CN103384115A - 一种充放电式dc-dc转换电路及新能源发电系统 - Google Patents

一种充放电式dc-dc转换电路及新能源发电系统 Download PDF

Info

Publication number
CN103384115A
CN103384115A CN2013103024624A CN201310302462A CN103384115A CN 103384115 A CN103384115 A CN 103384115A CN 2013103024624 A CN2013103024624 A CN 2013103024624A CN 201310302462 A CN201310302462 A CN 201310302462A CN 103384115 A CN103384115 A CN 103384115A
Authority
CN
China
Prior art keywords
capacitor
switching tube
charging
semiconductor switch
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013103024624A
Other languages
English (en)
Inventor
马化盛
张化伟
林宋荣
沈世荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN SED INTERNATIONAL POWER TECHNOLOGY Co Ltd
Original Assignee
SHENZHEN SED INTERNATIONAL POWER TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN SED INTERNATIONAL POWER TECHNOLOGY Co Ltd filed Critical SHENZHEN SED INTERNATIONAL POWER TECHNOLOGY Co Ltd
Priority to CN2013103024624A priority Critical patent/CN103384115A/zh
Publication of CN103384115A publication Critical patent/CN103384115A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明提供一种充放电式DC-DC转换电路。在储能装置充电时,对第一开关管和第二开关管进行交替导通控制,通过由第一半导体开关管、第一开关管、第二开关管、耦合电感L及电容C2构成同步整流BUCK电路对储能装置进行充电,同时通过磁集成的耦合电感L的第一绕组、第二半导体开关及电容C3对负载供电;在储能装置放电时,储能装置的正极输出直流电通过由耦合电感L、第二开关管、第二半导体开关及电容C3构成高升压比BOOST电路为负载供电,同时由第一开关管和电容C1对第二开关管的输入端所产生的电压尖峰进行有源钳位,并在电容C1电压达到预设电压值时将电容C1中的电能反馈回储能装置以进行充电,从而提高直流电的转换效率和利用率以及功率密度比,且降低成本。

Description

一种充放电式DC-DC转换电路及新能源发电系统
技术领域
本发明属于电转换领域,尤其涉及一种充放电式DC-DC转换电路及新能源发电系统。
背景技术
目前,在很多领域都会应用到DC-DC转换电路为负载提供具有预设电压的直流电,且在需要同时具备充电和放电功能时,对于电转换效率的要求比较高,例如在光伏发电系统中,由于光的不稳定性和光伏组件的PV特性,其采用太阳能最大功率点跟踪(MPPT,Maximum Power Point Tracking)控制器对太阳能板的发电电压进行实时侦测,并追踪最高电压电流值,进而使光伏发电系统以最高效率对储能装置充电,然而由于光的时效性,白天有光照而夜间无光照,这样就需要在白天对太阳能板所输出的直流电以最大直流电转换效率进行转换为储能装置充电,还需要在夜间以最大利用效率为负载供电。而在其他领域也是如此,很多时候都存在因直流电转换效率低而无法对储能装置实现高效充电,且又因电能利用率低而无法对负载实现高效放电,所以现有技术目前还缺乏能够满足这两种需求的DC-DC转换电路以提高对直流电的转换效率和利用率。
发明内容
本发明提供了一种充放电式DC-DC转换电路,旨在提高对直流电的转换效率和利用率。
本发明是这样实现的,一种充放电式DC-DC转换电路,与控制器、储能装置及负载连接,所述充放电式DC-DC转换电路包括:
