters are required.
  • the technical problem to be solved by the embodiments of the present invention is to provide a method and a device for testing a wireless index of an active antenna system, and using a comprehensive test method, under the premise of satisfying the test requirements for the AAS wireless performance index, the test cost and The test efficiency is optimized.
  • the following technical solutions are used:
  • a method for testing a wireless indicator of an active antenna system comprising:
  • the spatial characteristics of the active antenna system are tested by using space radio frequency (OTA) test; the radio frequency index of the active antenna system is tested by a near-field coupling method.
  • OTA space radio frequency
  • the step of testing the spatial characteristics of the active antenna system includes:
  • the downlink antenna characteristic test and the uplink spatial characteristic test of the active antenna system are respectively performed, and the equivalent isotropic radiation power (EIRP) and the equivalent omnidirectional reception sensitivity (EIRS) are respectively obtained by compensating the pattern of the active antenna system. ).
  • EIRP equivalent isotropic radiation power
  • EIRS equivalent omnidirectional reception sensitivity
  • the step of establishing the test environment includes:
  • the gain reference antenna is mounted on the antenna turret, and the gain reference antenna is connected to the vector signal generator through a radio frequency cable; the receiving antenna is mounted on the antenna bracket and passed through the radio frequency A cable connects the receive antenna to a spectrum analyzer or power meter.
  • the steps of calibrating the test environment include: Adjusting the gain reference antenna and the receiving antenna in a forward direction by adjusting the antenna turret and the antenna bracket;
  • the vector signal generator is configured to transmit a downlink continuous analog signal of a specified frequency band, and the signal is input to the spectrum analyzer or the power meter through the receiving antenna to obtain a corresponding signal power; and the calibration parameter ⁇ of the test environment link is obtained. Pc.
  • the step of testing the downlink space characteristic of the active antenna system includes:
  • the active antenna system is mounted on the antenna turret in a darkroom or simulated free space environment, and is connected to a background configuration device through an optical fiber; the receiving antenna is mounted on the antenna bracket, and Connect to a spectrum analyzer or wireless communication tester via an RF cable; then, follow these steps to test:
  • AAS directed by different beams
  • EIRP Pg + APc, where ⁇ Pc is the obtained calibration parameter, and Pg is measured by the spectrum analyzer Power value.
  • the step of testing the uplink space characteristic of the active antenna system includes:
  • the active antenna system is mounted on the antenna turret in a darkroom or simulated free space environment, and is connected to a background configuration device through an optical fiber; the transmitting antenna is mounted on the antenna bracket and passed through a radio frequency The cable is connected to the vector signal generator; Then, follow the steps below to test:
  • EIRS Ps - APc, where APc is the obtained calibration parameter, and Ps is the output modulation of the vector signal generator Signal power value.
  • the step of testing the radio frequency indicator of the active antenna system by using a near field coupling manner includes:
  • the active antenna system is placed in a test cover for testing a radio frequency indicator, wherein the test cover includes an antenna array and a passive network portion, and an array structure and a composition manner of the antenna array and the active antenna system are The feeds are identical.
  • the radio frequency indicator of the active antenna system is tested by: testing the mask unit calibration: calibrating the difference and phase offset generated by the test cover itself; near field coupling calibration: using two a test cover calibrated by the test cover unit, and calibrating the near field coupling test environment of the test cover;
  • Radio frequency index test placing the active antenna system to be tested in the calibrated test cover and the test cover to form a near field coupling mode, and the test environment is the same as the test environment after the near field coupling calibration; After the calibration result obtained by the calibration is used to compensate the test environment, the RF indicator of the tested active antenna system is tested by the RF test interface on the test cover, and the obtained The radio frequency indicator of the radio frequency port of the active antenna system to be tested.
  • test apparatus for a wireless antenna of an active antenna system, the apparatus comprising a test cover for testing an active antenna system, the test cover comprising: a metal shielded case, an antenna array, a feed network, a branch connector, and Bracket
  • the metal shielding box is configured to: shield internal and external signals of the test cover; the bracket is configured to: fix and adjust an orientation of the antenna array or the tested active antenna system in the test cover;
  • the other end of the branch connector is connected to the test port to implement signal input/output, and the test of each branch is completed.
  • test cover is further provided with an absorbing material arranged to reduce signal interference between the internal layers of the test cover.
  • a comprehensive test method of the above technical solution using the OTA test combined with the test cover, can comprehensively test the wireless performance of the AAS from the perspectives of AAS spatial characteristics and AAS radio frequency indicators, respectively.
  • the integrated test method of the embodiment of the present invention can be used as a comprehensive method for testing the wireless performance of the active antenna system, and the test content is divided into two aspects: a spatial characteristic test and a radio frequency index test, respectively, and the OTA test and the near field are respectively used.
  • the coupling test is completed, which fully combines the advantages of the two test methods, overcomes the defects and problems of the two, and optimizes the test efficiency and test cost.
  • FIG. 1 is a block diagram showing the basic composition of a radio frequency test cover according to an embodiment of the present invention
  • Figure 2 is a block diagram of the OTA test environment calibration working principle
  • 3 is a block diagram showing the working principle of the downlink space characteristic test of the active antenna system according to the embodiment of the present invention
  • FIG. 4 is a block diagram showing the working principle of the uplink space characteristic test of the active antenna system according to the embodiment of the present invention
  • FIG. 5 is a radio frequency test according to an embodiment of the present invention
  • Block unit calibration principle block diagram
  • FIG. 6 is a block diagram showing the working principle of the near field coupling calibration of the RF test cover according to the embodiment of the present invention
  • FIG. 7 is a block diagram showing the working principle of the test piece of the RF test cover according to the embodiment of the present invention.
  • FIG. 8 is a flow chart of an OTA test environment calibration operation according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a downlink space characteristic test operation of an active antenna system according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of an uplink space characteristic test operation of an active antenna system according to an embodiment of the present invention.
