WO2013181973A1 - 一种不间断电源电路及其控制方法 - Google Patents

一种不间断电源电路及其控制方法 Download PDF

Info

Publication number
WO2013181973A1
WO2013181973A1 PCT/CN2013/074879 CN2013074879W WO2013181973A1 WO 2013181973 A1 WO2013181973 A1 WO 2013181973A1 CN 2013074879 W CN2013074879 W CN 2013074879W WO 2013181973 A1 WO2013181973 A1 WO 2013181973A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
inductor
boost
positive
boost module
Prior art date
Application number
PCT/CN2013/074879
Other languages
English (en)
French (fr)
Inventor
刘培国
费珍福
王博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13798910.9A priority Critical patent/EP2709236B1/en
Publication of WO2013181973A1 publication Critical patent/WO2013181973A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a Chinese patent application filed on June 6, 2012 by the Chinese Patent Office, the application number is 201210183920.2, and the invention name is "an uninterruptible power supply circuit and its control method" Priority is hereby incorporated by reference in its entirety.
  • the present invention relates to the field of communications, and in particular, to a UPS (Uninterrupted Power Supply) circuit and a control method thereof.
  • UPS Uninterrupted Power Supply
  • UPS circuits In the field of communication, many network devices are powered by UPS circuits.
  • the UPS circuit converts the utility power and outputs it to the network termination device, and the battery included in the UPS circuit can continue to provide power for the network device for a period of time when the utility power is cut off. To ensure that users can save the file urgently.
  • the UPS circuit comprises a rectifier circuit, a positive Boost circuit, a negative Boost circuit, a battery, a first thyristor and a charger.
  • the rectifier circuit is connected to the positive Boost circuit and the negative Boost circuit, and the positive pole of the battery is connected through the first thyristor.
  • the negative terminal is connected to the negative Boost circuit, and the charger is connected to the battery; wherein, the rectifier circuit receives the commercial power, converts the commercial power into a DC voltage, and outputs the power to the positive Boost circuit and the negative Boost circuit, the positive Boost circuit and the negative
  • the Boost circuit performs active power factor correction on the DC voltage and outputs it to the network device; when the utility power is cut off, the battery can output voltage to the positive Boost circuit and the negative Boost circuit, and the positive Boost circuit and the negative Boost circuit perform active power to the voltage.
  • the factor is corrected and output to the network device; wherein the battery can be charged by the charger.
  • an embodiment of the present invention provides a UPS circuit and a control method thereof.
  • the technical solution is as follows:
  • An uninterruptible power supply UPS circuit comprising: An AC input module, a positive Boost boost module, a negative Boost boost module, a battery, a first switch tube, a second switch tube, and a first inter-well tube;
  • the AC input module is configured to convert a commercial power into a DC voltage
  • the positive Boost boosting module is connected to the AC input module, and the positive Boost boosting module is configured to boost a DC voltage output by the AC input module during a positive half cycle of the mains
  • the negative a Boost boosting module is connected to the AC input module, and the negative Boost boosting module is configured to boost a DC voltage output by the AC input module during a negative half cycle of the mains
  • the second switch a tube for selecting to connect the AC input module and the battery to the positive Boost boost module or the negative Boost boost module;
  • the collector of the first switch tube is electrically connected to the cathode of the first diode of the positive Boost boost module, and the first output filter capacitor of the positive Boost boost module, the first The emitter of the switch tube is electrically connected to one end of the second inductor in the negative Boost boost module and the cathode of the battery;
  • the anode of the first thyristor and the other end of the second inductor in the negative Boost boost module, the cathode of the second diode in the negative Boost boost module, and the negative Boost boost module The emitter of the fourth switching transistor is electrically connected, and the cathode of the first thyristor is electrically connected to the anode of the battery.
  • a method of controlling the circuit comprising:
  • the first switch is controlled to be turned off, the second inductor is discharged, and the battery is charged through the first thyristor.
  • An uninterruptible power supply UPS circuit comprising:
  • the AC input module is configured to convert a commercial power into a DC voltage
  • the positive a Boost boosting module is connected to the AC input module
  • the positive Boost boosting module is configured to boost a DC voltage output by the AC input module during a positive half cycle of the mains
  • the negative Boost a voltage module is connected to the AC input module
  • the negative Boost boost module is configured to boost a DC voltage output by the AC input module during a negative half cycle of the mains
  • the second switch is used for Selecting to connect the AC input module and the battery to the positive Boost boost module or the negative Boost boost module;
  • the emitter of the first switch tube is electrically connected to an anode of a second diode of the negative Boost boost module, and an end of a second output filter capacitor of the negative Boost boost module, the first The collector of the switch tube is electrically connected to one end of the first inductor in the positive Boost boost module, and the positive pole of the battery;
  • the anode of the first thyristor is electrically connected to the anode of the battery, the cathode of the first thyristor and the other end of the first inductor in the positive Boost boost module, and the first in the positive Boost boost module Anode of a diode
  • the collector electrical connection of the third switch tube in the Boost boost module is described.
  • a method of controlling the circuit comprising:
  • the first switch is controlled to be turned off, the first inductor is discharged, and the battery is charged through the first thyristor.
  • the UPS circuit includes an AC input module, a positive Boost boost module, a negative Boost boost module, a battery, a first switch tube, a second switch tube, and a first thyristor, wherein the set of the first switch tube
  • the electrode is electrically connected to a cathode of the first diode in the positive Boost boost module and one end of the first output filter capacitor, and an emitter of the first switch transistor is electrically connected to one end of the second inductor in the negative Boost boost module
  • the anode of the first thyristor is electrically connected to the other end of the second inductor in the negative Boost boosting module, the cathode of the second diode, and the emitter of the fourth switching transistor, and the cathode of the second thyristor is electrically connected to the anode of the battery, And charging the battery by controlling the first switch to be turned on or off during the positive half cycle of the mains; or the emitter of the first switch and the ano
  • FIG. 1 is a schematic structural diagram of a UPS circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a UPS circuit according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a UPS circuit according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a UPS circuit according to another embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for controlling a UPS circuit according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a UPS circuit according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a UPS circuit according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a UPS circuit according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a UPS circuit according to another embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for controlling a UPS circuit according to another embodiment of the present invention. detailed description
  • an embodiment of the present invention provides a UPS circuit, including:
  • AC input module 1 positive Boost boost module 2, negative Boost boost module 3, battery 4, first switch tube Sl, second switch tube S2 and first thyristor Q1;
  • the AC input module 1 is used to convert the mains into a DC voltage
  • the positive Boost boost module 2 is connected to the AC input module 1
  • the positive Boost boost module 2 is used to output the AC input module 1 during the positive half cycle of the mains.
