WO2013177868A1 - 空调系统 - Google Patents

空调系统 Download PDF

Info

Publication number
WO2013177868A1
WO2013177868A1 PCT/CN2012/080663 CN2012080663W WO2013177868A1 WO 2013177868 A1 WO2013177868 A1 WO 2013177868A1 CN 2012080663 W CN2012080663 W CN 2012080663W WO 2013177868 A1 WO2013177868 A1 WO 2013177868A1
Authority
WO
WIPO (PCT)
Prior art keywords
conditioning system
air conditioning
storage tank
liquid storage
input
Prior art date
Application number
PCT/CN2012/080663
Other languages
English (en)
French (fr)
Inventor
张卫星
陈杰
苗华
Original Assignee
艾默生网络能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾默生网络能源有限公司 filed Critical 艾默生网络能源有限公司
Publication of WO2013177868A1 publication Critical patent/WO2013177868A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Definitions

  • the invention relates to the field of refrigeration, and in particular to an air conditioning system.
  • the air conditioning system changes the ambient temperature by the physical change of the refrigerant condensing and evaporating in the system.
  • the volume of the low-pressure liquid storage tank installed in the room is limited due to the limited indoor space, and it is impossible to accommodate all the refrigerants required for the normal operation of the air-conditioning system.
  • a high-pressure liquid storage tank for storing the remaining refrigerant that cannot be accommodated in the low-pressure liquid storage tank is installed outdoors, thereby providing sufficient refrigerant in the air conditioning system.
  • the presence of the high pressure liquid storage tank may cause or Intensified supply and instability of the air conditioner evaporator.
  • an object of the present invention is to provide an air conditioning system capable of directly supplying a main liquid storage tank by providing other piping bypassing the auxiliary liquid storage tank in the presence of an auxiliary liquid storage tank in the system. liquid.
  • an air conditioning system comprising: a second liquid storage tank disposed between an output end of a condensing device of an air conditioning system and a first input end of a first liquid storage tank of the air conditioning system; a pipeline, a first end of the bypass line is disposed between the output end of the condensing device and an input end of the second liquid storage tank, and a second end of the bypass line is disposed at the output end of the second liquid storage tank Between the first input end of the first liquid storage tank.
  • the air conditioning system may further include a compressor and a first flow control valve; wherein the input end of the compressor is connected to the second output end of the first liquid storage tank, and the output end of the compressor is connected to the condensation device
  • the input end of the condensing device is connected to the input end of the second liquid storage tank, and the output end of the second liquid storage tank is connected to the first input end of the first liquid storage tank via the first flow control valve, the first liquid storage tank
  • the first output end is connected to the input end of the evaporator of the air conditioning system, the output end of the evaporator is connected to the second input end of the first liquid storage tank; and the second end of the bypass line is arranged at the output of the second liquid storage tank The end is between the input of the first flow control valve.
  • the first output end of the first liquid storage tank is connected to the input end of the evaporator of the air conditioning system, the output end of the evaporator is connected to the input end of the condensing device, and the output end of the condensing device is connected to the second storage An input end of the liquid tank, and an output end of the second liquid storage tank is connected to the first input end of the first liquid storage tank.
  • the air conditioning system may further include: a compressor, a first flow control valve, and a switching device; wherein the input end of the compressor is connected to the second output end of the first liquid storage tank, and the output of the compressor The end is connected to the input end of the condensing device; the output end of the second liquid storage tank is connected to the first input end of the first liquid storage tank via the first flow control valve; the second end of the bypass line is disposed in the second liquid storage tank The output end is connected to the input end of the first flow control valve; the output end of the evaporator is connected to the second input end of the first liquid storage tank via the first passage of the switching device, and the output end of the evaporator is passed through the second of the switching device The passage connects to the input of the condensing device.
  • the first output of the first reservoir can be connected to the input of the evaporator via a power unit and a first on-off valve connected in parallel with each other.
  • the first output of the first reservoir can be connected to the input of the evaporator via a power plant.
  • the air conditioning system may further include a first level controller for controlling the starting or stopping of the power unit based on the detected level in the first reservoir.
  • the air conditioning system may further include a second liquid level controller for The opening of the first flow control valve is controlled according to the detected liquid level in the first liquid storage tank.
  • the air conditioning system may further include a third liquid level controller for controlling activation or deactivation of the power device according to the detected liquid level in the first liquid storage tank, And controlling the opening degree of the first flow control valve.
  • the switching device may be a switching valve; or the switching device may include an on-off valve disposed between the evaporator output end and the second input end of the first liquid storage tank, and disposed on the evaporation On-off valve or check valve between the output of the device and the input of the condensing device.
  • the air conditioning system may further include: a second on-off valve, the second on-off valve being connected in parallel with the first flow control valve.
  • the air conditioning system may further include a third on-off valve, the input end of the third on-off valve being connected to the input end of the first flow control valve, and the output end of the third on-off valve being connected to the first end The first output of the reservoir.
  • the output end of the first passage of the switching device may be connected to the second input end of the first liquid storage tank via the first one-way valve; and/or the output end of the second passage of the switching device
  • the input of the condensing device can be connected via a second one-way valve; and/or the output of the compressor can be connected to the input of the condensing device via a third one-way valve.
  • a flow control valve may be provided at an input end of each evaporator connected in parallel to the first output end of the first liquid storage tank, thereby controlling the refrigerant supplied to each of the evaporators The amount.
  • the compressor may be an oily compressor
  • the air conditioning system may further include: an oil separator, wherein an output end of the compressor is connected to an input end of the oil separator, and the first output of the oil separator The end is connected to the input of the condensing device, and the second output of the oil separator is connected to the second input of the compressor.
  • an air conditioning system may include a plurality of compressors connected in parallel with each other.
  • connection between the evaporators included in the air conditioning system may be in parallel, in series, or a combination of parallel and series.
  • the air conditioning system according to an embodiment of the present invention may be an air-cooled screw type air conditioning system, a water-cooled screw type air conditioning system, an air-cooled scroll type air conditioning system, or a water-cooled scroll type air conditioning system.
  • FIG. 1 is a schematic view showing the configuration of an air conditioning system according to a first embodiment of the present invention
  • FIG. 2 is a schematic view showing the configuration of an air conditioning system according to a second embodiment of the present invention
  • 4 is a schematic view showing the structure of an air conditioning system according to a fourth embodiment of the present invention
  • FIG. 5 is a schematic view showing the configuration of an air conditioning system according to a fifth embodiment of the present invention
  • 6 is a schematic view showing the configuration of an air conditioning system according to a sixth embodiment of the present invention
  • FIG. 7 is a schematic view showing the configuration of an air conditioning system according to a seventh embodiment of the present invention
  • FIG. 9 is a schematic view showing the configuration of an air conditioning system according to a ninth embodiment of the present invention
  • FIG. 10 is a schematic view showing the configuration of an air conditioning system according to a tenth embodiment of the present invention
  • Figure 11 is a schematic view showing the configuration of an air conditioning system according to an eleventh embodiment of the present invention
  • Figure 12 is a view showing a knot of an air conditioning system according to a twelfth embodiment of the present invention.
  • FIG. 13 is a diagram showing a configuration of an air conditioning system according to a thirteenth embodiment of the present invention. detailed description
  • the auxiliary liquid storage tank is set.
  • the bypass line connected in parallel with it bypasses the auxiliary liquid storage tank and directly supplies the liquid to the main liquid storage tank.
  • the main liquid storage tank refers to a liquid storage tank that is connected to the evaporator input directly or via any power device to supply the evaporator, which is an example of the "first liquid storage tank”.
  • Auxiliary liquid storage tank means between the output of the condensing device and the refrigerant liquid input end of the main liquid storage tank (as an example of "the first input end of the first liquid storage tank"), for auxiliary storage of refrigerant
  • the liquid storage tank is an example of the "second liquid storage tank”.
  • the first end (input) of the bypass line is disposed between the output of the condensing device and the input of the auxiliary liquid storage tank, and the second end (output) of the bypass line is disposed in the auxiliary storage
  • the output end of the liquid tank is between the refrigerant liquid input end of the main liquid storage tank.
  • Fig. 1 is a schematic view showing the configuration of an air conditioning system according to a first embodiment of the present invention.
  • the air conditioning system according to the first embodiment is an air conditioning system that uses a compressor for cooling.
  • the arrows in the figure are intended to illustrate the flow direction of the refrigerant cycle, the other figures are the same, not labeled for the sake of cleaning.
  • the air conditioning system comprises at least: a liquid storage tank 5 (as a "main liquid storage tank", ie an example of a "first liquid storage tank”), a compressor 1, a condensing device 2, a liquid storage tank 10 (as an "auxiliary liquid storage tank” ", that is, an example of a "second liquid storage tank”), a flow control valve 3, and an evaporator 8.
  • the input end of the compressor 1 is connected to the output end Ot2 of the liquid storage tank 5
  • the output end of the compressor 1 is connected to the input end of the condensing device 2
  • the output end of the condensing device 2 is connected to the input end of the liquid storage tank 10
  • the liquid storage tank The output end of 10 is connected to the input end M of the liquid storage tank 5 via a flow control valve 3
  • the output end Otl of the liquid storage tank is connected to the input end of the evaporator
  • the output end of the evaporator is connected to the input end It2 of the liquid storage tank 5.
  • the liquid storage tank 10 can be realized by a high pressure liquid storage tank, but is not limited thereto.
  • the liquid storage tank 5 can be realized by a low pressure liquid storage tank or a separator, but is not limited thereto. Since the volume of the liquid storage tank 5 is often affected by the size of the air conditioning system unit, the liquid storage tank 10 is provided to prevent the indoor unit of the air conditioning system from being turned off or the indoor load is changed to cause a change in the circulation amount of the system refrigerant.
  • the liquid storage tank 10 can store the refrigerant when the amount of refrigerant circulation changes.
  • the refrigerant is relatively more accommodating, thereby further optimizing the cooling effect of the air conditioning system.
  • the shape of the liquid storage tank 10 is not limited by the figure, and the position of the inlet and outlet is only illustrative.
  • the liquid storage tank 5 is also merely illustrative in the drawings, and may be various shapes such as a circular shape, an elliptical shape, and a square shape, and is not limited thereto.
  • the liquid storage tank 5 or the liquid storage tank 10 may be installed in various manners such as vertical installation or horizontal installation, and is not limited herein.
  • both of the liquid storage tanks 5 and 10 may be provided both indoors and outdoors, and can be determined by those skilled in the art depending on the circumstances.
  • the air conditioning system further comprises: a bypass line 101 disposed between the output of the condensing device 2 and the input of the flow control valve 3. Specifically, the first end of the bypass line 101 is disposed between the output end of the condensing device 2 and the input end of the liquid storage tank 10, and the second end thereof is disposed at the output end of the liquid storage tank 10 and the flow control valve 3. Between the inputs.
  • bypass line 101 is disposed such that the refrigerant can be bypassed to the input port of the flow control valve 3 by bypassing the reservoir 10. Thereby, the supply of the refrigerant to the liquid storage tank 5 is accelerated and stabilized.
  • bypass line 101 is drawn only as a simple line by a line.
  • other components may be disposed on the bypass line 101, such as an on-off valve, a dry filter, a sight glass, etc., and there is no limitation here as long as the refrigerant can bypass the liquid storage tank 10 directly. It can be delivered to the input end of the flow control valve 3.
  • the condensing device 2 and the flow control valve 3 are not drawn except for the liquid storage tank 10.
  • other components may be disposed upstream or downstream of the liquid storage tank 10, and no limitation is imposed here.
  • the first end and the second end of the bypass line 101 may be connected between any of the components, respectively, as long as the first end is provided at the output end of the condensing device 2 and the input end of the liquid storage tank 10.
  • the second end may be disposed between the output end of the liquid storage tank 10 and the input end of the flow control valve 3.
  • the term "condensing device” means a device capable of condensing a refrigerant, that is, a heat exchanger that cools and liquefies a high-temperature refrigerant gas.