  • FIG. 11 is a radio frequency test according to an embodiment of the present invention. Cover calibration flow chart;
  • FIG. 12 is a flow chart showing the operation of the test piece of the RF test cover according to the embodiment of the present invention. Preferred embodiment of the invention
  • the AAS wireless indicator test proposed by the embodiment of the present invention is mainly divided into two parts: AAS space characteristic test and AAS radio frequency index test.
  • the specific test process is described as follows:
  • the AAS spatial characterization test can inherit the traditional base station antenna test environment and needs to be performed in an antenna test field such as a darkroom. It mainly tests the spatial characteristics of AAS.
  • the AAS spatial characteristics mainly include: beam steering capability and accuracy of AAS, spatial synthesis gain test, half-power beamwidth, front-to-back ratio, cross-polarization ratio, sidelobe level measurement, downtilt test, etc.
  • test the AAS pattern (relative amount)
  • the absolute amount of the AAS spatial characteristic can be obtained, which is the equivalent isotropic radiation power.
  • EIRP Effective Isotropic Radiated Power
  • EIRS Equivalent Omnidirectional Receive Sensitivity
  • AAS RF indicator test Considering the AAS as an antenna array and a transceiver integrated device, in the embodiment of the present invention, a test device capable of testing the radio frequency index of the AAS is proposed, which is equivalent to a test device. This is referred to herein as a radio frequency test hood.
  • the RF test cover mainly includes:
  • the antenna array 101 is composed of a series of antenna elements, and the structure and composition of the array should be the same as that of the antenna feeder of the measured AAS.
  • the feeder circuit 102 is used to connect the test port and the antenna array for each time, and may be a coaxial cable or an RF microstrip line.
  • the branch connector 103 connects the test port and the feed network of each channel, and is used for the branch test.
  • the bracket 104 can be configured to: fix the spatial relationship between the RF test cover and the tested component.
  • the absorbing material 105 can reduce the signal interference between the internal layers of the test hood and the shielding of the signals inside and outside, so that there is a good space electromagnetic environment between the test hood and the tested object.
  • the metal shielding box 106 the housing of the test cover, can shield the internal and external signals of the test cover, so that it has good space electromagnetic shielding capability.
  • the antenna array part realizes the connection of each line and the branch connector through the feeding network, and realizes the input/output of the signal through the branch connector to complete the test of each channel.
  • the test cover itself and the near-field coupling test environment need to be separately calibrated to generate a calibration table. Then, the test piece AAS is placed in the test cover, and the spatial relationship between the test cover and the AAS to be tested is fixed.
  • the environment and the near-field coupled calibration test environment are the same, so that the near-field coupling method can be used to test each channel of the AAS, and the calibration table can be found and compensated into the test system, and the radio frequency index of the RF port of the AAS of the device under test can be derived.
  • the electrical characteristics of the antenna array portion of the test cover can be used to characterize the electrical characteristics of the antenna portion of the AAS;
  • the test items can include: Specific test, isolation test, calibration circuit parameter test (for antenna with calibration circuit) and intermodulation test, etc. These test items are mainly used to test the S parameters of the antenna port and the passive intermodulation analyzer through a vector network analyzer. Test the intermodulation product to get.
  • test method and apparatus for the active antenna system proposed by the present invention will be made below. A detailed description.
  • the gain reference antenna 202 is mounted on the antenna turntable 206, and is connected to the vector signal generator 208 via the RF cable 204.
  • the receiving antenna 203 is mounted on the antenna mount 207, and the receiving antenna 203 is passed.
  • the RF cable 205 is connected to a spectrum analyzer (or power meter) 209.
  • the environmental calibration can be performed by referring to the steps shown in FIG. 8, and specifically includes the following main steps: Step 801, adjusting the antenna turntable 206 and the antenna mount 207 to positively align the gain reference antenna 202 with the receive antenna 203.
  • Step 802 the vector signal generator 208 is set to transmit a downlink continuous analog signal of the specified frequency band.
  • Step 803 receiving the signal through the receiving antenna 203, inputting to the spectrum analyzer or the power meter 209, obtaining the corresponding received signal power and recording the data, and the calculation method is as follows:
  • Py - Px Lx + (Ly - Gh + Ls) - Gs Equation (1)
  • Py is a vector signal generator 208 that outputs a continuous analog signal power value
  • Px is the power value of 209 measured by a frequency language instrument or a power meter
  • Gh is the gain of the receiving antenna
  • Gs is the gain of the gain reference antenna
  • Ly is the difference of the RF cable 204;
  • Lx is the difference of the RF cable 205
  • Ls is the spatial path loss in the OTA test environment.
  • the test environment is established as shown in FIG. 3.
  • the active antenna system 302 is mounted on the antenna turntable 306, and is connected to the background configuration device 308 through the optical fiber 304.
  • the receiving antenna 303 is mounted on the antenna support 307. , connected by a radio frequency cable 305 and a spectrum analyzer or a wireless communication tester 309.
  • Step 901 The active antenna system 302 and the background configuration device 308 are activated and function normally, and the active antenna system 302 is in a transmitting mode by transmitting configuration parameters to the background, and a fixed wireless beam of rated power is transmitted in the designated frequency band.
  • Step 902 Adjust the antenna turntable 306 so that the active antenna system 302 and the receiving antenna 303 reach the optimal orientation in the horizontal and vertical directions, so that the measured power value (Pg) of the spectrum analyzer or the wireless communication tester 309 is maximized.
  • Pg measured power value of the spectrum analyzer or the wireless communication tester 309
  • Step 903 the active antenna system 302 performs azimuth rotation on the antenna turntable 306, and records the power value (Pg) received by the spectrum analyzer as a function of the angle; and adjusts the installation mode of the active antenna system 302 (horizontal or Vertical) and the polarization direction of the receiving antenna 303, different principal planes (horizontal or vertical) and different polarization patterns can be obtained.
  • Step 904 adjusting or reconfiguring the active antenna system 302 configuration parameters (including the weight of the antenna element), and repeating steps 902 and 903 to obtain directions of different pointing beams;
  • Step 905 Analyze the downlink spatial characteristics of the AAS according to the test data of step 902 904, and obtain an EIRP according to the A Pc obtained by the calibration process:
  • Gt is the transmit antenna element gain
  • Pg is the power value measured by the frequency analyzer 309
  • a Pc is the calibration parameter.
  • the active antenna system 402 It is mounted on the antenna turntable 406 and connected to the background configuration device 408 via the optical fiber 404.
