WO2013180171A1 - 充電システム、充電システムの制御方法、及び制御プログラム - Google Patents

充電システム、充電システムの制御方法、及び制御プログラム Download PDF

Info

Publication number
WO2013180171A1
WO2013180171A1 PCT/JP2013/064896 JP2013064896W WO2013180171A1 WO 2013180171 A1 WO2013180171 A1 WO 2013180171A1 JP 2013064896 W JP2013064896 W JP 2013064896W WO 2013180171 A1 WO2013180171 A1 WO 2013180171A1
Authority
WO
WIPO (PCT)
Prior art keywords
charger
power consumption
converter
charging system
combination
Prior art date
Application number
PCT/JP2013/064896
Other languages
English (en)
French (fr)
Inventor
隆之 静野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/401,646 priority Critical patent/US20150137739A1/en
Priority to JP2014518701A priority patent/JP6201988B2/ja
Publication of WO2013180171A1 publication Critical patent/WO2013180171A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the present invention relates to a charging system, a charging system control method, and a control program, and more particularly, to a charging system, a charging system control method, and a control program that minimize power loss when charging an electric vehicle.
  • Patent Document 1 When charging a storage battery including an electric vehicle, there are problems such as shortening the charging time and reducing power loss.
  • Patent Document 1 another storage battery is built in the charging system, and the internal storage battery is charged in advance before charging the storage battery to be charged.
  • Patent Document 2 discloses a means for determining whether to use an external power source or a built-in storage battery from the power loss of the power supply system when a storage battery is built in the power system and power is supplied to the load. Has been. Energy-saving power supply can be achieved by reducing power loss caused by charging / discharging of AC / DC converters and built-in storage batteries existing in the power supply system. In general, the AC / DC converter and the DC / DC converter use the characteristic that the power conversion efficiency is high when the load is heavy, but the power conversion efficiency is low when the load is light.
  • a charger having a charging interface specific to an electric vehicle is connected as a load to charge the electric vehicle.
  • the electric vehicle is rapidly charged with a large amount of electric power by using the power of the built-in storage battery in addition to the external power source.
  • the power loss of the AC / DC converter existing in the charging system or the DC / DC converter generated by charging / discharging of the built-in storage battery is taken into consideration. Therefore, even when a large amount of power is required at the start of charging of the electric vehicle, or even when a large amount of power is not required at the end of charging, there is a possibility that power loss can be suppressed.
  • This invention solves the said subject, and it aims at providing the charging system which minimizes the whole power loss, the control method of a charging system, and a control program.
  • the present invention that solves the above-described problems is a charging system that includes a charger, an AC / DC converter, a DC / DC converter, a storage battery, and a control device, wherein the control device is required power consumption of the charger.
  • a required power consumption comprehension unit for grasping a charger maximum power consumption calculating unit for calculating a maximum power consumption of the charger based on the required power consumption, and a minimum power consumption of the charger based on the required power consumption
  • a charger minimum power consumption calculating unit for calculating the battery, a storage battery remaining amount grasping unit for grasping the remaining amount of the storage battery, and based on the remaining amount of the storage battery, the power consumption of the charger is the maximum power consumption of the charger and the An operation set for determining a combination of operations of the charger, the AC / DC converter, and the DC / DC converter so that the power loss is minimized as a charging system between the minimum power consumption of the charger.
  • an operation control unit that operates the charger, the AC / DC converter, and the DC
  • the present invention for solving the above problems is a control method of a charging system comprising a charger, an AC / DC converter, a storage battery, a DC / DC converter, and a control device, wherein the control device is configured to charge the charge.
  • the control device is configured to charge the charge.
  • Grasps the required power consumption of the charger calculates the maximum power consumption of the charger based on the required power consumption, calculates the minimum power consumption of the charger based on the required power consumption, and grasps the remaining amount of the storage battery.
  • the charging is performed so that the power consumption of the charger is between the maximum power consumption of the charger and the minimum power consumption of the charger, and the power loss is minimized as a charging system.
  • a combination of operations of the charger, the AC / DC converter, and the DC / DC converter is determined, and the charger, the AC / DC converter, and the DC / DC converter are operated based on the combination.
  • the present invention for solving the above-described problems is a control program for controlling a charging system including a charger, an AC / DC converter, a storage battery, a DC / DC converter, and a control device, and is necessary for the charger.
  • Charger required power consumption grasping process for grasping power consumption charger maximum power consumption calculating process for calculating the maximum power consumption of the charger based on the required power consumption, and charger minimum power consumption based on the required power consumption
  • the control device is caused to execute an operation combination determination process for determining the operation and an operation control process for operating the charger, the AC / DC converter, and the DC / DC converter based on the combination
  • the power loss of the entire charging system can be minimized.
  • Schematic configuration diagram of the charging system Schematic configuration and functional block diagram of power control apparatus Database data structure Table structure Flow chart showing processing contents of power control device Schematic configuration and functional block diagram of power control device (modification) Schematic configuration and functional block diagram of power control device (modification)
  • the present invention relates to a charging system including a charger, an AC / DC converter, a DC / DC converter, a storage battery, and a control device, wherein the control device grasps a necessary power consumption of the charger.
  • a minimum power consumption calculation unit, a storage battery remaining amount grasping unit for grasping the remaining amount of the storage battery, and based on the storage battery remaining amount, the power consumption of the charger is the maximum power consumption of the charger and the minimum power consumption of the charger
  • An operation combination determining unit that determines a combination of operations of the charger, the AC / DC converter, and the DC / DC converter so as to minimize power loss as a charging system, And an operation control unit that operates the charger, the AC / DC converter, and the DC / DC converter based on a combination.
  • the present invention focuses on the fact that the power consumption of the charger can be adjusted between the maximum power consumption and the minimum power consumption (including minimum and maximum). Therefore, an optimal combination can be determined from a large number of candidates.
  • the operating combination also takes into account the power loss of the charger. Thereby, the power loss of the whole charging system can be minimized.
  • control device further includes a combination storage unit that stores a set related to the combination, and the operation combination determination unit refers to the set related to the combination to determine a combination of operations. decide.
  • the charger has a charging interface specific to electric vehicles. Since the power consumption of such a charger is stable within a certain range between the maximum power consumption and the minimum power consumption, a set relating to a combination of operations is created and stored in advance as a table, for example. be able to. Thereby, it is possible to easily determine a combination of operations that minimizes power loss as a charging system.
  • control device further includes an actual measurement value grasping unit for grasping an actual measurement value based on an operation result of the charger, the AC / DC converter, and the DC / DC converter, and the combination storage.
  • the unit rewrites the set related to the combination based on the actual measurement value.
  • the operation combination determination unit determines the combination for operating the AC / DC converter so that charging / discharging from the storage battery is suppressed from rated power.
  • FIG. 1 is a schematic configuration diagram of a charging system 100 according to an embodiment of the present invention.
  • Charging system 100 includes an AC / DC converter 110, a DC / DC converter 120, a storage battery 130, a power control device 140, and a charger 150.
  • the AC / DC converter 110, the DC / DC converter 120, the storage battery 130, and the charger 150 are each one, but may be plural.
  • AC / DC converter 110 converts alternating current into direct current.
  • the electric power set by the power control device 140 is supplied. This power setting is notified from the power control device 140.
  • DC / DC converter 120 converts direct current into direct current of another voltage.
  • the electric power set from the electric power control device 140 is supplied.
  • the electric power which the storage battery 130 charges is received from a DC line, it operate
  • This power setting is notified from the power control device 140.
  • the DC / DC converter 120 notifies the power control device 140 of the remaining amount of the storage battery 130.
  • the storage battery 130 is a secondary battery such as a lithium ion battery.
  • the charger 150 is a charger having a charging interface specific to an electric vehicle, and transmits and receives information on charging with the electric vehicle and also supplies electric power. Examples of information transmitted / received to / from the electric vehicle include a required power of the electric vehicle, a required power amount, and a desired charging time. It also has an interface with a person who charges the electric vehicle, and exchanges information such as authentication information and billing information. It is electrically equivalent to the DC / DC converter 120.
  • the electric power received from the DC line inside the charging system 100 is supplied to the electric vehicle, the electric power set by the electric power control device 140 is supplied. This power setting is notified from the power control device 140. Furthermore, the charger 150 notifies the power control device 140 of the required power.
  • the power control device 140 communicates with the AC / DC converter 110, the DC / DC converter 120, the charger 150, and the information line.
  • the communication content is power setting for the AC / DC converter 110, the DC / DC converter 120, and the charger 150. Further, the remaining amount of the storage battery 130 is received from the DC / DC converter 120. In addition, it receives necessary power from the charger 150.
  • a power source is also connected to the power control device 140.
  • FIG. 2 is a schematic configuration and functional block diagram of the power control apparatus 140.
  • the power control apparatus 140 has a network interface and a computer unit.
  • the network interface performs communication between the power control device 140, the AC / DC converter 110, the DC / DC converter 120, and the charger 150.
  • the computer unit is a main part of a computer including a CPU, a RAM, an OS, and the like, and includes a charger required power consumption grasping unit 141, a charger maximum power consumption calculating unit 142, and a charger minimum power consumption calculating unit 143.
  • the power consumption of the charger 150 can be adjusted between the maximum power consumption and the minimum power consumption (including minimum and maximum).
  • the charger required power consumption grasping unit 141 grasps the required power consumption of the charger 150 based on the information from the charger 150.
  • the charger maximum power consumption calculation unit 142 calculates the maximum power consumption of the charger 150 based on the charger required power consumption. For example, the maximum power consumption of the charger 150 is calculated according to the maximum value of power required by the electric vehicle.
  • the charger minimum power consumption calculation unit 143 calculates the minimum power consumption of the charger 150 based on the charger required power consumption. In charging an electric vehicle, the required power consumption of the charger 150 may be reduced regardless of a request from the electric vehicle. How much it can be lowered depends on, for example, the minimum power of charger 150 and the type of electric vehicle (detailed in the modification).
  • a database (described later) can be created in advance. it can.
  • the storage battery remaining amount grasping unit 144 acquires and grasps the remaining amount of the storage battery 130 directly from the storage battery 130 or from the storage battery 130 via the DC / DC converter 120.
  • the operation combination determination unit 145 determines that the power consumption of the charger 150 is between the maximum power consumption of the charger and the minimum power consumption of the charger (including the minimum and maximum) based on the remaining battery level. A combination of operations of the charger 150, the AC / DC converter 110, and the DC / DC converter 120 is determined so that the loss is minimized (conversion efficiency is maximized).
  • the database 146 stores a set of combinations of operations of the charger 150, the AC / DC converter 110, and the DC / DC converter 120 as a table for each remaining battery level and charger power consumption.
  • FIG. 3 is a conceptual diagram related to the data structure of the database 146. It is simplified for convenience of explanation.
  • the charger power consumption is classified for each case of 10, 15, 20, 25, 30, 35 kW. Further, in each case, a table is created for each case where the remaining battery capacity is 0, 20, 40, 60, 80, 100%.