  • specific condensation equipment can be selected independently.
  • condensing equipment 2 This can be achieved by means of a condensing device or at least two condensing devices connected in parallel.
  • the input of the at least two condensing devices connected in parallel serves as the input of the condensing device
  • the output of the at least two condensing devices in parallel serves as the output of the condensing device.
  • other connections may be used depending on the desired condensing device, such as in series, or a combination of series and parallel.
  • the condensing device can be cooled by air cooling, water cooling or evaporative condensation.
  • the evaporator may be one or more, and the specific number is not limited.
  • the form of connection between the evaporators can be in parallel, in series, or a combination of parallel and series.
  • Fig. 2 is a schematic view showing the configuration of an air conditioning system according to a second embodiment of the present invention.
  • the air conditioning system according to the second embodiment is an air conditioning system that does not require a compressor to compress refrigerant but uses a natural cold source for cooling.
  • the air conditioning system includes at least: a liquid storage tank 5, an evaporator 8, a condensing device 2, and a liquid storage tank 10.
  • the output end Otl of the liquid storage tank 5 (as an example of “the first output end of the first liquid storage tank") is connected to the input end of the evaporator 8, and the output end of the evaporator 8 is connected to the input end of the condensing device 2, condensing
  • the output of the device 2 is connected to the input of the reservoir 10, and the output of the reservoir 10 is connected to the input Itl of the reservoir 5 (as an example of "the first input of the first reservoir”).
  • the air conditioning system further comprises: a bypass line 101 disposed between the output of the condensing device 2 and the input end It1 of the liquid storage tank 5.
  • the first end of the bypass line 101 is disposed between the output end of the condensing device 2 and the input end of the liquid storage tank 10, and the second end thereof is disposed at the output end of the liquid storage tank 10 and the liquid storage tank 5.
  • the input is between M.
  • the bypass line 101 is disposed such that the refrigerant can be bypassed to the input port of the liquid storage tank 5 by bypassing the liquid storage tank 10. Thereby, the stability of the refrigerant supply to the liquid storage tank 5 is ensured.
  • bypass line 101 is drawn only as a simple line by a line.
  • other components may be disposed on the bypass line 101, such as an on-off valve, a dry filter, a sight glass, etc., and there is no limitation here as long as the refrigerant can bypass the liquid storage tank 10 directly. It can be delivered to the input end of the liquid storage tank 5.
  • the first end and the second end of the bypass line 101 may be connected between any of the components, respectively, as long as the first end is provided at the output end of the condensing device 2 and the input end of the liquid storage tank 10.
  • the second end may be disposed between the output end of the liquid storage tank 10 and the input end Itl of the liquid storage tank 5.
  • Fig. 3 is a schematic view showing the configuration of an air conditioning system according to a third embodiment of the present invention.
  • the air conditioning system according to the third embodiment can operate in both modes of compressor refrigeration (e.g., as shown in Fig. 1) and natural cold source refrigeration (e.g., as shown in Fig. 2).
  • the air conditioning system comprises: a liquid storage tank 5, an evaporator 8, a switching device 6, a compressor 1, a condensing device 2, a liquid storage tank 10, and a flow control valve 3.
  • the input end of the compressor 1 is connected to the second output end Ot2 of the liquid storage tank 5 (as an example of “the second output end of the first liquid storage tank"), and the output end of the compressor 1 is connected to the input end of the condensing device 2 .
  • the output of the condensing device 2 is connected to the input of the reservoir 10, and the output of the reservoir 10 is connected to the first input Itl of the reservoir 5 via a first flow control valve 3.
  • the first output Otl of the reservoir 5 is connected to the input of the evaporator 8.
  • the output of the evaporator 8 is connected to the input end of the reservoir 5 via the first passage of the switching device 6 It2
  • the output of the evaporator 8 is connected to the input of the condensing device 2 via the second passage of the switching device 6.
  • the evaporator 8 may be one or more.
  • the outputs of the respective evaporators 8 can be connected to the inputs of the switching device 6, respectively.
  • the input terminals of the switching device 6 may be connected after the output terminals are connected first, which is not limited herein.
  • the connection of the input end of each evaporator 8 to the output end Otl of the liquid storage tank 5 is also the same.
  • the air conditioning system further comprises: a bypass line 101 disposed between the output of the condensing device 2 and the input of the flow control valve 3. Specifically, the first end of the bypass line 101 is disposed between the output end of the condensing device 2 and the input end of the liquid storage tank 10, and the second end thereof is disposed at the output end of the liquid storage tank 10 and the flow control valve 3. Between the inputs.
  • the bypass line 101 is set to make the refrigerant It can be delivered directly to the input of the flow control valve 3 bypassing the reservoir 10. Thereby, the supply of refrigerant to the liquid storage tank 5 is accelerated and stabilized.
  • bypass line 101 is drawn only as a simple line by a line.
  • other components may be disposed on the bypass line 101, such as an on-off valve, a dry filter, a sight glass, etc., and there is no limitation here as long as the refrigerant can bypass the liquid storage tank 10 directly. It can be delivered to the input end of the flow control valve 3.
  • Fig. 3 between the condensing device 2 and the flow control valve 3, other components are not drawn except for the liquid storage tank 10.
  • other components may be disposed upstream or downstream of the liquid storage tank 10, and no limitation is imposed here.
  • the first end and the second end of the bypass line 101 may be connected between any of the components, respectively, as long as the first end is provided at the output end of the condensing device 2 and the input end of the liquid storage tank 10.
  • the second end may be disposed between the output end of the liquid storage tank 10 and the input end of the flow control valve 3.
  • the switching device 6 can switch between its first passage and the second passage to switch the refrigerant output from the evaporator 8.
  • the "switching means" is a collective term for a device or a group of devices for switching the transmission path of the refrigerant vapor outputted from the evaporator 8, and is not limited to a specific implementation.
  • the switching device 6 can be implemented using a switching valve.
  • the first passage of the switching device 6 refers to a passage between the input end of the switching valve and the input end of the switching valve
  • the second passage of the switching device 6 refers to the inside of the switching valve, the input end of the switching valve and the second The path between the outputs.
  • the input end of the switching valve 6 is connected to the output end of the evaporator 8
  • the first output end of the switching valve 6 is connected to the input end It2 of the liquid storage tank 5, and the second output end of the switching valve 6 is connected.
  • the switching valve of the switching device 6 is mainly used to realize the switching of the flow path, and can be realized by a four-way valve, a three-way valve or a solenoid valve, etc., but is not limited thereto. In addition, it is also possible to implement switching switching 6 using discrete components such as a switching valve, a check valve, etc., which will be described in detail later.
  • the compressor 1 In the refrigeration cycle in the natural cold source mode, the compressor 1 is stopped, and the refrigerant is in accordance with the condensing device 2, the liquid storage tank 10, the flow control valve 3, the liquid storage tank 5, the evaporator 8, the switching device 6, and then the condensation.
  • the flow direction of the device 2 constitutes a refrigeration cycle, and the outdoor environment directly supplies a refrigerant to the refrigerant. Stopping the compressor and using a natural cold source for cooling can significantly reduce the energy consumption of the air conditioning system, which is conducive to energy saving and emission reduction.
  • the natural cold source of the outdoor can be utilized for the refrigerant to be cooled.
  • the switching between the two cooling modes can be performed by the system according to the temperature difference between the refrigerant and the outdoor temperature. Specifically, when the refrigerant temperature is higher than the outdoor temperature, the cooling can be performed by the natural cold source mode. Otherwise, the compressor mode can be performed. Refrigeration. Alternatively, in practical applications, the switching between the two cooling modes may also be manually controlled, etc., and will not be described here.
  • a circulating power mechanism can be disposed between the output end Otl of the liquid storage tank 5 and the input end of the evaporator 8.
  • the circulating power mechanism When the air conditioning system is operating in a natural cold source cooling mode, the circulating power mechanism generates sufficient power to operate the refrigerant in the air conditioning system.
  • the circulating power mechanism can be realized in various ways that can be thought of by those skilled in the art, as long as the power mechanism can be provided for the refrigerant without the compressor working.
  • An air conditioning system that uses only natural cold sources for cooling.
  • This embodiment is applicable to a scenario in which a facility (e.g., a machine room) using an air conditioning system is located in a field such as a high-rise building capable of providing a positive drop between the output end Otl of the liquid storage tank 5 and the input end of the evaporator 8.
  • the liquid storage tank in the air conditioning system may be disposed at a higher position such as a roof, and one or more evaporators may be disposed in the lower floor, thereby utilizing the gravitational potential energy existing between the height drops to generate a refrigerant from the The power of the reservoir to the evaporator.
  • the installation of the air conditioning system does not allow for a suitable height drop between the reservoir to the evaporator outlet and the evaporator; or the set height drop is not sufficient to provide sufficient circulating power.
  • other ways of arranging the cyclic power mechanism can be used.
  • Fig. 4 is a schematic view showing the configuration of an air conditioning system according to a fourth embodiment of the present invention. This embodiment differs from the third embodiment in that the circulating power mechanism disposed between the output end Otl of the liquid storage tank 5 and the input end of the evaporator 8 is the power unit 7.
  • the output end Otl of the liquid storage tank 5 is connected to the input end of the evaporator 8 via the power unit 7.
  • the power unit 7 can be realized by one pump or a plurality of pumps connected in parallel; or it can be realized by other power-providing devices.
  • the pump may be a centrifugal pump, a vortex pump, a gear pump or a screw pump, but is not limited thereto.
  • the input ends of the respective evaporators 8 may be respectively connected to the output ends of the power unit 7, or the output ends of the power units 7 may be connected after the combined connection of the input terminals, but are not limited thereto.
  • the setting of the power unit 7 provides more circulating power than setting a positive drop between the output Otl of the reservoir 5 and the input of the evaporator 8. This is especially the case if the refrigeration circuit is long and/or the system requires a large refrigerant flow.
  • the use of power unit 7 provides more flexibility in providing cycle power. Especially in the case where a plurality of pumps are connected in parallel, part or all of the pump can be started depending on the cooling demand of the system, thereby reducing unnecessary power loss while being able to provide sufficient circulating power.
  • FIG. 5 is a schematic view showing the configuration of an air conditioning system according to a fifth embodiment of the present invention.
  • the output end Otl of the liquid storage tank 5 has a positive drop in height with the input end of the evaporator 8, and the output end Otl of the liquid storage tank 5 is via the parallel power device 7 and the on-off valve 41. (As an example of the "first on-off valve") the input end of the evaporator 8 is connected.
  • the cyclic power mechanism can work in two states: the power unit 7 is turned off, the on-off valve 41 is opened, and the refrigerant flows from the liquid storage tank 5 to the evaporator 8 by gravity, and is performed in the air-conditioning duct.
  • the cycle is started; the power unit 7 is started, the on-off valve 41 is closed, and the refrigerant circulates in the air-conditioning line under the power generated by the power unit 7.
  • the on-off valve 41 can also be realized as a parallel connection of a plurality of on-off valves.
  • Fig. 6 is a schematic view showing the configuration of an air conditioning system according to a sixth embodiment of the present invention.
  • the switching device 6 may comprise an input end which is arranged at the output of the evaporator 8 to the input end It2 of the reservoir 5 (as an example of "the second input of the first reservoir")
  • An on-off valve 62, and an on-off valve 61 disposed between the output of the evaporator 8 and the input of the condensing device.
  • the one-way valve can also be used to replace the on-off valve 61.
  • on-off valves 61 and 62 shown in Fig. 6 are solenoid valves, it will be understood that other on-off valves, such as manual ball valves, may be employed. The same is true for the various on-off valves shown in the other figures. It can be realized by a solenoid valve or by various common on-off valves such as an electric ball valve, a manual ball valve, and an electric two-way valve. Further, in some embodiments, the opening degrees of the on-off valves 61 and 62 can be adjusted.
  • the on-off valve 62 When the air conditioning system is operating in the compressor mode, the on-off valve 62 is opened and the on-off valve 61 is closed. In other words, the first passage of the switching device, i.e., the line in which the on-off valve 62 is located, is turned on, and the second path of the switching device, that is, the line in which the on-off valve 61 is located, is blocked.
  • the on-off valve 61 is opened and the on-off valve 62 is closed. In other words, the second passage of the switching device, i.e., the line of the on-off valve 61, is turned on, and the first passage of the switching device, that is, the line in which the on-off valve 62 is located, is blocked.