第一半导体开关、电容C1、第一开关管、第二开关管、耦合电感L、电容C2、第二半导体开关以及电容C3;
所述第一半导体开关的输入端连接直流电的正极,所述第一半导体开关的输出端与所述电容C1的第一端共接于所述第一开关管的输入端,所述第一开关管的输出端与所述第二开关管的输入端共接于所述耦合电感L的第一绕组的异名端与第二绕组的同名端的共接点,所述耦合电感L的第二绕组的异名端与所述电容C2的第一端共接于所述储能装置的正端,所述耦合电感L的第一绕组的同名端连接所述第二半导体开关的输入端,所述第二半导体开关的输出端与所述电容C3的第一端共接于所述负载的正极端,所述电容C3的第二端与所述负载的负极端、所述电容C2的第二端、所述储能装置的负端、所述第二开关管的输出端以及所述电容C1的第二端共接于所述直流电的负极,所述第一开关管的控制端和所述第二开关管的控制端连接于所述控制器;
在所述储能装置充电时,所述控制器对所述第一开关管和所述第二开关管进行交替导通控制,通过由所述第一半导体开关管、所述第一开关管、所述第二开关管、所述耦合电感L及所述电容C2构成的同步整流BUCK电路对所述储能装置进行充电,同时通过具备磁集成功能的所述耦合电感L的第一绕组、所述第二半导体开关及所述电容C3对所述负载供电;
在所述储能装置放电时,所述储能装置的正端输出直流电通过由具备磁集成功能的所述耦合电感L、所述第二开关管、所述第二半导体开关及所述电容C3构成BOOST电路为所述负载供电,同时由所述第一开关管和所述电容C1对所述第二开关管的输入端所产生的电压尖峰进行有源钳位,并在所述电容C1的电压达到预设电压值时将所述电容C1中的电能反馈回所述储能装置以进行充电。
本发明还提供了一种包括上述充放电式DC-DC转换电路的新能源发电系统。
本发明通过采用包括第一半导体开关、电容C1、第一开关管、第二开关管、耦合电感L、电容C2、第二半导体开关以及电容C3的充放电式DC-DC转换电路。在储能装置充电时,由控制器对第一开关管和第二开关管进行交替导通控制以实现带同步整流的降压式最大功率点跟踪功能对储能装置进行充电,通过由第一半导体开关管、第一开关管、第二开关管、耦合电感L及电容C2构成的同步整流BUCK电路对储能装置进行充电,同时通过磁集成的耦合电感L的第一绕组、第二半导体开关及电容C3对负载供电;在储能装置放电时,储能装置的正极输出直流电通过由耦合电感L、第二开关管、第二半导体开关及电容C3构成的高升压比的BOOST电路为负载供电,同时由第一开关管和电容C1对耦合电感L在第二开关管的输入端所产生的电压尖峰进行有源钳位,并在电容C1的电压达到预设电压值时,由控制器控制第一开关管和第二开关管构成BUCK电路将电容C1所存储的电能通过耦合电感L的第二绕组反馈回储能装置以进行充电,从而提高了直流电的转换效率和利用率,提高了功率密度比,且降低了电路成本。
附图说明
图1是本发明一实施例提供的充放电式DC-DC转换电路的结构示意图;
图2是本发明一实施例提供的充放电式DC-DC转换电路的示例电路结构图;
图3是本发明另一实施例提供的充放电式DC-DC转换电路的结构示意图;
图4是本发明另一实施例提供的充放电式DC-DC转换电路的示例电路结构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1示出了本发明一实施例提供的充放电式DC-DC转换电路的结构示意图,为了便于说明,仅示出了与本发明相关部分,详述如下:
本发明实施例提供的充放电式DC-DC转换电路100与控制器200、储能装置300及负载400连接,充放电式DC-DC转换电路100包括:
第一半导体开关101、电容C1、第一开关管102、第二开关管103、耦合电感L、电容C2、第二半导体开关104以及电容C3;
第一半导体开关101的输入端连接直流电DC的正极+,第一半导体开关101的输出端与电容C1的第一端共接于第一开关管102的输入端,第一开关管102的输出端与第二开关管103的输入端共接于耦合电感L的第一绕组的异名端与第二绕组的同名端的共接点,耦合电感L的第二绕组的异名端与电容C2的第一端共接于储能装置300的正端+,耦合电感L的第一绕组的同名端连接第二半导体开关104的输入端,第二半导体开关104的输出端与电容C3的第一端共接于负载400的正极端,电容C3的第二端与负载400的负极端、电容C2的第二端、储能装置300的负端-、第二开关管103的输出端以及电容C1的第二端共接于直流电DC的负极-,第一开关管102的控制端和第二开关管103的控制端连接于控制器200。