  • the operation combination determination unit 145 selects each case where the charger power consumption is between the charger maximum power consumption and the charger minimum power consumption (including the minimum and maximum) from the database 146, and further stores the storage battery for each case. Select the table corresponding to the remaining amount. For example, if the maximum charger power consumption is calculated as 30 kW and the minimum charger power consumption is calculated as 20 kW, three cases of charger power consumption of 20, 25, and 30 kW are selected, and the remaining battery capacity is 80%. A table corresponding to 80% of the remaining amount of storage battery is selected every time. That is, three tables are selected.
  • FIG. 4 is a conceptual diagram related to the table structure. It is simplified for convenience of explanation.
  • the left side of the figure represents the power loss related to the individual conversion efficiencies of the AC / DC converter 110, the DC / DC converter 120, and the charger 150 as a loss level (dimensionless). For example, the loss level when the AC / DC converter 110 discharges 20 kW is 2, and the loss level when the DC / DC converter 120 charges 10 kW is 4.
  • the loss level is used as the power loss related to the conversion efficiency.
  • the power loss percentage may be displayed or the reciprocal of the conversion efficiency may be used.
  • the right side of the figure is a table representing a set of combinations of operations of the AC / DC converter 110, the DC / DC converter 120, and the charger 150.
  • the intervals between the discrete values are rough in FIGS. 3 and 4, but more accurate control is possible when the intervals between the discrete values are as small as possible.
  • a map using continuous values may be used instead of a table using discrete values.
  • the operation combination determination unit 145 determines a combination of operations of the charger 150, the AC / DC converter 110, and the DC / DC converter 120 from the selected table so that the loss level of the charging system 100 is minimized. .
  • the operation control unit 147 operates the charger 150, the AC / DC converter 110, and the DC / DC converter 120 based on the combination determined by the operation combination determination unit 145.
  • the actual measurement value grasping unit 148 acquires and grasps the actual measurement value of the power loss related to the conversion efficiency from the AC / DC converter 110, the DC / DC converter 120, and the charger 150. Further, the database 146 is updated with the actually measured power loss as the loss level (dimensionless).
  • FIG. 5 is a flowchart showing the processing contents of the power control apparatus 140. Each process of the flowchart is realized by executing a program stored in the computer unit. The operation of the charging system 100 will be described using a flowchart.
  • the power control device 140 is idle as an initial state (S100).
  • the required power consumption of the charger 150 is periodically grasped from the idle state (S110).
  • the charger 150 notifies the power control device 140 of the required power consumption. This notification may be actively performed from the charger 150, or may be triggered by communication from the power control device 140.
  • the maximum power consumption and the minimum power consumption of the charger 150 are calculated based on the required power consumption (S120).
  • the storage battery 130 notifies the power control apparatus 140 of the remaining storage battery capacity directly or via the DC / DC converter 120. This notification may be actively performed from the storage battery 130 or the DC / DC converter 120, or may be triggered by communication from the power control device 140.
  • the database 146 is accessed (S140).
  • each case where the charger power consumption is between the maximum power consumption and the minimum power consumption is selected from the database 146. Further, a table corresponding to the remaining amount of storage battery is selected for each case. A combination of operations of the charger 150, the AC / DC converter 110, and the DC / DC converter 120 is determined from the selected table so that the loss level of the charging system 100 is minimized (S150).
  • the determined combination of operations is notified to the AC / DC converter 110, the DC / DC converter 120, and the charger 150, and the power devices 110, 120, and 150 operate so as to have the notified power (S160).
  • the AC / DC converter 110, the DC / DC converter 120, and the charger 150 operate and notify the power control device 140 of an actual value of power loss related to the conversion efficiency, and the power control device 140 grasps the actual value (S170). ). Further, the database 146 is updated with the actually measured power loss as the loss level (S180).
  • the combination of operations of the power devices 110, 120, and 150 is determined so that the loss level of the entire charging system 100 is minimized.
  • optimal control can be performed so that the loss level of the entire charging system 100 is minimized.
  • the combination of the operations is determined.
  • control for charging / discharging the storage battery with the rated power is performed. That is, it is controlled whether to charge or not to discharge. As a result, an unexpected power loss may occur.
  • the combination of the operations is determined.
  • the loss level of the entire charging system 100 may be lowered by stopping the discharge instead of stopping the discharge.
  • the combination of the operations is determined.
  • the loss level of the entire charging system 100 may be lowered if charging is continued instead of stopping charging.
  • This embodiment is characterized in that the maximum power consumption and the minimum power consumption of the charger 150 are calculated.
  • the range between the maximum power consumption and the minimum power consumption is stable within a certain range.
  • This embodiment is characterized in that the power consumption of the charger 150 can be adjusted between the maximum power consumption and the minimum power consumption (including minimum and maximum). Thereby, a plurality of tables can be selected, and an optimal combination of operations can be determined from a large number of candidates.
  • This embodiment is characterized in that the measured value of the loss level is grasped and the database 146 is rewritten. Thereby, the database 146 is always updated to the latest information, and the reliability of control is improved.
  • the charger 150 is a charging interface, and acquires a necessary amount of electric power from an electric vehicle and also an interface with a human, and acquires a desired charging time.
  • the charger required power consumption grasping unit 141 grasps the required power consumption based on the required power amount and the desired charging time.
  • the charger minimum power consumption calculation unit 143 calculates the minimum power consumption of the charger 150 based on the required power consumption of the charger in consideration of the desired charging time.
  • FIG. 6 is a schematic configuration and functional block diagram of a power control apparatus 140 according to a modification.
  • FIG. 7 is a schematic configuration and functional block diagram of a power control apparatus 140 according to a modification.
  • the charging target is not limited as long as the range of the maximum power consumption and the minimum power consumption of the charger 150 is stable within a certain range.
  • an electric robot can be considered.
  • the present invention is a charging system including a charger 150, an AC / DC converter 110, a DC / DC converter 120, a storage battery 130, and a control device 140, wherein the control device 140 includes the charger Charger required power consumption grasping unit 141 for grasping required power consumption, charger maximum power consumption calculating unit 142 for calculating the maximum power consumption of the charger based on the required power consumption, and charging based on the required power consumption
  • a charger minimum power consumption calculating unit 143 for calculating the minimum power consumption of the charger, a storage battery remaining amount grasping unit 144 for grasping the remaining amount of the storage battery, and the power consumption of the charger based on the remaining battery level
  • the charger, the AC / DC converter, and the DC / DC converter are arranged between the maximum power consumption of the charger and the minimum power consumption of the charger so that the power loss is minimized as the charging system.
  • An operation combination determination unit 145 that determines a combination of operations with the barter, and an operation control unit 147 that operates the charger, the AC /
  • control device 140 further includes a combination storage unit 146 that stores a set related to the combination, and the operation combination determination unit 145 refers to the set related to the combination. To determine the combination of actions.
  • control device 140 further includes an actual value grasping unit 148 for grasping actual values based on operation results of the charger, the AC / DC converter, and the DC / DC converter. Then, the combination storage unit 146 rewrites the set related to the combination based on the actually measured value.
  • the control device 140 is rated for a rated control mode in which the AC / DC converter is operated so as to charge / discharge the storage battery at rated power, and charge / discharge of the storage battery.
  • a mode switching unit 149 that switches between a suppression control mode in which the AC / DC converter is operated so as to be suppressed by electric power is provided.
  • the operation combination determination unit 145 determines the combination that operates the AC / DC converter so as to suppress discharge from the storage battery from rated power.
  • the operation combination determination unit 145 determines the combination that operates the AC / DC converter so that charging of the storage battery is suppressed from rated power.
  • the charger required power consumption grasping unit 141 grasps the required power consumption based on the required power amount of the charger and the desired charging time.
  • the present invention is a control method of a charging system including a charger 150, an AC / DC converter 110, a storage battery 130, a DC / DC converter 120, and a control device 140, wherein the control device 140 is Grasping the required power consumption of the charger (S110), calculating the maximum power consumption of the charger based on the required power consumption, calculating the minimum power consumption of the charger based on the required power consumption (S120), The remaining amount of the storage battery is grasped (S130), and based on the remaining amount of the storage battery, the power consumption of the charger is between the maximum power consumption of the charger and the minimum power consumption of the charger.
  • a combination of operations of the charger, the AC / DC converter, and the DC / DC converter is determined so that the loss is minimized (S150). Based on the combination, AC / DC converter and to operate with the DC / DC converter (S160).
  • the combination storage unit 146 that stores the set related to the combination is referred to (S140), and the set of operations is determined for the set related to the combination (S150).
  • an actual measurement value obtained from operation results of the charger, the AC / DC converter, and the DC / DC converter is grasped (S170), and based on the actual measurement value,
  • the set related to the combination is rewritten (S180).
  • a rated control mode in which the AC / DC converter is operated so as to charge / discharge the storage battery at rated power, and charging / discharging of the storage battery is suppressed from the rated power.
  • the suppression control mode for operating the AC / DC converter is switched.
  • the combination for operating the AC / DC converter is determined so as to suppress discharge from the storage battery from rated power (S150).
  • the combination for operating the AC / DC converter is determined so as to suppress charging of the storage battery from rated power (S150).
  • the required power consumption is grasped based on the required power amount of the charger and the desired charging time (S110).
  • the present invention is a control program for controlling a charging system including a charger 150, an AC / DC converter 110, a storage battery 130, a DC / DC converter 120, and a control device 140, which is necessary for the charger.
  • Charger required power consumption grasping process (S110) for grasping power consumption charger maximum power consumption calculating process for calculating the maximum power consumption of the charger based on the required power consumption, and charging based on the required power consumption.
  • the charger and the AC / DC converter are configured such that power consumption is between the maximum power consumption of the charger and the minimum power consumption of the charger and power loss is minimized as a charging system.
  • Operation combination determination processing (S150) for determining a combination of operations with the DC / DC converter, and operation control processing for operating the charger, the AC / DC converter, and the DC / DC converter based on the combination (S160) is executed by the control device 140.
  • a database reference process that refers to the combination storage unit 146 that stores a set related to the combination is executed, and an operation combination determination process (S150) is performed. Let it run.
  • an actual value grasping process (S170) for grasping an actual value based on operation results of the charger, the AC / DC converter, and the DC / DC converter;
  • the database rewriting process (S180) for rewriting the set related to the combination is executed.
  • a rated control mode in which the AC / DC converter is operated so as to charge / discharge the storage battery at rated power, and charging / discharging of the storage battery is suppressed from the rated power.
  • the mode switching process for switching between the suppression control modes for operating the AC / DC converter is executed.
  • the combination for operating the AC / DC converter is determined so as to suppress the discharge from the storage battery from the rated power.
  • the combination for operating the AC / DC converter is determined so as to suppress the charging of the storage battery from the rated power.
  • the required power consumption is grasped based on the required power amount of the charger and the desired charging time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】充電システム全体の電力損失を最小にする。 【解決手段】 動作組み合わせ決定部145は、充電器消費電力が充電器最大消費電力と充電器最小消費電力の間(最小、最大を含む)にある各ケースをデータベース146から選定し、更に、各ケース毎に蓄電池残量に対応するテーブルを選定する。更に、選定したテーブルの中から、充電システム100として損失レベルが最小になるように、充電器150とAC/DCコンバータ110とDC/DCコンバータ120との動作の組み合わせを決定する。 動作制御部147は、動作組み合わせ決定部145が決定した組み合わせに基づいて、充電器150とAC/DCコンバータ110と前記DC/DCコンバータ120とを動作させる。