  • the DC voltage is boosted
  • the negative Boost boost module 3 is connected to the AC input module 1
  • the negative Boost boost module 3 is used to boost the DC voltage outputted by the AC input module 1 during the negative half cycle of the mains.
  • the switch tube S2 is used for selecting to connect the AC input module 1 and the battery 4 to the positive Boost boost module 2 or the negative Boost boost module 3;
  • the collector of the first switch S1 is electrically connected to the cathode of the first diode D1 in the positive Boost boost module 2, and the first output filter capacitor C1 in the positive Boost boost module 2, the first switch S1
  • the emitter is electrically connected to one end of the second inductor L2 in the negative Boost boost module 3 and the cathode of the battery 4;
  • the other end of the second inductor L2 in the anode of the first thyristor Q1 and the negative Boost boost module 3, the cathode of the second diode D2 in the negative Boost boost module 3, and the fourth in the negative Boost boost module 3 The emitter of the switch S4 is electrically connected, and the cathode of the first thyristor Q1 is electrically connected to the positive electrode of the battery 4.
  • the AC input module 1 includes a second thyristor Q2 and a third thyristor Q3.
  • the positive Boost boost module 2 includes a first inductor L1, a first diode D1, a third switch S3, and a first output filter.
  • the capacitor C1, the negative Boost boosting module 3 includes a second inductor L2, a second diode D2, a fourth switching transistor S4 and a second output filter capacitor C2; the anode of the second thyristor Q2 is connected to the live line of the mains, the cathode and One end of the first inductor L1 is electrically connected, and the other end of the first inductor L1 is electrically connected to the anode of the first diode D1 and the collector of the third switch S3, and the cathode of the first diode D1 and the first switch tube
  • the collector of S1 and one end of the first output filter capacitor C1 are electrically connected, and the emitter of the third switch S3 and the other end of the first output filter capacitor C1 are connected to the neutral line of the mains;
  • the cathode of the third thyristor Q3 is connected to the live line of the mains, the anode is electrically connected to one end of the second inductor L2, and the other end of the second inductor L2 is connected to the anode of the first thyristor Q1, the cathode of the second diode D2, and the fourth
  • the emitter of the switch tube S4 is electrically connected, the anode of the second diode D2 is electrically connected to one end of the second output filter capacitor C2, and the other end of the fourth switch tube S4 and the second output filter capacitor C2 are connected to the city.
  • the neutral line of electricity is connected;
  • the negative electrode of the battery 4 is electrically connected to one end of the second inductor L2, and the positive electrode and one end of the second switch tube S2, the first thyristor
  • the cathode of the tube Q1 is electrically connected, and the other end of the second switching tube S2 is electrically connected to one end of the first inductor L1.
  • the switch tube may include a power field effect tube, an insulated gate bipolar field effect tube, or the like. Further, the second switch S2 may also be a thyristor.
  • the first switch S1 is controlled to be turned on, and the current in the first output filter capacitor C1 in the positive Boost boost module 2 passes through the first switch S1, the second inductor L2, and the fourth switch S4 flows into the grounding point, the second inductor L2 stores electrical energy; and, the first switching transistor S1 is turned off, the second inductor L2 is discharged, and the current discharged by the second inductor L2 flows into the battery 4 through the first thyristor Q1, and then from the battery 4 Returning to the second inductor L2, the battery 4 is charged at this time.
  • the second inductor L2 is discharged, and the current discharged by the second inductor L2 flows into the battery 4 through the first thyristor Q1, and then returns from the battery 4 to the second inductor L2, and the current forms a loop.
  • the battery 4 can be charged, so that the battery can be charged in the UPS circuit, and the battery can be charged.
  • the first switch S1 and the first thyristor Q1 are both electronic components and have a simple structure, which simplifies The UPS circuit structure improves the overall efficiency of the circuit.
  • the UPS circuit further includes:
  • the third diode D3, the anode of the third diode D3 is electrically connected to the other end of the second inductor L2, and the cathode is connected to the neutral line of the mains;
  • the first switch S1 is controlled to be turned on, and the current in the first output filter capacitor C1 in the positive Boost boost module 2 passes through the first switch S1, the second inductor L2, and the third diode.
  • the tube D3 flows into the grounding point, the second inductor L2 stores the electric energy; and, the first switch S1 is controlled to be turned off, the second inductor L2 is discharged, and the current discharged by the second inductor L2 flows into the battery 4 through the first thyristor Q1, and then from the battery. 4 returns to the second inductor L2, at which time the battery 4 is charged.
  • the second thyristor Q2 is turned on, the third thyristor Q3 is turned off, and the second thyristor Q2 receives the current input from the mains and is output to the first inductor L1, and the current includes a part of the current
  • the first line L1 and the third switch tube S3 flow into the neutral line of the mains, and another part of the current included in the current flows through the first inductor L1, the first diode D1, and the first output filter capacitor C1 into the zero of the mains. Line, at this time the first output filter capacitor C1 is charged to achieve active power factor correction.
  • the third thyristor Q3 is turned on, the second thyristor Q2 is turned off, and a part of the current of the neutral line of the commercial power passes through the fourth switch S4, the second inductor L2, and the The three thyristor Q3 flows into the live line of the mains, and the other part of the neutral line of the mains passes through the second output filter capacitor C2, the second diode D2, the second inductor L2, and the third thyristor Q3 to flow into the mains line.
  • the second output filter capacitor C2 is charged to achieve active power factor Number correction.
  • the first switch is controlled to be turned on or off.
  • the UPS circuit may not include the charger, so that the UPS circuit simplifies the circuit structure compared with the prior art, and improves the overall efficiency of the circuit; in addition, the cost of the first switch tube and the first intergranular tube is increased in this embodiment.
  • the embodiment of the present invention provides a method for controlling a UPS circuit, which can control the UPS circuit described in FIG. 1 or FIG. 3 above. Referring to FIG. 5, the method includes:
  • Step 101 Control the first switch tube to be turned on during the positive half cycle of the mains, so that the second inductor in the negative Boost boost module stores the electric energy;
  • Step 102 Control the first switch to be turned off, discharge the second inductor, and charge the battery through the first thyristor.
  • the above step 101 may be specifically as follows:
  • step 101 may be specifically as follows:
  • the two inductors store electrical energy.
  • the method further includes:
  • the first switch is controlled to be turned off.
  • the first switch tube is turned on during the positive half cycle of the mains, and the current in the first output filter capacitor passes through the first switch tube, the second inductor, and the first switch when the first switch tube is turned on.
  • the three switch tubes flow into the neutral line of the mains, and the second inductor stores the electric energy; when the first switch tube is turned off, the second inductor discharges and charges the battery through the first thyristor.
  • the UPS circuit may not include a charger, so that the UPS circuit simplifies the circuit structure and improves the overall efficiency of the circuit compared with the prior art.
  • an embodiment of the present invention provides a UPS circuit, including:
  • AC input module 1 positive Boost boost module 2, negative Boost boost module 3, battery 4, first switch S1, a second switch tube S2 and a first thyristor Q1;
  • the AC input module 1 is used to convert the mains into a DC voltage
  • the positive Boost boost module 2 is connected to the AC input module 1