在储能装置300充电时,控制器200对第一开关管102和第二开关管103进行交替导通控制,通过由第一半导体开关管101、第一开关管102、第二开关管103、耦合电感L及电容C2构成的同步整流BUCK电路对储能装置300进行充电,同时通过具备磁集成功能的耦合电感L的第一绕组、第二半导体开关104及电容C3对负载400供电。
在储能装置300放电时,储能装置300的正端输出直流电通过由具备磁集成功能的耦合电感L、第二开关管、第二半导体开关及电容C3构成BOOST电路为负载400供电,同时由第一开关管102和电容C1对第二开关管103的输入端所产生的电压尖峰进行有源钳位,并在电容C1的电压达到预设电压值时将电容C1中的电能反馈回储能装置300以进行充电。
在本发明实施例中,储能装置300具体可以是蓄电池,蓄电池的正极和负极分别对应储能装置300的正端+和负端-;控制器200可以是太阳能最大功率点跟踪控制器或其他具备脉冲输出能力的控制器,当控制器200为太阳能最大功率点跟踪控制器时,其根据是否有光照以确定当前时间是属于白天或夜间,并在白天时分别输出脉冲信号至第一开关管102的控制端和第二开关管103的控制端以控制第一开关管102和第二开关管103交替导通工作以实现带同步整流功能的BUCK电路架构,并通过耦合电感L的第二绕组及电容C2对储能装置300进行充电,其中,在第一开关管102导通,第二开关管103关断时,直流电DC通过由第一半导体开关101、电容C1、第一开关管102、耦合电感L的第二绕组及电容C2构成的BUCK电路对储能装置300充电,此时第一开关管102作为该BUCK电路的整流管;而在第一开关管102关断,第二开关管103导通时,由于耦合电感L的第二绕组的异名端会释放电能,所以由第二开关管103、耦合电感L的第二绕组及电容C2构成的BUCK电路对储能装置300充电,此时第二开关管103作为该BUCK电路的续流管。由此可见,控制第一开关管102和第二开关管103交替导通工作以实现通过带同步整流的降压式最大功率点跟踪功能对储能装置300进行充电,从而能够有效地提高直流电的转换效率,也是提高了对储能装置300的充电效率。此外,在上述第一开关管102和第二开关管103交替导通工作的过程中,直流电还会同时由耦合电感L以磁集成技术作用通过其第一绕组、第二半导体开关104及电容C3对负载400进行供电。而在储能装置300需要放电时(如夜间),第一开关管102关断,而第二开关管103按照一定的占空比实现通断,则储能装置300会释放直流电通过由耦合电感L、第二开关管103、第二半导体开关104及电容C3构成的升压式BOOST电路以高升压比对负载400放电(此时第二开关管103作为该BOOST电路的开关管,且耦合电感L以倍压匝比工作),在此过程中,第二开关管103的漏极会因耦合电感L的漏感而产生电压尖峰,则此时由第一开关管102和电容C1构成的有源钳位电路(其中第二开关管103作为有源钳位管)对第二开关管103的输入端(即耦合电感L的第二绕组的同名端)进行电压钳位和储能以克服该电压尖峰,且当电容C1的电压达到预设电压值时,控制器200控制第一开关管102和第二开关管103构成BUCK电路,并通过第一开关管102将克服电压尖峰时电容C1所存储的电能反馈回储能装置300以进行充电,这样就能进一步提升对直流电的转换效率。
进一步地,第一半导体开关101具体可以是二极管、三极管、MOS管、IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)或其他具备开关特性的半导体器件;如图2所示,当第一半导体开关101为二极管D1时,二极管D1的阳极和阴极分别为第一半导体开关101的输入端和输出端;而当第一半导体开关101为三极管、MOS管、绝缘栅双极型晶体管或其他具备开关特性的半导体器件时,第一半导体开关101还连接控制器200,并以实现二极管特性为目的确定所选用的半导体器件的端极与第一半导体开关101的输入端和输出端的对应关系。
进一步地,第一开关管102具体可以是MOS管、三极管、IGBT(InsulatedGate Bipolar Transistor,绝缘栅双极型晶体管)或其他具备开关特性的半导体器件;如图2所示,当第一开关管102为NMOS管Q1时,NMOS管Q1的漏极、源极及栅极分别为第一开关管102的输入端、输出端及控制端;而当第一开关管102为三极管、IGBT或其他具备开关特性的半导体器件时,以第一开关管102的输入端输入电流、输出端输出电流、控制端接收控制器200的控制脉冲为依据确定所选用的半导体器件的端极与第一开关管102输入端、输出端及控制端的对应关系。