  • the transmit antenna 403 is mounted on the antenna mount 407 and connected to the vector signal generator 409 via the RF cable 405.
  • step 1001 the active antenna system 402 and the background configuration device 408 are first activated and operate normally.
  • the active antenna system 402 is in the receiving mode by setting the background configuration parameters, and can receive the fixed-oriented wireless beam in the specified frequency band.
  • Step 1002 The vector signal generator 409 is set to transmit an analog modulation signal of a certain standard (GSM, CDMA, WCDMA or LTE, etc.) in a specified frequency band, and the antenna turret 406 is adjusted so that the active antenna system 402 and the transmitting antenna 403 are horizontally and vertically tilted. The best pointing is achieved such that its active antenna system 402 measures the maximum power value (for the primary polarization test) or the minimum (for the cross polarization test).
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • the active antenna system 402 performs azimuth rotation on the test turret and records its received power value (Rs) as a function of angle.
  • the mounting mode (horizontal or vertical) of the active antenna system 402 and the polarization direction of the transmitting antenna 403 can be separately adjusted to obtain different main planes (horizontal or vertical) and different polarization patterns.
  • Step 1004 adjusting the configuration parameters of the active antenna system 402 (including the weight of the antenna array element), and repeating steps 1002 and 1003 to obtain the directions of different pointing beams;
  • Step 1005 Analyze the uplink spatial characteristics of the AAS according to the test data of the steps 1001 and 1004. Adjust the signal amplitude (Ps) of the vector signal generator 409 to minimize the demodulation sensitivity of the active antenna system 402 to the modulated signal, and obtain the EIRS. :
  • Gr is the receiving antenna gain
  • Ps is a vector signal generator 409 that outputs a modulated signal power value
  • ⁇ Pc is the calibration parameter
  • the performance of the antenna array portion of the active antenna system is determined by the mechanical properties of the antenna design, it is guaranteed that the performance is stable in large-volume production and can meet the repeated test requirements. Therefore, the spatial characteristics of the active antenna system can be obtained only once or several times to obtain the spatial characteristics of the AAS.
  • the AAS RF indicator test mainly consists of two parts, namely, RF test cover calibration and RF index measurement of the device under test.
  • RF test cover calibration can be further divided into RF test cover unit calibration and RF test cover near field coupling calibration.
  • RF test cover unit calibration Establish the test environment as shown in Figure 5, and then follow the steps shown in Figure 11. As shown in step 1101 of FIG. 11, a fixed frequency point is set in a specified frequency band, and the S21 parameter between the interface a of the branch connector 503 and the interface b of the access end of the antenna array 501 is tested by a vector network analyzer, and each obtained is obtained.
  • a fixed frequency point is set in the specified frequency band, and the a' interface of the test cover B branch connector port 604 and the a interface of the test cover A branch connector port 603 are tested by a vector network analyzer.
  • Step 1103 if the test cover is used as the device under test, the difference between the a' interface of the branch connector port 604 of the test cover B and the antenna array access port b interface of the device under test (test cover A) can be obtained.
  • G_ab_nm is the calibration value of the RF test cover unit; G_a'a_nm is the near field coupling calibration value of the RF test cover.
  • Step 1104 In the required test frequency band, step 1102 and step 1103 may be repeated by selecting three frequency points of high, medium and low, or multi-frequency point calibration may be performed according to the requirements of the test accuracy. Finally, mathematical calculations such as interpolation are performed on multiple sets of calibration data to obtain a two-dimensional table or curve corresponding to the calibration frequency and calibration value in the near-field coupling environment. By looking up the table, you can get the calibration value A Gc of the RF test cover at any frequency point in the specified frequency band.
  • test environment is established, and the device under test AAS701 is installed and positioned in a calibrated test cover 702.
  • the test environment and the test cover near-field coupling calibration environment are identical. And follow the steps shown in Figure 12 to test:
  • step 1201 the gain of each branch needs to be compensated.
  • the approximate value of the compensation is found by the calibration table in the calibration section.
  • the compensated position can be in the digital domain of the active antenna system or in the test instrument.
  • Step 1202 After compensating for the RF test cover, the RF indicators may be tested according to the requirements of the AAS BS in accordance with the 3GPP protocol.
  • the test reference point is equivalent to the RF port of the active antenna system being tested.
  • the method and apparatus of the embodiments of the present invention can implement a comprehensive 'J test on the wireless indicators of the active antenna system.
  • the embodiment of the present invention can simultaneously satisfy the test requirements of the spatial characteristics and the radio frequency characteristics of the active antenna system, and can solve the problem of test efficiency and test cost brought by the OTA test method, and simultaneously pass the radio frequency.
  • the near-field coupling test method and device of the test cover solves the problem that the active antenna device does not have an external RF port, and can test the device under test as a black box, which can well inherit the test of the traditional base station.
  • Standards, methods, tools, and test environments are effective and practical test methods in equipment production and product certification. Under the premise of ensuring test requirements, test costs are saved, test efficiency is improved, and users can be Very easy to accept and certify.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any particular combination of hardware and software.
  • the method and apparatus of the embodiments of the present invention can be used to comprehensively test the wireless indicators of the active antenna system.
  • the embodiment of the present invention can simultaneously meet the test requirements of the spatial characteristics and the radio frequency characteristics of the active antenna system, and can well solve the problem of test efficiency and test cost brought by the OTA test method, and at the same time, pass the radio frequency.
  • the near-field coupling test method and device of the test cover solves the problem that the active antenna device does not have an external RF port, and can test the device under test as a black box, which can well inherit the test of the traditional base station.
  • Standards, methods, tools, and test environments are effective and practical test methods in equipment production and product certification. Under the premise of ensuring test requirements, test costs are saved, test efficiency is improved, and users can be Very easy to accept and certify. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种有源天线系统无线指标的测试方法及装置,分别釆用空间射频(OTA)测试对有源天线系统的空间特性进行测试;釆用近场耦合方式对有源天线系统的射频指标进行测试。还提出了一种近场耦合测试的装置-射频测试罩,通过这种装置可以对有源天线系统这种天线和多通道收发信机一体化设备,在不需要增加任何额外的测试接口下完成射频指标测试。上述技术方案的一种综合的测试方法,充分结合了OTA测试和近场耦合方式两种测试方法的优点,克服了两者的缺陷和问题,从而在测试效率和测试成本上达到最优化。