  • the positive Boost boost module 2 is used to output the AC input module 1 during the positive half cycle of the mains.
  • the DC voltage is boosted
  • the negative Boost boost module 3 is connected to the AC input module 1
  • the negative Boost boost module 3 is used to boost the DC voltage outputted by the AC input module 1 during the negative half cycle of the mains.
  • the switch tube S2 is used for selecting to connect the AC input module 1 and the battery 4 to the positive Boost boost module 1 or the negative Boost boost module 3;
  • the emitter of the first switch S1 is electrically connected to the anode of the second diode D2 of the negative Boost boost module 3, and the end of the second output filter capacitor C2 of the negative Boost boost module 3, the first switch S1
  • the collector is electrically connected to one end of the first inductor L1 in the positive Boost boost module 2 and the positive electrode of the battery 4;
  • the anode of the first thyristor Q1 is electrically connected to the cathode of the battery 4, the cathode of the first thyristor Q1 and the other end of the first inductor L1 in the positive Boost boosting module 2, and the first diode in the positive Boost boosting module 2
  • the anode of D2 and the collector of the third switching transistor S3 of the positive Boost boosting module 2 are electrically connected.
  • the AC input module 1 includes a second thyristor Q2 and a third thyristor Q3.
  • the positive Boost boosting module includes a first inductor L1, a first diode D1, a third switch S3, and a first output filter capacitor.
  • the negative Boost boost module 3 includes a second inductor L2, a second diode D2, a fourth switch S4, and a second output filter capacitor C2; the anode of the second thyristor Q2 is connected to the live line of the mains, the cathode and the One end of the inductor L1 is electrically connected, and the other end of the first inductor L1 is electrically connected to the anode of the first diode D1, the cathode of the first thyristor Q1, and the collector of the third switch S3, and the first diode D1 The cathode is electrically connected to one end of the first output filter capacitor C1, and the emitter of the third switch tube S3 and the other end of the first output filter capacitor C1 are connected to the neutral line of the mains;
  • the cathode of the third thyristor Q3 is connected to the live line of the mains, the anode is electrically connected to one end of the second inductor L2, and the other end of the second inductor L2 is electrically connected to the cathode of the second diode D2 and the emitter of the fourth switch S4.
  • the anode of the second diode D2 is electrically connected to one end of the second output filter capacitor C2, and the other end of the fourth switch tube S4 and the second output filter capacitor C2 are connected to the neutral line of the mains;
  • the anode of the battery 4 is electrically connected to one end of the first inductor L1, the cathode is electrically connected to one end of the second switch S2, the anode of the first thyristor Q1, and the other end of the second switch S2 is electrically connected to one end of the second inductor L2. .
  • the switch tube may include a power field effect tube, an insulated gate bipolar field effect tube, or the like. Further, the second switch S2 may also be a thyristor.
  • the first switch S1 is controlled to be turned on, and the current in the neutral line of the mains passes through the third switch S3 and the first inductor L1 and the first switch S1 in the positive Boost circuit 2.
  • the second in the negative Boost circuit 3 The output filter capacitor C2 returns to the neutral line of the mains, the first inductor L1 stores the electric energy; and, the first switch S1 is controlled to be turned off, the first inductor L1 is discharged, and the current discharged by the first inductor L1 passes through the battery 4 and the first thyristor Q1 returns to the first inductor L1, at which time the battery 4 is charged.
  • the first switch S1 After the first switch S1 is turned off, the first inductor L1 is discharged, and the current discharged by the first inductor L1 is returned to the second inductor L2 through the battery 4 and the first thyristor Q1. At this time, the current forms a loop, and the battery 4 can be charged. Therefore, the charger can be used in the UPS circuit, and the battery can be charged.
  • the first switch S1 and the first thyristor Q1 are both electronic components and have a simple structure, which simplifies the structure of the UPS circuit and improves the structure. The overall efficiency of the circuit.
  • the UPS circuit further includes:
  • the third diode D3, the cathode of the third diode D3 is electrically connected to the other end of the first inductor L1, and the anode is connected to the neutral line of the mains;
  • the first switch S1 is controlled to be turned on, and the current in the neutral line of the mains passes through the third diode D3 and the first inductor L1 and the first switch S1 in the positive Boost circuit 2.
  • the second output filter capacitor C2 in the negative Boost circuit 3 returns to the neutral line of the mains, the first inductor L1 stores the electric energy; and, the first switch S1 is controlled to be turned off, the first inductor L1 is discharged, and the first inductor L1 is discharged.
  • the current returns to the first inductor L1 through the battery 4 and the first thyristor Q1, at which time the battery 4 is charged.
  • the second thyristor Q2 is turned on, the third thyristor Q3 is turned off, and the second thyristor Q2 receives the current input from the mains and is output to the first inductor L1, and the current includes a part of the current
  • the first line L1 and the third switch tube S3 flow into the neutral line of the mains, and another part of the current included in the current flows through the first inductor L1, the first diode D1, and the first output filter capacitor C1 into the zero of the mains. Line, at this time the first output filter capacitor C1 is charged to achieve active power factor correction.
  • the third thyristor Q3 is turned on, the second thyristor Q2 is turned off, and a part of the current of the neutral line of the commercial power passes through the fourth switch S4, the second inductor L2, and the The three thyristor Q3 flows into the live line of the mains, and the other part of the neutral line of the mains passes through the second output filter capacitor C2, the second diode D2, the second inductor L2, and the third thyristor Q3 to flow into the mains line.
  • the second output filter capacitor C2 is charged to achieve active power factor correction.
  • the first switch tube is controlled to be turned on or off.
  • the current in the neutral line of the main power passes through the second switch tube, and the first The inductor, the first switch tube module and the second output filter capacitor return to the neutral line of the mains, and the first inductor stores the electric energy; when the first switch tube is turned off, the first inductor discharges the battery through the first thyristor.
  • a UPS circuit may not include a charger, so that the UPS circuit is compared with the prior art. The circuit structure is simplified, and the overall efficiency of the circuit is improved.
  • the embodiment of the present invention provides a method for controlling a UPS circuit, which can control the UPS circuit described in FIG. 6 or FIG. 8 above. Referring to FIG. 10, the method includes:
  • Step 201 Control the first switch tube to be turned on during the negative half cycle of the mains, so that the first inductor in the positive Boost boost module stores the electric energy;
  • Step 202 Control the first switch to be turned off, discharge the first inductor, and charge the battery through the first thyristor.
  • the foregoing step 201 may be specifically:
  • the foregoing step 201 may be specifically as follows:
  • the method further includes:
  • the first switch is controlled to be turned off during the positive half cycle of the mains.
  • the first switch is controlled to be turned on, and the current in the neutral line of the mains passes through the second switch, the first inductor, the first switch module, and the second output.
  • the filter capacitor returns to the neutral line of the mains, and the first inductor stores the electric energy; when the first switch is turned off, the first inductor discharges the battery through the first thyristor.
  • the UPS circuit may not include a charger, so that the UPS circuit simplifies the circuit structure and improves the overall efficiency of the circuit compared with the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)