  • the flow control valve 3 can be realized by using an electronic expansion valve, a two-way valve, an electric ball valve, a thermal expansion valve, or an orifice plate + an adjustable opening and closing valve, but is not limited thereto. this.
  • the on-off valve can be connected in parallel on the thermal expansion valve, thereby being in the natural cold source mode.
  • the flow rate of the refrigerant is controlled by the on-off valve, and the flow rate of the refrigerant in the refrigeration cycle in the compressor mode or in the air-conditioning system And conditioning to keep the refrigerant flow in the system at the desired flow On the amount.
  • the flow control valve 3 is realized by means other than the electronic expansion valve, the flow rate control may be performed in parallel with the on-off valve.
  • Fig. 7 is a schematic view showing the configuration of an air conditioning system according to a seventh embodiment of the present invention.
  • the air conditioning system is further provided with an on-off valve 4 (as an example of a "second on-off valve") which is connected in parallel with the flow control valve 3.
  • the compressor 1 When the air conditioning system is normally performing the cooling operation, the compressor 1 is started. At this time, the flow control valve 3 can be opened for the refrigerant to be transferred, and the on-off valve 4 is closed. When cooling in natural cold mode, compressor 1 is turned off. At this time, the flow control valve 3 can be closed, and the on-off valve 4 can be opened for the transmission of the refrigerant.
  • the resistance of the on-off valve 4 is small, the transmission resistance of the refrigerant in the refrigeration cycle can be reduced, the power loss of the power device 7 can be reduced, the refrigerant transmission speed and efficiency of the air-conditioning system can be improved, and the refrigeration effect of the air-conditioning system can be improved.
  • Fig. 8 is a schematic view showing the configuration of an air conditioning system according to an eighth embodiment of the present invention.
  • the air conditioning system is further provided with an on-off valve 42 (as an example of a "third on-off valve"), and the input end of the on-off valve 42 is connected to the flow control valve 3 The input end, and the output end of the on-off valve 42 is connected to the output end Otl of the liquid storage tank 5.
  • the compressor 1 When the air conditioning system is normally performing the cooling operation, the compressor 1 is started. At this time, the flow control valve 3 can be opened for the refrigerant to be transferred, and the on-off valve 42 is closed. When cooling is performed in the natural cold source mode, the compressor 1 is turned off. At this time, the flow control valve 3 can be closed, and the on-off valve 42 can be opened for the transmission of the refrigerant.
  • the resistance of the on-off valve 42 is small, the transmission resistance of the refrigerant in the refrigeration cycle can be reduced, the power loss of the power device 7 can be reduced, the refrigerant transmission speed and efficiency of the air-conditioning system can be improved, and the refrigeration effect of the air-conditioning system can be improved. Further, since the on-off valve 42 is directly connected to the first output end Otl of the liquid storage tank 5, when the on-off valve 42 is opened, the refrigerant does not flow into the liquid storage tank 5 and is directly supplied to the evaporator 8, thereby improving The speed at which the refrigerant is supplied to the evaporator 8.
  • Fig. 9 is a schematic view showing the configuration of an air conditioning system according to a ninth embodiment of the present invention.
  • the first output end (the output end of the first passage) of the switching device 6 is connected to the input end of the liquid storage tank 5 via the one-way valve 91 (as an example of the "first one-way valve")
  • the second output of the switching device 6 (the output of the second path) is connected to the input of the condensing device 2 via a one-way valve 92 (as an example of a "second check valve”); and the output of the compressor 1
  • the input of the condensing device 2 is connected via a one-way valve 93 (as an example of a "third one-way valve”).
  • the one-way valves 91, 92 and 93 can also be selectively provided separately.
  • FIGS. 10 and 11 are schematic views showing an air conditioning system according to tenth and eleventh embodiments of the present invention, respectively.
  • the power equipment that is continuously used as the circulating power mechanism has a large loss to the power equipment, and can be set to be used according to the detected liquid level in the main liquid storage tank. Control to start or stop the level controller of the power unit.
  • the two liquid level detecting ends of the liquid level controller 14 are respectively connected to the high output end and the low output end of the liquid storage tank 5, the liquid
  • the signal output of the bit controller 14 is coupled to the control terminal of the power unit 7, thereby controlling the opening and closing of the power unit 7 by the output signal of the level controller 14.
  • the level controller 14 can output a signal detected by the liquid level detecting end to the control board.
  • the control board then generates a control signal by logic calculation and outputs a control signal to the power unit 7.
  • the liquid level controller 14 can be used to: when it is detected that the liquid level of the liquid storage tank 5 is equal to or higher than the low level output end (the liquid is detected at the low level output, the liquid is detected or not detected at the high level output), The control power unit 7 is turned on; when the liquid level is detected to be lower than the low level output terminal (the liquid is not detected at the low level output end), the control power unit 7 is stopped. This ensures that the power unit 7 is only turned on when the liquid level is sufficient to prevent excessive loss of the power unit 7.
  • the power unit 7 can also be controlled using any other rules and arrangement of level controllers.
  • the main liquid storage can be An additional level controller (as an example of a "second level controller") is provided on the tank for controlling the flow control valve based on the detected level in the main reservoir. Specifically, the opening degree of the flow control valve is controlled.
  • the two liquid level detecting ends of the liquid level controller 13 are respectively connected to the high output end and the low output end of the liquid storage tank 5, and the liquid level control is performed.
  • the signal output of the device 13 is connected to the control terminal of the flow control valve 3.
  • the liquid level controller 13 is for detecting the liquid level in the liquid storage tank 5, and controls the flow control valve 3 accordingly according to the detected liquid level in the liquid storage tank 5.
  • the control here can be switched on or off, or linear or non-linear control, etc., which is not limited.
  • the flow control valve 3 can be implemented using an electric flow control element, by the level controller
  • the level controller 13 and the flow control valve 3 can also be realized mechanically.
  • a float ball is provided in the liquid storage tank 5 to sense the liquid level, and when the liquid level is low, the liquid supply port is opened, and when the liquid level is reached, the liquid supply port is closed. Then the float ball here corresponds to the liquid level controller 13 and the liquid supply port corresponds to the flow control valve 3.
  • the liquid level controller 13 and the flow control valve 3 can have other implementation manners, which are not described herein.
  • the liquid level controller 13 can be configured to: detect that the liquid level of the liquid storage tank 5 is lower than a preset first liquid level value, control the flow control valve 3 to open or increase the liquid supply; and detect the liquid level of the liquid storage tank 5. Above the preset second level value, the flow control valve 3 is controlled to shut down or reduce the supply of liquid. Thereby, the liquid level in the liquid storage tank 5 is ensured to be between the first liquid level value and the second liquid level value.
  • the second liquid level value is greater than the first liquid level value.
  • the first liquid level value and the second liquid level value may be respectively taken as the liquid level values corresponding to the crest output end and the high bit output end, or other liquid level values may be set autonomously.
  • the liquid level controller 13 can output a signal detected by the liquid level detecting end to a control device such as a control board.
  • the control board then generates a control signal through logic calculation and outputs a control signal to the flow control valve 3.
  • liquid level controllers 13 and 14 are separately described herein for the sake of clarity. In practical applications, the two can also be realized as: A liquid level detector is arranged on the liquid storage tank 5, and the detector outputs the liquid level detection signal to the control board in the form of an electric signal, and the CPU of the control board get on After the processing, signals for controlling the power unit 7 and signals for controlling the flow rate control valve 3 are separately generated and output to the power unit 7 and the flow rate control valve 3, respectively, for control (as an example of the "third level controller").
  • the level controllers 13 and 14 can be implemented using various level controllers such as sensors known in the art.
  • FIG 12 is a schematic view showing the configuration of an air conditioning system according to a twelfth embodiment of the present invention.
  • flow control valves 181, 182, 183 are provided at the inputs of each of the evaporators 81, 82, 83 connected in parallel to the output Otl of the liquid storage tank 5, so that control is provided to each of the evaporations.
  • the evaporators 81, 82, 83 may each represent a single evaporator or a combination of a series of evaporators in series, parallel or series-parallel.
  • FIG 13 is a schematic view showing the configuration of an air conditioning system according to a thirteenth embodiment of the present invention.
  • the compressor 1 is an oily compressor using lubricating oil
  • the efficiency of the air conditioning system is improved, and energy consumption can be saved, and the output of the compressor 1 can be set.
  • Oil separator As shown in Fig. 13, the output end Oc of the compressor 1 is connected to the input terminal Id of the oil separator 16, and the output end Odl of the oil separator 16 (as an example of the "first output of the oil separator") is connected to the condensing device.
  • the second output Od2 of the oil separator 16 (as an example of the "second output of the oil separator") is connected to the input Ic2 of the compressor 1 (as the "second input of the compressor") Example).
  • the oil separator 16 is capable of separating the lubricating oil mixed in the refrigerant output from the output end Oc of the compressor 1 and returning it to the compressor 1 to provide lubrication for the compressor 1.
  • the oil separator 16 may also be added when the compressor 1 is an oily compressor using lubricating oil. I won't go into details here.
  • a drying filter and/or a sight glass may be further provided.
  • the drying filter and/or the sight glass may be disposed on the oil return path of the oil separator 16 to the compressor 1.
  • a drying filter 111 and a sight glass 121 are sequentially disposed on the oil return path from the oil separator 16 to the compressor 1.
  • the drying filter 111 is used to filter out moisture in the return lubricating oil.
  • an on-off valve 17 may be provided on the path in which the drying filter 111 and the sight glass 121 are located.
  • the on-off valve 17 may be disposed on the left side of the drying filter 111, or on the right side of the liquid environment 121, or between the drying filter 111 and the sight glass 121, and the like.
  • the oil returning end of the oil separator 16 is sequentially connected to the input end Ic2 of the oil returning oil of the receiving oil separator of the compressor 1 through the drying filter 111, the on-off valve 17, and the sight glass 121.
  • control valve 17 The function of the control valve 17 is to control the amount of oil return between the oil separator 16 and the compressor 1 by its own opening or closing.
  • a drying filter and/or a sight glass can also be placed between the condensing device 2 and the flow control valve 3.
  • the connection between the drying filter and the sight glass and the condensing device 2 and the liquid storage tank 5 may include: the output end of the condensing device 2 is connected to the input end of the flow control valve 3 through the drying filter 11; or, the condensing device 2 The output end is connected to the input end of the flow control valve 3 via the sight glass 12; alternatively, the output end of the condensing device 2 is connected to the input end of the flow control valve 3 through the drying filter 11 and the sight glass 12 in sequence.
  • the drying filter 11 is used to filter out moisture in the refrigerant.
  • the compressor 1 may be constituted by at least one compressor.
  • the compressors may be connected in parallel with each other, the input terminals of the compressors collectively serve as the input terminals of the compressor 1, and the output terminals of the compressors collectively serve as the output of the compressor 1. end.
  • the compressor 1 is constructed by connecting at least two compressors in parallel, and the cooling is performed in comparison with the use of one compressor, thereby improving the ability of the air conditioning system to meet different cooling demands, and at the same time ensuring that the air conditioning system is always operating at an optimum working condition. For example, when the cooling demand is small, it is possible to control only one or a part of the compressors to be turned on, and when the cooling needs to be increased, more or all of the compressors are turned on. According to different cooling requirements, the number of compressors is controlled to improve the cooling efficiency of the air conditioning system and reduce the power loss of the air conditioning system.
  • a fan (not shown) may be disposed in the vicinity of the evaporator, and the air flow speed around the evaporator is accelerated by the fan to accelerate the hot and cold flow between the evaporator and the outside temperature. Change.
  • the cooling method of the condensing device is air-cooled and water-cooled.
  • the condensing device adopts the air-cooled cooling mode
  • a fan is required in the vicinity of the condensing device, the air flow speed around the condensing device is accelerated by the fan, and the heat exchange between the condensing device and the outside temperature is accelerated;
  • a chilled water line needs to be provided in the vicinity of the condensing device, and the cold water exchange is performed between the chilled water line and the outside temperature.
  • the air conditioning system described in each of the above embodiments may be an air-cooled screw type air conditioning system, a water-cooled screw type air conditioning system, an air-cooled scroll type air conditioning system, or a water-cooled scroll type air conditioning system.