进一步地,第二开关管103具体可以是MOS管、三极管、IGBT(InsulatedGate Bipolar Transistor,绝缘栅双极型晶体管)或其他具备开关特性的半导体器件;而当第二开关管103为三极管、IGBT或其他具备开关特性的半导体器件时,以第二开关管103的输入端输入电流、输出端输出电流、控制端接收控制器200的控制脉冲为依据确定所选用的半导体器件的端极与第二开关管103输入端、输出端及控制端的对应关系。
进一步地,第二半导体开关104具体可以是二极管、三极管、MOS管或其他具备开关特性的半导体器件;如图2所示,当第二半导体开关104为二极管D2时,二极管D2的阳极和阴极分别为第二半导体开关104的输入端和输出端;而当第二半导体开关104为三极管、MOS管、绝缘栅双极型晶体管或其他具备开关特性的半导体器件时,第二半导体开关104还连接控制器200,并以实现二极管特性为目的确定所选用的半导体器件的端极与第二半导体开关104的输入端和输出端的对应关系。
本发明一实施例还提供了一种包括上述充放电式DC-DC转换电路100的新能源发电系统,该新能源发电系统可以是太阳能发电系统、风能发电系统或地热能发电系统等对可再生能源进行利用以实现电力输出的发电系统。
本发明一实施例通过采用包括第一半导体开关101、电容C1、第一开关管102、第二开关管103、耦合电感L、电容C2、第二半导体开关104以及电容C3的充放电式DC-DC转换电路。在储能装置充电时,由控制器200对第一开关管102和第二开关管103进行交替导通控制以实现带同步整流的降压式最大功率点跟踪功能对储能装置300进行充电,并通过由第一半导体开关管101、第一开关管102、第二开关管103、耦合电感L及电容C2构成的同步整流BUCK电路对储能装置300进行充电,同时通过磁集成的耦合电感L的第一绕组、第二半导体开关104及电容C3对负载供电;在储能装置300放电时,储能装置300的正极输出直流电通过由耦合电感L、第二开关管103、第二半导体开关104及电容C3构成的高升压比的BOOST电路为负载供电,同时由第一开关管102和电容C1对耦合电感L在第二开关管103的输入端所产生的电压尖峰进行有源钳位,并在电容C1的电压达到预设电压值时,由控制器200控制第一开关管102和第二开关管103构成BUCK电路将电容C1所存储的电能通过耦合电感L的第二绕组反馈回储能装置300以进行充电,从而提高了直流电的转换效率和利用率,提高了功率密度比,且降低了电路成本。
在本发明另一实施例中,如图3所示,充放电式DC-DC转换电路100还包括第三开关管105,第三开关管105的输入端连接耦合电感L的第一绕组的同名端,第三开关管105的输出端连接第二半导体开关104的输入端,第三开关管105的控制端连接于控制器200。同样以控制器200为太阳能最大功率点跟踪控制器为例对图2所示的充放电式DC-DC转换电路100的工作原理进行如下说明:
控制器200为根据是否有光照以确定当前时间是属于白天或夜间,并在白天时分别输出脉冲信号至第一开关管102的控制端和第二开关管103的控制端以控制第一开关管102和第二开关管103交替导通工作以实现带同步整流功能的BUCK电路架构,并通过耦合电感L的第二绕组及电容C2对储能装置300进行充电,其中,在第一开关管102导通,第二开关管103关断时,直流电DC通过由第一半导体开关101、电容C1、第一开关管102、耦合电感L的第二绕组及电容C2构成的BUCK电路对储能装置300充电,此时第一开关管102作为该BUCK电路的整流管;而在第一开关管102关断,第二开关管103导通时,由于耦合电感L的第二绕组的异名端会释放电能,所以由第二开关管103、耦合电感L的第二绕组及电容C2构成的BUCK电路对储能装置300充电,此时第二开关管103作为该BUCK电路的续流管。由此可见,控制第一开关管102和第二开关管103交替导通工作以实现通过带同步整流的降压式最大功率点跟踪功能对储能装置300进行充电,从而能够有效地提高直流电的转换效率,也是提高了对储能装置300的充电效率。
如果在白天对储能装置300进行充电的过程中需要同时为负载400供电,则在上述第一开关管102和第二开关管103交替导通工作的过程中,控制器200会输出脉冲信号至第三开关管105的控制端以控制第三开关管105保持导通,那么直流电就会同时由耦合电感L以磁集成技术作用其第一绕组、第三开关管105、第二半导体开关104及电容C3对负载400进行供电。如果在白天对储能装置300进行充电的过程中不需要同时为负载400供电,则使控制器200控制第三开关管105关断即可。