Abstract

本发明公开了一种不间断电源电路及其控制方法,属于通信领域。所述电路包括:交流输入模块、正Boost升压模块、负Boost升压模块、电池、第一开关管、第二开关管和第一晶闸管;所述第一开关管的集电极与所述正Boost升压模块中的第一二极管的阴极、所述正Boost升压模块中的第一输出滤波电容的一端电连接,所述第一开关管的发射极与所述负Boost升压模块中的第二电感的一端、所述电池的负极电连接;所述第一晶闸管的阳极与所述负Boost升压模块中的第二电感的另一端、所述负Boost升压模块中的第二二极管的阴极、所述负Boost升压模块中的第四开关管的发射极电连接,所述第一晶闸管的阴极与所述电池的正极电连接。本发明能够简化UPS的电路结构以及提高电路的整机效率。

Description

一种不间断电源电路及其控制方法 本申请要求于 2012年 6月 6日提交中国专利局、 申请号为 201210183920.2、 发明名称 为 "一种不间断电源电路及其控制方法" 的中国专利申请的优先权, 其全部内容通过引用 结合在本申请中。
技术领域
本发明涉及通信领域, 特别涉及一种 UPS (Uninterrupted Power Supply, 不间断电源) 电路及其控制方法。 背景技术
在通信领域里, 许多网络设备通过 UPS电路进行供电, UPS电路对市电进行转换并输 出给网终设备, 且在市电停电时 UPS电路中包括的电池能继续为网络设备提供一段时间的 电源, 以保证用户能够紧急存盘。
UPS电路包括整流电路、 正 Boost (升压) 电路、 负 Boost电路、 电池、 第一晶闸管和 充电器等部分组成, 整流电路与正 Boost电路和负 Boost电路相连, 电池的正极通过第一晶 闸管连接到正 Boost电路、 负极连接到负 Boost电路上, 充电器与电池相连; 其中, 整流电 路接收市电, 把市电转换为直流电压并输出给正 Boost电路和负 Boost电路, 正 Boost电路 和负 Boost电路对该直流电压进行有源功率因数校正并输出给网络设备;在市电停电时电池 可以输出电压给正 Boost电路和负 Boost电路, 正 Boost电路和负 Boost电路对该电压进行 有源功率因数校正并输出给网络设备; 其中, 可以通过充电器对电池进行充电。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题:
在现有的 UPS电路结构中需要包括充电器, 并通过充电器对电池时行充电, 而充电器 的电路结构较复杂, 如此现有的 UPS电路结构较复杂且电路的整机效率低下。 发明内容
为了简化 UPS的电路结构以及提高电路的整机效率,本发明实施例提供了一种 UPS电 路及其控制方法。 所述技术方案如下:
一种不间断电源 UPS电路, 所述电路包括: 交流输入模块、 正 Boost升压模块、 负 Boost升压模块、 电池、 第一开关管、 第二开关 管和第一晶间管; 所述交流输入模块用于将市电转变为直流电压,所述正 Boost升压模块与 所述交流输入模块相连,所述正 Boost升压模块用于在所述市电的正半周期内对所述交流输 入模块输出的直流电压进行升压, 所述负 Boost升压模块与所述交流输入模块相连, 所述负 Boost 升压模块用于在所述市电的负半周期内对所述交流输入模块输出的直流电压进行升 压,所述第二开关管用于选择将所述交流输入模块和所述电池连接到所述正 Boost升压模块 或负 Boost升压模块上;
所述第一开关管的集电极与所述正 Boost 升压模块中的第一二极管的阴极、 所述正 Boost 升压模块中的第一输出滤波电容的一端电连接, 所述第一开关管的发射极与所述负 Boost升压模块中的第二电感的一端、 所述电池的负极电连接;
所述第一晶闸管的阳极与所述负 Boost升压模块中的第二电感的另一端、 所述负 Boost 升压模块中的第二二极管的阴极、 所述负 Boost升压模块中的第四开关管的发射极电连接, 所述第一晶闸管的阴极与所述电池的正极电连接。
一种控制所述电路的方法, 其特征在于, 所述方法包括:
在市电的正半周期内, 控制第一开关管开通,使所述负 Boost升压模块中的第二电感储 存电能;
控制所述第一开关管关断, 使所述第二电感放电并通过第一晶闸管给电池充电。
一种不间断电源 UPS电路, 所述电路包括:
交流输入模块、 正 Boost升压模块、 负 Boost升压模块、 电池、 第一开关管、 第二开关 管和第一晶闸管; 所述交流输入模块用于将市电转变为直流电压,所述正 Boost升压模块与 所述交流输入模块相连,所述正 Boost升压模块用于在所述市电的正半周期内对所述交流输 入模块输出的直流电压进行升压, 所述负 Boost升压模块与所述交流输入模块相连, 所述负 Boost 升压模块用于在所述市电的负半周期内对所述交流输入模块输出的直流电压进行升 压,所述第二开关管用于选择将所述交流输入模块和所述电池连接到所述正 Boost升压模块 或负 Boost升压模块上;
所述第一开关管的发射极与所述负 Boost 升压模块中的第二二极管的阳极、 所述负 Boost 升压模块中的第二输出滤波电容的一端电连接, 所述第一开关管的集电极与所述正 Boost升压模块中的第一电感的一端、 所述电池的正极电连接;
所述第一晶闸管的阳极与所述电池的负极电连接, 所述第一晶闸管的阴极与所述正 Boost升压模块中的第一电感的另一端、 所述正 Boost升压模块中的第一二极管的阳极、 所 述正 Boost升压模块中的第三开关管的集电极电连接。
一种控制所述电路的方法, 其特征在于, 所述方法包括:
在市电的负半周期内, 控制第一开关管开通,使所述正 Boost升压模块中的第一电感储 存电能;
控制所述第一开关管关断, 使所述第一电感放电并通过第一晶闸管给电池充电。
在本发明实施例中, UPS电路包括交流输入模块、 正 Boost升压模块、 负 Boost升压模 块、 电池、 第一开关管、 第二开关管和第一晶闸管, 其中, 第一开关管的集电极与正 Boost 升压模块中的第一二极管的阴极和第一输出滤波电容的一端电连接, 第一开关管的发射极 与负 Boost升压模块中的第二电感的一端电连接,第一晶闸管的阳极与负 Boost升压模块中 的第二电感的另一端、 第二二极管的阴极和第四开关管的发射极电连接, 第二晶闸管的阴 极与电池的正极电连接, 并在市电的正半周期内, 通过控制第一开关管开通或关断来对电 池充电; 或者,第一开关管的发射极与负 Boost升压模块中的第二二极管的阳极和第二输出 滤波电容的一端电连接,第一开关管的集电极与正 Boost升压模块中的第一电感的一端电连 接, 第二晶闸管的阳极与电池的负极电连接,第一晶闸管的阴极与正 Boost升压模块中的第 一电感的另一端、 第一二极管的阳极和第三开关管的集电极电连接, 并在市电的负半周期 内, 通过控制第一开关管开通或关断来对电池充电。 如此 UPS电路和现有技术相比简化了 电路结构, 提升了电路的整机效率。 附图说明
图 1是本发明实施例提供的一种 UPS电路结构示意图;
图 2是本发明另一实施例提供的一种 UPS电路结构示意图;
图 3是本发明另一实施例提供的一种 UPS电路结构示意图;
图 4是本发明另一实施例提供的一种 UPS电路结构示意图;