Description

充電システム、充電システムの制御方法、及び制御プログラム
 本発明は、充電システム、充電システムの制御方法、及び制御プログラムに関し、特に、電気自動車に充電する際の電力損失を最小化する充電システム、充電システムの制御方法、及び制御プログラムに関する。
 近年エンジンを搭載せずに電動モータのみで走行する電気自動車が開発されている。この電気自動車は蓄電池を搭載しており、走行により蓄電量が減った場合は、市街地や自宅の車庫等に設置された充電設備を利用して蓄電池を充電する必要がある。
 電気自動車を含む蓄電池を充電する際に、充電時間の短縮や電力損失の軽減などの課題がある。これらの課題を解決するため、様々な従来技術が提案されている。
例えば、特許文献1では、充電システム内に別の蓄電池を内蔵し、充電対象の蓄電池を充電する前に、予め内蔵の蓄電池を充電しておき、充電対象の蓄電池を充電する際は、外部電源に加え内蔵の蓄電池の電力も利用して充電対象の蓄電池を大電力で急速に充電する手段が開示されている。内蔵の蓄電池を持っておくことにより、外部電源が小容量であっても大電力の急速充電を可能とする。
 また、特許文献2では、電源システム内に蓄電池を内蔵し、負荷へ電力を供給する際に、外部電源を用いるかまたは内蔵の蓄電池を用いるかを、電源システムの電力損失から決定する手段が開示されている。電源システム内に存在するAC/DCコンバータや内蔵の蓄電池の充放電で発生する電力損失を少なくすることで省エネルギーの電力供給を可能とする。これは一般的にAC/DCコンバータやDC/DCコンバータは負荷が重い場合には電力変換効率が高いが、負荷が軽い場合には電力変換効率が低くなってしまうという特性を利用している。
特開2011-259572号公報 特開2011-151952号公報
 特許文献1の手段と特許文献2の手段を組み合わせた充電システムを想定する。負荷として電気自動車特有の充電インタフェースを備える充電器を接続し、電気自動車を充電する。電気自動車から要求される電力を供給するように、外部電源に加え内蔵の蓄電池の電力も利用して電気自動車を大電力で急速に充電する。この時充電システム内に存在するAC/DCコンバータや内蔵の蓄電池の充放電で発生するDC/DCコンバータの電力損失を考慮する。そのため、電気自動車の充電開始時に大電力を必要とする場合も、充電終了間際に電力をあまり必要としない場合でも、電力損失を抑制できる可能性がある。
 しかし、AC/DCコンバータやDC/DCコンバータの電力損失を考慮していても、充電器における電力損失までは考慮していないため、充電システム全体で見ると、想定外の電力損失が発生しているおそれがある。
 すなわち、AC/DCコンバータやDC/DCコンバータと充電器は特性がそれぞれ異なるため、従来技術における一般的な想定と、実際に発生する電力損失は逆の場合もあり得る。
 実際の充電システムでは、AC/DCコンバータ、DC/DCコンバータ、蓄電池、充電器が複数であることもあり、システムがより複雑になることにより、想定外の電力損失が発生する可能性が高まる。
 ところで、電気自動車特有の充電インタフェースを備える充電器の消費電力は、一般的にある一定の幅で制御可能である。この充電器にかかる特性は、特許文献1および特許文献2では、着目されていない。
 本発明は上記課題を解決するものであり、全体の電力損失を最小にする充電システム、充電システムの制御方法、及び制御プログラムを提供することを目的とする。
 上記課題を解決する本発明は、充電器と、AC/DCコンバータと、DC/DCコンバータと、蓄電池と、制御装置とを備えた充電システムにおいて、前記制御装置は、前記充電器の必要消費電力を把握する充電器必要消費電力把握部と、該必要消費電力に基づいて充電器の最大消費電力を算出する充電器最大消費電力算出部と、該必要消費電力に基づいて充電器の最小消費電力を算出する充電器最小消費電力算出部と、前記蓄電池の残量を把握する蓄電池残量把握部と、該蓄電池残量に基づいて、前記充電器の消費電力が該充電器最大消費電力と該充電器最小消費電力の間であって、充電システムとして電力損失が最小になるように、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作の組み合わせを決定する動作組み合わせ決定部と、該組み合わせに基づいて、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとを動作させる動作制御部とを有することを特徴とする。
 上記課題を解決する本発明は、充電器と、AC/DCコンバータと、蓄電池と、DC/DCコンバータと、制御装置とを備えた充電システムの制御方法であって、前記制御装置が、前記充電器の必要消費電力を把握し、該必要消費電力に基づいて充電器の最大消費電力を算出し、該必要消費電力に基づいて充電器の最小消費電力を算出し、前記蓄電池の残量を把握し、該蓄電池残量に基づいて、前記充電器の消費電力が該充電器最大消費電力と該充電器最小消費電力の間であって、充電システムとして電力損失が最小になるように、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作の組み合わせを決定し、該組み合わせに基づいて、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとを動作させることを特徴とする。
 上記課題を解決する本発明は、充電器と、AC/DCコンバータと、蓄電池と、DC/DCコンバータと、制御装置とを備えた充電システムを制御する制御プログラムであって、前記充電器の必要消費電力を把握する充電器必要消費電力把握処理と、該必要消費電力に基づいて充電器の最大消費電力を算出する充電器最大消費電力算出処理と、該必要消費電力に基づいて充電器の最小消費電力を算出する充電器最小消費電力算出処理と、前記蓄電池の残量を把握する蓄電池残量把握処理と、該蓄電池残量に基づいて、前記充電器の消費電力が該充電器最大消費電力と該充電器最小消費電力の間であって、充電システムとして電力損失が最小になるように、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作の組み合わせを決定する動作組み合わせ決定処理と、該組み合わせに基づいて、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとを動作させる動作制御処理とを前記制御装置に実行させることを特徴とする。
 本発明によれば、充電システム全体の電力損失を最小にできる。
充電システムの概略構成図 電力制御装置の概略構成および機能ブロック図 データベースのデータ構造 テーブル構造 電力制御装置の処理内容を示すフローチャート 電力制御装置の概略構成および機能ブロック図(変形例) 電力制御装置の概略構成および機能ブロック図(変形例)
 ~概要~
 本発明は、充電器と、AC/DCコンバータと、DC/DCコンバータと、蓄電池と、制御装置とを備えた充電システムにおいて、前記制御装置は、前記充電器の必要消費電力を把握する充電器必要消費電力把握部と、該必要消費電力に基づいて充電器の最大消費電力を算出する充電器最大消費電力算出部と、該必要消費電力に基づいて充電器の最小消費電力を算出する充電器最小消費電力算出部と、前記蓄電池の残量を把握する蓄電池残量把握部と、該蓄電池残量に基づいて、前記充電器の消費電力が該充電器最大消費電力と該充電器最小消費電力の間であって、充電システムとして電力損失が最小になるように、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作の組み合わせを決定する動作組み合わせ決定部と、該組み合わせに基づいて、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとを動作させる動作制御部とを有することを特徴とする。
 本発明は、充電器の消費電力を、最大消費電力と最小消費電力の間(最小、最大を含む)で調整できることに着目している。したがって、多数の候補の中から、最適な動作な組み合わせを決定できる。動作な組み合わせには、充電器の電力損失も考慮されている。これにより、充電システム全体の電力損失を最小にできる。
 本発明において、より好ましくは、前記制御装置は、該組み合わせに係る集合を記憶する組み合わせ記憶部を更に有し、前記動作組み合わせ決定部は、該組み合わせに係る集合を参照して、動作の組み合わせを決定する。
 充電器は、電気自動車特有の充電インタフェースを備える。このような充電器の消費電力は、最大消費電力と最小消費電力の間の一定の範囲内で安定しているため、予め、動作の組み合わせに係る集合を例えばテーブルとして作成し、記憶しておくことができる。これにより、容易に、充電システムとして電力損失が最小になるような動作の組み合わせを決定できる。
 本発明において、より好ましくは、前記制御装置は、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作結果による実測値を把握する実測値把握部を更に有し、前記組み合わせ記憶部は、該実測値に基づいて、該組み合わせに係る集合を書き換える。
 実測値を反映させることにより、制御の信頼性が向上する。
 本発明において、より好ましくは、前記動作組み合わせ決定部は、前記蓄電池からの充放電を定格電力より抑制するように前記AC/DCコンバータを動作させる該組み合わせを決定する。
 次に、本発明の実施形態について図面を参照して詳細に説明する。
 ~構成~
 図1は、本発明の実施形態に係る充電システム100の概略構成図である。充電システム100は、AC/DCコンバータ110と、DC/DCコンバータ120と、蓄電池130と、電力制御装置140と、充電器150と、を備える。図示では、AC/DCコンバータ110と、DC/DCコンバータ120と、蓄電池130と、充電器150とは、各1つであるが、複数であってもよい。
 AC/DCコンバータ110は、交流を直流に変換する。外部の交流電源から受けた電力を直流線に流す際、電力制御装置140から設定された電力を流すように動作する。この電力設定は電力制御装置140から通知される。
 DC/DCコンバータ120は、直流を別の電圧の直流に変換する。蓄電池130が放電する電力を直流線に流す際、電力制御装置140から設定された電力を流すように動作する。また、蓄電池130が充電する電力を直流線から受ける際、電力制御装置140から設定された電力を受けるように動作する。この電力設定は電力制御装置140から通知される。さらにDC/DCコンバータ120は、蓄電池130の残量を電力制御装置140に通知する。
 蓄電池130は、リチウムイオン電池等の二次電池である。
 充電器150は、電気自動車特有の充電インタフェースを備える充電器であって、電気自動車と充電に関する情報を送受信するとともに、電力も供給する。電気自動車と送受信する情報として、例えば、電気自動車の必要電力、必要電力量、希望充電時間などがある。また電気自動車を充電する人間とのインタフェースも備え、例えば、認証情報、課金情報、などの情報をやりとりする。電気的にはDC/DCコンバータ120と等価である。充電システム100内部の直流線から受けた電力を電気自動車に流す際、電力制御装置140から設定された電力を流すように動作する。この電力設定は電力制御装置140から通知される。さらに充電器150は、必要電力を電力制御装置140に通知する。
 電力制御装置140は、AC/DCコンバータ110と、DC/DCコンバータ120と、充電器150と、情報線を介して通信する。通信内容は、AC/DCコンバータ110と、DC/DCコンバータ120と、充電器150と、に対する電力設定である。また、DC/DCコンバータ120から、蓄電池130の残量を受信する。また、充電器150から必要電力等を受信する。図1では図示していないが電力制御装置140にも電源が接続される。
 図2は、電力制御装置140の概略構成と機能ブロック図である。電力制御装置140は、ネットワークインタフェースとコンピュータ部とを有する。ネットワークインタフェースは、電力制御装置140と、AC/DCコンバータ110,DC/DCコンバータ120,充電器150と間の通信をおこなう。コンピュータ部は、CPU、RAM、及びOSなどで構成されたコンピュータの主要部であり、充電器必要消費電力把握部141と、充電器最大消費電力算出部142と、充電器最小消費電力算出部143と、蓄電池残量把握部144と、動作組み合わせ決定部145と、データベース146と、動作制御部147と、実測値把握部148とを有する。
 本実施形態では、充電器150の消費電力を、最大消費電力と最小消費電力の間(最小、最大を含む)で調整できることに着目している。
 充電器必要消費電力把握部141は、充電器150からの情報に基づき、充電器150の必要消費電力を把握する。
 充電器最大消費電力算出部142は、充電器必要消費電力に基づき、充電器150の最大消費電力を算出する。例えば、電気自動車が要求する電力の最大値に応じて充電器150の最大消費電力を算出する。
 充電器最小消費電力算出部143は、充電器必要消費電力に基づき、充電器150の最小消費電力を算出する。電気自動車の充電においては、電気自動車からの要求に関係なく、充電器150の必要消費電力を下げることができる場合がある。どのくらい下げられるかは、例えば、充電器150の最小電力や電気自動車の車種毎に決まる(変形例にて詳述)。
 なお、電気自動車特有の充電インタフェースを備える充電器150の消費電力は、最大消費電力と最小消費電力の間の一定の範囲内で安定しているため、予め、データベース(後述)を作成することができる。
 蓄電池残量把握部144は、蓄電池130から直接、または蓄電池130からDC/DCコンバータ120を介して、蓄電池130の残量を取得して把握する。
 動作組み合わせ決定部145は、蓄電池残量に基づいて、充電器150の消費電力が充電器最大消費電力と充電器最小消費電力の間(最小、最大を含む)であって、充電システム100として電力損失が最小(変換効率が最大)になるように、充電器150とAC/DCコンバータ110とDC/DCコンバータ120との動作の組み合わせを決定する。
 データベース146は、蓄電池残量及び充電器消費電力毎に、充電器150とAC/DCコンバータ110とDC/DCコンバータ120との動作の組み合わせの集合をテーブルとして記憶している。
 図3は、データベース146のデータ構造にかかる概念図である。なお、説明の便宜のため、簡略化してある。
 図示の例では、充電器消費電力10,15,20,25,30,35kWの各ケース毎に分類されている。更に、各ケースにおいて、蓄電池残量0,20,40,60,80,100%の各ケース毎にテーブルが作成されている。
 更に、気温等の外部要因によってAC/DCコンバータ110、DC/DCコンバータ120、充電器150の特性が変わる場合は、外部要因の数値毎にテーブルを作成してもよい。
 動作組み合わせ決定部145は、充電器消費電力が充電器最大消費電力と充電器最小消費電力の間(最小、最大を含む)にある各ケースをデータベース146から選定し、更に、各ケース毎に蓄電池残量に対応するテーブルを選定する。例えば、最大充電器消費電力が30kW、最小充電器消費電力が20kWと算出されたとすると、充電器消費電力20,25,30kWの3ケースを選定し、蓄電池残量80%である場合、3ケース毎に蓄電池残量80%に対応するテーブルを選定する。すなわち、3つのテーブルが選定される。
 図4は、テーブル構造にかかる概念図である。なお、説明の便宜のため、簡略化してある。
 図示左は、AC/DCコンバータ110,DC/DCコンバータ120,充電器150の個々の変換効率に関わる電力損失を損失レベル(無次元)として表したものである。例えば、AC/DCコンバータ110において20kW放電する場合の損失レベルは2、DC/DCコンバータ120において10kW充電する場合の損失レベルは4、である。
 なお、説明の便宜のため、変換効率に関わる電力損失として損失レベルを用いたが、電力損失のパーセント表示でもよいし、変換効率の逆数でもよい。
 図示右は、AC/DCコンバータ110,DC/DCコンバータ120,充電器150の動作の組み合わせの集合を表したテーブルである。充電システム100全体としての損失レベル(無次元)として表している。例えば、AC/DCコンバータ110で放電する電力が30kW、DC/DCコンバータ120で充電する電力が10kWの場合、充電器150で消費できる電力は20kW(=30-10)となり、その損失レベルは8である。
 充電システム100全体としての損失レベル(無次元)は、AC/DCコンバータ110,DC/DCコンバータ120,充電器150の個々の損失レベルに基づいて算出される。例えば、上記の例では、AC/DCコンバータ110で放電電力30kWの場合、損失レベル1であり、DC/DCコンバータ120で充電電力10kWの場合、損失レベル4であり、充電器150の消費電力20kWの場合、損失レベル3であり、充電システム100全体の損失レベルは8(=1+4+3)となる。
 なお、説明の便宜のため、図3および図4において、離散値の間隔が荒くなっているが、なるべく離散値の間隔が細かいほうが、より正確な制御が可能になる。また、離散値を用いたテーブルでなく、連続値を用いたマップでもよい。
 動作組み合わせ決定部145は、選定したテーブルの中から、充電システム100として損失レベルが最小になるように、充電器150とAC/DCコンバータ110とDC/DCコンバータ120との動作の組み合わせを決定する。
 動作制御部147は、動作組み合わせ決定部145が決定した組み合わせに基づいて、充電器150とAC/DCコンバータ110と前記DC/DCコンバータ120とを動作させる。例えば、動作組み合わせ決定部145が、AC/DCコンバータ110の放電電力30kW、DC/DCコンバータ120の充放電電力0kW、充電器150の消費電力30kW(=30±0)の組み合わせにおける損失レベル2が最小であると決定した場合、動作制御部147は、AC/DCコンバータ110に電力30kWを放電するように、DC/DCコンバータ120に充放電しないように、充電器150に電力30kWを消費するように、動作させる。
 実測値把握部148は、AC/DCコンバータ110,DC/DCコンバータ120,充電器150から変換効率に関わる電力損失の実測値を取得し把握する。更に、実測の電力損失を損失レベル(無次元)として、データベース146を更新する。
 ~動作~
 図5は、電力制御装置140の処理内容を示すフローチャートである。フローチャートの各処理は、コンピュータ部に格納されているプログラムを実行することにより、実現する。フローチャートを用いて、充電システム100の動作について説明する。
 電力制御装置140は、初期状態としてアイドルである(S100)。アイドル状態から、定期的に、充電器150の必要消費電力を把握する(S110)。充電器150は電力制御装置140へ必要消費電力を通知する。この通知は充電器150から能動的に行なうものでもよいし、電力制御装置140からの通信を契機としてもよい。
 次いで、必要消費電力に基づいて充電器150の最大消費電力および最小消費電力を算出する(S120)。
 一方、蓄電池130の残量を把握する(S130)。蓄電池130は、直接またはDC/DCコンバータ120を介して蓄電池残量を電力制御装置140へ通知する。この通知は蓄電池130またはDC/DCコンバータ120から能動的に行なうものでもよいし、電力制御装置140からの通信を契機としてもよい。
 充電器150の最大消費電力、最小消費電力および蓄電池130の残量を把握したのち、データベース146にアクセスする(S140)。
 まず、充電器消費電力が、最大消費電力と最小消費電力の間にある各ケースをデータベース146から選定する。さらに、各ケース毎に蓄電池残量に対応するテーブルを選定する。選定したテーブルの中から、充電システム100として損失レベルが最小になるように、充電器150とAC/DCコンバータ110とDC/DCコンバータ120との動作の組み合わせを決定する(S150)。
 決定した動作の組み合わせをAC/DCコンバータ110、DC/DCコンバータ120、充電器150に通知し、各電力機器110,120,150は通知された電力となるように動作する(S160)。
 AC/DCコンバータ110、DC/DCコンバータ120、充電器150は動作するとともに、変換効率に関わる電力損失の実測値を電力制御装置140に通知し、電力制御装置140は実測値を把握する(S170)。更に、実測の電力損失を損失レベルとして、データベース146を更新する(S180)。
 一連の処理を行うと、アイドル状態に戻る(S100)。
 ~効果~
 従来技術においては、充電器消費電力が大きい程、損失レベルが小さくなり、充電器消費電力が小さい程、損失レベルが大きくなるという一般的な特性を前提とした制御を行っていた。しかし、充電器150の電力損失を考慮していないため、充電システム100全体で見ると、想定外の電力損失が発生しているおそれがあった。すなわち、最適な制御でないおそれがあった。
 本実施形態では、充電器150の電力損失を考慮して、充電システム100全体として損失レベルが最小になるように、各電力機器110,120,150の動作の組み合わせを決定する。これにより、充電システム100全体として損失レベルが最小になるような最適な制御ができる。
 たとえば、充電器消費電力を最大消費電力より下げた方が、充電システム100全体の損失レベルが下がる組み合わせがある場合は、当該動作の組み合わせを決定する。
 また、従来技術においては、定格電力により蓄電池を充放電する制御を行っていた。すなわち、充電するか否か、放電するか否かの制御を行っていた。これにより、想定外の電力損失が発生しているおそれがあった。
 本実施形態では、蓄電池130を定格電力より抑制して放電した方が、充電システム100全体の損失レベルが下がる組み合わせがある場合は、当該動作の組み合わせを決定する。
 たとえば、蓄電池130の残量が40%の場合でも、放電をやめるのでなく、放電を抑制しながら継続した方が、充電システム100全体の損失レベルが下がる可能性がある。
 また、蓄電池130を定格電力より抑制して充電した方が、充電システム100全体の損失レベルが下がる組み合わせがある場合は、当該動作の組み合わせを決定する。
 たとえば、蓄電池130の残量が80%の場合でも、充電をやめるのでなく、充電を抑制しながら継続した方が、充電システム100全体の損失レベルが下がる可能性がある。
 このように、各電力機器110,120,130,150の特性を考慮したテーブルに基づき動作の組み合わせを決定することで、充電システム100全体として損失レベルが最小になるような最適な制御ができる。
 本実施形態は、充電器150の最大消費電力と最小消費電力を算定することを特徴としている。最大消費電力と最小消費電力との間は、一定範囲内で安定している。これにより、予め、テーブルを記憶するデータベースを作成することができる。
 本実施形態は、充電器150の消費電力を、最大消費電力と最小消費電力の間(最小、最大を含む)で調整できることを特徴としている。これにより、複数のテーブルを選択し、多数の候補の中から、最適な動作な組み合わせを決定できる。
 本実施形態は、損失レベルの実測値を把握し、データベース146を書き換えることを特徴としている。これにより、データベース146は常に最新の情報に更新され、制御の信頼性が向上する。
 ~変形例~
 本願発明は上記実施形態に限定されず、本願発明の技術思想の範囲で種々の変形が可能である。変形の一例について説明する。
 1.一般に、電気自動車を希望時間内に充電できなければ実用に耐えられない。充電器150は、充電インタフェースであり、電気自動車から必要電力量を取得するとともに、人間とのインタフェースでもあり、希望充電時間を取得する。
 充電器必要消費電力把握部141は、必要電力量および希望充電時間に基づき必要消費電力を把握する。
 充電器最小消費電力算出部143は、希望充電時間を考慮して、充電器必要消費電力に基づき、充電器150の最小消費電力を算出する。
 その他の構成及び動作は、上記実施形態と同じである。
 これにより、電気自動車の充電時間を希望する充電時間内に収めつつ、充電システム100全体として損失レベルが最小になるような最適な制御ができる。
 2.上記実施形態における、実測値把握部148およびフローチャートのS170,S180の処理は必須ではない。これらの構成及び処理がない場合、制御の信頼性向上の効果は得られないが、その他の効果は得ることができる。図6は、変形例に係る電力制御装置140の概略構成と機能ブロック図である。
 3.従来技術では、定格電力により蓄電池を充放電する定格制御を行っているのに対し、本実施形態では、場合によって、定格電力より抑制した電力により蓄電池を充放電する抑制制御を行っている。一方、定格制御モードと抑制制御モードの両方の制御ができるように、電力制御装置140はモード切替部149を有していてもよい。図7は、変形例に係る電力制御装置140の概略構成と機能ブロック図である。
 4.本実施形態では、電気自動車を充電する充電システムについて説明したが、充電器150の最大消費電力と最小消費電力との範囲が、一定範囲内で安定していれば、充電対象は限定されない。たとえば、電動ロボットなどが考えられる。
 ~付記~
 上記実施形態の一部または全部は、以下の付記の様にも記載されうるが、以下に限定されない。
 本発明は、充電器150と、AC/DCコンバータ110と、DC/DCコンバータ120と、蓄電池130と、制御装置140とを備えた充電システムであって、前記制御装置140は、前記充電器の必要消費電力を把握する充電器必要消費電力把握部141と、該必要消費電力に基づいて充電器の最大消費電力を算出する充電器最大消費電力算出部142と、該必要消費電力に基づいて充電器の最小消費電力を算出する充電器最小消費電力算出部143と、前記蓄電池の残量を把握する蓄電池残量把握部144と、該蓄電池残量に基づいて、前記充電器の消費電力が該充電器最大消費電力と該充電器最小消費電力の間であって、充電システムとして電力損失が最小になるように、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作の組み合わせを決定する動作組み合わせ決定部145と、該組み合わせに基づいて、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとを動作させる動作制御部147とを有する。
 本発明の充電システムにおいて、さらに好ましくは、前記制御装置140は、該組み合わせに係る集合を記憶する組み合わせ記憶部146を更に有し、前記動作組み合わせ決定部145は、該組み合わせに係る集合を参照して、動作の組み合わせを決定する。
 本発明の充電システムにおいて、さらに好ましくは、前記制御装置140は、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作結果による実測値を把握する実測値把握部148を更に有し、前記組み合わせ記憶部146は、該実測値に基づいて、該組み合わせに係る集合を書き換える。
 本発明の充電システムにおいて、さらに好ましくは、前記制御装置140は、前記蓄電池の充放電を定格電力にて行うように前記AC/DCコンバータを動作させる定格制御モードと、前記蓄電池の充放電を定格電力より抑制して行うように前記AC/DCコンバータを動作させる抑制制御モードとを切り替えるモード切替部149を有する。
 本発明の充電システムにおいて、さらに好ましくは、前記動作組み合わせ決定部145は、前記蓄電池からの放電を定格電力より抑制するように前記AC/DCコンバータを動作させる該組み合わせを決定する。
 本発明の充電システムにおいて、さらに好ましくは、前記動作組み合わせ決定部145は、前記蓄電池への充電を定格電力より抑制するように前記AC/DCコンバータを動作させる該組み合わせを決定する。
 本発明の充電システムにおいて、さらに好ましくは、前記充電器必要消費電力把握部141は、前記充電器の必要電力量と希望充電時間に基づいて、必要消費電力を把握する。
 本発明は、充電器150と、AC/DCコンバータ110と、蓄電池130と、DC/DCコンバータ120と、制御装置140とを備えた充電システムの制御方法であって、前記制御装置140が、前記充電器の必要消費電力を把握し(S110)、該必要消費電力に基づいて充電器の最大消費電力を算出し、該必要消費電力に基づいて充電器の最小消費電力を算出し(S120)、前記蓄電池の残量を把握し(S130)、該蓄電池残量に基づいて、前記充電器の消費電力が該充電器最大消費電力と該充電器最小消費電力の間であって、充電システムとして電力損失が最小になるように、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作の組み合わせを決定し(S150)、該組み合わせに基づいて、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとを動作させる(S160)。
 本発明の充電システムの制御方法において、さらに好ましくは、該組み合わせに係る集合を記憶する組み合わせ記憶部146を参照して(S140)、該組み合わせに係る集合を動作の組み合わせを決定する(S150)。
 本発明の充電システムの制御方法において、さらに好ましくは、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作結果による実測値を把握し(S170)、該実測値に基づいて、該組み合わせに係る集合を書き換える(S180)。
 本発明の充電システムの制御方法において、さらに好ましくは、前記蓄電池の充放電を定格電力にて行うように前記AC/DCコンバータを動作させる定格制御モードと、前記蓄電池の充放電を定格電力より抑制して行うように前記AC/DCコンバータを動作させる抑制制御モードとを切り替える。
 本発明の充電システムの制御方法において、さらに好ましくは、前記蓄電池からの放電を定格電力より抑制するように前記AC/DCコンバータを動作させる該組み合わせを決定する(S150)。
 本発明の充電システムの制御方法において、さらに好ましくは、前記蓄電池への充電を定格電力より抑制するように前記AC/DCコンバータを動作させる該組み合わせを決定する(S150)。
 本発明の充電システムの制御方法において、さらに好ましくは、前記充電器の必要電力量と希望充電時間に基づいて、必要消費電力を把握する(S110)。
 本発明は、充電器150と、AC/DCコンバータ110と、蓄電池130と、DC/DCコンバータ120と、制御装置140とを備えた充電システムを制御する制御プログラムであって、前記充電器の必要消費電力を把握する充電器必要消費電力把握処理(S110)と、該必要消費電力に基づいて充電器の最大消費電力を算出する充電器最大消費電力算出処理と、該必要消費電力に基づいて充電器の最小消費電力を算出する充電器最小消費電力算出処理(S120)と、前記蓄電池の残量を把握する蓄電池残量把握処理(S130)と、該蓄電池残量に基づいて、前記充電器の消費電力が該充電器最大消費電力と該充電器最小消費電力の間であって、充電システムとして電力損失が最小になるように、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作の組み合わせを決定する動作組み合わせ決定処理(S150)と、該組み合わせに基づいて、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとを動作させる動作制御処理(S160)とを前記制御装置140に実行させる。
 本発明の充電システムを制御する制御プログラムにおいて、さらに好ましくは、該組み合わせに係る集合を記憶する組み合わせ記憶部146を参照するデータベース参照処理(S140)を実行させ、動作組み合わせ決定処理(S150)とを実行させる。
 充電システムを制御する制御プログラムにおいて、さらに好ましくは、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作結果による実測値を把握する実測値把握処理(S170)と、該実測値に基づいて、該組み合わせに係る集合を書き換えるデータベース書換処理(S180)とを実行させる。
 充電システムを制御する制御プログラムにおいて、さらに好ましくは、前記蓄電池の充放電を定格電力にて行うように前記AC/DCコンバータを動作させる定格制御モードと、前記蓄電池の充放電を定格電力より抑制して行うように前記AC/DCコンバータを動作させる抑制制御モードとを切り替えるモード切替処理を実行させる。
 充電システムを制御する制御プログラムの動作組み合わせ決定処理(S150)おいて、さらに好ましくは、前記蓄電池からの放電を定格電力より抑制するように前記AC/DCコンバータを動作させる該組み合わせを決定する。
 充電システムを制御する制御プログラムの動作組み合わせ決定処理(S150)おいて、さらに好ましくは、前記蓄電池への充電を定格電力より抑制するように前記AC/DCコンバータを動作させる該組み合わせを決定する。
 充電システムを制御する制御プログラムの充電器必要消費電力把握処理(S110)おいて、さらに好ましくは、前記充電器の必要電力量と希望充電時間に基づいて、必要消費電力を把握する。
 本出願は、2012年6月1日に出願された日本出願特願2012-126287号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100 充電システム
 110 AC/DCコンバータ
 120 DC/DCコンバータ
 130 蓄電池
 140 電力制御装置
 141 充電器必要消費電力把握部
 142 充電器最大消費電力算出部
 143 充電器最小消費電力算出部
 144 蓄電池残量把握部
 145 動作組み合わせ決定部
 146 データベース
 147 動作制御部
 148 実測値把握部
 149 モード切替部
 150 充電器

Claims (9)

  1.  充電器と、AC/DCコンバータと、DC/DCコンバータと、蓄電池と、制御装置とを備えた充電システムにおいて、
     前記制御装置は、
      前記充電器の必要消費電力を把握する充電器必要消費電力把握部と、
      該必要消費電力に基づいて充電器の最大消費電力を算出する充電器最大消費電力算出部と、
      該必要消費電力に基づいて充電器の最小消費電力を算出する充電器最小消費電力算出部と、
      前記蓄電池の残量を把握する蓄電池残量把握部と、
      該蓄電池残量に基づいて、前記充電器の消費電力が該充電器最大消費電力と該充電器最小消費電力の間であって、充電システムとして電力損失が最小になるように、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作の組み合わせを決定する動作組み合わせ決定部と、
      該組み合わせに基づいて、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとを動作させる動作制御部と
     を有することを特徴とする充電システム。
  2.  前記制御装置は、該組み合わせに係る集合を記憶する組み合わせ記憶部を更に有し、
      前記動作組み合わせ決定部は、該組み合わせに係る集合を参照して、動作の組み合わせを決定する
     ことを特徴とする請求項1記載の充電システム。
  3.  前記制御装置は、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作結果による実測値を把握する実測値把握部を更に有し、
     前記組み合わせ記憶部は、該実測値に基づいて、該組み合わせに係る集合を書き換える
     ことを特徴とする請求項2記載の充電システム。
  4.  前記制御装置は、
      前記蓄電池の充放電を定格電力にて行うように前記AC/DCコンバータを動作させる定格制御モードと、前記蓄電池の充放電を定格電力より抑制して行うように前記AC/DCコンバータを動作させる抑制制御モードとを切り替えるモード切替部
     を有することを特徴とする請求項1および2記載の充電システム。
  5.  前記動作組み合わせ決定部は、前記蓄電池からの放電を定格電力より抑制するように前記AC/DCコンバータを動作させる該組み合わせを決定する
     ことを特徴とする請求項1および2記載の充電システム。
  6.  前記動作組み合わせ決定部は、前記蓄電池への充電を定格電力より抑制するように前記AC/DCコンバータを動作させる該組み合わせを決定する
     ことを特徴とする請求項1および2記載の充電システム。
  7.  前記充電器必要消費電力把握部は、前記充電器の必要電力量と希望充電時間に基づいて、必要消費電力を把握する
     ことを特徴とする請求項1記載の充電システム。
  8.  充電器と、AC/DCコンバータと、蓄電池と、DC/DCコンバータと、制御装置とを備えた充電システムの制御方法であって、
     前記制御装置が、
      前記充電器の必要消費電力を把握し、
      該必要消費電力に基づいて充電器の最大消費電力を算出し、
      該必要消費電力に基づいて充電器の最小消費電力を算出し、
      前記蓄電池の残量を把握し、
      該蓄電池残量に基づいて、前記充電器の消費電力が該充電器最大消費電力と該充電器最小消費電力の間であって、充電システムとして電力損失が最小になるように、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作の組み合わせを決定し、
      該組み合わせに基づいて、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとを動作させる
     ことを特徴とする充電システムの制御方法。
  9.  充電器と、AC/DCコンバータと、蓄電池と、DC/DCコンバータと、制御装置とを備えた充電システムを制御する制御プログラムであって、
      前記充電器の必要消費電力を把握する充電器必要消費電力把握処理と、
      該必要消費電力に基づいて充電器の最大消費電力を算出する充電器最大消費電力算出処理と、
      該必要消費電力に基づいて充電器の最小消費電力を算出する充電器最小消費電力算出処理と、
      前記蓄電池の残量を把握する蓄電池残量把握処理と、
      該蓄電池残量に基づいて、前記充電器の消費電力が該充電器最大消費電力と該充電器最小消費電力の間であって、充電システムとして電力損失が最小になるように、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとの動作の組み合わせを決定する動作組み合わせ決定処理と、
      該組み合わせに基づいて、前記充電器と前記AC/DCコンバータと前記DC/DCコンバータとを動作させる動作制御処理と
     を前記制御装置に実行させることを特徴とする制御プログラム。
PCT/JP2013/064896 2012-06-01 2013-05-29 充電システム、充電システムの制御方法、及び制御プログラム WO2013180171A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/401,646 US20150137739A1 (en) 2012-06-01 2013-05-29 Charging system, charging system control method, and control program
JP2014518701A JP6201988B2 (ja) 2012-06-01 2013-05-29 充電システム、充電システムの制御方法、及び制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012126287 2012-06-01
JP2012-126287 2012-06-01

Publications (1)

Publication Number Publication Date
WO2013180171A1 true WO2013180171A1 (ja) 2013-12-05

Family

ID=49673359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064896 WO2013180171A1 (ja) 2012-06-01 2013-05-29 充電システム、充電システムの制御方法、及び制御プログラム

Country Status (3)

Country Link
US (1) US20150137739A1 (ja)
JP (1) JP6201988B2 (ja)
WO (1) WO2013180171A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810890A (zh) * 2015-04-30 2015-07-29 努比亚技术有限公司 充电控制方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101553451B1 (ko) * 2013-12-30 2015-09-16 주식회사 효성 에너지 저장 시스템에서 전력 분배 방법 및 장치
US9800079B2 (en) * 2014-06-06 2017-10-24 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicles and vehicle systems for wirelessly charging portable electronic devices
CN107329020A (zh) * 2017-07-31 2017-11-07 湖南福德电气有限公司 一种充电桩测试负载箱
KR102061474B1 (ko) * 2017-12-28 2020-01-02 한국전력공사 전력량계 구비 전기차 및 이동식 분산형 전원 운용 시스템
CN108169640A (zh) * 2017-12-29 2018-06-15 中国电力科学研究院有限公司 一种基于气体绝缘的组合式高压发生装置及方法
CN110696669B (zh) * 2019-10-25 2023-07-14 上海水业设计工程有限公司 一种电动汽车充电设施优化充电控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151952A (ja) * 2010-01-21 2011-08-04 Nec Corp 電源装置
JP2011259572A (ja) * 2010-06-08 2011-12-22 Honda Motor Co Ltd 充電器および充電システム
JP2012100443A (ja) * 2010-11-02 2012-05-24 Jfe Engineering Corp 急速充電方法及び装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4798120B2 (ja) * 2007-11-07 2011-10-19 トヨタ自動車株式会社 車両の電源システム
JP5071545B2 (ja) * 2010-10-06 2012-11-14 株式会社デンソー 電力需給システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151952A (ja) * 2010-01-21 2011-08-04 Nec Corp 電源装置
JP2011259572A (ja) * 2010-06-08 2011-12-22 Honda Motor Co Ltd 充電器および充電システム
JP2012100443A (ja) * 2010-11-02 2012-05-24 Jfe Engineering Corp 急速充電方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810890A (zh) * 2015-04-30 2015-07-29 努比亚技术有限公司 充电控制方法和装置

Also Published As

Publication number Publication date
JP6201988B2 (ja) 2017-09-27
US20150137739A1 (en) 2015-05-21
JPWO2013180171A1 (ja) 2016-01-21

Similar Documents

Publication Publication Date Title
JP6201988B2 (ja) 充電システム、充電システムの制御方法、及び制御プログラム
JP6011810B2 (ja) 充電電力制御システム
JP5355641B2 (ja) 電力供給システム
US10011184B2 (en) Power supply system for vehicle
CN103023089B (zh) 电力供应系统、电动车辆及充电适配器
JP5900249B2 (ja) 電力供給システム
JP5982736B2 (ja) 蓄電装置、蓄電方法およびプログラム
JP5083152B2 (ja) 車両および二次電池の充電方法
JP5835136B2 (ja) 車載充電制御装置
US10369895B2 (en) Power supply controller
JP2012253952A (ja) 急速充電器、急速充電装置及び急速充電方法
JP2012080689A (ja) 電気自動車用電源装置
KR20130068411A (ko) 하이브리드 자동차의 배터리 충방전 제어방법
EP4124500A1 (en) Charging control method, charging system, and related device
JP2012100443A (ja) 急速充電方法及び装置
JP2012075268A (ja) 蓄電池の充電システム
JP2016213975A (ja) 電動車両
JP7047408B2 (ja) 電動車両
JP2006042422A (ja) 電力貯蔵システム
KR20130013109A (ko) 병렬운전 이용한 차량용배터리충전기 및 이를 포함하는 차량용배터리충전시스템
JP5515083B2 (ja) 電力分配装置、電力分配プログラム、電力分配システム、及び電力分配方法
JP6075584B2 (ja) 制御装置、エネルギーマネジメントシステム、制御方法、および、プログラム
WO2014042224A1 (ja) 電力供給システム、充電制御方法および充電制御プログラム
JP2013141380A (ja) 充放電制御装置
JPWO2014133123A1 (ja) 電力システム、電力管理方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518701

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14401646

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796483

Country of ref document: EP

Kind code of ref document: A1