当夜间不需要对负载400供电时,只需要由控制器200控制第三开关管105保持关断即可;而当夜间需要对负载400供电时,控制器200会控制第三开关管105恒定导通,则储能装置300会释放直流电通过由耦合电感L、第二开关管103、第三开关管105、第二半导体开关104及电容C3构成的升压式BOOST电路以高升压比对负载400放电(此时第二开关管103作为该BOOST电路的开关管,且耦合电感L以倍压匝比工作),在此过程中,第二开关管103的漏极会因耦合电感L的漏感而产生电压尖峰,则此时由第一开关管102和电容C1构成的有源钳位电路(其中第二开关管103作为有源钳位管)对第二开关管103的输入端(即耦合电感L的第二绕组的同名端)进行电压钳位和储能以克服该电压尖峰,且当电容C1的电压达到预设电压值时,控制器200控制第一开关管102和第二开关管103构成BUCK电路,并通过第一开关管102将克服电压尖峰时电容C1所存储的电能反馈回储能装置300以进行充电,这样就能进一步提升对直流电的转换效率。
从上述可知,在图1所示的充放电式DC-DC转换电路100的基础上加入第三开关管105得到的图3所示的充放电式DC-DC转换电路100能够通过控制第三开关管105的通断以满足用户对负载400的供电或断电需求,在实现充放电操作上显得更加灵活,使得控制效率更高;另外,第三开关管105的通断实际上是起到对耦合电感L的磁集成功能实现开关控制的作用。
进一步地,第三开关管105具体可以是MOS管、三极管、IGBT(InsulatedGate Bipolar Transistor,绝缘栅双极型晶体管)或其他具备开关特性的半导体器件;如图4所示,当第三开关管105为NMOS管Q3时,NMOS管Q3的漏极、源极及栅极分别为第三开关管105的输入端、输出端及控制端,图4中的第一半导体开关101、第一开关管102、第二开关管103及第二半导体开关104分别选定为图2中所示的二极管D1、NMOS管Q1、NMOS管Q2及二极管D2;而当第三开关管105为三极管、IGBT或其他具备开关特性的半导体器件时,以第三开关管105的输入端输入电流、输出端输出电流、控制端接收控制器200的脉冲信号为依据确定所选用的半导体器件的端极与第三开关管105输入端、输出端及控制端的对应关系。
本发明另一实施例还提供了一种包括上述充放电式DC-DC转换电路100的新能源发电系统,该新能源发电系统可以是太阳能发电系统、风能发电系统或地热能发电系统等对可再生能源进行利用以实现电力输出的发电系统。
本发明另一实施例通过采用包括第一半导体开关101、电容C1、第一开关管102、第二开关管103、耦合电感L、电容C2、第二半导体开关104、第三开关管105以及电容C3的充放电式DC-DC转换电路。在储能装置充电时,由控制器200对第一开关管102和第二开关管103进行交替导通控制以实现带同步整流的降压式最大功率点跟踪功能对储能装置300进行充电,并通过由第一半导体开关管101、第一开关管102、第二开关管103、耦合电感L及电容C2构成的同步整流BUCK电路对储能装置300进行充电,同时通过磁集成的耦合电感L的第一绕组、第三开关管105、第二半导体开关104及电容C3对负载供电;在储能装置300放电时,储能装置300的正极输出直流电通过由耦合电感L、第二开关管103、第三开关管105、第二半导体开关104及电容C3构成的高升压比的BOOST电路为负载供电,同时由第一开关管102和电容C1对耦合电感L在第二开关管103的输入端所产生的电压尖峰进行有源钳位,并在电容C1的电压达到预设电压值时,由控制器200控制第一开关管102和第二开关管103构成BUCK电路将电容C1所存储的电能通过耦合电感L的第二绕组反馈回储能装置300以进行充电,从而提高了直流电的转换效率和利用率,提高了功率密度比,且降低了电路成本。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种充放电式DC-DC转换电路,与控制器、储能装置及负载连接,其特征在于,所述充放电式DC-DC转换电路包括:
第一半导体开关、电容C1、第一开关管、第二开关管、耦合电感L、电容C2、第二半导体开关以及电容C3;
所述第一半导体开关的输入端连接直流电的正极,所述第一半导体开关的输出端与所述电容C1的第一端共接于所述第一开关管的输入端,所述第一开关管的输出端与所述第二开关管的输入端共接于所述耦合电感L的第一绕组的异名端与第二绕组的同名端的共接点,所述耦合电感L的第二绕组的异名端与所述电容C2的第一端共接于所述储能装置的正端,所述耦合电感L的第一绕组的同名端连接所述第二半导体开关的输入端,所述第二半导体开关的输出端与所述电容C3的第一端共接于所述负载的正极端,所述电容C3的第二端与所述负载的负极端、所述电容C2的第二端、所述储能装置的负端、所述第二开关管的输出端以及所述电容C1的第二端共接于所述直流电的负极,所述第一开关管的控制端和所述第二开关管的控制端连接于所述控制器;
在所述储能装置充电时,所述控制器对所述第一开关管和所述第二开关管进行交替导通控制,通过由所述第一半导体开关管、所述第一开关管、所述第二开关管、所述耦合电感L及所述电容C2构成的同步整流BUCK电路对所述储能装置进行充电,同时通过具备磁集成功能的所述耦合电感L的第一绕组、所述第二半导体开关及所述电容C3对所述负载供电;
在所述储能装置放电时,所述储能装置的正端输出直流电通过由具备磁集成功能的所述耦合电感L、所述第二开关管、所述第二半导体开关及所述电容C3构成BOOST电路为所述负载供电,同时由所述第一开关管和所述电容C1对所述第二开关管的输入端所产生的电压尖峰进行有源钳位,并在所述电容C1的电压达到预设电压值时将所述电容C1中的电能反馈回所述储能装置以进行充电。
2.如权利要求1所述的充放电式DC-DC转换电路,其特征在于,所述充放电式DC-DC转换电路还包括第三开关管,所述第三开关管的输入端连接所述耦合电感L的第一绕组的同名端,所述第三开关管的输出端连接所述第二半导体开关的输入端,所述第三开关管的控制端连接于所述控制器。
3.如权利要求1所述的充放电式DC-DC转换电路,其特征在于,所述第一半导体开关为二极管、三极管、MOS管或绝缘栅双极型晶体管。
4.如权利要求3所述的充放电式DC-DC转换电路,其特征在于,当所述第一半导体开关为三极管、MOS管或绝缘栅双极型晶体管时,所述第一半导体开关还连接所述控制器。
5.如权利要求1所述的充放电式DC-DC转换电路,其特征在于,所述第二半导体开关为二极管、三极管、MOS管或绝缘栅双极型晶体管。
6.如权利要求5所述的充放电式DC-DC转换电路,其特征在于,当所述第二半导体开关为三极管、MOS管或绝缘栅双极型晶体管时,所述第二半导体开关还连接所述控制器。
7.如权利要求1所述的充放电式DC-DC转换电路,其特征在于,所述第一开关管为MOS管、三极管或绝缘栅双极型晶体管。
8.如权利要求1所述的充放电式DC-DC转换电路,其特征在于,所述第二开关管为MOS管、三极管或绝缘栅双极型晶体管。
9.如权利要求2所述的充放电式DC-DC转换电路,其特征在于,所述第三开关管为MOS管、三极管或绝缘栅双极型晶体管。
10.一种新能源发电系统,其特征在于,所述新能源发电系统包括如权利要求1至9任一项所述的充放电式DC-DC转换电路。
CN2013103024624A 2013-07-15 2013-07-15 一种充放电式dc-dc转换电路及新能源发电系统 Pending CN103384115A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013103024624A CN103384115A (zh) 2013-07-15 2013-07-15 一种充放电式dc-dc转换电路及新能源发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013103024624A CN103384115A (zh) 2013-07-15 2013-07-15 一种充放电式dc-dc转换电路及新能源发电系统

Publications (1)

Publication Number Publication Date
CN103384115A true CN103384115A (zh) 2013-11-06

Family

ID=49491840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013103024624A Pending CN103384115A (zh) 2013-07-15 2013-07-15 一种充放电式dc-dc转换电路及新能源发电系统

Country Status (1)

Country Link
CN (1) CN103384115A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105262335A (zh) * 2015-11-06 2016-01-20 安徽朗格暖通设备有限公司 一种开关电源电路及太阳能发电系统
CN105281390A (zh) * 2014-07-22 2016-01-27 无锡麟力科技有限公司 一种二合一移动电源单电感的新型结构
WO2016078350A1 (zh) * 2014-11-21 2016-05-26 深圳市航天新源科技有限公司 一种磁集成与零端口电流纹波的三端口变换器
CN104821781B (zh) * 2014-12-12 2017-06-16 北京环尔康科技开发有限公司 一种太阳能电池
CN107302234A (zh) * 2016-04-14 2017-10-27 中国科学院声学研究所 预浓缩管快速加热电路及其方法
CN110380607A (zh) * 2019-07-19 2019-10-25 高宁 一种采用耦合电感实现多路输出的双向dc/dc电路及其应用
CN110739849A (zh) * 2019-10-17 2020-01-31 合肥联宝信息技术有限公司 一种供电电路及电子设备
CN111049203A (zh) * 2018-10-11 2020-04-21 圣邦微电子(北京)股份有限公司 充放电管理电路和可充电电子设备
CN111884288A (zh) * 2020-07-23 2020-11-03 广东电网有限责任公司清远供电局 一种基于半导体开关的供电电路及其控制方法
CN112389233A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
CN113162245A (zh) * 2021-03-23 2021-07-23 Oppo广东移动通信有限公司 充电电路、芯片和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694302A (en) * 1996-08-20 1997-12-02 Compaq Computer Corporation Passive clamp and ripple control for buck boost converter
CN101257221A (zh) * 2007-02-28 2008-09-03 北京恒基伟业投资发展有限公司 光伏电池-dc/dc升压转换充电的方法
CN101771294A (zh) * 2010-03-05 2010-07-07 杭州矽力杰半导体技术有限公司 集合驱动控制电路及其控制方法
CN102185533A (zh) * 2011-05-23 2011-09-14 北京交通大学 储能型准-z源光伏发电控制系统和控制方法
CN102480150A (zh) * 2010-11-29 2012-05-30 株式会社东芝 充电控制装置以及充电控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694302A (en) * 1996-08-20 1997-12-02 Compaq Computer Corporation Passive clamp and ripple control for buck boost converter
CN101257221A (zh) * 2007-02-28 2008-09-03 北京恒基伟业投资发展有限公司 光伏电池-dc/dc升压转换充电的方法
CN101771294A (zh) * 2010-03-05 2010-07-07 杭州矽力杰半导体技术有限公司 集合驱动控制电路及其控制方法
CN102480150A (zh) * 2010-11-29 2012-05-30 株式会社东芝 充电控制装置以及充电控制系统
CN102185533A (zh) * 2011-05-23 2011-09-14 北京交通大学 储能型准-z源光伏发电控制系统和控制方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281390A (zh) * 2014-07-22 2016-01-27 无锡麟力科技有限公司 一种二合一移动电源单电感的新型结构
WO2016078350A1 (zh) * 2014-11-21 2016-05-26 深圳市航天新源科技有限公司 一种磁集成与零端口电流纹波的三端口变换器
US10141777B2 (en) 2014-11-21 2018-11-27 Shenzhen Aerospace New Power Technology Ltd. Three-port convertor having integrated magnetic and zero-port current ripple
CN104821781B (zh) * 2014-12-12 2017-06-16 北京环尔康科技开发有限公司 一种太阳能电池
CN105262335A (zh) * 2015-11-06 2016-01-20 安徽朗格暖通设备有限公司 一种开关电源电路及太阳能发电系统
CN107302234A (zh) * 2016-04-14 2017-10-27 中国科学院声学研究所 预浓缩管快速加热电路及其方法
CN107302234B (zh) * 2016-04-14 2019-09-27 中国科学院声学研究所 预浓缩管快速加热电路及其方法