图 5是本发明另一实施例提供的一种控制 UPS电路的方法流程图;
图 6是本发明另一实施例提供的一种 UPS电路结构示意图;
图 7是本发明另一实施例提供的一种 UPS电路结构示意图;
图 8是本发明另一实施例提供的一种 UPS电路结构示意图;
图 9是本发明另一实施例提供的一种 UPS电路结构示意图;
图 10是本发明另一实施例提供的一种控制 UPS电路的方法流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。 参见图 1, 本发明实施例提供了一种 UPS电路, 包括:
交流输入模块 1、 正 Boost升压模块 2、 负 Boost升压模块 3、 电池 4、 第一开关管 Sl、 第二开关管 S2和第一晶闸管 Q1 ;
交流输入模块 1用于将市电转变为直流电压, 正 Boost升压模块 2与交流输入模块 1 相连,正 Boost升压模块 2用于在市电的正半周期内对交流输入模块 1输出的直流电压进行 升压, 负 Boost升压模块 3与交流输入模块 1相连, 负 Boost升压模块 3用于在市电的负半 周期内对交流输入模块 1输出的直流电压进行升压, 第二开关管 S2用于选择将交流输入模 块 1和电池 4连接到正 Boost升压模块 2或负 Boost升压模块 3上;
第一开关管 S1的集电极与正 Boost升压模块 2中的第一二极管 D1的阴极、 正 Boost 升压模块 2中的第一输出滤波电容 C1的一端电连接, 第一开关管 S1的发射极与负 Boost 升压模块 3中的第二电感 L2的一端、 电池 4的负极电连接;
第一晶闸管 Q1的阳极与负 Boost升压模块 3中的第二电感 L2的另一端、 负 Boost升 压模块 3中的第二二极管 D2的阴极、 负 Boost升压模块 3中的第四开关管 S4的发射极电 连接, 第一晶闸管 Q1的阴极与电池 4的正极电连接。
其中, 参见图 1, 交流输入模块 1包括第二晶闸管 Q2和第三晶闸管 Q3, 正 Boost升压 模块 2包括第一电感 Ll、第一二极管 Dl、第三开关管 S3和第一输出滤波电容 Cl,负 Boost 升压模块 3包括第二电感 L2、 第二二极管 D2、 第四开关管 S4和第二输出滤波电容 C2; 第二晶闸管 Q2的阳极与市电的火线相连, 阴极与第一电感 L1的一端电连接, 第一电 感 L1的另一端与第一二极管 D1的阳极、 第三开关管 S3的集电极电连接, 第一二极管 D1 的阴极与第一开关管 S1的集电极、第一输出滤波电容 C1的一端电连接, 第三开关管 S3的 发射极和第一输出滤波电容 C1的另一端都与市电的零线相连;
第三晶闸管 Q3的阴极与市电的火线相连, 阳极与第二电感 L2的一端电连接, 第二电 感 L2的另一端与第一晶闸管 Q1的阳极、 第二二极管 D2的阴极、 第四开关管 S4的发射极 电连接,第二二极管 D2的阳极与第二输出滤波电容 C2的一端电连接,第四开关管 S4的集 电极和第二输出滤波电容 C2的另一端都与市电的零线相连;
电池 4的负极与第二电感 L2的一端电连接, 正极与第二开关管 S2的一端、 第一晶闸 管 Ql的阴极电连接, 第二开关管 S2的另一端与第一电感 L1的一端电连接。
其中, 上述开关管可以包括电力场效应管、 绝缘栅双极场效应管等。 进一步地, 第二 开关管 S2还可以为晶闸管。
其中, 参见图 2, 上述图 1所示的 UPS电路的工作原理如下:
在市电的正半周期内, 控制第一开关管 S1开通, 正 Boost升压模块 2中的第一输出滤 波电容 C1中的电流经过第一开关管 Sl、 第二电感 L2和第四开关管 S4流入接地点, 第二 电感 L2储存电能; 以及, 控制第一开关管 S1关断, 第二电感 L2放电, 第二电感 L2放电 的电流经过第一晶闸管 Q1流入电池 4,然后再从电池 4回到第二电感 L2,此时电池 4充电。
其中, 第一开关管 S1关断后, 第二电感 L2放电, 第二电感 L2放电的电流经过第一晶 闸管 Q1流入电池 4, 再从电池 4回到第二电感 L2, 此时电流形成一个回路, 可以电池 4 充电, 因而在 UPS电路中可以不需要充电器, 也可以实现对电池充电, 另外, 增加的第一 开关管 S1和第一晶闸管 Q1都是电子元器件且结构简单, 如此简化了 UPS电路结构并提高 了电路的整机效率。
进一步地, 参见图 3, 该 UPS电路还包括:
第三二极管 D3, 第三二极管 D3的阳极与第二电感 L2的另一端电连接, 阴极与市电的 零线相连;
其中, 参见图 4, 上述图 3所示的 UPS电路的工作原理如下:
在市电的正半周期内, 控制第一开关管 S1开通, 正 Boost升压模块 2中的第一输出滤 波电容 C1中的电流经过第一开关管 Sl、 第二电感 L2和第三二极管 D3流入接地点, 第二 电感 L2储存电能; 以及, 控制第一开关管 S1关断, 第二电感 L2放电, 第二电感 L2放电 的电流经过第一晶闸管 Q1流入电池 4,然后再从电池 4回到第二电感 L2,此时电池 4充电。
其中, 在市电的正半周期内, 第二晶闸管 Q2导通, 第三晶闸管 Q3关断, 且第二晶闸 管 Q2接收市电输入的电流并输出给第一电感 Ll, 该电流包括的一部分电流经过第一电感 L1和第三开关管 S3流入市电的零线, 以及该电流包括的另一部分电流经过第一电感 Ll、 第一二极管 D1和第一输出滤波电容 C1流入市电的零线, 此时第一输出滤波电容 C1充电, 以实现有源功率因数校正。
其中, 在市电对应的周期包括的负半周期内, 第三晶闸管 Q3导通, 第二晶闸管 Q2关 断, 市电的零线的一部分电流经过第四开关管 S4、 第二电感 L2和第三晶闸管 Q3流入市电 的火线, 市电的零线的另一部分电流经过第二输出滤波电容 C2、第二二极管 D2、第二电感 L2和第三晶闸管 Q3流入市电的火线、此时第二输出滤波电容 C2充电, 以实现有源功率因 数校正。
在本发明实施例中, 在市电的正半周期内, 控制第一开关管开通或关断, 在第一开关 管开通时, 第一输出滤波电容中的电流经过第一开关管、 第二电感和第三开关管流入市电 的零线, 第二电感储存电能; 在第一开关管关断时, 第二电感放电且通过第一晶闸管给电 池充电。如此 UPS电路可以不包括充电器,使得 UPS电路和现有技术相比简化了电路结构, 提升了电路的整机效率; 另外, 本实施例增加的第一开关管和第一晶间管的成本远远低于 充电器的成本, 从而降低 UPS电路的成本。 本发明实施例提供了一种控制 UPS电路的方法, 该方法可以对上述图 1或图 3所述的 UPS电路进行控制, 参见图 5, 该方法包括:
步骤 101 : 在市电的正半周期内, 控制第一开关管开通, 使负 Boost升压模块中的第二 电感储存电能;
步骤 102: 控制第一开关管关断, 使第二电感放电并通过第一晶闸管给电池充电。 对于图 1所示的 UPS电路, 上述步骤 101, 可以具体为:
控制第一开关管开通, 使正 Boost电路中第一输出滤波器中的电流经过第一开关管、负 Boost升压模块中的第二电感、 负 Boost升压模块中的第四开关管流入市电的零线, 第二电 感储存电能; 或者,
对于图 3所示的 UPS电路, 上述步骤 101, 可以具体为:
