WO2013180206A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2013180206A1
WO2013180206A1 PCT/JP2013/064987 JP2013064987W WO2013180206A1 WO 2013180206 A1 WO2013180206 A1 WO 2013180206A1 JP 2013064987 W JP2013064987 W JP 2013064987W WO 2013180206 A1 WO2013180206 A1 WO 2013180206A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
acceleration
curve
speed
driver
Prior art date
Application number
PCT/JP2013/064987
Other languages
English (en)
French (fr)
Inventor
亮介 清水
川邊 武俊
正和 向井
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112013002757.7T priority Critical patent/DE112013002757T5/de
Priority to US14/541,845 priority patent/US20150307100A1/en
Publication of WO2013180206A1 publication Critical patent/WO2013180206A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/16Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle
    • B60T7/18Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle operated by wayside apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • B60W30/146Speed limiting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/072Curvature of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/109Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/20Road shapes
    • B60T2210/24Curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/36Global Positioning System [GPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/02Driver type; Driving style; Driver adaptive features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/103Speed profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • B60W2754/30Longitudinal distance

Definitions

  • the present invention relates to a vehicle control device that controls a vehicle.
  • Patent Document 1 discloses a vehicle driving assist system for performing safety control when the vehicle is traveling on a curved road and performing deceleration control. This device maintains the safety of driving operation by performing deceleration control with a road with the smallest curve radius on the front curve road as a control target point.
  • Patent Document 2 discloses a method of deceleration control in which the driver's acceleration / deceleration operation is read and the timing at which deceleration control is performed before the curve is adjusted. When this method is used, the operation timing is switched according to the driver's acceleration / deceleration operation, so the driver's intended driving operation and control timing coincide with the existing method, and the driver's feeling of discomfort is reduced. ing.
  • a vehicle driving assist system for decelerating before a curve is used in combination with adaptive cruise control (hereinafter referred to as "ACC"), and the driver does not use an accelerator operation or a brake operation, and leads.
  • ACC adaptive cruise control
  • the acceleration / deceleration of the vehicle speed can be controlled in accordance with the behavior of the vehicle, the fluctuation of the set vehicle speed, and the curve condition of the traveling path.
  • the vehicle control device of the present invention detects the own vehicle speed detecting means for detecting the own vehicle speed, the set speed detecting means for detecting the set speed of the driver, and the distance between the own vehicle and the preceding vehicle.
  • a preceding vehicle behavior predicting means for calculating a preceding vehicle behavior according to the vehicle speed; a pseudo traveling curve generating means for calculating a pseudo traveling curve according to the curve shape of the road obtained by the detection of the road shape detecting means; Driver's feeling from the preceding vehicle behavior obtained by the behavior prediction means, the pseudo curve obtained by the pseudo traveling curve generation means, and the set speed obtained by the set speed detection means
  • a target acceleration setting means for calculating an acceleration to reduce that discomfort, characterized in that it comprises accelerating means and decelerating means for controlling the acceleration of the vehicle based on the acceleration obtained by the target acceleration means.
  • the target acceleration generating means is characterized by predicting an action within a predetermined time and including an acceleration term for suppressing an acceleration generated on the vehicle within the predetermined time.
  • the target acceleration generating means is characterized by predicting a behavior within a predetermined time and including a lateral acceleration term for suppressing a lateral acceleration generated in the vehicle within the predetermined time. I assume.
  • the target acceleration generating means is characterized by predicting a behavior within a predetermined time and including a set vehicle speed term for suppressing a deviation between the set vehicle speed and the own vehicle speed.
  • the target acceleration generation means is characterized by predicting a behavior within a predetermined time and including an inter-vehicle time term for suppressing an excessive approach to a preceding vehicle.
  • the driver model based on the forward gaze distance is considered, and control is performed in consideration of the occurrence of lateral acceleration before the curve radius changes. It is characterized in that the timings of the steering operation and the deceleration control are matched.
  • the present invention suppresses the occurrence of road departure judgments and the magnitude and repetition of acceleration or lateral acceleration, suppresses deviation between the set vehicle speed and the host vehicle speed, suppresses excessive approach to the preceding vehicle, and performs driver's steering operation and By adjusting the timing by the deceleration control, it is possible to perform travel control with reduced discomfort given to the driver while securing safety.
  • FIG. 1 shows a functional block of a vehicle control device according to the present invention. It shows a scene where the vehicle follows the preceding vehicle and travels on a curved road.
  • the S-curved road is shown.
  • the S-shaped curve shown in FIG. 4 is a set velocity of 60 [km / h], and shows the behavior when traveling with a lateral acceleration within ⁇ 0.1 [m / s 2 ]. Transition of the situation at the time of curve entry during following vehicle tracking in the case where the prior art is used is sequentially shown in (1) to (4).
  • the vehicle behavior when entering a curve while following a preceding vehicle is shown (the vehicle behavior by a general driver's driving is shown by a solid line, and the vehicle behavior when using a conventional control method is shown by a broken line).
  • the waveform at the time of using a forward gaze model for sigmoid is shown.