CN111049203A (zh) * 2018-10-11 2020-04-21 圣邦微电子(北京)股份有限公司 充放电管理电路和可充电电子设备
CN110380607A (zh) * 2019-07-19 2019-10-25 高宁 一种采用耦合电感实现多路输出的双向dc/dc电路及其应用
CN112389233A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
CN112389233B (zh) * 2019-08-15 2022-04-15 比亚迪股份有限公司 能量转换装置及车辆
CN110739849A (zh) * 2019-10-17 2020-01-31 合肥联宝信息技术有限公司 一种供电电路及电子设备
CN111884288A (zh) * 2020-07-23 2020-11-03 广东电网有限责任公司清远供电局 一种基于半导体开关的供电电路及其控制方法
CN111884288B (zh) * 2020-07-23 2023-09-08 广东电网有限责任公司清远供电局 一种基于半导体开关的供电电路及其控制方法
CN113162245A (zh) * 2021-03-23 2021-07-23 Oppo广东移动通信有限公司 充电电路、芯片和设备
CN113162245B (zh) * 2021-03-23 2023-11-10 Oppo广东移动通信有限公司 充电电路、芯片和设备

Similar Documents

Publication Publication Date Title
CN203377785U (zh) 一种充放电式dc-dc转换电路及新能源发电系统
CN103384115A (zh) 一种充放电式dc-dc转换电路及新能源发电系统
CN203491895U (zh) 高升压比双开关直流变换器
Liao et al. Control strategy of bi-directional DC/DC converter for a novel stand-alone photovoltaic power system
CN203289128U (zh) 一种光伏充电控制器
CN103746554B (zh) 光伏模块用双向电压输出的高升压比变换器
CN102684482A (zh) 一种单开关高增益直流升压型变换器
CN103929058A (zh) 基于耦合电感的两相交错并联变换器
CN103475211A (zh) 融合耦合电感与倍压电路的升压变换器
CN103904891A (zh) 一种双输入buck直流变换器及其控制系统
CN103269157A (zh) 双向双输入sepic直流变换器及其功率分配方法
CN103441674A (zh) 双向双输入cuk/buckboost直流变换器及其功率分配方法
CN103312168A (zh) 双向双输入zeta直流变换器及其功率分配方法
Kosenko et al. Full-soft-switching high step-up bidirectional isolated current-fed push-pull DC-DC converter for battery energy storage applications
Abitha et al. DC-DC converter based power management for go green applications
Zhang et al. Design and Realization of a Bi-directional DC/DC Converter in photovoltaic power system
CN104319798A (zh) 一种双向dcdc变换器及光储系统
CN104270085A (zh) 一种太阳能光伏发电系统中的dc/dc变换电路
CN103346670A (zh) 双向双输入zeta/sepic直流变换器及其功率分配方法
CN104038056A (zh) 一种双输入buck直流变换器及其控制系统
CN108054920B (zh) 一种dcdc变换器
CN110034681A (zh) 一种交错并联zvzcs高升压dc/dc变换器
CN103296879A (zh) 双向双输入cuk直流变换器及其功率分配方法
CN103441671A (zh) 双向双输入zeta/buckboost直流变换器及其功率分配方法
CN103390999A (zh) 双向双输入buckboost直流变换器及其功率分配方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20131106