控制第一开关管开通, 使正 Boost电路中第一输出滤波器中的电流经过第一开关管、负 Boost升压模块中的第二电感、 第三二极管流入市电的零线, 第二电感储存电能。
进一步地, 该方法还包括:
在市电的负半周期内, 控制第一开关管关断。
在本发明实施例中, 在市电的正半周期内, 控制第一开关管开通, 在第一开关管开通 时, 第一输出滤波电容中的电流经过第一开关管、 第二电感和第三开关管流入市电的零线, 第二电感储存电能; 在第一开关管关断时, 第二电感放电且通过第一晶闸管给电池充电。 如此 UPS电路可以不包括充电器, 使得 UPS电路和现有技术相比简化了电路结构, 提升了 电路的整机效率。 参见图 6, 本发明实施例提供了一种 UPS电路, 包括:
交流输入模块 1、 正 Boost升压模块 2、 负 Boost升压模块 3、 电池 4、 第一开关管 Sl、 第二开关管 S2和第一晶闸管 Q1 ;
交流输入模块 1用于将市电转变为直流电压, 正 Boost升压模块 2与交流输入模块 1 相连,正 Boost升压模块 2用于在市电的正半周期内对交流输入模块 1输出的直流电压进行 升压, 负 Boost升压模块 3与交流输入模块 1相连, 负 Boost升压模块 3用于在市电的负半 周期内对交流输入模块 1输出的直流电压进行升压, 第二开关管 S2用于选择将交流输入模 块 1和电池 4连接到正 Boost升压模块 1或负 Boost升压模块 3上;
第一开关管 S1的发射极与负 Boost升压模块 3中的第二二极管 D2的阳极、 负 Boost 升压模块 3中第二输出滤波电容 C2的一端电连接, 第一开关管 S1的集电极与正 Boost升 压模块 2中的第一电感 L1的一端、 电池 4的正极电连接;
第一晶闸管 Q1的阳极与电池 4的负极电连接、 第一晶闸管 Q1的阴极与正 Boost升压 模块 2中的第一电感 L1的另一端、正 Boost升压模块 2中的第一二极管 D2的阳极、正 Boost 升压模块 2中的第三开关管 S3的集电极电连接。
其中, 参见图 6, 交流输入模块 1包括第二晶闸管 Q2和第三晶闸管 Q3, 正 Boost升压 模块包括第一电感 Ll、 第一二极管 Dl、 第三开关管 S3和第一输出滤波电容 Cl, 负 Boost 升压模块 3包括第二电感 L2、 第二二极管 D2、 第四开关管 S4和第二输出滤波电容 C2; 第二晶闸管 Q2的阳极与市电的火线相连, 阴极与第一电感 L1的一端电连接, 第一电 感 L1的另一端与第一二极管 D1的阳极、第一晶闸管 Q1的阴极和第三开关管 S3的集电极 电连接,第一二极管 D1的阴极与第一输出滤波电容 C1的一端电连接,第三开关管 S3的发 射极和第一输出滤波电容 C1的另一端都与市电的零线相连;
第三晶闸管 Q3的阴极与市电的火线相连, 阳极与第二电感 L2的一端电连接, 第二电 感 L2的另一端与第二二极管 D2的阴极和第四开关管 S4的发射极电连接, 第二二极管 D2 的阳极与第二输出滤波电容 C2的一端电连接, 第四开关管 S4的集电极和第二输出滤波电 容 C2的另一端都与市电的零线相连;
电池 4的正极与第一电感 L1的一端电连接, 负极与第二开关管 S2的一端、 第一晶闸 管 Q1的阳极电连接, 第二开关管 S2的另一端与第二电感 L2的一端电连接。
其中, 上述开关管可以包括电力场效应管、 绝缘栅双极场效应管等。 进一步地, 第二 开关管 S2还可以为晶闸管。
其中, 参见图 7, 上述图 6所示的 UPS电路的工作原理如下:
其中, 在市电的负半周期内, 控制第一开关管 S1 开通, 市电的零线中的电流经过正 Boost电路 2中的第三开关管 S3和第一电感 L1、第一开关管 S1和负 Boost电路 3中的第二 输出滤波电容 C2回到市电的零线,第一电感 L1储存电能; 以及,控制第一开关管 S1关断, 第一电感 L1放电,第一电感 L1放电的电流经过电池 4和第一晶闸管 Q1回到第一电感 L1, 此时电池 4充电。
其中, 第一开关管 S1关断后, 第一电感 L1放电, 第一电感 L1放电的电流经过电池 4 和第一晶闸管 Q1回到第二电感 L2,此时电流形成一个回路,可以电池 4充电, 因而在 UPS 电路中可以不需要充电器, 也可以实现对电池充电, 另外, 增加的第一开关管 S1和第一晶 闸管 Q1都是电子元器件且结构简单, 如此简化了 UPS电路结构并提高了电路的整机效率。
进一步地, 参见图 8, 该 UPS电路还包括:
第三二极管 D3, 第三二极管 D3的阴极与第一电感 L1的另一端电连接, 阳极与市电的 零线相连;
其中, 参见图 9, 上述图 8所示的 UPS电路的工作原理如下:
其中, 在市电的负半周期内, 控制第一开关管 S1开通, 市电的零线中的电流经过第三 二极管 D3和正 Boost电路 2中的第一电感 Ll、 第一开关管 S1和负 Boost电路 3中的第二 输出滤波电容 C2回到市电的零线,第一电感 L1储存电能; 以及,控制第一开关管 S1关断, 第一电感 L1放电,第一电感 L1放电的电流经过电池 4和第一晶闸管 Q1回到第一电感 L1, 此时电池 4充电。
其中, 在市电的正半周期内, 第二晶闸管 Q2导通, 第三晶闸管 Q3关断, 且第二晶闸 管 Q2接收市电输入的电流并输出给第一电感 Ll, 该电流包括的一部分电流经过第一电感 L1和第三开关管 S3流入市电的零线, 以及该电流包括的另一部分电流经过第一电感 Ll、 第一二极管 D1和第一输出滤波电容 C1流入市电的零线, 此时第一输出滤波电容 C1充电, 以实现有源功率因数校正。
其中, 在市电对应的周期包括的负半周期内, 第三晶闸管 Q3导通, 第二晶闸管 Q2关 断, 市电的零线的一部分电流经过第四开关管 S4、 第二电感 L2和第三晶闸管 Q3流入市电 的火线, 市电的零线的另一部分电流经过第二输出滤波电容 C2、第二二极管 D2、第二电感 L2和第三晶闸管 Q3流入市电的火线、此时第二输出滤波电容 C2充电, 以实现有源功率因 数校正。
在本发明实施例中, 在市电的负半周期内, 控制第一开关管开通或关断, 在第一开关 管开通时, 市电的零线中的电流经过第二开关管、 第一电感、 第一开关管模块和第二输出 滤波电容回到市电的零线, 第一电感储存电能; 在第一开关管关断时, 第一电感放电通过 第一晶闸管给电池充电。 如此 UPS电路可以不包括充电器, 使得 UPS电路和现有技术相比 简化了电路结构, 提升了电路的整机效率; 另外, 本实施例增加的第一开关管和第一晶闸 管的成本远远低于充电器的成本, 从而降低 UPS电路的成本。 本发明实施例提供了一种控制 UPS电路的方法, 该方法可以对上述图 6或图 8所述的 UPS电路进行控制, 参见图 10, 该方法包括:
步骤 201 : 在市电的负半周期内, 控制第一开关管开通, 使正 Boost升压模块中的第一 电感储存电能;
步骤 202: 控制第一开关管关断, 使第一电感放电并通过第一晶闸管给电池充电。 对于图 6所示的 UPS电路, 上述步骤 201, 可以具体为:
控制第一开关管开通, 使市电的零线中的电流经过正 Boost升压模块中的第三开关管、 正 Boost升压模块中的第一电感、第一开关管、 负 Boost升压模块中的第二输出滤波电容流 入市电的零线, 第一电感储存电能; 或者,