  • FIG. 1 is an example of a vehicle system using a vehicle control device according to the present invention.
  • Vehicle control apparatus 100 is based on the road shape obtained from navigation system 400, the inter-vehicle distance obtained from stereo camera 200, the set vehicle speed requested by the driver obtained from steering switch 300, and the vehicle speed obtained from vehicle speed sensor 500.
  • the required driving force calculated as described above is transmitted to the engine control unit 600, and the driving force is generated on the tire via the engine 610 and the transmission 620 to accelerate the vehicle.
  • the required hydraulic pressure calculated in the same manner is transmitted to the brake control unit 700, and the brake actuators 710 to 713 attached to the front, rear, left, and right wheels generate hydraulic pressure to generate braking force on the tire. Reduce the speed of the vehicle. And each of these control units and sensors are connected using CAN 800, enabling mutual information communication.
  • FIG. 2 shows a functional block diagram of the vehicle control device 100.
  • the vehicle control apparatus 100 obtains the set vehicle speed from the signal input via the CAN 800 using the set speed detection 130.
  • the own vehicle speed detection 150 is used to obtain the own vehicle speed
  • the inter-vehicle distance detection 120 is used to obtain the inter-vehicle distance
  • the road shape detection 140 to obtain the curve radius.
  • the preceding vehicle speed is calculated from the obtained own vehicle speed and the inter-vehicle distance using the preceding vehicle speed calculation 125.
  • the model acceleration control 110 is used to calculate the target acceleration, and engine torque command via the engine torque calculation 160 Generates a value and outputs it to CAN 800.
  • the brake pressure is generated from the target acceleration and output to the CAN 800 via the brake pressure calculation 170.
  • FIG. 3 is a diagram for explaining symbols used in performing vehicle control.
  • the vehicle speed is v h
  • the preceding vehicle speed is v p
  • the traveling position of the own vehicle is x h
  • the traveling position of the preceding vehicle is x p
  • the curve radius of the traveling path is R.
  • the vehicle control device of FIG. 1 obtains v h from the vehicle speed sensor, obtains x p ⁇ x h from the stereo camera, and obtains x h and R from the navigation system. Further, the controller measures the amount of change in x p ⁇ x h obtained from the stereo camera, and divides the amount of change in distance by time to calculate the relative velocity. This relative velocity is added to v h to calculate v p . Then, the set speed v t is acquired from the steering switch.
  • the acceleration u h of the vehicle can be obtained by differentiating v h according to the following equation.
  • R is expressed as a function of position, it is expressed using a sigmoid function as follows and is used as a variable function.
  • r n indicates the maximum curve radius
  • ⁇ n indicates the degree of change of the curve radius
  • start n indicates the curve start position
  • end n indicates the curve end position, both of which are set by road shape detection.
  • Figure 4 is a diagram showing an S-shaped curve running path, the curve radius R 1 of X 1 point is 0.99 [m], the curve radius R 4 of X 4 spot has become 100 [m].
  • FIG. 5 shows the behavior when traveling at a lateral acceleration within ⁇ 0.1 m / s 2 as the set speed 60 [km / h] while traveling on this curved road.
  • acceleration / deceleration operation is performed so as to achieve the vehicle speed of the velocity waveform 1 shown in FIG. Further, when trying to run close to the set vehicle speed, the acceleration / deceleration operation is performed so that the vehicle speed shown by the speed waveform 2 is obtained. On the other hand, the driver performs the acceleration / deceleration operation as shown by the velocity waveform 3 so as to run close to the set vehicle speed while suppressing the occurrence of the acceleration / deceleration between the velocity waveform 1 and the velocity waveform 2.
  • the vehicle control device performs the acceleration / deceleration operation along the velocity waveform 3 and solves the optimal control problem according to the evaluation function shown below to calculate u h (t) which minimizes the evaluation function. Do.
  • the contents of the evaluation function will be described in order below.
  • the function f accel for calculating the velocity waveform 1 while suppressing the occurrence of acceleration / deceleration occurring in the vehicle is defined by the following equation.
  • the f accel represents the absolute value of the acceleration, and has a value when performing acceleration or deceleration, and represents that it is optimal not to perform acceleration / deceleration because it moves away from the minimum value of zero.
  • the function f spd for calculating the velocity waveform 2 by running the vehicle speed close to the set vehicle speed is defined by the following equation.
  • f spd takes an absolute value of the difference between the set vehicle speed v t and the own vehicle speed v h , and has a value when the own vehicle speed deviates from the set vehicle speed, and moves away from zero so that it travels according to the set vehicle speed. Expresses that it is optimal.
  • a function f rg ′ used to set a constraint for traveling with lateral acceleration within ⁇ 0.1 [m / s 2 ] is defined by the following formula.
  • f rg ' represents the lateral acceleration generated when traveling on a curved road, and by expressing the value of f rg ' at 0.1 [m / s 2 ] or less, it is expressed to suppress the occurrence of lateral acceleration. ing.
  • the lateral acceleration is faster than the change of R. Occurs. Therefore, the following changes are made to the lateral acceleration term.
  • f rg shifts the function of position by 3.5 [s] with respect to f rg ', it is based on the driver model of forward gaze, so that the occurrence timing of lateral acceleration and the occurrence timing of deceleration may coincide. It becomes possible.
  • the w accel and w spd are arbitrary constants, and the f accel and f spd are set to balance the speed waveform 3. If it is desired to bring the velocity waveform 1 close, f accel is increased, and if it is desired to bring the velocity waveform 2 close, f spd is increased.
  • the speed at the time of curve traveling can be suppressed to enable safe traveling.
  • the control by the rapid deceleration or the rapid acceleration which exceeds the limit of the actuator is prevented, and the safe traveling can be performed.
  • FIG. 6 sequentially shows transition of the situation at the time of curve entry during following vehicle tracking in the case of using the prior art in (1) to (4).
  • the vehicle of the set vehicle speed 60 [km / h] follows at the vehicle speed 50 [km / h] to the preceding vehicle traveling on the straight road at 50 [km / h].
  • the speed is reduced to 40 [km / h] in order for the preceding vehicle to enter the curve.
  • the vehicle also performs deceleration control to 40 [km / h].
  • FIG. 7 shows a vehicle behavior by a general driver driving when entering a curve while following a preceding vehicle by a solid line, and shows a vehicle behavior by using a conventional control method by a broken line. It should be noted here, typical driver detects that you have the necessary curve of the deceleration forward overall by determining the relative distance and relative speed to the preceding vehicle, X 3 from point X 2 sites It is not to accelerate.
  • the acceleration in order to suppress an increase in the acceleration term, when a curve requiring deceleration is detected, the acceleration can be suppressed even when the preceding vehicle is missed.
  • the function f crush is defined by the following equation in order to maintain the inter-vehicle time with the preceding vehicle.
  • the f crush indicates the arrival time to the preceding vehicle position, and the braking distance of the vehicle is secured by making the arrival time a certain value or more. Therefore, the following equation for arrival time is additionally defined as a constraint on the above evaluation function.
  • the above evaluation function is incorporated into the vehicle control device 100 shown in FIG. 2 to solve the optimal control problem.
  • Model predictive control is a control method that solves an optimal control problem in real time along the behavior within a predetermined time (hereinafter referred to as “horizon time”) predicted from the current state and the vehicle model.
  • horizon time a predetermined time
  • the preceding vehicle performs an unexpected operation such as sudden deceleration
  • by dividing the horizon time by a fixed value it is possible to avoid the calculation amount exceeding the processing load without requiring long-time prediction calculation such as from the start of traveling to the arrival at the arrival point.
  • model predictive control when model predictive control is used for a vehicle-mounted device, there may occur a problem that an unintended deceleration of the driver occurs when the target of deceleration control is detected. This will be described with reference to FIG.
  • FIG. 9 is a digital waveform to make it easy to understand the behavior of the lateral acceleration, acceleration, and speed when traveling in the traveling patterns u (t) to u (t) ′ ′.
  • the dotted line u (t) shows a case of continuing the traveling between the left Horizon time maintaining the set vehicle speed v t
  • the solid line u (t) ' is the travel of the constant speed within Horizon time after putting the pre-reduction
  • the case of continuing is shown
  • the solid line u (t) ′ ′ shows the case of entering the deceleration just before entering the curve.
  • u (t) is transformed by either u (t) 'of the pattern to be decelerated in advance or u (t)''of the pattern to be decelerated immediately before, and the waveform of the lateral deceleration is u (t)
  • the constraint condition is satisfied by moving to the waveform of u (t) ′ (u (t) ′ ′) and removing it from the horizon time. As a result, since the distance traveled within the horizon time is reduced, the integral value within the horizon time of v h is reduced.
  • u (t) ' is smaller in integral of absolute acceleration value, which is advantageous in evaluation of the function f accel , and as a result, when a curve path is detected in the horizon time Pre-deceleration will occur.
  • a term to be traveling in accordance with the set vehicle speed v t can not be expelled lateral acceleration waveform from Horizon time by reducing the distance traveled.
  • FIG. 10 shows a simplified diagram using digital waveforms in order to explain the cause of stopping the deceleration once.
  • a dotted line u (t) shows the behavior when entering the curve while maintaining the vehicle speed after deceleration control at the time of curve entry shown in FIG.
  • the solid line u (t) ' shows the behavior in the case of generating the deceleration just before entering the curve.
  • a solid line u (t) ′ ′ shows the behavior in the case of generating the deceleration from the state in which the curve is detected.
  • the lateral acceleration is calculated from R and v h , but since the road shape can not be changed, it is necessary to respond by lowering the vehicle speed, and the amount of deceleration needs to be constant. In other words, the integral value of the function f accel needs to be a certain value or more.
  • u (t) ′ is collectively generated immediately before the curve to generate deceleration, and u (t) ′ ′ is generated continuously to make the integral value of the function f accel be a predetermined value or more. In the situation of FIG. 10, contrary to FIG.
  • the constraint term relating to the lateral acceleration is nullified to 3 to 4 [s] before entering the curve, except in the case of rushing into a sharp curve from the high speed region.
  • An example is shown below.
  • f wrg takes the form of a sigmoid function used in the equation of R representing a curve, and starts from v max ⁇ t min from the start of the curve and rises from the end of the curve to the interval from v max ⁇ t min I assume.
  • the constraint term can be invalidated even if a curve is detected in the horizon time. It is possible to prevent the occurrence of deceleration control.
  • v max and t min are determined based on the following.
  • v max selects the larger the set speed v t and the vehicle speed v h, and if continued to run at the current vehicle speed, a selected considering the case of performing the acceleration to the set vehicle speed during running.
  • t min is a small value selected from 3.5 [s], which is the forward gaze time in the driver model, and the time that generates maximum deceleration from the current vehicle speed v h and does not deviate from the constraint of lateral acceleration.
  • Do. R min is used to detect the limit of the lateral acceleration, and is set to a value that results in the smallest curve radius within the range detected from the current time. By doing this, it is possible to suppress the maximum value of the lateral acceleration even when detected in a curve while traveling at high speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Traffic Control Systems (AREA)