Abstract

一种空调系统,包括:设置在空调系统的冷凝设备(2)的输出端与空调系统的第一储液罐(5)的第一输入端(It1)之间的第二储液罐(10);以及旁路管路(101),旁路管路(101)的第一端设置在冷凝设备(2)的输出端与第二储液罐(10)的输入端之间,并且旁路管路(101)的第二端设置在第二储液罐(10)的输出端与第一储液罐(5)的第一输入端(It1)之间。旁路管路(101)的设置能够提升空调系统对主储液罐(5)供液的稳定性和可靠性。

Description

空调系统
本申请要求于 2012 年 5 月 31 日提交中国专利局、 申请号为
201210178479.9、 发明名称为 "空调系统"的中国专利申请的优先权, 其全部 内容通过引用结合在本申请中。
技术领域
本发明涉及制冷领域, 尤其涉及一种空调系统。
背景技术
空调系统通过制冷剂在系统中冷凝、蒸发的物理变化过程实现对环境温度 的改变。 因而, 需要在空调系统中提供充足的制冷剂以及稳定的制冷剂循环。
在使用压缩机进行制冷的传统空调系统中, 由于室内空间有限, 安装在室 内的低压储液罐的体积受到限制,无法容纳空调系统正常工作所需的所有制冷 剂。一般地,在室外安装用于储存低压储液罐无法容纳的其余制冷剂的高压储 液罐, 从而在空调系统中提供充足的制冷剂。
发明内容
然而, 由于高压储液罐对制冷剂流的阻力较大,在空调系统能够提供的动 力较小的情况下, 或者在制冷剂供液不稳定的情况下, 高压储液罐的存在可能 引起或加剧对空调蒸发器供液不足和不稳定。
有鉴于此, 本发明的目的是: 提供一种空调系统, 其能够在系统中存在辅 助储液罐的情况下,通过设置绕过辅助储液罐的其它管路, 直接为主储液罐供 液。
根据本发明的实施例, 提供一种空调系统, 包括: 设置在空调系统的冷凝 设备的输出端与空调系统的第一储液罐的第一输入端之间的第二储液罐;以及 旁路管路,旁路管路的第一端设置在冷凝设备的输出端与第二储液罐的输入端 之间,并且旁路管路的第二端设置在第二储液罐的输出端与第一储液罐的第一 输入端之间。 根据本发明的另一个实施例,空调系统还可以包括压缩机和第一流量控制 阀; 其中, 压缩机的输入端连接第一储液罐的第二输出端, 压缩机的输出端连 接冷凝设备的输入端, 冷凝设备的输出端连接第二储液罐的输入端, 第二储液 罐的输出端经由第一流量控制阀连接第一储液罐的第一输入端,第一储液罐的 第一输出端连接空调系统的蒸发器的输入端,蒸发器的输出端连接第一储液罐 的第二输入端;并且旁路管路的第二端设置在第二储液罐的输出端与第一流量 控制阀的输入端之间。
根据本发明的另一个实施例,第一储液罐的第一输出端连接空调系统的蒸 发器的输入端, 蒸发器的输出端连接冷凝设备的输入端, 冷凝设备的输出端连 接第二储液罐的输入端,并且第二储液罐的输出端连接第一储液罐的第一输入 端。
根据本发明的另一个实施例, 空调系统还可以包括: 压缩机、 第一流量控 制阀和切换装置; 其中, 压缩机的输入端连接第一储液罐的第二输出端, 压缩 机的输出端连接冷凝设备的输入端;第二储液罐的输出端经由第一流量控制阀 连接第一储液罐的第一输入端;旁路管路的第二端设置在第二储液罐的输出端 与第一流量控制阀的输入端之间;蒸发器的输出端经由切换装置的第一通路连 接第一储液罐的第二输入端,且蒸发器的输出端经由切换装置的第二通路连接 冷凝设备的输入端。
根据本发明的另一个实施例,第一储液罐的第一输出端可以与蒸发器的输 入端之间在高度上存在正落差。
根据本发明的另一个实施例,第一储液罐的第一输出端可以经由相互并联 连接的动力设备和第一通断阀连接蒸发器的输入端。
根据本发明的另一个实施例,第一储液罐的第一输出端可以经由动力设备 连接蒸发器的输入端。
根据本发明的另一个实施例, 空调系统还可以包括第一液位控制器, 用于 根据检测到的第一储液罐中的液位进行控制, 以启动或停止动力设备。
根据本发明的另一个实施例, 空调系统还可以包括第二液位控制器, 用于 根据检测到的第一储液罐中的液位对第一流量控制阀的开度进行控制。
根据本发明的另一个实施例, 空调系统还可以包括第三液位控制器, 用于 根据检测到的所述第一储液罐中的液位对所述动力设备的启动或停止进行控 制, 并且对所述第一流量控制阀的开度进行控制。
根据本发明的另一个实施例, 切换装置可以是切换阀; 或者, 切换装置可 以包括设置于蒸发器输出端至第一储液罐的第二输入端之间的通断阀,以及设 置于蒸发器输出端至冷凝设备的输入端之间的通断阀或单向阀。
根据本发明的另一个实施例, 空调系统还可以包括: 第二通断阀, 第二通 断阀与第一流量控制阀并联连接。
根据本发明的另一个实施例, 空调系统还可以包括第三通断阀, 第三通断 阀的输入端连接第一流量控制阀的输入端,且第三通断阀的输出端连接第一储 液罐的第一输出端。
根据本发明的另一个实施例,切换装置的第一通路的输出端可以经由第一 单向阀连接第一储液罐的第二输入端; 且 /或, 切换装置的第二通路的输出端 可以经由第二单向阀连接冷凝设备的输入端; 且 /或, 压缩机的输出端可以经 由第三单向阀连接冷凝设备的输入端。
根据本发明的另一个实施例,在并联连接到第一储液罐的第一输出端的每 一路蒸发器的输入端处都可以设置有流量控制阀,从而控制提供到每一路蒸发 器的制冷剂的量。
根据本发明的另一个实施例,压缩机可以是有油压缩机, 空调系统还可以 包括: 油分离器, 其中, 压缩机的输出端连接油分离器的输入端, 油分离器的 第一输出端连接冷凝设备的输入端,油分离器的第二输出端连接压缩机的第二 输入端。
根据本发明的另一个实施例,空调系统可以包括相互并联连接的多个压缩 机。
根据本发明的另一个实施例,空调系统所包括的蒸发器之间的连接形式可 以是并联、 串联, 或者并联和串联的结合。 根据本发明的实施例的空调系统可以是风冷螺杆式空调系统、水冷螺杆式 空调系统、 风冷涡旋式空调系统, 或者水冷涡旋式空调系统。
根据本发明实施例的上述空调系统,能够提升空调系统对主储液罐的供液 的稳定性和可靠性。 附图说明
参照下面结合附图对本发明的实施例的说明,会更加容易地理解本发明的 以上和其它目的、 特点和优点。 在附图中, 相同的或对应的技术特征或部件将 采用相同或对应的附图标记来表示。在附图中不必依照比例绘制出单元的尺寸 和相对位置。
图 1是示出根据本发明第一实施例的空调系统的结构的示意图; 图 2是示出根据本发明第二实施例的空调系统的结构的示意图; 图 3是示出根据本发明第三实施例的空调系统的结构的示意图; 图 4是示出根据本发明第四实施例的空调系统的结构的示意图; 图 5是示出根据本发明第五实施例的空调系统的结构的示意图; 图 6是示出根据本发明第六实施例的空调系统的结构的示意图; 图 7是示出根据本发明第七实施例的空调系统的结构的示意图; 图 8是示出根据本发明第八实施例的空调系统的结构的示意图; 图 9是示出根据本发明第九实施例的空调系统的结构的示意图; 图 10是示出根据本发明第十实施例的空调系统的结构的示意图; 图 11是示出根据本发明第十一实施例的空调系统的结构的示意图; 图 12是示出根据本发明第十二实施例的空调系统的结构的示意图; 图 13是示出根据本发明第十三实施例的空调系统的结构的示意图。 具体实施方式
下面参照附图来说明本发明的实施例。 应当注意, 为了清楚的目的, 附图 和说明中省略了与本发明无关的、本领域技术人员已知的部件和处理的表示和 描述。
在根据本发明实施例的空调系统中,为了在制冷剂循环动力不足或制冷剂 供应不稳定时, 仍能够保证对主储液罐(以及蒸发器)的稳定供液, 为辅助储 液罐设置与其并行连接的旁路管路,从而绕过辅助储液罐, 直接为主储液罐供 液。 在这里, 主储液罐指: 直接、 或经由任何动力设备与蒸发器的输入端相连 接以对蒸发器供液的储液罐, 是 "第一储液罐" 的示例。 辅助储液罐指: 设置 在冷凝设备的输出端与主储液罐的制冷剂液体输入端(作为 "第一储液罐的第 一输入端" 的示例)之间、 用于辅助存储制冷剂的储液罐, 是 "第二储液罐" 的示例。 所设置旁路管路的第一端(输入端 )设置在冷凝设备的输出端与辅助 储液罐的输入端之间, 并且该旁路管路的第二端(输出端)设置在辅助储液罐 的输出端与主储液罐的制冷剂液体输入端之间。
图 1是示出根据本发明第一实施例的空调系统的结构的示意图。根据第一 实施例的空调系统是使用压缩机进行制冷的空调系统。图中标注箭头旨在说明 制冷剂循环的流动方向, 其它附图相同, 为了筒洁起见未——标注。 该空调系 统至少包括: 储液罐 5 (作为 "主储液罐", 即 "第一储液罐" 的示例)、 压缩 机 1、 冷凝设备 2、 储液罐 10 (作为 "辅助储液罐", 即 "第二储液罐" 的示 例 )、 流量控制阀 3和蒸发器 8。 其中, 压缩机 1的输入端连接储液罐 5的输 出端 Ot2, 压缩机 1的输出端连接冷凝设备 2的输入端, 冷凝设备 2的输出端 连接储液罐 10的输入端, 储液罐 10的输出端经由流量控制阀 3连接储液罐 5 的输入端 M , 储液罐的输出端 Otl连接蒸发器的输入端, 蒸发器的输出端连 接储液罐 5的输入端 It2。
这里, 储液罐 10可以通过高压储液罐实现, 但不限于此。 而储液罐 5可 以通过低压储液罐或者分离器实现,但不限于此。 由于储液罐 5的体积往往受 到空调系统机组尺寸的影响,为防止空调系统的室内机组的停开机或者室内负 荷变化造成系统制冷剂循环量的变化, 设置储液罐 10。 储液罐 10在制冷剂循 环量变化时能够将制冷剂存储起来。 当储液罐 10通过高压储液器实现时, 可 以相对容纳较多制冷剂, 从而进一步优化空调系统的制冷效果。
需要说明的是: 储液罐 10的形状不受图形限制, 进出口位置仅为示意性 的。 另外, 储液罐 5在图中也仅为示意性的, 具体可以是圓形、 橢圓形、 方形 等各种形状, 这里并不限制。 另外, 储液罐 5或者储液罐 10的安装方式可以 是立式安装或卧式安装等各种安装方式, 这里也并不限制。 此外, 储液罐 5 和 10二者都既可以设置在室内也可以设置在室外, 可由本领域技术人员根据 具体情况确定。
进一步地, 该空调系统还包括: 设置在冷凝设备 2的输出端与流量控制阀 3的输入端之间的旁路管路 101。 具体地, 旁路管路 101的第一端设置在冷凝 设备 2的输出端与储液罐 10的输入端之间, 并且其第二端设置在储液罐 10 的输出端与流量控制阀 3的输入端之间。
在空调系统供液不稳定时,旁路管路 101的设置使得制冷剂可以绕过储液 罐 10而直接输送到流量控制阀 3的输入端。 从而加快并稳定对储液罐 5的制 冷剂供应。
在图 1中, 旁路管路 101只用线形绘制为单纯的管路。 但是, 在实际应用 中, 旁路管路 101上可能设置有其它部件, 例如通断阀、 干燥过滤器、 视液镜 等, 这里不做限制, 只要能够使制冷剂绕过储液罐 10直接输送到流量控制阀 3的输入端即可。
另外, 在图 1中, 在冷凝设备 2到流量控制阀 3之间, 除了储液罐 10并 未绘制其它部件。 但在实际应用中, 根据设计需要, 在冷凝设备 2到流量控制 阀 3之间,在储液罐 10的上游或下游都可能设置有其它部件, 这里不做限制。 在这种情况下, 旁路管路 101 的第一端和第二端可以分别连接到任何部件之 间, 只要保证第一端设置在冷凝设备 2的输出端与储液罐 10的输入端之间, 第二端设置在储液罐 10的输出端与流量控制阀 3的输入端之间即可。
顺便提及, 在根据本发明实施例的空调系统中, 术语 "冷凝设备"是指能 够对制冷剂进行冷凝处理的设备,即冷却高温制冷剂气体并使之液化的热交换 器。 在实际应用中, 可以自主选择具体的冷凝设备来实现。 例如, 冷凝设备 2 可以通过一个冷凝设备或者并联的至少两个冷凝设备实现。此时, 并联的至少 两个冷凝设备的输入端作为冷凝设备的输入端,并联的至少两个冷凝设备的输 出端作为冷凝设备的输出端。 当然,根据需要冷凝设备也可以采用其它连接方 式, 例如串联、 或串并联的结合。 冷凝设备的冷却方式可以是风冷、 水冷或者 蒸发式冷凝等。
此外, 在根据本发明实施例的空调系统中, 蒸发器可以为一个或者多个, 具体个数不受限制。 蒸发器之间的连接形式可以是并联、 串联, 或者并联和串 联的结合。
图 2是示出根据本发明第二实施例的空调系统的结构的示意图。根据第二 实施例的空调系统是不需要压缩机压缩制冷剂,而使用自然冷源进行制冷的空 调系统。 该空调系统至少包括: 储液罐 5、 蒸发器 8、 冷凝设备 2和储液罐 10。 其中, 储液罐 5的输出端 Otl (作为 "第一储液罐的第一输出端" 的示例)连 接蒸发器 8的输入端, 蒸发器 8的输出端连接冷凝设备 2的输入端, 冷凝设备 2的输出端连接储液罐 10的输入端, 并且储液罐 10的输出端连接储液罐 5的 输入端 Itl (作为 "第一储液罐的第一输入端" 的示例)。
此外, 该空调系统还包括: 设置在冷凝设备 2的输出端与储液罐 5的输入 端 Itl之间的旁路管路 101。具体地,旁路管路 101的第一端设置在冷凝设备 2 的输出端与储液罐 10的输入端之间,并且其第二端设置在储液罐 10的输出端 与储液罐 5的输入端 M之间。
在空调系统供液不稳定时, 或制冷剂循环动力不足时, 旁路管路 101的设 置使得制冷剂可以绕过储液罐 10而直接输送到储液罐 5的输入端。 从而保证 对储液罐 5的制冷剂供应的稳定性。
在图 2中, 旁路管路 101只用线形绘制为单纯的管路。 但是, 在实际应用 中, 旁路管路 101上可能设置有其它部件, 例如通断阀、 干燥过滤器、 视液镜 等, 这里不做限制, 只要能够使制冷剂绕过储液罐 10直接输送到储液罐 5的 输入端即可。
另外, 在图 2中, 在冷凝设备 2到储液罐 5之间, 除了储液罐 10并未绘 制其它部件。但在实际应用中,根据设计需要,在冷凝设备 2到储液罐 5之间, 在储液罐 10的上游或下游都可能设置有其它部件, 这里不做限制。 在这种情 况下, 旁路管路 101的第一端和第二端可以分别连接到任何部件之间, 只要保 证第一端设置在冷凝设备 2的输出端与储液罐 10的输入端之间, 第二端设置 在储液罐 10的输出端与储液罐 5的输入端 Itl之间即可。
图 3是示出根据本发明第三实施例的空调系统的结构的示意图。根据第三 实施例的空调系统可以在压缩机制冷(例如图 1所示)和自然冷源制冷(例如 图 2所示) 两种模式下运行。 该空调系统包括: 储液罐 5、 蒸发器 8、 切换装 置 6、 压缩机 1、 冷凝设备 2、 储液罐 10和流量控制阀 3。
其中, 压缩机 1的输入端连接储液罐 5的第二输出端 Ot2 (作为 "第一储 液罐的第二输出端" 的示例), 压缩机 1的输出端连接冷凝设备 2的输入端。 冷凝设备 2的输出端连接储液罐 10的输入端,储液罐 10的输出端经由第一流 量控制阀 3连接储液罐 5的第一输入端 Itl。 储液罐 5的第一输出端 Otl连接 蒸发器 8的输入端。
蒸发器 8的输出端经由切换装置 6的第一通路连接储液罐 5的输入端 It2
(作为 "第一储液罐的第二输入端" 的示例), 且蒸发器 8的输出端经由切换 装置 6的第二通路连接冷凝设备 2的输入端。
顺便提及, 根据本实施例的蒸发器 8 可以是一个或多个。 各个蒸发器 8 的输出端可以分别连接切换装置 6的输入端。或者,也可以先进行输出端的合 并连接后, 再连接切换装置 6的输入端, 这里并不限定。 各蒸发器 8的输入端 与储液罐 5的输出端 Otl的连接亦然。
此外, 该空调系统还包括: 设置在冷凝设备 2 的输出端与流量控制阀 3 的输入端之间的旁路管路 101。 具体地, 旁路管路 101的第一端设置在冷凝设 备 2的输出端与储液罐 10的输入端之间,并且其第二端设置在储液罐 10的输 出端与流量控制阀 3的输入端之间。
在空调系统供液不稳定时,或者空调系统工作在自然冷源制冷模式即压缩 机不工作时, 或者在制冷剂循环动力不足时, 旁路管路 101的设置使得制冷剂 可以绕过储液罐 10而直接输送到流量控制阀 3的输入端。 从而加快并稳定对 储液罐 5的制冷剂供应。
在图 3中, 旁路管路 101只用线形绘制为单纯的管路。 但是, 在实际应用 中, 旁路管路 101上可能设置有其它部件, 例如通断阀、 干燥过滤器、 视液镜 等, 这里不做限制, 只要能够使制冷剂绕过储液罐 10直接输送到流量控制阀 3的输入端即可。
另外, 在图 3中, 在冷凝设备 2到流量控制阀 3之间, 除了储液罐 10并 未绘制其它部件。 但在实际应用中, 根据设计需要, 在冷凝设备 2到流量控制 阀 3之间,在储液罐 10的上游或下游都可能设置有其它部件, 这里不做限制。 在这种情况下, 旁路管路 101 的第一端和第二端可以分别连接到任何部件之 间, 只要保证第一端设置在冷凝设备 2的输出端与储液罐 10的输入端之间, 第二端设置在储液罐 10的输出端与流量控制阀 3的输入端之间即可。
在这种能够在压缩机制冷和自然冷源制冷模式下切换运行的空调系统中, 切换装置 6 可以在其第一通路和第二通路之间进行切换, 以切换从蒸发器 8 输出的制冷剂气体的循环路径。 这里, "切换装置" 是对用于切换从蒸发器 8 输出的制冷剂蒸汽的传输路径的装置或装置组的统称,并不限于某种特定的实 现。
例如,切换装置 6可以使用切换阀实现。 则切换装置 6的第一通路是指切 换阀内部、切换阀的输入端与第一输出端之间的通路,切换装置 6的第二通路 是指切换阀内部、 切换阀的输入端与第二输出端之间的通路。 具体地, 如图 3 所示,切换阀 6的输入端连接蒸发器 8的输出端,切换阀 6的第一输出端连接 储液罐 5的输入端 It2, 切换阀 6的第二输出端连接冷凝设备 2的输入端。 实 现切换装置 6的切换阀主要的作用在于实现流路的切换, 可以通过四通阀、三 通阀或者电磁阀等实现, 但不限于此。 另外, 还可以使用分立的元件, 诸如通 断阀、 单向阀等来实现切换转置 6, 将在后面进行详细描述。
在自然冷源模式下的制冷循环中,压缩机 1停止工作, 制冷剂按照冷凝设 备 2、 储液罐 10、 流量控制阀 3、 储液罐 5、 蒸发器 8、 切换装置 6、 再到冷凝 设备 2的流向构成制冷循环, 直接由室外环境为制冷剂提供冷源。 停止压缩机而使用天然冷源进行制冷, 可以显著减少空调系统的能耗,有 利于节能减排。 当制冷剂的温度高于室外温度时,都可以利用室外的自然冷源 来进行制冷剂的制冷。 因此, 两种制冷方式的切换可以由系统根据制冷剂与室 外温度的温差进行, 具体地, 制冷剂温度高于室外温度时, 可以通过自然冷源 模式进行制冷, 否则, 可以通过压缩机模式进行制冷。 可选择地, 在实际应用 中, 两制冷方式的切换还可以由人工控制等, 这里不赘述。
这里, 需要考虑的是: 在没有压缩机输出高压气体从而产生制冷剂循环动 力的情况下, 可能需要提供额外的循环动力机制, 来为制冷剂循环提供足够的 动力。
针对这个问题,在根据本实施例的空调系统中, 可以在储液罐 5的输出端 Otl和蒸发器 8的输入端之间布置循环动力机制。 当空调系统在自然冷源制冷 模式下工作时,循环动力机制能够产生足够的动力,使得制冷剂在空调系统中 运行。
根据空调系统的不同需求和特点,可以以本领域技术人员能够想到的各种 方式来实现循环动力机制,只要能够在没有压缩机工作的情况下为制冷剂提供 动力机制也同样适用于结合图 2说明的只使用自然冷源进行制冷的空调系统。
在图 3所示的第三实施例中,储液罐 5的输出端 Otl与蒸发器 8的输入端 之间在高度上存在正落差。从而, 制冷剂能够在重力的作用下从储液罐 5流入 蒸发器 8。
此实施例适用于使用空调系统的设施(例如机房)坐落在诸如高层建筑中 等能够提供储液罐 5的输出端 Otl与蒸发器 8的输入端之间的正落差的场地中 的场景。 例如, 可以将空调系统中的储液罐设置在楼顶等较高的位置, 而将一 个或多个蒸发器设置在下面的楼层中,从而利用该高度落差间存在的重力势能 产生制冷剂从储液罐流向蒸发器的动力。直接通过重力作用保证制冷剂在制冷 回路中的循环, 大大节省任何动力设备运行的功率损耗,对空调系统节能起到 非常大的作用。
但是,在一些情况下, 安装空调系统的场地不允许在储液罐向蒸发器的输 出口和蒸发器之间设置合适的高度落差; 或者, 所设置的高度落差不足以提供 足够的循环动力。 为此, 可以使用其它方式来布置循环动力机制。
图 4是示出根据本发明第四实施例的空调系统的结构的示意图。该实施例 与第三实施例的不同之处在于:布置在储液罐 5的输出端 Otl与蒸发器 8的输 入端之间的循环动力机制是动力设备 7。
具体地,如图 4所示,储液罐 5的输出端 Otl经由动力设备 7连接蒸发器 8的输入端。这里,动力设备 7可以通过一个泵或者多个并联的泵实现; 或者, 也可以通过其它可以提供动力的设备实现。 泵可以是离心泵、旋涡泵、 齿轮泵 或螺杆泵等, 但不限于此。 此外, 这里, 各个蒸发器 8的输入端可以分别连接 动力设备 7的输出端, 或者, 也可以先进行输入端的合并连接后, 连接动力设 备 7的输出端, 但不限于此。
与在储液罐 5的输出端 Otl和蒸发器 8的输入端之间设置正落差相比,动 力设备 7 的设置提供了更充足循环动力。 尤其在制冷回路管路较长、 和 /或系 统对制冷剂流量要求较大的情况下。此外,使用动力设备 7提供循环动力更加 灵活。尤其在多个泵并联的例子中, 可以依据系统制冷需要启动泵的部分或全 部, 从而在能够提供充足循环动力的同时, 降低不必要的电力损耗。
当然,在安装条件允许的情况下,也可以结合布置上面说明的两种循环动 力机制。 图 5是示出根据本发明第五实施例的空调系统的结构的示意图。如图 5中所示, 储液罐 5的输出端 Otl与蒸发器 8的输入端在高度上存在正落差, 并且, 储液罐 5的输出端 Otl经由并联的动力设备 7和通断阀 41 (作为 "第 一通断阀" 的示例)连接蒸发器 8的输入端。
在这种情况下, 循环动力机制可以在两种状态下工作: 关闭动力设备 7, 打开通断阀 41 , 制冷剂依靠重力作用从储液罐 5流向蒸发器 8, 并在空调管路 中进行循环; 启动动力设备 7, 关闭通断阀 41 , 制冷剂在动力设备 7所产生动 力下在空调管路中循环。 这种布置使得既可以为制冷剂提供充足的循环动力, 又可以利用有利的安装落差尽可能地减小电力消耗。 在本实例中, 通断阀 41 也可以实现为多个通断阀的并联连接。
上面结合图 3至图 5分别说明了采用重力和电力方式提供制冷剂循环动力 的循环动力机制的例子。 但是, 本领域技术人员也可以采用其它可能的方式, 只要能够在压缩机不工作时为制冷剂提供合适的循环动力即可。
图 6是示出根据本发明第六实施例的空调系统的结构的示意图。在该实例 中,代替使用切换阀,切换装置 6可以包括设置于蒸发器 8的输出端至储液罐 5的输入端 It2 (作为 "第一储液罐的第二输入端" 的示例)之间的通断阀 62, 以及设置于蒸发器 8的输出端至冷凝设备的输入端之间的通断阀 61。 可选择 地, 还可以使用单向阀来替换通断阀 61。
虽然图 6中示出的通断阀 61和 62是电磁阀,但可以理解还可以采用其它 通断阀, 诸如手动球阀来实现。 在其它图中示出的各个通断阀也是如此。 既可 以用电磁阀实现, 也可以用电动球阀、 手动球阀、 电动二通阀等各种常用通断 阀来实现。 此外, 在一些实施例中, 通断阀 61和 62的开度可以进行调节。
当空调系统在压缩机模式下运行时, 通断阀 62打开, 通断阀 61关闭。 换 句话说, 切换装置的第一通路即通断阀 62所在管路接通, 切换装置的第二通 路即通断阀 61所在的管路阻断。 当空调系统在自然冷源制冷模式下运行时, 通断阀 61打开, 通断阀 62关闭。 换句话说, 切换装置的第二通路即通断阀 61所在管路接通, 切换装置的第一通路即通断阀 62所在的管路阻断。
在上面描述的各实施例中, 流量控制阀 3可以使用电子膨胀阀、 二通阀、 电动球阀、 热力膨胀阀、 或者孔板 +可调节开度的通断阀等方式实现, 但并不 限于此。 在实际应用中, 当流量控制阀 3通过热力膨胀阀实现时, 由于热力膨 胀阀对管路中流体的阻力较大, 可以在热力膨胀阀上并联通断阀,从而在自然 冷源模式下的制冷循环中、或者在由于诸如管路复杂等原因引起的循环动力不 足时, 通过通断阀进行制冷剂的流量控制, 在压缩机模式下的制冷循环中、 或 空调系统中制冷剂的流量控制和调节,使得系统中制冷剂流量保持在所需的流 量上。 当然, 在使用电子膨胀阀之外的其它方式实现流量控制阀 3时, 也可以 以并联通断阀的方式进行流量控制。
图 7是示出根据本发明第七实施例的空调系统的结构的示意图。相对于根 据第四实施例的空调系统,其区别在于: 空调系统还设置有通断阀 4 (作为 "第 二通断阀" 的示例), 该通断阀 4与流量控制阀 3并联连接。
在空调系统正常进行制冷工作时, 压缩机 1启动。 此时, 可以将流量控制 阀 3开启, 用于制冷剂的传输, 并且将通断阀 4关闭。 在自然冷源模式下进行 制冷时, 压缩机 1关闭。 此时, 可以将流量控制阀 3关闭, 将通断阀 4开启, 用于制冷剂的传输。
由于通断阀 4阻力较小, 从而可以降低制冷剂在制冷循环中的传输阻力, 减少动力设备 7的功率损耗,提高空调系统的制冷剂传输速度和效率, 进而提 高空调系统的制冷效果。
图 8是示出根据本发明第八实施例的空调系统的结构的示意图。相对于根 据第四实施例的空调系统, 其区别在于: 空调系统还设置有通断阀 42 (作为 "第三通断阀" 的示例), 通断阀 42的输入端连接流量控制阀 3的输入端, 且 通断阀 42的输出端连接储液罐 5的输出端 Otl。
在空调系统正常进行制冷工作时, 压缩机 1启动。 此时, 可以将流量控制 阀 3开启, 用于制冷剂的传输, 并且将通断阀 42关闭。 在自然冷源模式下进 行制冷时, 压缩机 1关闭。 此时, 可以将流量控制阀 3关闭, 将通断阀 42开 启, 用于制冷剂的传输。
由于通断阀 42阻力较小,从而可以降低制冷剂在制冷循环中的传输阻力, 减少动力设备 7的功率损耗,提高空调系统的制冷剂传输速度和效率, 进而提 高空调系统的制冷效果。 此外, 由于通断阀 42直接连接在储液罐 5的第一输 出端 Otl , 在打开通断阀 42时, 制冷剂不再流入储液罐 5而直接向蒸发器 8 提供, 因而, 提高了向蒸发器 8供应制冷剂的速度。
在图 7和图 8中分别示出只安装通断阀 4和通断阀 42的情况。 在实际应 用中, 可以既安装通断阀 4又安装通断阀 42, ^据空调系统的工作状态选择 使用。
图 9是示出根据本发明第九实施例的空调系统的结构的示意图。
为了防止空调系统中的制冷循环中发生制冷剂倒流的现象,优选可以在空 调系统中设置单向阀。 例如, 在第九实施例中, 切换装置 6的第一输出端(第 一通路的输出端)经由单向阀 91 (作为 "第一单向阀" 的示例)连接储液罐 5 的输入端 It2; 切换装置 6的第二输出端 (第二通路的输出端) 经由单向阀 92 (作为 "第二单向阀" 的示例 )连接冷凝设备 2的输入端; 并且压缩机 1的输 出端经由单向阀 93 (作为 "第三单向阀" 的示例)连接冷凝设备 2的输入端。 从而, 分别防止制冷剂回流到蒸发器 8或者压缩机 1中。 当然, 单向阀 91、 92和 93也可以选择性地单独设置。
图 10和图 11分别是示出根据本发明第十和第十一实施例的空调系统的示 意图。
为了防止在空调系统内制冷剂循环量比较小的情况下,持续使用作为循环 动力机制的动力设备对动力设备的损耗较大,可以设置用于根据检测到的主储 液罐中的液位进行控制, 以启动或停止动力设备的液位控制器。
在第十实施例中, 例如, 液位控制器 14 (作为 "第一液位控制器" 的示 例 )的两个液位检测端分别连接储液罐 5的高位输出端和低位输出端, 液位控 制器 14的信号输出端连接动力设备 7的控制端,从而通过液位控制器 14的输 出信号控制动力设备 7的开启和停止。 在具体应用中, 液位控制器 14可以将 液位检测端检测到的信号输出给控制板。 控制板再通过逻辑计算产生控制信 号, 并将控制信号输出给动力设备 7。 具体地, 液位控制器 14可以用于: 当 检测到储液罐 5的液位等于或高于低位输出端时(低位输出端检测到液体, 高 位输出端检测到或未检测到液体), 控制动力设备 7开启; 检测到液位低于低 位输出端时(低位输出端未检测到液体), 控制动力设备 7停止工作。 从而保 证只有在液位足够的情况下才开启动力设备 7, 防止动力设备 7过度损耗。 当 然, 还可以使用任意其它规则和液位控制器的布置对动力设备 7进行控制。
此外, 当位于冷凝设备与储液罐之间的流量控制阀可控时, 可以在主储液 罐上设置另外的液位控制器(作为 "第二液位控制器" 的示例), 用于根据检 测到的主储液罐中的液位对流量控制阀进行控制。具体地,对流量控制阀的开 度进行控制。
如图 11中所示, 液位控制器 13 (作为 "第二液位控制器" 的示例) 的两 个液位检测端分别连接储液罐 5的高位输出端和低位输出端, 液位控制器 13 的信号输出端连接流量控制阀 3的控制端。 液位控制器 13用于检测储液罐 5 中的液位,根据检测到的储液罐 5中的液位对流量控制阀 3相应进行控制。 这 里的控制可以为打开关断控制, 或者, 也可以进行线性或者非线性控制等, 这 里不限定。
此时, 流量控制阀 3 可以使用电动的流量控制元件实现, 由液位控制器
13发出对应的电信号进行流量控制阀 3的控制。 或者, 液位控制器 13和流量 控制阀 3也可以通过机械方式实现。例如,在储液罐 5中设置浮球来感应液位, 液位低时供液口开启, 液位达到时供液口关闭。 则这里的浮球对应液位控制器 13 , 而供液口则对应流量控制阀 3。 当然, 在实际应用中液位控制器 13和流 量控制阀 3还可以有其它的实现方式, 这里不赘述。
具体地, 液位控制器 13可以用于: 检测储液罐 5的液位低于预设第一液 位值,控制流量控制阀 3开启或加大供液;检测储液罐 5的液位高于预设第二 液位值,控制流量控制阀 3关断或者减少供液。从而保证储液罐 5中的液位处 于第一液位值和第二液位值之间。 这里, 第二液位值大于第一液位值。 第一液 位值和第二液位值可以分别取值为氏位输出端和高位输出端对应的液位值,或 者, 也可以自主设定其它的液位值。 可以根据实际应用环境设定, 这里并不限 制。 在具体应用中, 例如液位控制器 13可以将液位检测端检测到的信号输出 给控制板等控制器件。控制板再通过逻辑计算产生控制信号, 并将控制信号输 出给流量控制阀 3。
需要说明的是, 这里为了清楚起见, 将液位控制器 13和 14分开说明。 而 在实际应用中, 这二者也可以实现为: 在储液罐 5上设置一个液位检测器, 该 检测器将液位检测信号以电信号的形式输出到控制板, 由控制板的 CPU进行 处理后分别生成控制动力设备 7的信号和控制流量控制阀 3的信号,并分别输 出到动力设备 7和流量控制阀 3, 以进行控制 (作为 "第三液位控制器" 的示 例)。 液位控制器 13和 14可以使用本领域已知的诸如传感器的各种液位控制 器实现。
图 12是示出根据本发明第十二实施例的空调系统的结构的示意图。 在该 实例中, 在并联连接到储液罐 5的输出端 Otl的每一路蒸发器 81、 82、 83的 输入端处都设置有流量控制阀 181、 182、 183, 从而控制提供到每一路蒸发器 的制冷剂的量。 这里蒸发器 81、 82、 83可以分别代表一个单独的蒸发器, 也 可以代表一组蒸发器经串联、 并联或串并联的结合。
图 13是示出根据本发明第十三实施例的空调系统的结构的示意图。 当压 缩机 1是使用润滑油的有油压缩机时,为了减少压缩机 1的润滑油进入制冷剂 中的油量, 提高空调系统的效率, 节约能耗, 可以在压缩机 1的输出端设置油 分离器。如图 13中所示,压缩机 1的输出端 Oc连接油分离器 16的输入端 Id, 油分离器 16的输出端 Odl (作为 "油分离器的第一输出端" 的示例)连接冷 凝设备 2的输入端, 油分离器 16的第二输出端 Od2 (作为 "油分离器的第二 输出端" 的示例)连接压缩机 1的输入端 Ic2 (作为 "压缩机的第二输入端" 的示例)。
油分离器 16能够将压缩机 1的输出端 Oc输出的制冷剂中混杂的润滑油 分离出来, 送回压缩机 1中, 为压缩机 1提供润滑功效。
在其它各实施例中, 当压缩机 1是使用润滑油的有油压缩机时,也可以增 加油分离器 16。 这里不赘述。
优选地,在根据本发明的各空调系统中,还可以进一步设置干燥过滤器和 /或视液镜。
以如图 13所示的实施例为例, 干燥过滤器和 /或视液镜可以设置于油分离 器 16到压缩机 1的回油路径上。 如图 13所示, 在油分离器 16到压缩机 1的 回油路径上依次设置有干燥过滤器 111和视液镜 121。 干燥过滤器 111用于滤 除回流润滑油中的水分。 此外, 干燥过滤器 111和视液镜 121所在的路径上还可以设置通断阀 17。 具体地, 通断阀 17可以设置于干燥过滤器 111的左侧、 或者视液境 121的右 侧、 或者干燥过滤器 111和视液镜 121之间等。 例如图 13所示, 油分离器 16 的回油输出端依次通过干燥过滤器 111、 通断阀 17以及视液镜 121连接压缩 机 1的接收油分离器回油的输入端 Ic2。
控制阀 17的作用在于通过自身的通断或开度,控制油分离器 16和压缩机 1之间的回油量。
此外, 干燥过滤器和 /或视液镜还可以设置于冷凝设备 2与流量控制阀 3 之间。干燥过滤器和视液镜与冷凝设备 2以及储液罐 5之间的连接关系可以包 括: 冷凝设备 2的输出端通过干燥过滤器 11连接流量控制阀 3的输入端; 或 者, 冷凝设备 2的输出端通过视液镜 12连接流量控制阀 3的输入端; 或者, 冷凝设备 2的输出端依次通过干燥过滤器 11和视液镜 12连接流量控制阀 3的 输入端。 干燥过滤器 11用于滤除制冷剂中的水分。
通过增加干燥过滤器和视液镜, 可以吸收和观测制冷剂中的水分, 以防止 制冷剂中水份过多导致制冷量下降。
此外, 在一些实施例中, 在根据本发明实施例的空调系统中, 压缩机 1 可以由至少一个压缩机构成。 当压缩机 1包括两个或两个以上的压缩机时,压 缩机之间可以相互并联,压缩机的输入端共同作为压缩机 1的输入端,压缩机 的输出端共同作为压缩机 1的输出端。
采用至少两个压缩机并联的方式构成压缩机 1 , 相对于使用一个压缩机进 行制冷,提高了空调系统满足不同制冷需求的能力, 同时可以保证空调系统一 直运行在最佳工况。 例如, 当制冷需求较小时, 可以只控制一台或部分压缩机 开启,而当制冷需要提高时,控制较多或全部压缩机开启。根据不同制冷需求, 控制压缩机运行的台数,从而提高空调系统的制冷效率, 减少空调系统的功率 损耗。
另外, 在实际应用中, 在蒸发器的附近可以设置风机(图中未示出), 通 过风机加快蒸发器周围的空气流动速度,加快蒸发器与外界温度之间的冷热交 换。冷凝设备的冷却方式有风冷和水冷两种方式。 当冷凝设备采用风冷的冷却 方式时, 冷凝设备的附近需要设置风机,通过风机加快冷凝设备周围的空气流 动速度,加快冷凝设备与外界温度之间的冷热交换; 当冷凝设备采用水冷的冷 却方式时, 冷凝设备的附近需要设置冷冻水管路,通过冷冻水管路与外界温度 之间进行冷热交换。
上述各实施例中所述的空调系统可以是风冷螺杆式空调系统、水冷螺杆式 空调系统、 风冷涡旋式空调系统, 或者水冷涡旋式空调系统。
在此需要说明, 上面结合附图对本发明的若干实施例进行了详细描述,但 是, 本领域技术人员理解, 这些实施例并非穷举而且也不是意在对本公开所涵 盖的范围进行限制。在确保能够实现空调系统的基本功能的情况下, 上面结合 附图描述的各实施例中相关的功能部件的配置可以进行任意组合,通过这些组 合得到的空调系统也应被认为落入本公开所保护的范围内。
本文中所使用的 "第一"、 "第二" 等 (例如, "第一输出端"、 "第二输出 端"、 "第一输入端"、 "第二输入端", 等等), 只是为了描述清楚起见而对相应 部件或者部件的端子等进行区别, 不旨在限制任何次序或者强调重要性等。 此 夕卜, 在本文中使用的术语 "连接,,在不进行特别说明的情况下, 可以是直接相 连, 也可是经由其它部件间接相连。
在前面的说明书中参照特定实施例描述了本发明。然而本领域的普通技术 人员理解,在不偏离如权利要求书限定的本发明的范围的前提下可以进行各种 爹改和改变。

Claims

权 利 要 求
1.一种空调系统, 包括:
设置在所述空调系统的冷凝设备的输出端与所述空调系统的第一储液罐 的第一输入端之间的第二储液罐; 以及
旁路管路,所述旁路管路的第一端设置在所述冷凝设备的输出端与所述第 二储液罐的输入端之间,并且所述旁路管路的第二端设置在所述第二储液罐的 输出端与所述第一储液罐的第一输入端之间。
2.根据权利要求 1 所述的空调系统, 还包括压缩机和第一流量控制阀; 其中,
压缩机的输入端连接第一储液罐的第二输出端,压缩机的输出端连接冷凝 设备的输入端, 冷凝设备的输出端连接所述第二储液罐的输入端, 所述第二储 液罐的输出端经由所述第一流量控制阀连接第一储液罐的第一输入端,第一储 液罐的第一输出端连接所述空调系统的蒸发器的输入端,蒸发器的输出端连接 第一储液罐的第二输入端; 并且
所述旁路管路的第二端设置在所述第二储液罐的输出端与所述第一流量 控制阀的输入端之间。
3.根据权利要求 1所述的空调系统, 其中,
所述第一储液罐的第一输出端连接所述空调系统的蒸发器的输入端,所述 蒸发器的输出端连接所述冷凝设备的输入端,所述冷凝设备的输出端连接所述 第二储液罐的输入端,并且所述第二储液罐的输出端连接所述第一储液罐的第 一输入端。
4.根据权利要求 3所述的空调系统, 还包括: 压缩机、 第一流量控制阀 和切换装置; 其中,
所述压缩机的输入端连接所述第一储液罐的第二输出端,所述压缩机的输 出端连接所述冷凝设备的输入端;
所述第二储液罐的输出端经由所述第一流量控制阀连接所述第一储液罐 的第一输入端; 所述旁路管路的第二端设置在所述第二储液罐的输出端与所述第一流量 控制阀的输入端之间;
所述蒸发器的输出端经由所述切换装置的第一通路连接所述第一储液罐 的第二输入端,且所述蒸发器的输出端经由所述切换装置的第二通路连接所述 冷凝设备的输入端。
5.根据权利要求 3或 4所述的空调系统, 其中, 所述第一储液罐的第一 输出端与所述蒸发器的输入端之间在高度上存在正落差。
6.根据权利要求 5所述的空调系统, 其中, 所述第一储液罐的第一输出 端经由相互并联连接的动力设备和第一通断阀连接所述蒸发器的输入端。
7.根据权利要求 3或 4所述的空调系统, 其中, 所述第一储液罐的第一 输出端经由动力设备连接所述蒸发器的输入端。
8.根据权利 6或 7所述的空调系统, 还包括: 第一液位控制器, 用于根 据检测到的所述第一储液罐中的液位进行控制, 以启动或停止所述动力设备。
9.根据权利要求 2或 4至 8中任一个所述的空调系统, 还包括: 第二液 位控制器,用于根据检测到的所述第一储液罐中的液位对所述第一流量控制阀 的开度进行控制。
10.根据权利要求 6或 7所述的空调系统, 还包括: 第三液位控制器, 用 于根据检测到的所述第一储液罐中的液位对所述动力设备的启动或停止进行 控制, 并且对所述第一流量控制阀的开度进行控制。
11.根据权利要求 4至 10中任一个所述的空调系统, 其中,
所述切换装置是切换阀; 或者,
所述切换装置包括设置于所述蒸发器输出端至所述第一储液罐的第二输 入端之间的通断阀,以及设置于所述蒸发器输出端至所述冷凝设备的输入端之 间的通断阀或单向阀。
12.根据权利要求 4至 11 中任一个所述的空调系统, 还包括: 第二通断 阀, 所述第二通断阀与所述第一流量控制阀并联连接。
13.根据权利要求 4至 12中任一个所述的空调系统, 还包括: 第三通断 阀, 所述第三通断阀的输入端连接所述第一流量控制阀的输入端,且所述第三 通断阀的输出端连接所述第一储液罐的第一输出端。
14.根据权利要求 4至 13中任一个所述的空调系统, 其中,
所述切换装置的第一通路的输出端经由第一单向阀连接所述第一储液罐 的第二输入端; 且 /或,
所述切换装置的第二通路的输出端经由第二单向阀连接所述冷凝设备的 输入端; 且 /或,
所述压缩机的输出端经由第三单向阀连接所述冷凝设备的输入端。
15. 根据权利要求 2或 4至 14中任一个所述的空调系统, 其中, 在并联 连接到第一储液罐的第一输出端的每一路蒸发器的输入端处都设置有流量控 制阀, 从而控制提供到每一路蒸发器的制冷剂的量。
16.根据权利要求 2或 4至 15中任一个所述的空调系统, 其中, 所述压 缩机是有油压缩机, 所述空调系统还包括: 油分离器, 其中, 所述压缩机的输 出端连接油分离器的输入端, 油分离器的第一输出端连接冷凝设备的输入端, 油分离器的第二输出端连接压缩机的第二输入端。
17.根据权利要求 2或 4至 16中任一个所述的空调系统, 其中, 所述空 调系统包括相互并联连接的多个压缩机。
18.根据权利要求 1至 17中任一个所述的空调系统, 其中, 所述空调系 统所包括的蒸发器之间的连接形式是并联、 串联, 或者并联和串联的结合。
19.根据权利要求 1至 18中任一个所述的空调系统, 其中, 所述空调系 统是风冷螺杆式空调系统、 水冷螺杆式空调系统、 风冷涡旋式空调系统, 或者 水冷涡旋式空调系统。
PCT/CN2012/080663 2012-05-31 2012-08-28 空调系统 WO2013177868A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210178479.9A CN103453697B (zh) 2012-05-31 2012-05-31 空调系统
CN201210178479.9 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013177868A1 true WO2013177868A1 (zh) 2013-12-05

Family

ID=49672337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080663 WO2013177868A1 (zh) 2012-05-31 2012-08-28 空调系统

Country Status (2)

Country Link
CN (1) CN103453697B (zh)
WO (1) WO2013177868A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115789911A (zh) * 2022-11-17 2023-03-14 中国联合网络通信集团有限公司 一种空调控制方法、装置、电子设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104329838A (zh) * 2014-11-19 2015-02-04 珠海格力电器股份有限公司 冷媒调节方法、装置和空调
CN104482630B (zh) * 2014-12-18 2017-09-22 珠海格力电器股份有限公司 一种空调缺氟保护方法、装置及空调器
CN104776570B (zh) * 2015-03-30 2017-04-19 广东美的制冷设备有限公司 空调器系统的故障检测方法及装置
CN109489286B (zh) * 2018-12-19 2023-09-19 广东美的白色家电技术创新中心有限公司 空调系统及空调器
CN109695967A (zh) * 2018-12-26 2019-04-30 葛洲坝节能科技有限公司 工业冷却系统
CN114746704A (zh) * 2019-12-05 2022-07-12 三菱电机株式会社 制冷循环装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229497A (ja) * 1996-02-19 1997-09-05 Denso Corp 冷凍サイクル
JP2002067676A (ja) * 2000-08-25 2002-03-08 Zexel Valeo Climate Control Corp 車両用空調装置
JP2004092929A (ja) * 2002-08-29 2004-03-25 Hoshizaki Electric Co Ltd 製氷機
US20060107671A1 (en) * 2004-11-24 2006-05-25 Hoshizaki Denki Kabushiki Kaisha Cooling device
CN101012990A (zh) * 2007-01-30 2007-08-08 江苏天舒电器有限公司 用于热泵机组的容量调节系统
CN101694311A (zh) * 2009-10-23 2010-04-14 清华大学 一种带自然冷却功能的液泵供液多联式空调机组

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2762028Y (zh) * 2004-12-24 2006-03-01 广东美的电器股份有限公司 一种空气调节器
CN100395488C (zh) * 2006-02-17 2008-06-18 清华大学 一种液泵供液多联式空调机组
TWI360631B (en) * 2009-03-13 2012-03-21 Ind Tech Res Inst Air condition system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229497A (ja) * 1996-02-19 1997-09-05 Denso Corp 冷凍サイクル
JP2002067676A (ja) * 2000-08-25 2002-03-08 Zexel Valeo Climate Control Corp 車両用空調装置
JP2004092929A (ja) * 2002-08-29 2004-03-25 Hoshizaki Electric Co Ltd 製氷機
US20060107671A1 (en) * 2004-11-24 2006-05-25 Hoshizaki Denki Kabushiki Kaisha Cooling device
CN101012990A (zh) * 2007-01-30 2007-08-08 江苏天舒电器有限公司 用于热泵机组的容量调节系统
CN101694311A (zh) * 2009-10-23 2010-04-14 清华大学 一种带自然冷却功能的液泵供液多联式空调机组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115789911A (zh) * 2022-11-17 2023-03-14 中国联合网络通信集团有限公司 一种空调控制方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN103453697B (zh) 2017-03-15
CN103453697A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
US10830503B2 (en) Heat pump system with multiple operating modes
TWI747937B (zh) 用以控制冷凍系統之系統及方法
WO2013177868A1 (zh) 空调系统
TWI715719B (zh) 用以控制冷凍系統之系統及方法
US20140033753A1 (en) Load Estimator For Control Of Vapor Compression Cooling System With Pumped Refrigerant Economization
US10345012B2 (en) Cooling systems and methods incorporating a plural in-series pumped liquid refrigerant trim evaporator cycle
US20150330673A1 (en) Air-conditioning apparatus
US11940197B2 (en) Cooling systems and methods using two circuits with water flow in a counter flow and in a series or parallel arrangement
EP2806228B1 (en) Air conditioner
RU2721628C1 (ru) Кондиционер воздуха и его холодильная система
WO2014055914A1 (en) Load estimator for control of vapor compression cooling system with pumped refrigerant economization
JP2010190553A (ja) 電子機器の冷却システム
WO2013177872A1 (zh) 空调系统
CN105987535A (zh) 一种超远距离输送制冷剂的大容量多联式空调热泵机组
JP4203758B2 (ja) 水冷ヒートポンプ式地中熱利用空調システム
WO2013177871A1 (zh) 空调系统
CN110914614B (zh) 具有可控热交换器的热泵装置和热泵装置的运行方法
CN112268379A (zh) 热泵系统及其控制方法、装置以及空调设备、存储介质
CN114198872A (zh) 一种机房空调、机房空调的运行控制方法及装置
CN105805972B (zh) 空调系统及空调系统的控制方法
CN203704470U (zh) 一种并联多功能制冷空调机组
CN219713573U (zh) 一种一体式除湿制冷结构及整体式空调
WO2013044706A1 (zh) 一种空调系统
EP2917649A1 (en) Load estimator for control of vapor compression cooling system with pumped refrigerant economization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877641

Country of ref document: EP

Kind code of ref document: A1