对于图 8所示的 UPS电路, 上述步骤 201, 可以具体为:
控制第一开关管开通, 使市电的零线中的电流经过第三二极管、正 Boost升压模块中的 第一电感、第一开关管和负 Boost升压模块中的第二输出滤波电容流入市电的零线, 第一电 感储存电能。
进一步地, 该方法还包括:
在所述市电的正半周期内, 控制第一开关管关断。
在本发明实施例中, 在市电的负半周期内, 控制第一开关管开通, 市电的零线中的电 流经过第二开关管、 第一电感、 第一开关管模块和第二输出滤波电容回到市电的零线, 第 一电感储存电能; 在第一开关管关断时, 第一电感放电通过第一晶闸管给电池充电。 如此 UPS电路可以不包括充电器, 使得 UPS电路和现有技术相比简化了电路结构, 提升了电路 的整机效率。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种不间断电源 UPS电路, 其特征在于, 所述电路包括:
交流输入模块、 正 Boost升压模块、 负 Boost升压模块、 电池、 第一开关管、 第二开关 管和第一晶闸管; 所述交流输入模块用于将市电转变为直流电压, 所述正 Boost升压模块与 所述交流输入模块相连, 所述正 Boost升压模块用于在所述市电的正半周期内对所述交流输 入模块输出的直流电压进行升压, 所述负 Boost升压模块与所述交流输入模块相连, 所述负 Boost升压模块用于在所述市电的负半周期内对所述交流输入模块输出的直流电压进行升压, 所述第二开关管用于选择将所述交流输入模块和所述电池连接到所述正 Boost升压模块或负 Boost升压模块上;
所述第一开关管的集电极与所述正 Boost升压模块中的第一二极管的阴极、所述正 Boost 升压模块中的第一输出滤波电容的一端电连接, 所述第一开关管的发射极与所述负 Boost升 压模块中的第二电感的一端、 所述电池的负极电连接;
所述第一晶闸管的阳极与所述负 Boost升压模块中的第二电感的另一端、 所述负 Boost 升压模块中的第二二极管的阴极、 所述负 Boost升压模块中的第四开关管的发射极电连接, 所述第一晶闸管的阴极与所述电池的正极电连接。
2、 根据权利要求 1所述的电路, 其特征在于, 所述电路还包括:
第三二极管, 所述第三二极管的阳极与所述第二电感的另一端电连接, 所述第三二极管 的阴极与所述市电的零线相连。
3、 根据权利要求的 1或 2所述的电路, 其特征在于,
所述开关管包括电力场效应管、 绝缘栅双极场效应管。
4、 一种控制权利要求 1至 3任一项所述电路的方法, 其特征在于, 所述方法包括: 在市电的正半周期内, 控制第一开关管开通, 使所述负 Boost升压模块中的第二电感储 存电能;
控制所述第一开关管关断, 使所述第二电感放电并通过第一晶闸管给电池充电。
5、 如权利要求 4所述的方法, 其特征在于, 所述控制第一开关管开通, 使所述负 Boost 升压模块中的第二电感储存电能, 包括:
控制所述第一开关管开通, 使正 Boost电路中第一输出滤波器中的电流经过所述第一开 关管、 所述负 Boost升压模块中的第二电感、 所述负 Boost升压模块中的第四开关管流入所 述市电的零线, 所述第二电感储存电能; 或者,
控制所述第一开关管开通, 使所述正 Boost电路中第一输出滤波器中的电流经过所述第 一开关管、 所述负 Boost升压模块中的第二电感、 第三二极管流入所述市电的零线, 所述第 二电感储存电能。
6、 如权利要求 4或 5所述的方法, 其特征在于, 所述方法还包括:
在所述市电的负半周期内, 控制所述第一开关管关断。
7、 一种不间断电源 UPS电路, 其特征在于, 所述电路包括:
交流输入模块、 正 Boost升压模块、 负 Boost升压模块、 电池、 第一开关管、 第二开关 管和第一晶间管; 所述交流输入模块用于将市电转变为直流电压, 所述正 Boost升压模块与 所述交流输入模块相连, 所述正 Boost升压模块用于在所述市电的正半周期内对所述交流输 入模块输出的直流电压进行升压, 所述负 Boost升压模块与所述交流输入模块相连, 所述负 Boost升压模块用于在所述市电的负半周期内对所述交流输入模块输出的直流电压进行升压, 所述第二开关管用于选择将所述交流输入模块和所述电池连接到所述正 Boost升压模块或负 Boost升压模块上;
所述第一开关管的发射极与所述负 Boost升压模块中的第二二极管的阳极、所述负 Boost 升压模块中的第二输出滤波电容的一端电连接, 所述第一开关管的集电极与所述正 Boost升 压模块中的第一电感的一端、 所述电池的正极电连接;
所述第一晶闸管的阳极与所述电池的负极电连接,所述第一晶闸管的阴极与所述正 Boost 升压模块中的第一电感的另一端、所述正 Boost升压模块中的第一二极管的阳极、所述正 Boost 升压模块中的第三开关管的集电极电连接。
8、 如权利要求 7所述的电路, 其特征在于, 所述电路还包括:
第三二极管, 所述第三二极管的阴极与所述第一电感的另一端电连接, 所述第三二极管 的阳极与所述市电的零线相连。
9、 根据权利要求的 7或 8所述的电路, 其特征在于,
所述开关管包括电力场效应管、 绝缘栅双极场效应管。
10、 一种控制权利要求 7至 9任一项所述电路的方法, 其特征在于, 所述方法包括: 在市电的负半周期内, 控制第一开关管开通, 使所述正 Boost升压模块中的第一电感储 存电能;
控制所述第一开关管关断, 使所述第一电感放电并通过第一晶闸管给电池充电。
11、如权利要求 10所述的方法,其特征在于,所述控制第一开关管开通,使所述正 Boost 升压模块中的第一电感储存电能, 包括:
控制所述第一开关管开通, 使所述市电的零线中的电流经过所述正 Boost升压模块中的 第三开关管、 所述正 Boost升压模块中的第一电感、 所述第一开关管、 负 Boost升压模块中 的第二输出滤波电容流入所述市电的零线, 所述第一电感储存电能; 或者,
控制所述第一开关管开通, 使所述市电的零线中的电流经过第三二极管、 所述正 Boost 升压模块中的第一电感、 所述第一开关管和负 Boost升压模块中的第二输出滤波电容流入所 述市电的零线, 所述第一电感储存电能。
12、 如权利要求 10或 11所述的方法, 其特征在于, 所述方法还包括:
在所述市电的正半周期内, 控制所述第一开关管关断。
PCT/CN2013/074879 2012-06-06 2013-04-27 一种不间断电源电路及其控制方法 WO2013181973A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13798910.9A EP2709236B1 (en) 2012-06-06 2013-04-27 Uninterrupted power supply circuit and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210183920.2A CN102709995B (zh) 2012-06-06 2012-06-06 一种不间断电源电路及其控制方法
CN201210183920.2 2012-06-06