Abstract

本発明は、自車と先行車の質点モデルを用いて、入力された道路形状に応じた自車と先行車の挙動予測を行い、ドライバモデルと挙動予測の結果から自車に発生させる加速度を決定することで、ドライバの意図しない加速や2段階減速の発生を軽減し、ドライバの感じる違和感を低減するためのアルゴリズムを有することにより、先行車追従制御(ACC制御)とカーブ前減速制御を同時に行おうとする場合でも、安全性を確保したまま、ドライバが意図した車速操作に沿った走行制御を可能とする車両制御装置を提供する。

Description

車両制御装置
 本発明は、車両を制御する車両制御装置に関する。
 特許文献1には、自車がカーブ路を走行する際に減速制御を行い、安全性を確保する車両用運転操作補助装置が開示されている。この装置は、前方のカーブ路における最もカーブ半径の小さい道路を制御対象点として減速制御を行うことにより、運転操作の安全性を保っている。また、特許文献2には、運転者の加減速操作を読み取り、カーブ前での減速制御を行うタイミングを調整する減速制御の手法が開示されている。この手法を用いた場合、ドライバの加減速操作に応じて作動タイミングを切り替えるため、既存の手法に対して、ドライバの意図する運転操作と制御を行うタイミングが一致し、ドライバの感じる違和感が軽減されている。特にカーブ前に減速を行う車両用運転操作補助装置は、先行車追従制御(Adaptive Cruise Control;以下「ACC」という。)と組み合わせて使われ、ドライバがアクセル操作やブレーキ操作を用いずとも、先行車の挙動、設定車速の変動、走行路のカーブ状況に合わせて、自車速度の加減速を制御することができる。
特開2005-329896号公報 特開2004-230946号公報
 特許文献1に記載の装置では、道路の制御対象点に対して減速制御を行うため、制御対象点までの道路形状や、制御対象点以降の道路形状に応じた加減速を行うことができないという問題点がある。
 その対策として、特許文献2に記載の減速制御の手法を用いてドライバの感じる違和感を軽減する手法が知られているが、S字のカーブ路でこの手法を用いると、第1のカーブを抜けて、第2のカーブに入る際に行うアクセル操作に対しても減速制御開始タイミングを早めてしまう。そのため、S字のカーブ路を走行する際、ドライバが操作した際は第1のカーブに入るとき減速、第1のカーブを抜けるときに加速、第2のカーブに入るとき減速とするのに対して、第1のカーブを抜ける際の加速が弱まってしまい、ドライバの違和感が増大してしまう。
 また、ACCと併せて使用する際は、先行車の加減速と、自車がカーブに合わせて減速するタイミングが異なるため、先行車がカーブ前減速を行った状況の下、車間距離を保つための減速制御を行った直後に、カーブに対する減速が続いて発生する二段階減速の場合、先行車をカーブ前で見失って車間距離を考慮する必要がなくなった状況の下、自車が設定車速まで加速しようとした直後にカーブに対する減速が発生し、加減速を繰り返してしまうような場合に、これまでに考えられてきた手法ではドライバに違和感を与えてしまうという問題がある。
 その結果、カーブ前に減速を行う補助機能をわずらわしく感じたドライバは、かかる補助機能を無効化させてしまい、安全装置としての役割を発揮できないというシーンが考えられる。
 そのため、ドライバに与える違和感を軽減して、安全性を確保した走行制御装置の提供が求められている。 
 上記の課題を解決するため、本発明の車両制御装置は、自車速を検出する自車速検出手段と、ドライバの設定速度を検出するための設定速度検出手段と、自車両の先行車に対する車間距離を検出する車間距離検出手段と、自車両の走行する道路のカーブ形状を検出する道路形状検出手段と、前記車間距離検出手段の検出結果によって得た車間距離と前記自車速検出手段によって得た自車速に応じて先行車挙動を算出する先行車挙動予測手段と、前記道路形状検出手段の検出によって得た道路のカーブ形状に応じて擬似走行カーブを算出する擬似走行カーブ生成手段と、前記先行車挙動予測手段によって得た先行車挙動と前記擬似走行カーブ生成手段によって得た擬似カーブと前記設定速度検出手段とによって得た設定速度からドライバの感じる違和感を低減させる加速度を算出する目標加速度生成手段と、前記目標加速度生成手段によって得た加速度に基づいて自車の加速度を制御するための加速手段及び減速手段を備えることを特徴とする。
 また、本発明の車両制御装置では、前記目標加速度生成手段は、所定時間内の挙動を予測し、所定時間内に自車に発生する加速度を抑制するための加速度項を備えることを特徴とする。
 また、本発明の車両制御装置では、前記目標加速度生成手段は、所定時間内の挙動を予測し、所定時間内に自車に発生する横加速度を抑制するための横加速度項を備えることを特徴とする。
 また、本発明の車両制御装置では、前記目標加速度生成手段は、所定時間内の挙動を予測し、設定車速と自車速の乖離を抑制するための設定車速項を備えることを特徴とする。
 また、本発明の車両制御装置では、前記目標加速度生成手段は、所定時間内の挙動を予測し、先行車への過剰な接近を抑制するための車間時間項を備えることを特徴とする。
 また、本発明の車両制御装置では、前記横加速度項において、前方注視距離に基づくドライバモデルを考慮し、カーブ半径が変化する前から、横加速度が発生することを考慮した制御を行い、ドライバの操舵操作と減速制御によるタイミングを合わせることを特徴とする。
 本明細書は本願の優先権の基礎である日本国特許出願2012-123629号の明細書および/または図面に記載される内容を包含する。
 本発明は、道路の逸脱判定予測と、加速度若しくは横加速度の大きさと繰り返しの発生を抑え、設定車速と自車速の乖離を抑え、先行車へ過剰に接近することを抑え、ドライバの操舵操作と減速制御によるタイミングを合わせることにより、安全性を確保したまま、ドライバに与える違和感を軽減した走行制御を行うことを可能とする。
本発明に係る車両制御装置を用いた車両全体の概略を示す。 本発明に係る車両制御装置の機能ブロックを示す。 カーブした道路で先行車に自車が追従して走行する場面を示す。 S字カーブ走行路を示す。 図4に示されたS字カーブを、設定速度60[km/h]とし、±0.1[m/s2]以内の横加速度で走行する場合の挙動を示す。 従来技術を用いた場合における、先行車追従中にカーブ進入の際の状況の推移を(1)から(4)に順次示す。 先行車追従中にカーブ進入の際の車両挙動を示す(一般的なドライバの運転による車両挙動を実線で示し、従来制御手法を用いた場合の車両挙動を破線で示す)。 複数回減速が発生する状況を示す。 予測範囲の変化による減速の発生を示す。 予測範囲の変化による減速の解除を示す。 シグモイドに前方注視モデルを用いた場合の波形を示す。
 本発明を実施するための形態について、以下、図を参照して説明する。
 図1は、本発明に係る車両制御装置を用いた車両システムの一例である。車両制御装置100は、ナビゲーションシステム400から得た道路形状と、ステレオカメラ200から得た車間距離と、ステアリングスイッチ300から得たドライバの要求する設定車速と、車速センサ500から得た自車速に基づいて算出した要求駆動力を、エンジンコントロールユニット600に送信し、エンジン610とトランスミッション620を介してタイヤに駆動力を発生させ、自車両を加速させる。
 また、同様に算出した要求液圧を、ブレーキコントロールユニット700に送信して前後左右のホイールに取り付けられたブレーキアクチュエータ710~713に液圧を発生させてタイヤに制動力を発生させることにより、自車両を減速させる。そして、これらの各コントロールユニット及びセンサは、CAN800を用いて接続され、相互に情報通信を可能としている。
 図2は、車両制御装置100の機能ブロック図を示す。車両制御装置100では、CAN800を介して入力された信号から設定速度検出130を用いて設定車速を得る。同様に、自車速検出150を用いて自車速を、車間距離検出120を用いて車間距離を、道路形状検出140を用いてカーブ半径を得る。また、前記得られた自車速及び車間距離から、先行車速演算125を用いて先行車速度を算出する。
 前記得られた設定車速、自車速、先行車速度、車間距離及びカーブ半径を入力とし、モデル予測制御110を用いて、目標とする加速度を演算し、エンジントルク演算160を介して、エンジントルク指令値を生成してCAN800に出力する。同様に、前記の目標とする加速度から、ブレーキ圧演算170を介して、ブレーキ圧を生成してCAN800に出力する。
 図3は、車両制御を行う上で用いる記号を説明するための図である。自車速をvh、先行車速度をvp、自車の走行位置をxh、先行車の走行位置をxp、走行路のカーブ半径をRと定義する。
 図1の車両制御装置は、車速センサから、vhを取得し、ステレオカメラからxp-xhを取得し、ナビゲーションシステムからxhとRを取得する。また、ステレオカメラから得たxp-xhの変化量を制御装置により計測し、距離の変化量を時間で割ることで相対速度を算出する。この相対速度をvhに加算することで、vpを算出する。そして、ステアリングスイッチから設定速度vtを取得する。自車の加速度uhは、次式のとおり、vhを微分して得られる。
Figure JPOXMLDOC01-appb-I000001
 また、Rは位置の関数で表現されるため、以下のようにシグモイド関数を用いて表現され、変関数として用いる。
Figure JPOXMLDOC01-appb-I000002
 ここで、rnは最大カーブ半径、αnはカーブ半径の変化度合い、startnはカーブの開始位置、endnはカーブの終端位置を示し、いずれも道路形状検出によって設定する。
 次に、カーブ前減速制御とACCを併用した場合に発生する問題の一例の状況について、図を参照して説明する。
 図4は、S字カーブ走行路を示した図であり、X1地点のカーブ半径R1が150[m]、X4地点のカーブ半径R4が100[m]となっている。図5は、このカーブ路を走行する際に、設定速度60[km/h]として、±0.1[m/s2]以内の横加速度で走行しようとした場合の挙動を示す。
 X1地点では44.09[km/h]以下の速度で走行し、X4地点では36.00[km/h]以下の速度で走行する必要がある。このような場合、加減速を抑えるように走行しようとする場合、図5に示す速度波形1の車速となるように加減速操作を行う。また、設定車速に近づけて走ろうとする場合は、速度波形2に示す車速となるように加減速操作を行う。これに対してドライバは、速度波形1と速度波形2の間で、加減速の発生を抑えつつ、設定車速に近づけて走るように速度波形3に示すような加減速操作を行う。
 そして、本発明の車両制御装置は、速度波形3に沿った加減速操作を行うため、以下に示す評価関数に沿って最適制御問題を解き、評価関数を最小化させるuh(t)を算出する。以下、順に評価関数の内容について説明する。
 自車に発生する加減速の発生を抑えつつ前記速度波形1を算出しようとする関数faccelは、以下の数式で定義される。
Figure JPOXMLDOC01-appb-I000003
 faccelは、加速度の絶対値をとることで、加速又は減速を行うと値を持ち、最小値であるゼロから遠ざかるため、加減速を行わないことが最適であることを表現している。
 設定車速に、車速を近づけて走ることで前記速度波形2を算出しようとする関数fspdを以下の数式で定義する。
Figure JPOXMLDOC01-appb-I000004
 fspdは、設定車速vtと自車速vhの差の絶対値をとることで、設定車速から自車速が離れると値を持ち、ゼロから遠ざかるため、自車速を設定車速に合わせて走行することが最適であることを表現している。
 ±0.1[m/s2]以内の横加速度で走行しようとする制約を設けるために用いる関数frg’ を以下の数式で定義する。
Figure JPOXMLDOC01-appb-I000005
 frg’ はカーブ路を走行する際に発生する横加速度を表現しており、frg’ の値を0.1 [m/s2]以下に保つことで、横加速度の発生を抑えることを表現している。また、一般的なドライバはカーブ走行の際に、前方注視のドライバモデルに基づいてカーブ半径が変化する3[s]~4[s]前から操舵を開始するため、Rの変化より早く横加速度が発生する。そのため、横加速度項に以下のような変更を行っている。
Figure JPOXMLDOC01-appb-I000006
 frgは、frg’に対して、位置の関数を3.5 [s]ずらしているので、前方注視のドライバモデルに基づいているため、横加速度の発生タイミングと減速の発生タイミングを一致させることが可能となる。
 上記の関数を組み合わせて、次式の評価関数とする。
Figure JPOXMLDOC01-appb-I000007
 waccel及びwspdは任意の定数とし、faccelとfspdをバランスさせて速度波形3を調整するように設定する。速度波形1に近づけたい場合はfaccelを大きくし、速度波形2に近づけたい場合はfspdを大きくする。
 さらに制約条件として、以下を設定する。
Figure JPOXMLDOC01-appb-I000008
 制約条件として、横加速度の上限値が決められるため、カーブ走行時の速度を抑えて、安全な走行が可能となる。
 さらに、制約条件として以下を設定する。
Figure JPOXMLDOC01-appb-I000009
 制約条件として、加速度の上限値が決められるため、アクチュエータの限界を超えるような急減速又は急加速による制御を防止し、安全な走行が可能となる。
 上記2つの制約条件を満たしつつ、上記評価関数を最小化するuh(t)を算出するため、制約としての安全性を確保した上で、ドライバに与える違和感を低減した走行が可能となる。
 図6は、従来技術を用いた場合における、先行車追従中にカーブ進入の際の状況の推移を(1)から(4)に順次示す。図6の(1)において、直線路を50[km/h]で走行している先行車に、設定車速60[km/h]の自車が自車速50 [km/h]で追従している。次に、図6の(2)において、先行車がカーブに進入するため、速度を40[km/h]まで減速させる。それに合わせて、自車も40 [km/h] まで減速制御を行う。
 さらに、図6の(3)において、カーブ路によりセンサ検知角度外に先行車を見失ってしまい、従来技術の車両制御装置によれば設定車速60 [km/h]まで加速する。そして、図6の(4)において、カーブでの横加速度を抑えるため40 [km/h]まで減速を行う。そのため、加減速を繰り替えし、ドライバが違和感を覚える制御となってしまう。
 これに対し、前方にカーブがあることを加味し、先行車をセンサ検知できなくなった直後の加速を抑えて、先行車追従時の50[km/h]から、カーブ走行時の40[km/h]までゆるやかに減速するのが一般的なドライバの運転である。
 図7は、先行車追従中にカーブ進入時の一般的なドライバの運転による車両挙動を実線で示し、従来制御手法を用いた場合の車両挙動を破線で示している。ここで注目すべきは、一般的なドライバが前方に減速の必要なカーブがあることを検知し、先行車との相対距離と相対速度を総合的に判断して、X2地点からX3地点にかけて加速を行わないことにある。
 そして、本発明による車両制御装置では、加速度項の増加を抑えるため、減速度を必要とするカーブが検出されている場合には、先行車を見失った場合でも加速を抑制することができる。
 また、先行車追従制御を行うようにするため、先行車との車間時間を保つため、関数fcrushを、以下の数式で定義する。
Figure JPOXMLDOC01-appb-I000010
 fcrushは先行車位置までの到達時間を示しており、到達時間を一定以上とすることで自車の制動距離を確保する。そのため、前述の評価関数に対する制約条件として、到達時間についての次式を追加で定義する。
Figure JPOXMLDOC01-appb-I000011
 この制約条件を追加することで、車間時間が2[s]以下になるような加速を避け、先行車の割り込み等で一時的に車間時間が短くなっても減速制御を行い、安全な追従走行をすることができる。
 以上の評価関数を図2に示した車両制御装置100に組み込み、最適制御問題を解くこととなる。ただし、自車の走行開始地点から到達地点までの最適制御問題を車載用装置によって短時間に解くことは、全ての道路形状や他車の挙動を与えなければならないので困難である。そのため、リアルタイムで最適制御問題を解き続ける必要があり、モデル予測制御を用いることが望ましい。
 モデル予測制御とは、現在の状態と車両モデルから予測した所定時間(以下「ホライゾン時間」と記述する。)以内の挙動に沿ってリアルタイムに最適制御問題を解く制御手法である。特に現在の状態から最適制御問題を解くため、先行車が急減速など想定外の動作をした場合において、過去の予測内容に対して自車の制御量を合わせることができる。また、ホライゾン時間を一定値で区切ることにより、走行開始から到達地点に到着するまでのように長時間の予測計算を要さず、処理負荷を超過した計算量になることを避けることができる。
 しかし、車載機器に関してモデル予測制御を使用すると、減速制御対象の検出時にドライバの意図しない減速が発生するという問題が起り得る。その様子を、図8を用いて説明する。
 図8は、前述の評価関数をそのままモデル予測制御として使用し、ホライゾン時間を20 [s]と設定した場合の波形である。設定車速による直線路走行からt=80[s]のタイミングでカーブに入っていく道路形状となるが、カーブに入る60[s]前のt=20[s]のタイミングから減速を開始している。通常のドライバの運転は、カーブに対して速度が速すぎる場合を除き、カーブに入る3~4 [s]前から減速を行うのであり、60[s]前から減速を行うことはないので、ドライバの意図と不一致になってしまう。この現象が発生する原因を、図9を用いて説明する。
 図9は、走行パターンu(t)~u(t)’’の各走行パターンで走行した際の横加速度、加速度、速度の挙動を分かりやすくするためにデジタル波形で示したものである。点線u(t)は設定車速vtを維持したままホライゾン時間の間走行を継続する場合を示し、実線u(t)’は、事前に減速を入れてからホライゾン時間内に一定速度の走行を継続する場合を示し、実線u(t)’’は、カーブに入る直前で減速を入れる場合を示す。
 u(t)を用いた場合、減速が発生しないため、ホライゾン時間以内に横加速度が0.1 [m/s2]を超過してしまうため、制約違反となってしまう。これを回避するために、横加速度が発生しないように減速制御が必要となる。そこでu(t)を、事前に減速するパターンのu(t)’又は直前に減速するパターンのu(t)’’のいずれかとする方法で変形させ、横減速度の波形をu(t)からu(t)’(u(t)’’)の波形に移動させ、ホライゾン時間から追い出すことで制約条件を満たす。その結果、ホライゾン時間以内で走行する距離を減らすことになるので、vhのホライゾン時間内の積分値を抑えることになる。
 また、設定速度vtは一定であるため、積分値が等しければ、関数fspdは等しいため、u(t)’とu(t)’’のいずれが選ばれるかは決まらないが、図9の加速度のグラフに示すようにu(t)’の方が加速度絶対値の積分値が小さくなるため、関数faccelの評価において有利となり、結果的にホライゾン時間にカーブ路が検出された時点で事前減速が発生するようになってしまう。ただし、設定車速vtに合わせて走行しようとする項が働き続けるため、走行距離を減らしてホライゾン時間から横加速度波形を追い出すことができなくなる。
 それが、図8のt=40[s]からt=80[s]にかけての波形であり、図10に一度減速をやめてしまう原因を説明するため、デジタル波形で簡略化した図を示す。図10において、点線u(t)に、図9にて示したカーブ突入時の減速制御後の車速を維持してカーブに進入した場合の挙動を示す。実線u(t)’に、カーブに入る直前に減速度を発生させる場合の挙動を示す。実線u(t)’’に、カーブ検知した状態から減速度を発生させる場合の挙動を示す。横加速度波形をホライゾン時間から追い出せない場合に制約を守る方法は、横加速度絶対値の最大値を抑えることが必要になる。
 横加速度はRとvhより算出されるが、道路形状を変えることはできないため、車速を下げることで対応することになり、減速量を一定まで出す必要がある。つまり、関数faccelの積分値を一定以上にする必要がある。u(t)’はカーブ直前にまとめて減速度を発生させ、u(t)’’では減速度を連続的に発生させることで、関数faccelの積分値を一定以上にしている。図10の状況では、図9とは逆に、関数faccelについての差分は無いため、u(t)’とu(t)’’のどちらが選ばれるかは決まらないが、関数fspdの評価においてu(t)’の方が有利となるため、カーブ直前に急減速を行うようになる。
 そして、図9及び図10で示した2つの現象が発生するため、図8で示すようにカーブが検出された瞬間の減速とカーブに入る直前での2回の減速が発生してしまう。対して、一般的なドライバは高速域から急カーブに進入する場合を除き、ドライバの前方注視モデルに基づき、カーブに入る3~4[s]前まで減速制御をしないため、ドライバの意図した走行とは異なるため問題となる。
 そのため、高速域から急カーブに突入する場合を除き、カーブに進入する3~4[s]前まで横加速度に関する制約項を無効化させる。その一例を下記に示す。
Figure JPOXMLDOC01-appb-I000012
 n = {1}の場合のfwrgの挙動を図11に示す。fwrgは、カーブを表現するRの式で用いたシグモイド関数の形をしており、カーブの開始からvmax・tminを始点として、カーブ終了からvmax・tminまでの区間に立ち上がる関数とする。これを下記に示すように、横加速度に関する制約項の左辺にかけることで、ホライゾン時間の中にカーブが検出されても制約項を無効化することができるため、図8に示した2段階の減速制御が発生しないようにできる。
Figure JPOXMLDOC01-appb-I000013
 この時、vmax及びtminは下記に基づいて決定される。
Figure JPOXMLDOC01-appb-I000014
 vmaxは、設定車速vtと自車速vhから大きい方を選択し、現在の車速で走行し続けた場合と、走行途中に設定車速まで加速を行った場合を考慮して選択する。tminは、ドライバモデルにおける前方注視時間である3.5 [s]と、現在の自車速vhから最大の減速度を発生して横加速度の制約条件を逸脱しないようにできる時間から小さい値を選択する。Rminは横加速度の限界を検出するために用い、現時点から検出される範囲内において最小のカーブ半径となる値を設定する。こうすることで高速走行中にカーブに検出した際も横加速度の最大値を抑えることができる。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (6)

  1.  自車速を検出する自車速検出手段と、
     ドライバの設定速度を検出するための設定速度検出手段と、
     自車量の先行車に対する車間距離を検出する車間距離検出手段と、
     自車両の走行する道路のカーブ形状を検出する道路形状検出手段と、
     前記車間距離検出手段の検出結果によって得た車間距離と前記自車速検出手段によって得た自車速に応じて先行車挙動を算出する先行車挙動予測手段と、
     前記道路形状検出手段の検出によって得た道路のカーブ形状に応じて擬似走行カーブを算出する擬似走行カーブ生成手段と、
     前記先行車挙動予測手段によって得た先行車挙動と前記擬似走行カーブ生成手段によって得た擬似カーブと前記設定速度検出手段によって得た設定速度からドライバの感じる違和感を低減させる加速度を算出する目標加速度生成手段と、
     前記目標加速度生成手段によって得た加速度に基づいて自車の加速度を制御するための加速手段及び減速手段を備えることを特徴とする車両制御装置。
  2.  請求項1に記載の車両制御装置において、前記目標加速度生成手段は、所定時間内の挙動を予測し、単位時間内に自車に発生する加速度を抑制するための加速度項を備えることを特徴とする車両制御装置。
  3.  請求項1に記載の車両制御装置において、前記目標加速度生成手段は、所定時間内の挙動を予測し、単位時間内に自車に発生する横加速度を抑制するための横加速度項を備えることを特徴とする車両制御装置。
  4.  請求項1に記載の車両制御装置において、前記目標加速度生成手段は、所定時間内の挙動を予測し、設定車速と自車速の乖離を抑制するための設定車速項を備えることを特徴とする車両制御装置。
  5.  請求項1に記載の車両制御装置において、前記目標加速度生成手段は、所定時間内の挙動を予測し、先行車への過剰な接近を抑制するための車間時間項を備えることを特徴とする車両制御装置。
  6.  請求項3に記載の横加速度項において、前方注視距離に基づくドライバモデルを考慮し、カーブ半径が変化する前から、横加速度が発生することを考慮した制御を行い、ドライバの操舵操作と減速制御によるタイミングを合わせることを特徴とする車両制御装置。
PCT/JP2013/064987 2012-05-30 2013-05-30 車両制御装置 WO2013180206A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013002757.7T DE112013002757T5 (de) 2012-05-30 2013-05-30 Fahrzeugsteuereinheit
US14/541,845 US20150307100A1 (en) 2012-05-30 2013-05-30 Vehicle Controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-123629 2012-05-30
JP2012123629A JP2013248925A (ja) 2012-05-30 2012-05-30 車両制御装置

Publications (1)

Publication Number Publication Date
WO2013180206A1 true WO2013180206A1 (ja) 2013-12-05

Family

ID=49673393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064987 WO2013180206A1 (ja) 2012-05-30 2013-05-30 車両制御装置

Country Status (4)

Country Link
US (1) US20150307100A1 (ja)
JP (1) JP2013248925A (ja)
DE (1) DE112013002757T5 (ja)
WO (1) WO2013180206A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107368069A (zh) * 2014-11-25 2017-11-21 浙江吉利汽车研究院有限公司 基于车联网的自动驾驶控制策略的生成方法与生成装置
CN110843781A (zh) * 2019-11-27 2020-02-28 长安大学 一种基于驾驶员行为的车辆弯道自动控制方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11334092B2 (en) * 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US9393960B2 (en) * 2012-11-28 2016-07-19 Toyota Jidosha Kabushiki Kaisha Vehicle cruise control device
JP6094530B2 (ja) 2014-05-30 2017-03-15 株式会社デンソー 運転支援装置および運転支援プログラム
JP6222475B2 (ja) * 2014-11-10 2017-11-01 マツダ株式会社 車両加減速制御装置
JP6321532B2 (ja) * 2014-11-28 2018-05-09 株式会社デンソー 車両の走行制御装置
JP6363517B2 (ja) * 2015-01-21 2018-07-25 株式会社デンソー 車両の走行制御装置
JP6460349B2 (ja) * 2016-04-13 2019-01-30 トヨタ自動車株式会社 車両走行制御装置
JP6845083B2 (ja) * 2017-05-18 2021-03-17 トヨタ自動車株式会社 運転支援装置
CN109421711B (zh) 2017-08-28 2021-07-13 腾讯科技(北京)有限公司 跟车速度控制方法、装置、系统、计算机设备及存储介质
US11958485B2 (en) 2018-03-01 2024-04-16 Jaguar Land Rover Limited Vehicle control method and apparatus
GB2571587A (en) * 2018-03-01 2019-09-04 Jaguar Land Rover Ltd Vehicle control method and apparatus
KR20200034037A (ko) * 2018-09-14 2020-03-31 현대자동차주식회사 차량의 주행 제어 장치 및 방법
CN111267853B (zh) * 2018-12-03 2021-06-18 广州汽车集团股份有限公司 一种自适应车辆弯道辅助控制方法、装置、计算机设备和存储介质
CN111762158A (zh) * 2019-03-29 2020-10-13 中科院微电子研究所昆山分所 集成式跟随控制方法、系统、装置及计算机可读存储介质
DE102019208525A1 (de) * 2019-06-12 2020-12-31 Hitachi, Ltd. Fahrzeugfahrsteuerverfahren, Fahrzeugfahrsteuervorrichtung und Computerprogrammprodukt
CN110979324B (zh) * 2019-12-20 2021-02-05 武汉乐庭软件技术有限公司 一种智能驾驶中安全舒适高效的acc跟车速度规划方法
CN111428905B (zh) * 2020-02-11 2020-12-08 北京理工大学 一种全工况纵向车速预测方法和系统
JP7341941B2 (ja) * 2020-04-14 2023-09-11 日立Astemo株式会社 車両運動制御装置及び車両運転制御方法
FR3118748B1 (fr) * 2021-01-14 2022-12-09 Psa Automobiles Sa Procédé et dispositif de contrôle d’accélération d’un véhicule
US11524679B2 (en) 2021-02-08 2022-12-13 Ford Global Technologies, Llc Adaptive cruise control with user-defined lateral acceleration threshold
CN113065240B (zh) * 2021-03-19 2023-04-07 成都安智杰科技有限公司 一种自适应巡航仿真方法、装置、电子设备和存储介质
CN113320542B (zh) * 2021-06-24 2022-05-17 厦门大学 一种自动驾驶车辆的跟踪控制方法
US20220410876A1 (en) * 2021-06-28 2022-12-29 Volvo Car Corporation Road condition adaptive dynamic curve speed control
CN113859236A (zh) * 2021-09-07 2021-12-31 中汽创智科技有限公司 一种跟车控制系统、车辆、方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262895A (ja) * 2008-04-30 2009-11-12 Nissan Motor Co Ltd 車両用走行制御装置
JP2010076584A (ja) * 2008-09-25 2010-04-08 Hitachi Automotive Systems Ltd 加減速制御装置
JP2011121417A (ja) * 2009-12-08 2011-06-23 Hiroshima City Univ 走行制御システム、制御プログラム、記録媒体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002123898A (ja) * 2000-08-08 2002-04-26 Equos Research Co Ltd 車両制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262895A (ja) * 2008-04-30 2009-11-12 Nissan Motor Co Ltd 車両用走行制御装置
JP2010076584A (ja) * 2008-09-25 2010-04-08 Hitachi Automotive Systems Ltd 加減速制御装置
JP2011121417A (ja) * 2009-12-08 2011-06-23 Hiroshima City Univ 走行制御システム、制御プログラム、記録媒体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107368069A (zh) * 2014-11-25 2017-11-21 浙江吉利汽车研究院有限公司 基于车联网的自动驾驶控制策略的生成方法与生成装置
CN107368069B (zh) * 2014-11-25 2020-11-13 浙江吉利汽车研究院有限公司 基于车联网的自动驾驶控制策略的生成方法与生成装置
CN110843781A (zh) * 2019-11-27 2020-02-28 长安大学 一种基于驾驶员行为的车辆弯道自动控制方法

Also Published As

Publication number Publication date
JP2013248925A (ja) 2013-12-12
US20150307100A1 (en) 2015-10-29
DE112013002757T5 (de) 2015-08-13

Similar Documents

Publication Publication Date Title
WO2013180206A1 (ja) 車両制御装置
JP6670901B2 (ja) 車両の運転補助を行うための方法及び装置
EP3530535B1 (en) Vehicle movement control device, vehicle movement control method, and vehicle movement control program
JP6204865B2 (ja) 車両の運動制御システム、車両、および、プログラム
JP6333655B2 (ja) 車両の運転補助を行うための方法及び装置
JP5780996B2 (ja) 車両走行制御装置
JP4497231B2 (ja) 車両用速度制御装置
US8712664B2 (en) Vehicle control apparatus
JP7198829B2 (ja) 車両制御装置
WO2014156256A1 (ja) 車両の運動制御装置
US20100198478A1 (en) Method and apparatus for target vehicle following control for adaptive cruise control
WO2013187227A1 (ja) 車両の走行制御装置
US8103424B2 (en) Inter-vehicle distance control apparatus and method for controlling inter-vehicle distance
JP5157531B2 (ja) 車両用走行制御システム
JP2013126823A (ja) 走行支援装置及び走行支援方法
JP2010076584A (ja) 加減速制御装置
JP6375034B2 (ja) 車両の運動制御システム
JP2009184675A (ja) 走行制御装置
JP6204482B2 (ja) 車両の走行制御装置
JP4424387B2 (ja) 走行制御装置
JP6313834B2 (ja) 車両制御装置
JP4923475B2 (ja) 車両走行制御装置および車両走行制御方法
JP2014096064A (ja) 車両の運転支援装置及び運転支援方法
JP7175577B2 (ja) 車両制御システム
WO2020085040A1 (ja) 車両駆動制御装置、車両の駆動制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14541845

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130027577

Country of ref document: DE

Ref document number: 112013002757

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796848

Country of ref document: EP

Kind code of ref document: A1