Description

一种有源天线系统无线指标的测试方法及装置
技术领域
本发明涉及有源天线系统无线指标的测试技术领域, 尤其涉及一种有源 天线系统无线指标的测试方法及装置。
背景技术
有源天线系统(AAS )作为一种多通道收发信机与基站天线集成的基站 通信子系统, 它是天线和多通道收发信机的一体化设备, 相互之间的接口表 现为内部接口, 工程上难以直接进行射频端口测试, 这样对它的测试带来了 挑战。
目前传统基站的测试, 一般分为基站天线测试和基站设备测试。
对基站天线的测试, 目前大部分釆用 OTA ( Over The Air, 空间射频) 测试方法, 这种方法也可以用于 AAS的测试, 它是一种可以全面测试 AAS 无线性能的方法, 包括空间特性测试和射频指标测试。 但具体应用到 AAS 测试时会带来如下问题:
1 ) 为满足测试精度和可重复性的要求, 对测试环境有一定的要求, 如 室内远场测试, 需要一定尺寸的暗室; 而室外远场测试, 又容易受天气和外 部干扰信号的影响, 这样从测试成本和测试效率上都会带来问题;
2 ) 每次测试需要大量的数据支持, 得出结果需要较长的时间;
3 ) 对于 AAS的一些测试项, 如 CE认证实验中的可靠性实验等, 需要 在密闭的高低温环境下进行, 这个在 OTA测试环境下^难完成;
4 )对于 AAS的一些测试项, 也没有必要使用 OTA测试, 如与生产相 关的测试等。
目前传统基站设备的射频指标的测试大多釆用传导测试方法, 测试的参 考点在其有源部分的射频端口,如果釆用这种方法测试 AAS的射频指标,就 需要将有源天线系统的有源部分和天线阵列部分分离开, 并在有源部分增加 耦合测试射频端口, 这样会带来以下问题: 1 ) 增加耦合测试端口, 破坏了 AAS—体化的拓朴结构; 同时增加了设 计的复杂度, 影响了设备集成度, 同时耦合方式会产生不必要的损耗;
2 ) 由于各个设备制造商釆用的耦合方式、 耦合参数不同, 给统一测试 认证和测试规范带来困难;
3 ) 测试需要配置有合适的连接器和设备, 为了让使用者得到认可, 需 要对测试过程和测试参数的认证做大量说明。
发明内容
本发明实施例解决的技术问题是提供一种有源天线系统无线指标的测试 方法及装置,釆用一种综合的测试方法,在满足对 AAS无线性能指标测试要 求的前提下, 在测试成本和测试效率上达到优化。 为解决上述技术问题, 釆用如下技术方案:
一种有源天线系统无线指标的测试方法, 包括:
釆用空间射频(OTA ) 测试对有源天线系统的空间特性进行测试; 釆用近场耦合方式对所述有源天线系统的射频指标进行测试。
可选地, 所述有源天线系统的空间特性测试的步骤包括:
基于暗室或模拟自由空间的测试环境 ,测试所述有源天线系统的方向图; 对所述测试环境进行校准;
分别进行有源天线系统下行空间特性测试和上行空间特性测试, 通过对 所述有源天线系统的方向图进行补偿, 分别得到等效全向辐射功率 (EIRP ) 和等效全向接收灵敏度 ( EIRS ) 。
可选地, 所述测试环境的建立的步骤包括:
在暗室或模拟自由空间环境下, 将增益基准天线安装在天线转台上, 并 通过射频线缆将所述增益基准天线与矢量信号发生器相连接; 将接收天线安 装在天线支架上, 并通过射频线缆将所述接收天线与频谱分析仪或功率计相 连接。
可选地, 对测试环境进行校准的步骤包括: 通过调整所述天线转台和所述天线支架使所述增益基准天线与所述接收 天线正向对准;
设置所述矢量信号发生器发射指定频段的下行连续模拟信号, 通过所述 接收天线接收此信号输入给所述频谱分析仪或功率计 ,得到相应的信号功率; 得到测试环境链路的校准参数 Δ Pc。
可选地, 所述有源天线系统下行空间特性测试的步骤包括:
首先, 在暗室或模拟自由空间环境下, 将所述有源天线系统安装在所述 天线转台上, 并通过光纤与后台配置设备相连接; 将所述接收天线安装在所 述天线支架上, 并通过射频线缆与频谱分析仪或无线通信综测仪相连接; 然后, 按照以下步骤进行测试:
11) 配置所述有源天线系统处于发射模式, 在指定频段内发射额定功率 的固定无线波束;
12) 调整所述天线转台使得所述有源天线系统与所述接收天线在水平和 俯仰上达到最佳指向, 使所述频谱分析仪或无线通信综测仪接收到的功率值 ( Pg ) 为最大或最小;
13) 将所述有源天线系统在所述天线转台上做方位旋转, 将所述频谱分 析仪测量的功率值 Pg作为角度函数记录; 并调整所述有源天线系统的水平 或垂直安装方式及所述接收天线极化方向, 得到不同主平面和不同极化的下 行方向图;
14)调整所述有源天线系统配置参数,重复上述步骤 12)和步骤 13),测试
AAS不同波束指向的方向图;
15)分析所述有源天线系统的下行空间特性,并按照下式得到所述 EIRP: EIRP = Pg +APc , 其中, △ Pc为得到的所述校准参数, Pg为所述频谱分析仪 测量的功率值。
可选地, 所述有源天线系统上行空间特性测试的步骤包括:
首先, 在暗室或模拟自由空间环境下, 将所述有源天线系统安装在所述 天线转台上, 并通过光纤与后台配置设备相连接; 将发射天线安装在所述天 线支架上, 并通过射频线缆与矢量信号发生器相连接; 然后, 按照以下步骤进行测试:
21 )配置所述有源天线系统处于接收模式,并接收指定频段固定指向的无 线波束;
22)设置所述矢量信号发生器在指定频段内发射模拟调制信号,调整所述 天线转台使得所述有源天线系统与所述接收天线在水平和俯仰上达到最佳指 向, 使所述有源天线系统接收的功率值为最大或最小;
23)将所述有源天线系统在所述天线转台上做方位旋转,并将所述有源天 线系统的接收功率值 (Rs)作为角度函数记录; 并调整所述有源天线系统的水 平或垂直安装方式及所述发射天线的极化方向, 得到不同主平面和不同极化 的下行方向图;
24)调整所述有源天线系统配置参数,重复上述步骤 22)和步骤 23),测试 所述有源天线系统不同波束指向的方向图;
25)分析所述有源天线系统的下行空间特性,并按照下式得到所述 EIRS: EIRS = Ps - APc, 其中, APc为得到的所述校准参数, Ps为所述矢量信号发 生器输出调制信号功率值。
可选地, 所述釆用近场耦合方式对所述有源天线系统的射频指标进行测 试的步骤包括:
将所述有源天线系统置于测试罩中进行射频指标的测试, 其中所述测试 罩包括天线阵列与无源网络部分, 所述天线阵列的阵子结构和组成方式与所 述有源天线系统天馈部分完全相同。
可选地, 通过以下方式对所述有源天线系统的射频指标进行测试: 测试罩单体校准: 校准所述测试罩自身所产生的差损和相位偏移量; 近场耦合校准: 用两个经过所述测试罩单体校准的测试罩, 对所述测试 罩的近场耦合测试环境进行校准;
射频指标测试: 将被测有源天线系统置于校准后的所述测试罩内与所述 测试罩之间构成近场耦合方式, 其测试环境与所述近场耦合校准后的测试环 境相同; 使用所述校准得到的校准结果对测试环境进行补偿后, 通过所述测 试罩上的射频测试接口对所述被测有源天线系统进行射频指标的测试, 得到 所述被测有源天线系统射频端口的射频指标。
一种有源天线系统无线指标的测试装置, 所述装置包括用于测试有源天 线系统的测试罩, 所述测试罩包括: 金属屏蔽箱体、 天线阵列、 馈电网络、 支路连接器和支架;
所述金属屏蔽箱体设置成: 对所述测试罩内部和外部信号进行屏蔽; 所述支架设置成: 固定并调整所述天线阵列或者被测有源天线系统在所 述测试罩中的方位; 相连接; 所述支路连接器的另一端连接至测试端口, 实现信号的输入 /输出, 完成各支路的测试。
可选地, 所述测试罩内部还设有设置成: 减少测试罩内部阵子之间的信 号干扰的吸波材料。
综上所述, 上述技术方案的一种综合测试方法, 釆用 OTA测试结合测 试罩,可以分别从 AAS空间特性和 AAS射频指标两个角度全面地测试 AAS 的无线性能。 本发明实施例的这种综合的测试方法可以作为一种全面对有源 天线系统无线性能测试的方法, 通过对测试内容划分为空间特性测试和射频 指标测试两项, 分别利用 OTA测试和近场耦合测试来完成, 充分结合了两 种测试方法的优点, 克服了两者的缺陷和问题, 从而在测试效率和测试成本 上达到最优化。 附图概述
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中:
图 1是本发明实施例的射频测试罩的基本组成框图;
图 2是 OTA测试环境校准工作原理框图; 图 3是本发明实施例的有源天线系统下行空间特性测试工作原理框图; 图 4是本发明实施例的有源天线系统上行空间特性测试工作原理框图; 图 5是本发明实施例的射频测试罩单体校准原理框图;
图 6是本发明实施例的射频测试罩近场耦合校准工作原理框图; 图 7是本发明实施例的射频测试罩测试被测件工作原理框图。
图 8是本发明实施例的 OTA测试环境校准工作流程图;
图 9是本发明实施例的有源天线系统下行空间特性测试工作流程图; 图 10是本发明实施例的有源天线系统上行空间特性测试工作流程图; 图 11是本发明实施例的射频测试罩校准流程图;
图 12是本发明实施例的射频测试罩测试被测件工作流程图。 本发明的较佳实施方式
为了便于阐述本发明, 以下将结合附图及具体实施例对本发明技术方案 的实施作进一步详细描述。 需要说明的是, 在不冲突的情况下, 本申请中的 实施例及实施例中的特征可以相互任意组合。
本发明实施例提出的对 AAS无线指标测试主要分为两个部分: AAS空 间特性测试和 AAS射频指标测试。 具体测试过程描述如下:
1、 AAS空间特性测试
AAS空间特性测试可以继承传统的基站天线测试环境,需要在暗室等天 线测试场进行。 主要测试 AAS的空间特性, AAS空间特性主要包括: AAS 的波束控制能力和精度, 空间合成增益测试, 半功率波束宽度、 前后比、 交 叉极化比、 副瓣电平测量, 下倾角测试等, 首先通过天线测试场的环境, 测 试 AAS的方向图 (相对量), 然后对测试场的进行校准; 对方向图补偿后就 可以得到表征 AAS 空间特性的绝对量, 分别为等效全向辐射功率(EIRP, Effective Isotropic Radiated Power )和等效全向接收灵敏度( EIRS, Effective Isotropic Reference Sensitivity ) 。
2、 AAS射频指标测试 考虑到 AAS作为天线阵列和收发信机一体化设备,在不破坏设备完整性 的前提下, 本发明实施例中提出一种可以测试 AAS的射频指标的测试装置, 该装置相当于一个测试装置, 本文中将其称作射频测试罩。 如图 1所示, 射 频测试罩主要包括:
天线阵列 101 , 由一系列天线阵子组成, 其阵子结构和组成方式应该和 被测 AAS的天馈部分完成相同。
馈电网路 102 ,用来连接测试端口和天线阵列各阵子,可以是同轴线缆, 也可以是射频微带线。
支路连接器 103 , 信号的输入 /输出端口, 连接测试端口和各通道的馈电 网路, 用于支路测试。
支架 104, 可以设置成: 固定射频测试罩和被测试件之间的空间关系。 吸波材料 105 , 能够减少测试罩的内部阵子之间的信号干扰以及对内外 部的信号的屏蔽, 使得测试罩和被测试件之间具有良好的空间电磁环境。
金属屏蔽箱 106 , 测试罩的壳体, 可以对测试罩的内部和外部信号进行 屏蔽, 使其具有良好的空间电磁屏蔽能力。
天线阵列部分通过馈电网络实现各阵子和支路连接器连接, 通过支路连 接器来实现信号的输入 /输出完成各通道的测试。
射频测试罩测试, 首先需要对测试罩自身和近场耦合测试环境分别进行 校准, 产生校准表; 然后放置被测件 AAS在测试罩中, 固定测试罩和被测件 AAS的空间关系, 其测试环境和近场耦合校准测试环境相同, 这样通过近场 耦合方式, 实现 AAS的各通道的测试, 查找校准表并且补偿到测试系统中, 可以推算出被测件 AAS的射频端口的无线射频指标。
同时,由于射频测试罩的天线阵列部分和被测件 AAS天线部分完全相同, 对测试罩的天线阵列部分电气性能的测试,可以表征 AAS的天线部分的电气 特性; 测试项可以包括: 电压驻波比测试, 隔离度测试, 校准电路参数测试 (针对带校准电路的天线)和交调测试等, 这些测试项主要通过矢量网络分 析仪来测试天线的端口的 S参数和无源交调分析仪来测试交调产物得到。
以下将对本发明提出的有源天线系统的测试方法和装置的具体实现进行 详细描述。
1、 AAS空间特性测试
1 ) 测试环境校准
结合图 2所示, 建立测试环境。 在暗室 201环境下, 增益基准天线 202 安装在天线转台 206上, 并通过射频线缆 204和矢量信号发生器 208相连, 另一端, 接收天线 203安装在天线支架 207上, 并将接收天线 203通过射频 线缆 205连接到频谱分析仪 (或功率计) 209上。
环境校准可参照图 8所示的步骤进行, 具体包括如下主要步骤: 步骤 801 , 调整天线转台 206和天线支架 207使得增益基准天线 202与 接收天线 203正向对准。
步骤 802 ,设置矢量信号发生器 208发射指定频段的下行连续模拟信号。 步骤 803 , 通过接收天线 203接收此信号, 输入给频谱分析仪或功率计 209, 得到相应的接收信号功率并记录数据, 计算方法如下:
Py - Px = Lx + (Ly - Gh + Ls) - Gs 公式 ( 1 ) 其中, Py为矢量信号发生器 208输出连续模拟信号功率值;
Px为频语仪或功率计测量 209的功率值;
Gh为接收天线的增益;
Gs为增益基准天线的增益;
Ly为射频线缆 204的差损;
Lx为射频线缆 205的差损;
Ls为 OTA测试环境中空间路径损耗。
公式( 1 )中, Py和 Gs已知。 Px和 Lx可以测量得到, 通过公式计算可 以得到测试环境链路(包括空间损耗、 线缆差损、 接收天线增益等) 的校准 参数 APc。
APc = (Ly - Gh + Ls) = Py - Px - Lx + Gs 公式 ( 2 ) 此校准参数△ Pc 就是测试环境下进行有源天线系统各项测试的基准参 2 ) 有源天线系统下行空间特性测试
按照图 3所示建立测试环境, 在暗室 301环境下, 有源天线系统 302安 装在天线转台 306上, 并通过光纤 304和后台配置设备 308相连, 另一端, 接收天线 303安装在天线支架 307上, 通过射频线缆 305和频谱分析仪或无 线通信综测仪 309连接。
参照图 9所示的步骤进行, 具体包括如下主要步骤:
步骤 901 , 有源天线系统 302和后台配置设备 308启动并正常工作, 通 过对后台配置参数使得有源天线系统 302处于发射模式, 在指定频段内发射 额定功率的固定无线波束。
步骤 902 , 调整天线转台 306使得有源天线系统 302与接收天线 303在 水平和俯仰上达到最佳指向, 使其频谱分析仪或无线通信综测仪 309的测量 功率值(Pg ) 为最大(用于主极化测试)或最小 (用于交叉极化测试) 。
步骤 903 , 有源天线系统 302在天线转台 306上做方位旋转, 并将频谱 分析仪接收到的功率值(Pg )作为角度的函数记录下来; 同时调整有源天线 系统 302的安装方式(水平或者垂直) 以及接收天线 303的极化方向, 可以 得到不同主平面 (水平或垂直)和不同极化的方向图等。
步骤 904 , 调整或者重新配置有源天线系统 302配置参数 (包括天线阵 元的权值) , 重复步骤 902、 903可以得到不同指向波束的方向图;
步骤 905 , 根据步骤 902 904的测试数据, 分析 AAS的下行空间特性, 并根据校准过程得到的 A Pc, 可以得到 EIRP:
EIRP = Pt + Gt = Pg + (Ly - Gh + Ls) = Pg +APc 公式 ( 3 ) 其中, Pt为有源天线系统输出额定功率;
Gt为发射天线阵元增益;
Pg为频语分析仪 309测量的功率值;
A Pc为校准参数。
3 ) 有源天线系统上行空间特性测试
按照图 4所示建立测试环境, 在暗室 401环境下, 有源天线系统 402安 装在天线转台 406上, 并通过光纤 404和后台配置设备 408相连; 另一端, 发射天线 403安装在天线支架 407上, 通过射频线缆 405和矢量信号发生器 409连接。
按照图 10所示步骤进行测试, 具体包括如下主要步骤:
步骤 1001 ,先将有源天线系统 402和后台配置设备 408启动并正常工作, 通过对后台配置参数使得有源天线系统 402处于接收模式, 并可以接收指定 频段固定指向的无线波束。
步骤 1002 ,设置矢量信号发生器 409在指定频段内发射某种制式( GSM, CDMA, WCDMA或 LTE等) 的模拟调制信号, 调整天线转台 406使得有 源天线系统 402与发射天线 403在水平和俯仰上达到最佳指向, 使其有源天 线系统 402测量功率值为最大(用于主极化测试)或最小 (用于交叉极化测 试 ) 。
步骤 1003 , 有源天线系统 402在测试转台上做方位旋转, 并将其接收功 率值(Rs )作为角度的函数记录下来。 可以分别调整有源天线系统 402的安 装方式(水平或者垂直) 以及发射天线 403的极化方向, 可以得到不同主平 面 (水平或垂直)和不同极化的方向图。
步骤 1004, 调整有源天线系统 402配置参数 (包括天线阵元的权值) , 重复步骤 1002、 1003可以得到不同指向波束的方向图;
步骤 1005 , 根据步骤 1001 1004的测试数据, 分析 AAS的上行空间特 性; 调整矢量信号发生器 409的信号幅度(Ps ) , 使得有源天线系统 402对 调制信号的解调灵敏度达到最小, 可以得到 EIRS:
EIRS = Rs - Gr = Ps - (Ly - Gh + Ls) = Ps - APc 公式( 4 ) 其中, Rs为有源天线系统检测到的接收功率电平;
Gr为接收天线增益;
Ps为矢量信号发生器 409输出调制信号功率值;
△ Pc为校准参数。
由于有源天线系统的天线阵列部分的性能是天线设计的机械性能决定的, 可以保证在大批量的生产中, 性能是稳定的, 并且可以满足重复测试要求, 所以有源天线系统的空间特性测试的只须一次或几次,就可以获得 AAS的空 间特性。
2、 AAS射频指标测试
AAS射频指标测试主要包括两部分, 即射频测试罩校准、 被测件射频指 标测试。
1 ) 射频测试罩校准
射频测试罩校准进一步可分为射频测试罩单体校准和射频测试罩近场耦 合校准。
( 1 )射频测试罩单体校准: 如图 5 所示建立测试环境, 其次按照附图 11所示步骤进行测试。 如图 11中步骤 1101所示, 在指定频段内设置固定频 点, 用矢量网络分析仪测试支路连接器 503的 a界面和天线阵列 501接入端 的 b界面之间的 S21参数, 得到的各支路的差损为 G— ab— nm (其中对于 N χ Μ阵列有源天线系统, n=l,—, N; m= l,—, M) ;
(2)射频测试罩近场耦合校准: 如图 6所示建立近场耦合的校准环境, 两个标准的测试罩 (经过单体校准的)分别表示为测试罩 A ( 601 )和测试罩 B (602) 。 两个测试罩的天馈部分的朝向是正对的, 通过安装支架 605固定 两者之间的距离。 使用吸波材料 606减少测试罩的内部阵子之间的信号干扰 以及对内外部的信号的屏蔽, 使得测试罩和被测试件之间具有良好的空间电 磁环境。 然后按照图 11所示步骤进行测试。如图 11中步骤 1102所示, 在指 定频段内设置固定频点, 用矢量网络分析仪测试测试罩 B 支路连接器端口 604的 a'界面和测试罩 A支路连接器端口 603的 a界面之间的 S21参数, 得 到两个测试罩支路连接器端口之间的差损为 G— a'a— nm (其中对于 N χ M阵 列有源天线系统, η=1, ..·, N; m=l, ..., Μ) 。
步骤 1103, 若以测试罩 Α为被测件, 可以得到测试罩 B的支路连接器 端口 604的 a'界面和被测件 (测试罩 A ) 的天线阵列接入端口 b界面之间的 差损 G a'b nm为 , G a'b nm = G— a'a— nm - G— ab— nm;
其中, 对于 NxM阵列有源天线系统, n=l,—, N; m=l,—, M;
G_ab_nm为射频测试罩单体校准值; G_a'a_nm为射频测试罩近场耦合校准值。
步骤 1104 , 在要求的测试频段内, 可以选择高中低三个频点重复步骤 1102和步骤 1103 ,也可以根据测试精度的要求进行多频点校准。最后对多组 校准数据做插值等数学计算, 得到近场耦合环境下对应校准频率和校准值的 二维表格或曲线。 通过查表就可以得到指定频段内的任意频点的射频测试罩 的校准值 A Gc。
2 ) 被测件的射频指标测试
如图 7所示建立测试环境, 将被测件 AAS701安装定位在一个校准后的 测试罩 702内, 测试环境和测试罩近场耦合校准环境完全相同。 并按照图 12 所示如下步骤进行测试:
步骤 1201 , 需要对每个支路的增益进行补偿。 补偿的近似值通过校准环 节中的校准表查得 A Gc。 补偿的位置可以在有源天线系统的数字域中, 也可 以在测试仪表中。
步骤 1202, 对射频测试罩补偿后, 可以按照 3GPP协议针对 AAS BS的 要求, 进行各项射频指标测试。 测试参考点相当于被测有源天线系统的射频 端口。
综上所述, 釆用本发明实施例所述方法和装置, 可以实现对有源天线系 统的无线指标进行全面的 'J试。
与相关技术相比, 本发明实施例可以同时满足有源天线系统的空间特性 和射频特性的测试要求, 可以艮好的解决 OTA测试方法带来的测试效率和 测试成本的问题, 同时, 通过射频测试罩这种近场耦合的测试方法和装置, 解决了有源天线设备没有外部射频端口带来的问题, 可以把被测件当作一个 黑盒子进行测试, 可以很好的继承传统基站的测试标准、 方法、 工具以及测 试环境等, 在设备生产和产品认证等环节是一种有效的实用测试方法; 在保 证测试要求的前提下, 节省了测试成本, 提高了测试效率, 同时可以被使用 者很容易接受和认证。
以上仅为本发明的优选实施案例而已, 并不用于限制本发明, 本发明还 可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟悉本领域 的技术人员可根据本发明做出各种相应的改变和变形, 但这些相应的改变和 变形都应属于本发明所附的权利要求的保护范围。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。
工业实用性
综上所述, 釆用本发明实施例所述方法和装置, 可以实现对有源天线系 统的无线指标进行全面的测试。 与相关技术相比, 本发明实施例可以同时满 足有源天线系统的空间特性和射频特性的测试要求, 可以很好的解决 OTA 测试方法带来的测试效率和测试成本的问题, 同时, 通过射频测试罩这种近 场耦合的测试方法和装置, 解决了有源天线设备没有外部射频端口带来的问 题, 可以把被测件当作一个黑盒子进行测试, 可以很好的继承传统基站的测 试标准、 方法、 工具以及测试环境等, 在设备生产和产品认证等环节是一种 有效的实用测试方法; 在保证测试要求的前提下, 节省了测试成本, 提高了 测试效率, 同时可以被使用者很容易接受和认证。 因此本发明具有很强的工 业实用性。

Claims

权 利 要 求 书
1、 一种有源天线系统无线指标的测试方法, 包括:
釆用空间射频(OTA ) 测试对有源天线系统的空间特性进行测试; 釆用近场耦合方式对所述有源天线系统的射频指标进行测试。
2、如权利要求 1所述的测试方法, 其中, 所述有源天线系统的空间特性 测试的步骤包括:
基于暗室或模拟自由空间的测试环境 ,测试所述有源天线系统的方向图; 对所述测试环境进行校准;
分别进行有源天线系统下行空间特性测试和上行空间特性测试, 通过对 所述有源天线系统的方向图进行补偿, 分别得到等效全向辐射功率 (EIRP ) 和等效全向接收灵敏度 ( EIRS ) 。
3、如权利要求 2所述的测试方法, 其中, 所述测试环境的建立的步骤包 括:
在暗室或模拟自由空间环境下, 将增益基准天线安装在天线转台上, 并 通过射频线缆将所述增益基准天线与矢量信号发生器相连接; 将接收天线安 装在天线支架上, 并通过射频线缆将所述接收天线与频谱分析仪或功率计相 连接。
4、如权利要求 3所述的测试方法, 其中,对测试环境进行校准的步骤包 括:
通过调整所述天线转台和所述天线支架使所述增益基准天线与所述接收 天线正向对准;
设置所述矢量信号发生器发射指定频段的下行连续模拟信号, 通过所述 接收天线接收此信号输入给所述频谱分析仪或功率计 ,得到相应的信号功率; 得到测试环境链路的校准参数 Δ Pc。
5、如权利要求 4所述的测试方法, 其中, 所述有源天线系统下行空间特 性测试的步骤包括:
首先, 在暗室或模拟自由空间环境下, 将所述有源天线系统安装在所述 天线转台上, 并通过光纤与后台配置设备相连接; 将所述接收天线安装在所 述天线支架上, 并通过射频线缆与频谱分析仪或无线通信综测仪相连接; 然后, 按照以下步骤进行测试:
11) 配置所述有源天线系统处于发射模式, 在指定频段内发射额定功率 的固定无线波束;
12) 调整所述天线转台使得所述有源天线系统与所述接收天线在水平和 俯仰上达到最佳指向, 使所述频谱分析仪或无线通信综测仪接收到的功率值
( Pg ) 为最大或最小;
13) 将所述有源天线系统在所述天线转台上做方位旋转, 将所述频谱分 析仪测量的功率值 Pg作为角度函数记录; 并调整所述有源天线系统的水平 或垂直安装方式及所述接收天线极化方向, 得到不同主平面和不同极化的下 行方向图;
14)调整所述有源天线系统配置参数,重复上述步骤 12)和步骤 13),测试 AAS不同波束指向的方向图;
15)分析所述有源天线系统的下行空间特性,并按照下式得到所述 EIRP:
EIRP = Pg +APc , 其中, △ Pc为得到的所述校准参数, Pg为所述频谱分析仪 测量的功率值。
6、如权利要求 4所述的测试方法, 其中, 所述有源天线系统上行空间特 性测试的步骤包括:
首先, 在暗室或模拟自由空间环境下, 将所述有源天线系统安装在所述 天线转台上, 并通过光纤与后台配置设备相连接; 将发射天线安装在所述天 线支架上, 并通过射频线缆与矢量信号发生器相连接;
然后, 按照以下步骤进行测试:
21 )配置所述有源天线系统处于接收模式,并接收指定频段固定指向的无 线波束;
22)设置所述矢量信号发生器在指定频段内发射模拟调制信号,调整所述 天线转台使得所述有源天线系统与所述接收天线在水平和俯仰上达到最佳指 向, 使所述有源天线系统接收的功率值为最大或最小; 23)将所述有源天线系统在所述天线转台上做方位旋转,并将所述有源天 线系统的接收功率值 (Rs)作为角度函数记录; 并调整所述有源天线系统的水 平或垂直安装方式及所述发射天线的极化方向, 得到不同主平面和不同极化 的下行方向图;
24)调整所述有源天线系统配置参数,重复上述步骤 22)和步骤 23),测试 所述有源天线系统不同波束指向的方向图;
25)分析所述有源天线系统的下行空间特性,并按照下式得到所述 EIRS: EIRS = Ps - APc, 其中, APc为得到的所述校准参数, Ps为所述矢量信号发 生器输出调制信号功率值。
7、如权利要求 1所述的测试方法, 其中, 所述釆用近场耦合方式对所述 有源天线系统的射频指标进行测试的步骤包括:
将所述有源天线系统置于测试罩中进行射频指标的测试, 其中所述测试 罩包括天线阵列与无源网络部分, 所述天线阵列的阵子结构和组成方式与所 述有源天线系统天馈部分完全相同。
8、如权利要求 7所述的测试方法, 其中, 通过以下方式对所述有源天线 系统的射频指标进行测试:
测试罩单体校准: 校准所述测试罩自身所产生的差损和相位偏移量; 近场耦合校准: 用两个经过所述测试罩单体校准的测试罩, 对所述测试 罩的近场耦合测试环境进行校准;
射频指标测试: 将被测有源天线系统置于校准后的所述测试罩内与所述 测试罩之间构成近场耦合方式, 其测试环境与所述近场耦合校准后的测试环 境相同; 使用所述校准得到的校准结果对测试环境进行补偿后, 通过所述测 试罩上的射频测试接口对所述被测有源天线系统进行射频指标的测试, 得到 所述被测有源天线系统射频端口的射频指标。
9、一种有源天线系统无线指标的测试装置,所述装置包括用于测试有源 天线系统的测试罩,所述测试罩包括:金属屏蔽箱体、天线阵列、馈电网络、 支路连接器和支架;
所述金属屏蔽箱体设置成: 对所述测试罩内部和外部信号进行屏蔽; 所述支架设置成: 固定并调整所述天线阵列或者被测有源天线系统在所 述测试罩中的方位; 相连接; 所述支路连接器的另一端连接至测试端口, 实现信号的输入 /输出, 完成各支路的测试。
10、 如权利要求 9所述的测试装置, 其中,
所述测试罩内部还设有设置成: 减少测试罩内部阵子之间的信号干扰的 吸波材料。
PCT/CN2013/080124 2012-07-27 2013-07-25 一种有源天线系统无线指标的测试方法及装置 WO2013185697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210264079.X 2012-07-27
CN201210264079.XA CN102857310B (zh) 2012-07-27 2012-07-27 一种有源天线系统无线指标的测试方法及装置

Publications (1)

Publication Number Publication Date
WO2013185697A1 true WO2013185697A1 (zh) 2013-12-19

Family

ID=47403528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080124 WO2013185697A1 (zh) 2012-07-27 2013-07-25 一种有源天线系统无线指标的测试方法及装置

Country Status (2)

Country Link
CN (1) CN102857310B (zh)
WO (1) WO2013185697A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111654332A (zh) * 2020-03-31 2020-09-11 上海卫星工程研究所 一种深空撞击器撞后深埋等效通信试验系统

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857310B (zh) * 2012-07-27 2017-10-27 中兴通讯股份有限公司 一种有源天线系统无线指标的测试方法及装置
CN102830298B (zh) 2012-07-27 2017-04-12 中兴通讯股份有限公司 一种有源天线系统射频指标及无线指标的测试方法与装置
CN102857309B (zh) 2012-07-27 2016-09-28 中兴通讯股份有限公司 一种有源天线系统射频指标的测试方法和装置
CN104038294B (zh) * 2013-03-06 2016-12-28 光宝电子(广州)有限公司 无线测试系统及应用其的测量方法
CN103647527A (zh) * 2013-12-09 2014-03-19 中国电子科技集团公司第二十九研究所 一种增强电磁脉冲等效辐射功率的方法
CN104714086A (zh) * 2013-12-11 2015-06-17 上海机电工程研究所 一种波束合成器件的微波透射特性测量装置及方法
CN103997352B (zh) * 2014-05-14 2016-02-24 电信科学技术研究院 有源天线相关设备、系统及收发校准方法
CN105140648B (zh) * 2015-07-31 2018-06-19 上海无线电设备研究所 一种定向微波天线指向角标定装置、标校方法及使用方法
CN105227477A (zh) * 2015-10-22 2016-01-06 上海斐讯数据通信技术有限公司 一种无线路由器射频电路与天线耦合性能检测系统及方法
CN105372638A (zh) * 2015-11-17 2016-03-02 陈光法 一种新型雷达角基准自动校验仪
EP3264641B1 (en) * 2016-06-29 2020-01-08 Rohde & Schwarz GmbH & Co. KG Over the air power sensor and method
CN106443209B (zh) * 2016-12-03 2023-09-29 刘科宏 有源基站天线三维空间远场辐射特性的测试系统和方法
CN108614239A (zh) * 2016-12-12 2018-10-02 北京行易道科技有限公司 对准系统
US9954279B1 (en) * 2017-06-14 2018-04-24 Rohde & Schwarz Gmbh & Co. Kg Test system and test method
US10209284B2 (en) * 2017-06-29 2019-02-19 Keysight Technologies, Inc. Advanced antenna performance testing
CN107276690A (zh) * 2017-06-29 2017-10-20 深圳市共进电子股份有限公司 一种WiFi耦合灵敏度劣化测试系统及测试方法
CN107733537A (zh) * 2017-08-18 2018-02-23 广东小天才科技有限公司 一种用于射频性能测试的类暗室耦合测试方法和测试设备
CN110392387B (zh) * 2018-04-23 2021-05-18 华为技术有限公司 无线信号的角度测量方法和设备
CN108896831B (zh) * 2018-05-11 2021-07-20 武汉虹信科技发展有限责任公司 一种结合室内近场和远场对有源天线进行ota测量的方法
CN108923863B (zh) * 2018-07-26 2021-07-09 Oppo广东移动通信有限公司 设备等效全向辐射功率测量方法、装置、设备及介质
CN110868736B (zh) * 2018-08-27 2022-08-19 中兴通讯股份有限公司 一种基站测试方法、装置、系统及存储介质
EP3864430B1 (en) * 2018-10-12 2024-04-03 Perisens GmbH Radome measuring system and method
CN111132207B (zh) * 2018-10-30 2022-12-13 中国移动通信有限公司研究院 一体化基站设备测试装置、方法、存储介质和相关设备
CN111246507B (zh) * 2018-11-27 2022-11-11 中国信息通信研究院 一种近场射频测试方法
WO2020220878A1 (zh) * 2019-04-29 2020-11-05 深圳市通用测试系统有限公司 多天线无线设备空口测试装置
CN112083234B (zh) 2019-06-14 2024-06-11 中兴通讯股份有限公司 阵列天线总辐射功率测量方法、装置以及计算机存储介质
CN110488100A (zh) * 2019-08-22 2019-11-22 北京中测国宇科技有限公司 一种天线ota测试系统的转台及其工作方法
CN110418364B (zh) * 2019-08-30 2022-07-29 京信网络系统股份有限公司 Ota测试系统及校准、测试方法和装置
TWI756139B (zh) * 2019-12-05 2022-02-21 鴻勁精密股份有限公司 射頻電子元件測試裝置及其應用之測試設備
CN111010244B (zh) * 2019-12-17 2021-12-07 北京必创科技股份有限公司 无线传感器测试系统和方法
CN111371515A (zh) * 2020-03-12 2020-07-03 电子科技大学 一种基站天线间隔离度的等效测试方法
CN113497657B (zh) * 2020-03-18 2022-10-04 华为技术有限公司 射频指标检测装置及方法
CN113242572A (zh) * 2020-06-23 2021-08-10 中兴通讯股份有限公司 Aau测试方法、装置以及多探头吸波暗箱
CN112730998B (zh) * 2020-12-24 2022-05-31 中国信息通信研究院 基于近场的大规模阵列天线ota测试方法及系统
EP4024058A1 (en) * 2021-01-05 2022-07-06 Rohde & Schwarz GmbH & Co. KG Over-the-air test module and test system
CN112865885B (zh) * 2021-01-06 2022-11-01 常熟市泓博通讯技术股份有限公司 天线信号与辐射场型分析系统
CN112834830A (zh) * 2021-02-05 2021-05-25 中国人民解放军海军航空大学航空作战勤务学院 一种天线近场耦合测量装置及方法
CN113676265B (zh) * 2021-08-11 2023-06-23 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种确定有源单极天线功率增益的方法
CN115296046B (zh) * 2022-09-29 2022-12-20 南京迈创立电子科技有限公司 一种用于ota测试的毫米波双极化磁电偶极子探头天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088297A (zh) * 2009-12-04 2011-06-08 中兴通讯股份有限公司 移动终端双天线信道建模方法及装置
CN102158291A (zh) * 2010-02-12 2011-08-17 中兴通讯股份有限公司 基于多天线系统的空间射频性能测试方法及系统
CN102539940A (zh) * 2011-12-29 2012-07-04 中国舰船研究设计中心 平面相控阵列天线的近场电磁安全分析方法
CN102857310A (zh) * 2012-07-27 2013-01-02 中兴通讯股份有限公司 一种有源天线系统无线指标的测试方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154283B1 (en) * 2006-02-22 2006-12-26 Avery Dennison Corporation Method of determining performance of RFID devices
US8374545B2 (en) * 2009-09-02 2013-02-12 Qualcomm Incorporated De-tuning in wireless power reception
CN102435984B (zh) * 2011-09-09 2013-10-02 陕西长岭电子科技有限责任公司 一种多普勒雷达回波模拟装置及其实现方法
CN103364645A (zh) * 2013-07-17 2013-10-23 中国船舶重工集团公司第七二四研究所 虚拟馈电网络的天线阵列近场测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088297A (zh) * 2009-12-04 2011-06-08 中兴通讯股份有限公司 移动终端双天线信道建模方法及装置
CN102158291A (zh) * 2010-02-12 2011-08-17 中兴通讯股份有限公司 基于多天线系统的空间射频性能测试方法及系统
CN102539940A (zh) * 2011-12-29 2012-07-04 中国舰船研究设计中心 平面相控阵列天线的近场电磁安全分析方法
CN102857310A (zh) * 2012-07-27 2013-01-02 中兴通讯股份有限公司 一种有源天线系统无线指标的测试方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111654332A (zh) * 2020-03-31 2020-09-11 上海卫星工程研究所 一种深空撞击器撞后深埋等效通信试验系统
CN111654332B (zh) * 2020-03-31 2022-05-10 上海卫星工程研究所 一种深空撞击器撞后深埋等效通信试验系统

Also Published As

Publication number Publication date
CN102857310B (zh) 2017-10-27
CN102857310A (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
WO2013185697A1 (zh) 一种有源天线系统无线指标的测试方法及装置
WO2013185694A1 (zh) 一种有源天线系统射频指标及无线指标的测试方法与装置
JP5947978B2 (ja) アクティブアンテナシステム無線周波数インデックスの試験方法及び装置
US9692530B2 (en) Active antenna system and methods of testing
US11063676B2 (en) Method and device for enabling testing of a communication node
US20130141287A1 (en) Apparatus for Measuring a Radiation Pattern of an Active Antenna Arrangement
US20100171650A1 (en) Multi-antenna measurement method and multi-antenna measurement system
CN102684800A (zh) 有源天线系统下行、上行无线指标的测试方法及装置
WO2011023933A1 (en) Hybrid reflectometer system (hrs)
Kildal et al. Verification of the Random Line-of-Sight Measurement Setup at 1.5-3 GHz Including MIMO Throughput Measurements of a Complete Vehicle
Lyu et al. Enabling long-range large-scale channel sounding at sub-thz bands: Virtual array and radio-over-fiber concepts
Pannala Feasibility and challenges of over-the-air testing for 5G millimeter wave devices
Tankielun et al. Quiet zone verification of plane wave synthesizer using polar near-field scanner
Hu et al. Over the air testing and error analysis of 5G active antenna system base station in compact antenna test range
Aydin et al. The Effects of the Use of DRx Antenna Structure on the Rx Performance of Smartphones
WO2020198956A1 (zh) 一种天线测试系统以及阵列天线测试方法
Loh et al. Radiation pattern characterisation of embedded radios emitting modulated signals
Crozzoli et al. Active antenna system testing and trials in Telecom Italia
Khatun et al. Research Article Dependence of Error Level on the Number of Probes in Over-the-Air Multiprobe Test Systems
WO2016200304A1 (en) Power testing a radio transceiver device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804933

Country of ref document: EP

Kind code of ref document: A1