Publications (1)

Publication Number Publication Date
WO2013181973A1 true WO2013181973A1 (zh) 2013-12-12

Family

ID=46902609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074879 WO2013181973A1 (zh) 2012-06-06 2013-04-27 一种不间断电源电路及其控制方法

Country Status (3)

Country Link
EP (1) EP2709236B1 (zh)
CN (1) CN102709995B (zh)
WO (1) WO2013181973A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110994781A (zh) * 2019-12-28 2020-04-10 广州宝狮新能源有限公司 Ups锂电池一体化电源系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709995B (zh) * 2012-06-06 2015-07-08 华为技术有限公司 一种不间断电源电路及其控制方法
CN103560553A (zh) * 2013-10-17 2014-02-05 华为技术有限公司 一种不间断电源电路及其控制方法
CN104638692B (zh) * 2013-11-08 2017-08-25 艾默生网络能源有限公司 一种不间断电源的蓄电池组挂接电路以及不间断电源
CN103683397B (zh) * 2013-11-28 2016-06-15 华为技术有限公司 一种不间断电源电路及其控制方法
CN105047053B (zh) * 2015-07-01 2024-02-23 上海市行知实验中学 楞次定律演示仪
CN110365223B (zh) * 2018-04-08 2024-02-13 佛山科学技术学院 一种基于三电平逆变技术的三相大功率不间断电源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648895A (en) * 1995-12-19 1997-07-15 Sysgration Ltd. Flyback and charging circuitry for an uninterruptible power supply system
CN2689566Y (zh) * 2004-02-10 2005-03-30 山特电子(深圳)有限公司 一种可共用电池的不间断电源
CN101685973A (zh) * 2008-09-26 2010-03-31 力博特公司 一种不间断电源
CN101834461A (zh) * 2009-12-16 2010-09-15 艾默生网络能源有限公司 Ups电池放电电路
CN102709995A (zh) * 2012-06-06 2012-10-03 华为技术有限公司 一种不间断电源电路及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI274976B (en) * 2005-03-07 2007-03-01 Delta Electronics Inc Method for controlling boost circuit
CN101677191B (zh) * 2008-09-19 2013-07-31 力博特公司 Ups电池充电器及ups
US8492928B2 (en) * 2010-03-18 2013-07-23 American Power Conversion Corporation AC-to-DC conversion
US8723363B2 (en) * 2010-04-27 2014-05-13 Voltronic Power Technology Corp. Uninterrupted power supply apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648895A (en) * 1995-12-19 1997-07-15 Sysgration Ltd. Flyback and charging circuitry for an uninterruptible power supply system
CN2689566Y (zh) * 2004-02-10 2005-03-30 山特电子(深圳)有限公司 一种可共用电池的不间断电源
CN101685973A (zh) * 2008-09-26 2010-03-31 力博特公司 一种不间断电源
CN101834461A (zh) * 2009-12-16 2010-09-15 艾默生网络能源有限公司 Ups电池放电电路
CN102709995A (zh) * 2012-06-06 2012-10-03 华为技术有限公司 一种不间断电源电路及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2709236A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110994781A (zh) * 2019-12-28 2020-04-10 广州宝狮新能源有限公司 Ups锂电池一体化电源系统
CN110994781B (zh) * 2019-12-28 2024-05-03 广州宝狮新能源有限公司 Ups锂电池一体化电源系统

Also Published As

Publication number Publication date
CN102709995A (zh) 2012-10-03
EP2709236B1 (en) 2016-07-27
EP2709236A1 (en) 2014-03-19
EP2709236A4 (en) 2015-06-03
CN102709995B (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2013181973A1 (zh) 一种不间断电源电路及其控制方法
CN202888900U (zh) 一种在线式ups的蓄电池充电和升压电路
WO2006076843A1 (fr) Alimentation novatrice a courant continu en haute frequence a correction de facteur de puissance
CN103095134A (zh) 一种有源网络升压变换器
CN105939107B (zh) 一种混合型准开关升压dc-dc变换器
CN103384115A (zh) 一种充放电式dc-dc转换电路及新能源发电系统
CN107204717A (zh) 一种无桥升压型cuk pfc电路
CN105939112A (zh) 一种高增益准开关升压dc-dc变换器
CN201699598U (zh) 一种开关电源适配器
CN202488350U (zh) 适合光伏系统的反激式开关电源电路
CN106992675A (zh) 一种开关电感电容组和单元增压高电压增益直流变换器
CN104780692B (zh) 一种单级无桥双Boost与Flyback集成的LED驱动电路
CN211579680U (zh) 一种锂电池直流电源系统
CN105978322B (zh) 一种开关电容型高增益准z源dc-dc变换器
TWI451678B (zh) 升壓轉換裝置及升壓轉換電路
WO2015070514A1 (zh) 隔离式交直流转换装置及其转换方法
CN206442169U (zh) 携带式太阳能充电背包
CN103187746B (zh) 一种不间断电源拓扑
CN210839041U (zh) 充电装置及驱动电源产生电路
CN208890677U (zh) 一种汽车用高倍整流电路
CN105262335A (zh) 一种开关电源电路及太阳能发电系统
CN105576961B (zh) 一种全波整流电路及电压变换器
CN216649266U (zh) 一种移动储能电源的市电充电软启动电路及装置
CN103916002A (zh) 共阳极半桥功率因数校正电路
CN203057009U (zh) 一种具有浪涌抑制功能的半控桥式整流装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2013798910

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013798910

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13798910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE