WO2013177871A1 - 空调系统 - Google Patents

空调系统 Download PDF

Info

Publication number
WO2013177871A1
WO2013177871A1 PCT/CN2012/081224 CN2012081224W WO2013177871A1 WO 2013177871 A1 WO2013177871 A1 WO 2013177871A1 CN 2012081224 W CN2012081224 W CN 2012081224W WO 2013177871 A1 WO2013177871 A1 WO 2013177871A1
Authority
WO
WIPO (PCT)
Prior art keywords
conditioning system
air conditioning
oil
storage tank
liquid storage
Prior art date
Application number
PCT/CN2012/081224
Other languages
English (en)
French (fr)
Inventor
张卫星
陈杰
苗华
Original Assignee
艾默生网络能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾默生网络能源有限公司 filed Critical 艾默生网络能源有限公司
Publication of WO2013177871A1 publication Critical patent/WO2013177871A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Definitions

  • the invention relates to the field of refrigeration, and in particular to an air conditioning system. Background technique
  • the air conditioning system compresses the low-pressure refrigerant vapor discharged from the evaporator through a compressor to raise it to the condensing pressure required for normal condensation, and provides the power required for the refrigerant to circulate in the system, thereby achieving compression ⁇ condensation ⁇ expansion ⁇ evaporation. (endothermic) refrigeration cycle.
  • Air conditioning is configured according to the outdoor outdoor temperature in summer, and in other seasons with low outdoor temperatures, it is also necessary to simulate summer conditions to maintain the normal operation of the compressor system.
  • air-conditioning power accounts for half of the electricity used in the entire computer room, while compressor power consumption in the traditional air-conditioning system accounts for the vast majority of air-conditioning power consumption. Therefore, reducing the operating cost of the communication room requires finding a breakthrough in reducing the operating cost of the air conditioning system compressor.
  • a compressor which is lubricated with lubricating oil in a shaft portion of a rotating machine (hereinafter referred to as an "oily compressor”.
  • the term “compressor” means an oil compressor)
  • Ensuring adequate lubrication of the crankshaft, bearings, connecting rods, pistons and other moving parts is the basic requirement for maintaining the normal operation of the air conditioning system.
  • a large amount of refrigerant gas is also entrained while being discharged from the compressor. If the entrained lubricant does not return to the compressor, the compressor will be short of oil. Thus, how to achieve compressor return oil has become a problem of concern to those skilled in the art. Summary of the invention
  • the condensing device of the air conditioner is usually installed outdoors, when the outdoor temperature is lowered, the condensing pressure of the condensing device on the refrigerant gas is lowered. Even when the ambient temperature is below a certain temperature, the condensing device can condense the atmospheric pressure refrigerant gas.
  • an air conditioning system comprising: a first liquid storage tank, an oily compressor, a condensing device, a first flow control valve, an evaporator, and a switching device; a first input of the oily compressor The end is connected to the second output end of the first liquid storage tank, the output end of the oil compressor is connected to the input end of the condensing device, and the output end of the condensing device is connected to the first input end of the first liquid storage tank via the first flow control valve.
  • a first output end of the first liquid storage tank is connected to an input end of the evaporator; an output end of the evaporator is connected to a second input end of the first liquid storage tank via a first passage of the switching device, and an output end of the evaporator is connected via the switching device
  • the second passage is connected to the input end of the condensing device;
  • the air conditioning system further comprises: an oil return mechanism disposed between the third output end of the first liquid storage tank and the first input end of the oil compressor, and the oil return mechanism For returning oil to an oil-filled compressor; a circulating power mechanism disposed between the first output end of the first liquid storage tank and the input end of the evaporator.
  • the cyclic power mechanism may include: the first output end of the first liquid storage tank and the input end of the evaporator are configured to have a positive drop in height; or the first of the first liquid storage tank The output end is connected to the input end of the evaporator via the power device; or the first output end of the first liquid storage tank has a positive drop in height with the input end of the evaporator, and the first output end of the first liquid storage tank is connected in parallel
  • the power unit and the first on-off valve are connected to the input of the evaporator.
  • the oil return mechanism may include: the third output end of the first liquid storage tank has a positive drop in height with the first input end of the oil-filled compressor.
  • the oil return mechanism may include: an ejector pump disposed between the third output end of the first liquid storage tank and the first input end of the oil compressor, wherein the first liquid storage A third output of the canister is coupled to the first input of the ejector pump, and an output of the ejector pump is coupled to the first input of the oil compressor.
  • the second input of the ejector pump can be coupled between the output of the oily compressor and the input of the first flow control valve.
  • the air conditioning system may further include a first level controller for controlling the starting or stopping of the power unit based on the detected level in the first reservoir.
  • the air conditioning system may further include a second liquid level controller, The opening of the first flow control valve is controlled according to the detected liquid level in the first liquid storage tank.
  • the air conditioning system may further include a third liquid level controller for controlling start or stop of the power device according to the detected liquid level in the first liquid storage tank And controlling the opening degree of the first flow control valve.
  • the air conditioning system may further include an oil separator, wherein an output end of the oil compressor is connected to an input end of the oil separator, and a first output end of the oil separator is connected to an input end of the condensing device The second output of the oil separator is connected to the second input of the oil compressor.
  • the air conditioning system may further include a second on-off valve, the second on-off valve being connected in parallel with the first flow control valve.
  • the first flow control valve may be configured to open when the oil compressor is started, and to close when the oil compressor is not activated;
  • the second on/off valve may be configured to have oil compression The machine is turned off at startup and turned on when an oil compressor is not activated.
  • the air conditioning system may further include: a second liquid storage tank for assisting storage of the refrigerant in the air conditioning system; wherein the second liquid storage tank is connected to the output end of the condensation device and the first Between the inputs of the flow control valve.
  • the air conditioning system may further include a bypass line, the first end of the bypass line being disposed between the output end of the condensing device and the input end of the second liquid storage tank, and bypassing A second end of the conduit is disposed between the output of the second reservoir and the input of the first flow control valve.
  • the output end of the first passage of the switching device may be connected to the second input end of the first liquid storage tank via the first one-way valve; and/or the output end of the second passage of the switching device
  • the input of the condensing device can be connected via a second one-way valve; and/or the output of the oil-filled compressor can be connected to the input of the condensing device via a third one-way valve.
  • an air conditioning system may include a plurality of oil-filled compressors connected in parallel with each other.
  • the switching device may be a switching valve; or the switching device may include an on-off valve disposed between the evaporator output end and the second input end of the first liquid storage tank, and disposed on the evaporation On-off valve or check valve between the output of the device and the input of the condensing device.
  • a flow control valve may be provided at the input of each evaporator connected in parallel to the first output of the first reservoir, thereby providing control to each of the evaporations The amount of refrigerant in the device.
  • the form of connection between the evaporators may be in parallel, in series, or a combination of parallel and series.
  • the third output end of the first liquid storage tank may include a plurality of openings arranged from a highest liquid level to a lowest liquid level of the first liquid storage tank, the plurality of openings being opened according to the actual liquid level position or closure.
  • the air conditioning system may be an air-cooled screw type air conditioning system, a water-cooled screw type air conditioning system, an air-cooled scroll type air conditioning system, or a water-cooled scroll type air conditioning system.
  • the above air conditioning system according to the present invention can be operated in two modes of operation.
  • the first passage of the switching device can be switched to perform cooling by the compressor; and when the outdoor ambient temperature is low, the compressor can be stopped, the second passage of the switching device can be switched, and the condensing device can be utilized.
  • Natural cold sources achieve cooling demand. Thereby reducing the power loss of the air conditioning system.
  • the circulating power mechanism provided between the first output end of the first liquid storage tank and the input end of the evaporator ensures smooth flow of the refrigerant in the air conditioning system.
  • the third output end of the first liquid storage tank provided in the above solution, and the oil return mechanism between it and the oil-filled compressor can sufficiently increase the amount of lubricating oil flowing back to the compressor and compressing with the refrigerant gas discharge.
  • FIG. 1 is a block diagram showing an overall configuration of an air conditioning system according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing a first example of an air conditioning system according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing a second example of an air conditioning system according to an embodiment of the present invention
  • FIG. 4 is a view showing an embodiment according to the present invention.
  • FIG. 5 is a schematic view showing a fourth example of an air conditioning system according to an embodiment of the present invention
  • FIG. 6 is a schematic view showing a fifth example of an air conditioning system according to an embodiment of the present invention
  • 7 is a schematic view showing a sixth example of an air conditioning system according to an embodiment of the present invention;
  • FIG. 5 is a schematic view showing a fourth example of an air conditioning system according to an embodiment of the present invention
  • FIG. 6 is a schematic view showing a fifth example of an air conditioning system according to an embodiment of the present invention
  • 7 is a schematic view showing a sixth example of an air conditioning system according to an embodiment of the present invention
  • FIG. 8 is a schematic view showing a seventh example of an air conditioning system according to an embodiment of the present invention
  • 9 is a schematic view showing an eighth example of an air conditioning system according to an embodiment of the present invention
  • FIG. 10 is a schematic view showing a ninth example of an air conditioning system according to an embodiment of the present invention
  • FIG. 11 is a view showing an embodiment according to the present invention.
  • FIG. 12 is a schematic view showing an eleventh example of an air conditioning system according to an embodiment of the present invention
  • FIG. 13 is a view showing a twelfth example of an air conditioning system according to an embodiment of the present invention.
  • Fig. 14 is a schematic view showing a thirteenth example of an air conditioning system according to an embodiment of the present invention
  • Fig. 15 is a schematic view showing a fourteenth example of an air conditioning system according to an embodiment of the present invention.
  • the air conditioning system includes: a liquid storage tank 5, an oily compressor 1, a condensing device 2, a flow control valve 3, an evaporator 8 and a switching device 6. Furthermore, the air conditioning system according to an embodiment of the present invention is also configured to have a cyclic power mechanism 101 and a return oil mechanism 102. The connection relationship of each part, and the implementation and function of the cyclic power mechanism 101 and the oil return mechanism 102 will be specifically described below.
  • the compressor oil input terminal 1 is connected to the output terminal O t2 reservoir tank 5 (as shown in FIG. 1)
  • An example of "the second output of the first reservoir” is to receive refrigerant gas from the reservoir 5.
  • the output of the oil compressor 1 is connected to the input of the condensing device 2 to deliver the refrigerant gas compressed to have a sufficient condensing pressure to the condensing device 2.
  • Condensing device output terminal 2 via the flow control valve 3 is connected to the input terminal I tl reservoir tank 5 (as "a first input of the first reservoir,” the example), to the condensed refrigerant liquid through the flow control
  • the valve 3 is stored in the liquid storage tank 5 after throttling.
  • the output O tl of the reservoir 5 (as an example of "the first output of the first reservoir” is connected to the input of the evaporator 8).
  • the refrigerant that has been throttled by the flow control valve 3 is gas-liquid mixed, and these refrigerants are gas-liquid separated in the liquid storage tank 5, and the liquid enters the evaporator 8, and the gas enters the compressor 1.
  • the evaporator 8 is cooled by evaporation of the refrigerant liquid.
  • switching means 6 for switching the circulation path of the refrigerant gas output from the evaporator 8 is also provided.
  • the switching device 6 can switch between its first path and the second path. As shown in FIG.
  • the output of the evaporator 8 may be connected via a first passage 6 reservoir switching means input terminal 5 I t2 (as an example of "a second input of the first reservoir of the ,,)
  • the output of the evaporator 8 can be connected to the input of the condensing device 2 via the second passage of the switching device 6. That is, the refrigerant vapor output from the evaporator 8 is directly fed into the condensing device 2.
  • the "switching means” is a collective term for a device or a device group for switching the transmission path of the refrigerant vapor output from the evaporator 8, and is not limited to a specific implementation.
  • the switching device 6 can be a switching valve.
  • the first passage of the switching device 6 refers to a passage between the input end of the switching valve, the switching valve and the first output end
  • the second passage of the switching device 6 refers to the inside of the switching valve, the input end of the switching valve and the second The path between the outputs. Specifically, as shown in FIG.
  • the input end of the switching valve 6 is connected to the output end of the evaporator 8, the first output end of the switching valve 6 is connected to the input end I t2 of the liquid storage tank 5, and the second output end of the switching valve 6
  • the input of the condensing device 2 is connected.
  • the switching valve of the switching device 6 is mainly used to realize the switching of the flow path, and can be realized by a four-way valve, a three-way valve, a solenoid valve, or the like, but is not limited thereto.
  • the air conditioning system in which the switching device 6 is provided as above can operate in both the refrigeration cycle in the natural cold source mode and the refrigeration cycle in the compressor mode. Specifically, in the refrigeration cycle in the compressor mode, the compressor 1 is started to perform cooling.
  • the refrigerant constitutes a cooling cycle in accordance with the flow of the oil compressor 1, the condensing device 2, the flow control valve 3, the liquid storage tank 5, the evaporator 8, the switching device 6, and the liquid storage tank 5.
  • the compressor 1 In the refrigeration cycle in the natural cold source mode, the compressor 1 is stopped, and the refrigerant is constituted by the flow of the condensing device 2, the flow control valve 3, the liquid storage tank 5, the evaporator 8, the switching device 6, and the condensing device 2
  • the refrigeration cycle provides a cold source for the refrigerant directly from the outdoor environment.
  • Stopping the compressor and using a natural cold source for cooling can significantly reduce the energy consumption of the air conditioning system, which is conducive to energy saving.
  • a circulating power mechanism 101 is disposed between the output end Otl of the liquid storage tank 5 and the input end of the evaporator 8.
  • the circulating power mechanism 101 is capable of generating sufficient power to operate the refrigerant in the air conditioning system.
  • the power cycle mechanism 101 can also be activated when the refrigerant circulation power in the air conditioning system is insufficient due to a long pipeline or the like.
  • the cycle power mechanism 101 is indicated by a dashed box to illustrate:
  • the cycle power mechanism can be enabled (or arranged) only in a mode that uses a natural cold source for cooling, or can also be used in a compressor cooling mode. The case is also enabled (or arranged).
  • the cyclic power mechanism 101 can be implemented in a variety of ways that can be thought of by those skilled in the art, as long as the circulating power can be provided to the refrigerant without the compressor operating. A specific implementation of the cyclic power mechanism 101 will be described in detail below by way of example.
  • the compressor oil in the air conditioning system of the present embodiment is also provided at the output end of the reservoir is O t3 5 (as an example of "a third of the output of the first reservoir") is arranged And a return oil mechanism 102 between the input of the oil compressor 1.
  • the oil return mechanism 102 is used to return oil to the oil-filled compressor 1.
  • the oil return mechanism 102 can be implemented in a variety of ways as will occur to those skilled in the art, as long as the oil return rate required to maintain proper operation of the compressor is maintained.
  • the implementation of the oil return mechanism 102 will be described in detail later by way of example.
  • the air conditioning system can operate in a compressor mode and a natural cold source cooling mode.
  • the system operates in a conventional compressor mode.
  • the refrigerant vapor outputted from the evaporator 8 is sent to the liquid storage tank 5 via the first passage of the switching device 6.
  • the system When the outdoor ambient temperature is low, the system operates in a natural cold source cooling mode.
  • the refrigerant vapor outputted from the evaporator 8 is directly sent to the condensing device 2 via the second passage of the switching device 6.
  • the outdoor steam is used as a natural cold source to condense the cooling steam.
  • the refrigerant is converted from a gaseous state to a liquid state, circulated to the liquid storage tank 5 via the flow control valve 3, and then transferred from the liquid storage tank 5 to the evaporator 8 disposed indoors by the action of the circulating power mechanism 101.
  • the refrigerant absorbs the heat in the chamber in the evaporator 8, is converted from the liquid state to the gaseous state, and is transferred to the condensing device 2 to realize the refrigeration cycle.
  • the outdoor low temperature air is used for cooling, and no need to pass Through the operation of the compressor, the use of natural cold source refrigeration, reducing the power loss and power consumption of the air conditioning system, and saving energy.
  • the outdoor cold source when the temperature of the refrigerant is higher than the outdoor temperature, the outdoor cold source can be used to perform the refrigerant cooling. Therefore, the switching between the two cooling modes can be performed by the system according to the temperature difference between the refrigerant and the outdoor temperature. Specifically, when the refrigerant temperature is higher than the outdoor temperature, the cooling can be performed by the natural cold source mode. Otherwise, the compressor mode can be performed. Refrigeration. Alternatively, in practical applications, the switching between the two cooling modes may also be manually controlled, etc., and will not be described here.
  • the term "condensing device” means a device capable of condensing a refrigerant, that is, a heat exchanger that cools and liquefies a high-temperature refrigerant gas.
  • specific condensation equipment can be selected independently.
  • the condensing device 2 can be realized by one condensing device or at least two condensing devices connected in parallel. In this case, the input of at least two condensing units connected in parallel serves as the input of the condensing device, and the output of at least two condensing units connected in parallel serves as the output of the condensing device.
  • the condensing device can be cooled by air cooling, water cooling or evaporative condensation.
  • the number of evaporators may be one or more, and the specific number is not limited.
  • the outputs of the individual evaporators 8 can be connected to the inputs of the switching device 6, respectively.
  • the input end of the switching device 6 may be connected after the merged connection of the output terminals, which is not limited herein.
  • Each input of the evaporator 8 and the reservoir of the output terminal O tl 5 (or cycle power output terminal mechanism 101) is connected versa.
  • the form of connection between the evaporators can be in parallel, in series, or a combination of parallel and series.
  • the liquid storage tank 5 can be realized by a low pressure liquid storage tank or a separator, but is not limited thereto.
  • FIG. 2 An example of an air conditioning system according to an embodiment of the present invention will be described in detail below with reference to FIG. 2, FIG. 3 and FIG. 4, and a specific implementation of the cyclic power mechanism will be specifically described.
  • 2, 3 and 4 are respectively schematic views showing first to third examples of an air conditioning system according to an embodiment of the present invention.
  • the arrows marked on the piping in the figure indicate the flow of refrigerant in the piping.
  • the first example of the air conditioning system shown in Fig. 2 includes: a liquid storage tank 5, an oily compressor 1, a condensing device 2, a flow control valve 3, an evaporator 8, and a switching device 6.
  • the input I cl of the oil compressor 1 (as an example of the "first input of the oil compressor") is connected to the output O t2 of the liquid storage tank 5, and the output of the oil compressor 1 is connected to the condensing device 2 Input,
  • the output of the condensing device 2 is connected via the flow control valve 3 to the input I tl of the reservoir 5, and the output O tl of the reservoir 5 is connected to the input of the evaporator 8.
  • the output of the evaporator 8 may be connected to the input terminal I t2 reservoir tank 5 via a first path switching device 6, or the input connected to the condensing device 2 via the second path switching device 6 end.
  • This example is applicable to a scenario in which a facility using an air conditioning system (e.g., a machine room) is located in a field such as a high-rise building that can provide a positive drop between the output of the liquid storage tank 5 (the input end of the evaporator 8 and the evaporator 8).
  • the liquid storage tank in the air conditioning system may be disposed at a higher position such as a roof, and one or more evaporators may be disposed in the lower floor, thereby utilizing the gravitational potential energy existing between the height drops to generate refrigerant from the liquid storage.
  • the power of the tank flowing to the evaporator directly ensures the circulation of the refrigerant in the refrigeration circuit by gravity, greatly saves the power loss of any power equipment operation, and plays a very important role in energy saving of the air conditioning system.
  • the installation of the air conditioning system does not allow for a suitable height drop between the reservoir to the evaporator outlet and the evaporator; or the set height drop is not sufficient to provide sufficient circulating power.
  • other ways are needed to arrange the cyclic power mechanism.
  • FIG. 1 Another example of implementing a cyclic power mechanism is shown in FIG. This example differs from the example shown in Figure 2 in that the cyclic power mechanism disposed between the output of the reservoir 5 (3 ⁇ 4) and the input of the evaporator 8 is the power plant 7.
  • the output end Otl of the liquid storage tank 5 is connected to the input end of the evaporator 8 via the power unit 7.
  • the power unit 7 can be realized by one pump or a plurality of pumps connected in parallel; or it can also be realized by other devices that can provide power.
  • the pump may be a centrifugal pump, a vortex pump, a gear pump or a screw pump, but is not limited thereto.
  • the input ends of the respective evaporators 8 may be respectively connected to the output ends of the power equipment 7, or the combined ends of the respective evaporators 8 may be connected first, and then connected to the output end of the power device 7, but not limited thereto. this.
  • the setting of the force device 7 provides more circulating power. This is especially the case when the refrigeration circuit is long and/or the system requires a large flow of refrigerant.
  • the use of the power unit 7 to provide cycle power is more flexible. Especially in the case of a plurality of pumps connected in parallel, part or all of the pump can be started depending on the system cooling needs, so that sufficient power can be supplied while reducing unnecessary power loss.
  • the structure and connection of the other units in Fig. 3 are the same as those in Fig. 2, and thus the description thereof will be omitted.
  • the two cyclic power mechanisms described above can also be combined in combination with the installation conditions.
  • the input terminal and the output terminal of the reservoir tank 5 of the evaporator 8 there is a positive gap in height, and the output terminal O tl reservoir tank 5 via the device 7 and in parallel with the power on-off valve 41 (As an example of the "first on-off valve") the input end of the evaporator 8 is connected.
  • the cyclic power mechanism can operate in two states: the power unit 7 is turned off, the on-off valve 41 is opened, and the refrigerant flows from the liquid storage tank 5 to the evaporator 8 by gravity, and is in the air conditioning line.
  • the cycle is started; the power unit 7 is started, the on-off valve 41 is closed, and the refrigerant circulates in the air-conditioning line under the power generated by the power unit 7.
  • the on-off valve 41 can also be implemented as a parallel connection of a plurality of on-off valves.
  • an exemplary use of an oil return mechanism reservoir tank 5 of the output terminal and the input terminal O t3 oil compressor 1 ⁇ 1 there is a positive gap in height.
  • the density of the oil is less than the density of the refrigerant, and therefore, the oil generally floats on the surface of the refrigerant in the liquid storage tank 5.
  • the output terminal O t3 5 reservoir may be provided in the reservoir 5 is slightly below the liquid level position in order to smoothly return the oil through the output terminal O t3.
  • the distance between the position of the output terminal O t3 and the liquid surface can be set autonomously, and is not limited herein.
  • the output Ot3 may comprise one or more openings on the side wall of the reservoir 5.
  • the plurality of openings may be aligned from a highest liquid level to a lowest liquid level of the liquid storage tank 5. In practical applications, this is more The opening can be opened or closed depending on the actual liquid level position in the liquid storage tank 5.
  • the above oil return mechanism can increase the oil return rate of the oil-filled compressor without adding any components, so that the oil-filled compressor can continue to operate normally.
  • FIG. 5 is a schematic view showing a fourth example of an air conditioning system according to an embodiment of the present invention.
  • the oil return mechanism is: an ejector pump 15 disposed between the output end O T3 of the liquid storage tank 5 and the input end I CL of the oil compressor 1.
  • the output end O T3 of the liquid storage tank 5 is connected to the input end of the ejector pump 15, and the output end of the ejector pump 15 is connected to the input end I CL of the oil compressor 1.
  • the pressure at the input end of the oil compressor 1 is less than the pressure in the liquid storage tank 5, so that the oil return is achieved by the pressure difference between the two.
  • the ejector pump 15 changes the internal area, and the pressure energy and the kinetic energy are mutually converted to form different pressure differences.
  • the ejector pump 15 is, for example, a Laval tube, but is not limited thereto.
  • the output end O T3 of the liquid storage tank 5 can also be disposed to a position slightly below the liquid level of the liquid storage tank.
  • the output O T3 may include one or more openings on the side wall of the reservoir 5 .
  • An advantage of the embodiment of Figure 5 is that the oil return of the fourth example is compared to the first to third examples of setting a positive drop between the output end O T3 of the liquid storage tank 5 and the input end I CL of the compressor 1.
  • the mechanism reduces the requirement for the installation space of the air conditioning system, and the amount of liquid entering the input end I CL of the oil compressor 1 can be reduced, thereby preventing damage of the compressor due to excessive liquid inflow.
  • FIG. 6 is a schematic view showing a fifth example of an air conditioning system according to an embodiment of the present invention.
  • the ejector pump 15 has two inputs, I P PI p2 ; the output O T3 of the reservoir 5 is connected to the input I PL of the ejector pump 15 (as the first of the "ejection pump”
  • the input I P2 of the ejector pump 15 (as an example of the "second input of the ejector pump") is connected between the output of the oil-filled compressor 1 and the input of the condensing device 2
  • the output end of the ejector pump is connected to the input of the oil compressor.
  • Figure 6 the ejector pump 15 has two inputs, I P PI p2 ; the output O T3 of the reservoir 5 is connected to the input I PL of the ejector pump 15 (as the first of the "ejection pump”
  • the input I P2 of the ejector pump 15 (as an example of the "second input of the
  • the input terminal I P2 of the ejector pump 15 is connected between the output end of the oil-filled compressor 1 and the input end of the condensing device 2, it is not limited thereto. In fact, it is sufficient that the input terminal I P2 of the ejector pump 15 is connected to the high pressure line of the air conditioning system.
  • the line pressure at the input terminal I P2 of the ejector pump 15 is higher than the pressure in the ejector pump 15, and there is a pressure difference therebetween.
  • the pressure of the ejector pump 15 is higher than the pressure in the oil compressor 1, two There is also a pressure difference between the people. Therefore, the mixture of the refrigerant and the lubricating oil is returned to the ejector pump 15 by the pressure difference between the input terminal Ip2 of the ejector pump 15 and the ejector pump 15, in the ejector pump 15 and the reservoir 5
  • the output of the O t3 backflow oil (interposed with refrigerant) interacts.
  • the high temperature refrigerant and the low temperature refrigerant are neutralized, and since the pressure is lowered, the refrigerant liquid evaporates into a gas, and the lubricating oil does not undergo a phase change. Thereafter, the lubricating oil (and the refrigerant gas) continues to flow back into the oil-filled compressor 1 by the pressure difference between the ejector pump 15 and the oil-filled compressor 1, thereby realizing the high-pressure injection ejector returning oil.
  • an oil separator may be provided at the output end of the oil compressor 1.
  • FIG. 7 is a schematic view showing a sixth example of an air conditioning system according to an embodiment of the present invention.
  • This example differs from the air conditioning system shown in Fig. 6 in that it further includes an oil separator 16.
  • the output of the oil compressor 1 is connected to the input of the oil separator 16, and the output O dl of the oil separator 16 (as an example of the "first output of the oil separator") is connected to the input of the condensing device 2 terminal, an output terminal (as a "second output terminal of the oil separator” in the example) is connected to an oil separator 16 oil of the compressor 1 and the input I cl different inputs I c2 (as "compressor with oil Example of the second input”.
  • the oil separator 16 can separate the lubricating oil mixed in the refrigerant output from the output end of the oil compressor 1, and return it to the oil-filled compressor 1 to provide lubrication for the oil-filled compressor 1.
  • the oil separator 16 can also be added.
  • the specific implementation structure is similar to the structure shown in FIG. 7, and will not be described here.
  • the flow control valve 3 may be implemented using an electronic expansion valve, a two-way valve, an electric ball valve, a thermal expansion valve, or an orifice + control valve, but is not limited thereto.
  • the flow control valve 3 when the flow control valve 3 is realized by the thermal expansion valve, since the thermal expansion valve has a great resistance to the fluid in the pipeline, it may be considered to connect an on-off valve 4 in parallel with the thermal expansion valve, thereby adopting the natural cold source mode.
  • the flow rate of the refrigerant In the lower refrigeration cycle, the flow rate of the refrigerant is controlled by the on-off valve, and in the refrigeration cycle in the compressor mode, the flow rate of the refrigerant is controlled by the thermal expansion valve.
  • you can enter The flow control and regulation of the refrigerant in the air conditioning system maintains the refrigerant flow in the system at the required flow rate.
  • the flow control valve 3 when the flow control valve 3 is realized by means other than the electronic expansion valve, the flow rate control may be performed in parallel with the on-off valve.
  • Fig. 8 is a schematic view showing a seventh example of the air conditioning system according to an embodiment of the present invention.
  • the difference from the air conditioning system shown in Fig. 6 is that the air conditioning system is further provided with an on-off valve 4 (as an example of a "second on-off valve") which is connected in parallel with the flow control valve 3.
  • an on-off valve 4 as an example of a "second on-off valve" which is connected in parallel with the flow control valve 3.
  • the air conditioning system When the air conditioning system is normally performing cooling work, an oil compressor is started. At this time, the flow control valve 3 can be opened for the refrigerant to be transferred, and the on-off valve 4 is closed. When cooling in natural cold mode, the oil compressor is turned off. At this point, the flow control valve 3 can be closed and the on-off valve 4 can be opened for refrigerant transfer.
  • the resistance of the on-off valve 4 is small, the transmission resistance of the refrigerant in the refrigeration cycle can be reduced, the power loss of the power device 7 can be reduced, the refrigerant transmission speed and efficiency of the air-conditioning system can be improved, and the refrigeration effect of the air-conditioning system can be improved.
  • FIG. 9 is a schematic view showing an eighth example of an air conditioning system according to an embodiment of the present invention.
  • This example differs from the example shown in FIG. 8 in that:
  • a liquid storage tank 10 for assisting in storing the refrigerant in the air conditioning system (as a "second liquid storage tank") may be provided.
  • the reservoir 10 may be disposed between the output of the condensing device 2 and the input of the flow control valve 3.
  • the liquid storage tank 10 can be realized by a high pressure liquid storage tank.
  • the liquid storage tank 5 can be realized by a low pressure liquid storage tank. Since the volume design of the liquid storage tank 5 is often affected by the size of the air conditioning system unit, the liquid storage tank 10 is provided in order to prevent the indoor unit of the air conditioning system from being turned off or the indoor load is changed to cause a change in the circulation amount of the system refrigerant.
  • the liquid storage tank 10 can store the refrigerant when the amount of refrigerant circulation changes.
  • the liquid storage tank 10 is realized by the high pressure liquid storage tank, more refrigerant can be accommodated with respect to the liquid storage tank 5, thereby further optimizing the cooling effect of the air conditioning system.
  • the shape of the liquid storage tank 10 is not limited by the figure, and the position of the inlet and outlet is only illustrative.
  • the liquid storage tank 5 is also merely illustrative in the drawings, and may be various shapes such as a circular shape, an elliptical shape, and a square shape, and is not limited thereto.
  • the installation manner of the liquid storage tank 5 or the liquid storage tank 10 may be various installation methods such as vertical installation or horizontal installation, and is not limited herein.
  • both of the liquid storage tanks 5 and 10 may be provided both indoors and outdoors, and can be determined by a person skilled in the art on a case-by-case basis.
  • 10 and 11 are respectively schematic views showing ninth and tenth examples of an air conditioning system according to an embodiment of the present invention.
  • the power equipment that is used as the circulating power mechanism In order to prevent the power equipment that is used as the circulating power mechanism from being used to reduce the loss of the power equipment in the case where the refrigerant circulation amount in the air conditioning system is relatively small, it can be set to be used according to the detected liquid level in the low pressure liquid storage tank. Control to start or stop the level controller of the power unit.
  • the two liquid level detecting ends of the liquid level controller 14 are respectively connected to the high output end and the low output end of the liquid storage tank 5, the liquid level.
  • the signal output of the controller 14 is coupled to the control terminal of the power unit 7, thereby controlling the opening and closing of the power unit 7 by the output signal of the level controller 14.
  • the level controller 14 can output a signal detected by the liquid level detecting end to the control board.
  • the control board then generates a control signal through logic calculation and outputs the control signal to the power unit 7.
  • the liquid level controller 14 can be used to: when it is detected that the liquid level of the liquid storage tank 5 is higher than the low level output end, the control power device 7 is turned on; when the liquid level is detected to be lower than the low level output end, the power control device 7 is controlled. stop working. This ensures that the power unit 7 is only turned on if the liquid level is sufficient to prevent excessive loss of the power unit 7.
  • a liquid level controller may be provided on the low pressure liquid storage tank for controlling the flow rate according to the detected liquid level in the low pressure liquid storage tank The valve is controlled. Specifically, the opening of the flow control valve is controlled.
  • the two liquid level detecting ends of the liquid level controller 13 are respectively connected to the high output end and the low output end of the liquid storage tank 5, and the liquid level control is performed.
  • the signal output of the device 13 is connected to the control terminal of the flow control valve 3.
  • the liquid level controller 13 is for detecting the liquid level in the liquid storage tank 5, and controls the flow control valve 3 accordingly according to the detected liquid level in the liquid storage tank 5.
  • the control here may be to turn the control on or off, or it may be linear or non-linear control, etc., which is not limited herein.
  • the flow control valve 3 can be realized by an electric flow control element, and the liquid level controller 13 issues a corresponding electric signal to control the flow control valve 3.
  • the level controller 13 and the flow control valve 3 can also be realized mechanically.
  • a float ball is provided in the liquid storage tank to sense the liquid level, and when the liquid level is low, the liquid supply port is opened, and when the liquid level is reached, the liquid supply port is closed. Then the float ball here corresponds to the liquid level controller 13, and the liquid supply port corresponds to the flow control valve 3.
  • the liquid level controller 13 and the flow control valve 3 may have other implementation manners, which are not described herein.
  • the liquid level controller 13 can be configured to: detect that the liquid level of the liquid storage tank 5 is lower than a preset first liquid level value, control the flow control valve 3 to open or increase the liquid supply; and detect the liquid level of the liquid storage tank 5. Above the preset second level value, the flow control valve 3 is controlled to shut down or reduce the supply of liquid. Thereby, it is ensured that the liquid level in the liquid storage tank 5 is between the first liquid level value and the second liquid level value.
  • the second liquid level value is greater than the first liquid level value.
  • the first liquid level value and the second liquid level value may be respectively taken as the liquid level values corresponding to the low output end and the high output end, or other liquid level values may be set autonomously.
  • the liquid level controller 13 can output a signal detected by the liquid level detecting end to a control device such as a control board.
  • the control board then generates a control signal by logic calculation and outputs a control signal to the flow control valve 3.
  • liquid level controllers 13 and 14 are separately explained here for the sake of clarity. In practical applications, the two can also be realized as: A liquid level detector is arranged on the liquid storage tank 5, and the detector outputs the liquid level detection signal to the control board in the form of an electric signal, and the CPU of the control board After the processing, signals for controlling the power unit 7 and signals for controlling the flow rate control valve 3 are separately generated and output to the power unit 7 and the flow rate control valve 3, respectively, for control (as an example of the "third level controller").
  • the level controllers 13 and 14 can be implemented using various level controllers such as sensors known in the art.
  • a check valve may be provided in the air conditioning system.
  • the first output of the switching device 6 (the output of the first path) is connected via a one-way valve 91 (as an example of a "first one-way valve")
  • the input end I t2 of the liquid tank 5; the second output end of the switching device 6 (the output end of the second passage) is connected to the input end of the condensing device 2 via a one-way valve 92 (as an example of a "second check valve”);
  • the output of the oil compressor 1 is connected to the input of the condensing device 2 via a check valve 93 (as an example of a "third check valve”).
  • the one-way valves 91, 92, and 93 may be selectively provided separately.
  • a drying filter Preferably, in the air conditioning system of the embodiment of the invention, a drying filter and
  • a drying filter and/or a sight glass may be disposed on the oil return path of the oil separator 16 to the oil compressor 1.
  • the oil return output end of the oil separator 16 is connected to the input end of the oil separator 1 of the oil compressor 1 through the drying filter 111 and the sight glass 121 in sequence.
  • Dry The dry filter 111 is used to filter out moisture in the return lubricating oil.
  • an on-off valve 17 may be provided in the path in which the drying filter 111 and the sight glass 121 are located. Specifically, the on-off valve 17 may be disposed between the drying filter 111 and the oil return output end of the oil separator 16, or between the liquid environment 121 and the input end of the oil compressor 1 receiving the oil separator return oil, Alternatively, the filter 111 and the sight glass 121 are dried. For example, as shown in FIG. 10 and FIG. 11, the oil return output end of the oil separator 16 is connected to the input end of the oil return of the oil separator 1 of the oil compressor 1 through the drying filter 111, the on-off valve 17, and the sight glass 121. .
  • the function of the on-off valve 17 is to control the amount of oil return between the oil separator 16 and the oil compressor 1 by its own opening or closing.
  • a drying filter and/or a sight glass can also be placed between the condensing device 2 and the flow control valve 3.
  • the connection between the drying filter and the sight glass and the condensing device 2 and the liquid storage tank 5 may include: the output end of the condensing device 2 is connected to the input end of the flow control valve 3 through the drying filter 11; or, the condensing device 2 The output end is connected to the input end of the flow control valve 3 via the sight glass 12; alternatively, the output end of the condensing device 2 is connected to the input end of the flow control valve 3 through the drying filter 11 and the sight glass 12 in sequence.
  • the drying filter 11 is used to filter out moisture in the refrigerant.
  • Fig. 12 is a schematic view showing an eleventh example of an air conditioning system according to an embodiment of the present invention.
  • the liquid storage tank 10 is provided with a bypass line 10L connected in parallel thereto.
  • the first end of the bypass line 10L is disposed between the output end of the condensing device 2 and the input end of the second liquid storage tank 10, and the second end of the bypass line 10L is disposed at the output end of the liquid storage tank 10 Between the inputs of the flow control valve 3.
  • the bypass line 10L is disposed such that the refrigerant can bypass the liquid storage tank 10 and directly transport it to the flow rate.
  • the input of the control valve 3. Thereby, the refrigerant supply to the liquid storage tank 5 is accelerated, and the resistance in the circulation is reduced.
  • the second end of the bypass line 10L is directly connected to the input of the flow control valve 3.
  • the second end of the bypass line 10L can also be coupled between the reservoir 10 and the dryer 11, between the dryer 11 and the sight glass 12, and the like.
  • Bypass line 10L The same is true for the settings on the first end.
  • the oil compressor 1 may be constituted by at least one oil compressor.
  • the oil compressor 1 includes two or more oily compressors, the oil compressors may be connected in parallel with each other, and the input terminals of the oil compressors connected in parallel are used as the input end of the oil compressor 1 together.
  • the outputs of the oil compressors connected in parallel are used together as the output of the oil compressor 1.
  • FIG. 13 is a schematic illustration of a twelfth example of an air conditioning system in accordance with an embodiment of the present invention.
  • the oily compressor 1 is realized by a parallel oil-filled compressor 110 and an oil-filled compressor 120.
  • the input end of the oil compressor 110 and the oil-filled compressor 120 is connected to the output end O t2 of the liquid storage tank 5, and the output end of the oil-filled compressor 110 and the oil-filled compressor 120 is connected to the input end of the condensing device 2.
  • the oil compressor 1 is constructed by connecting at least two oil compressors in parallel, and the refrigeration is improved by using an oil-filled compressor, thereby improving the ability of the air-conditioning system to meet different cooling requirements, and ensuring that the air-conditioning system is always operating at the optimum.
  • Working conditions For example, when the cooling demand is small, it is possible to control only one or a part of the oil compressor to be turned on, and when the cooling needs to be increased, more or all of the oil compressors are turned on. According to different cooling requirements, the number of oil compressors is controlled to improve the cooling efficiency of the air conditioning system and reduce the power loss of the air conditioning system.
  • FIG. 14 is a schematic view showing a thirteenth example of an air conditioning system according to an embodiment of the present invention.
  • the switching device 6 may comprise an on-off valve 62 (as a "third on-off valve") disposed between the output of the evaporator 8 and the input end I t2 of the reservoir 5 An example), and an on-off valve 61 (as an example of a "fourth on-off valve") disposed between the output of the evaporator 8 and the input of the condensing device.
  • a one-way valve may also be used ( As the "fourth check valve, an example of", the on-off valve 61 is replaced.
  • solenoid valves it will be appreciated that other on-off valves, such as manual ball valves, may also be employed. The same is true for the various on-off valves shown in the other figures. It can be realized by a solenoid valve or by various common on-off valves such as an electric ball valve, a manual ball valve, and an electric two-way valve. In some embodiments, the opening degrees of the on-off valves 61 and 62 can be adjusted.
  • the on-off valve 62 When the air conditioning system is operating in the compressor mode, the on-off valve 62 is opened and the on-off valve 61 is closed. In other words, the first passage of the switching device, that is, the line in which the on-off valve 62 is located, is opened, and the second passage of the switching device, that is, the line in which the on-off valve 61 is located, is closed.
  • the on-off valve 61 When the air conditioning system is operating in the natural cold source cooling mode, the on-off valve 61 is opened and the on-off valve 62 is closed.
  • the second passage of the switching device is the on-off valve
  • the pipeline where 61 is located is opened
  • the first passage of the switching device that is, the pipeline where the on-off valve 62 is located is closed.
  • FIG. 15 is a schematic view showing a fourteenth example of an air conditioning system according to an embodiment of the present invention.
  • the reservoir is connected in parallel to the output terminal O 5 t of each channel of the evaporator 81, 82, at the input 83 are provided with a flow control valve 181, 182, 183 (as the "second flow control valve An example of ",” thereby controlling the amount of refrigerant supplied to each evaporator.
  • the evaporators 81, 82, 83 may each be a single evaporator, a series, a parallel connection of a plurality of evaporators, or a combination of series and parallel.
  • a fan is required in the vicinity of the evaporator, and the air flow speed around the evaporator is accelerated by the fan to accelerate the exchange of heat between the evaporator and the outside temperature.
  • the condensing equipment can be cooled by air or water.
  • a fan is required in the vicinity of the condensing device, the air flow speed around the condensing device is accelerated by the fan, and the heat exchange between the condensing device and the outside temperature is accelerated; when the condensing device is cooled by water cooling In the mode, a cooling water pipeline is required in the vicinity of the condensing device, and cold and heat exchange is performed between the cooling water pipeline and the outside temperature.
  • the air conditioning system described in each of the above embodiments may be an air-cooled screw type air conditioning system, a water-cooled screw type air conditioning system, an air-cooled scroll type air conditioning system, or a water-cooled scroll type air conditioning system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调系统,包括第一储液罐(5)、有油压缩机(1)、冷凝设备(2)、第一流量控制阀(3)、蒸发器(8)以及切换装置(6)。有油压缩机(1)的第一输入端(Icl)连接第一储液罐(5)的第二输出端(Ot2),有油压缩机(1)的输出端连接冷凝设备(2)的输入端。冷凝设备(2)的输出端经第一流量控制阀(3)连接第一储液罐(5)的第一输入端(Itl),第一储液罐(5)的第一输出端(Otl)连接蒸发器(8)的输入端。蒸发器(8)的输出端经由切换装置(6)的第一通路连接第一储液罐(5)的第二输入端(It2),并且蒸发器(8)的输出端经由切换装置(6)的第二通路连接冷凝设备(2)的输入端。空调系统还包括布置在第一储液罐(5)的第三输出端(Ot3)和有油压缩机(1)的第一输入端(Icl)之间的回油机制(102),以及布置在第一储液罐(5)的第一输出端(Otl)与蒸发器(8)的输入端之间的循环动力机制(101)。该空调系统可以在压缩机制冷和自然冷源制冷两种制冷方式下工作,显著地减少了能耗。

Description

空调系统 本申请要求于 2012 年 5 月 31 日提交中国专利局、 申请号为 201210178480.1、发明名称为"空调系统"的中国专利申请的优先权, 其全部 内容通过引用结合在本申请中。 技术领域
本发明涉及制冷领域, 尤其涉及一种空调系统。 背景技术
空调系统通过压缩机将蒸发器排出的低压制冷蒸汽压缩,使之升到正常冷 凝所需的冷凝压力, 并提供制冷剂在系统中循环流动所需的动力,从而实现压 缩→冷凝→膨胀→蒸发 (吸热)的制冷循环。
对于用于诸如通信机房的空调系统, 由于通信机房设备发热量大, 所以机 房空调需要全年制冷。其不足之处在于: 空调按照夏季的室外环境温度进行配 置,在其它室外环境温度较低的季节, 同样需要模拟夏季工况来维持压缩机系 统的正常工作。 在通信机房中, 空调用电占整个机房用电的一半, 而传统空调 系统中压缩机耗电又占空调耗电的绝大部分。 因而, 降低通信机房运营成本需 要在降低空调系统压缩机运行成本处寻找突破口。
此外,对于在转动机械的轴部分采用润滑油进行润滑的压缩机 (下文中称 为 "有油压缩机"。 本文中, 未经特殊说明, 术语 "压缩机" 皆指有油压缩机), 保证压缩机曲轴、 轴承、 连杆、 活塞等运动件的充分润滑是维持空调系统正常 运转的基本要求。 然而,在大量制冷剂气体从压缩机排出的同时也夹带走一小 部分润滑油。如果夹带排出的润滑油不再回到压缩机,压缩机就会缺油。因而, 如何实现压缩机回油成为本领域技术人员关注的问题。 发明内容
在实际应用中,由于空调的冷凝设备通常设置在室外,当室外温度降低时, 冷凝设备对制冷剂气体的冷凝压力的要求随之降低。甚至,在环境温度低于一 定温度时, 冷凝设备可以对常压的制冷剂气体进行冷凝。 注意到这个事实, 本发明的目的是提供这样一种空调系统: 该空调系统能 够在使用压缩机进行制冷和使用自然冷源进行制冷两个工作模式之间进行切 换; 此外, 该空调系统使用有油压缩机, 并能够提供良好的回油机制。
根据本发明的一个实施例, 提供一种空调系统, 包括: 第一储液罐、 有油 压缩机、 冷凝设备、 第一流量控制阀、 蒸发器以及切换装置; 有油压缩机的第 一输入端连接第一储液罐的第二输出端 ,有油压缩机的输出端连接冷凝设备的 输入端, 冷凝设备的输出端经由第一流量控制阀连接第一储液罐的第一输入 端, 第一储液罐的第一输出端连接蒸发器的输入端; 蒸发器的输出端经由切换 装置的第一通路连接第一储液罐的第二输入端,并且蒸发器的输出端经由切换 装置的第二通路连接冷凝设备的输入端; 其中, 空调系统还包括: 布置在第一 储液罐的第三输出端和有油压缩机的第一输入端之间的回油机制 ,回油机制用 于对有油压缩机进行回油;布置在第一储液罐的第一输出端与蒸发器的输入端 之间的循环动力机制。
根据本发明的另一个实施例,循环动力机制可以包括: 第一储液罐的第一 输出端与蒸发器的输入端被配置为在高度上存在正落差;或者第一储液罐的第 一输出端经由动力设备连接蒸发器的输入端;或者第一储液罐的第一输出端与 蒸发器的输入端在高度上存在正落差, 并且, 第一储液罐的第一输出端经由并 联的动力设备和第一通断阀连接蒸发器的输入端。
根据本发明的另一个实施例, 回油机制可以包括: 第一储液罐的第三输出 端与有油压缩机的第一输入端在高度上存在正落差。
根据本发明的另一个实施例, 回油机制可以包括: 设置于第一储液罐的第 三输出端与有油压缩机的第一输入端之间的引射泵, 其中, 第一储液罐的第三 输出端连接引射泵的第一输入端,引射泵的输出端连接有油压缩机的第一输入 端。
根据本发明的另一个实施例,引射泵的第二输入端可以连接在有油压缩机 的输出端与第一流量控制阀的输入端之间。
根据本发明的另一个实施例, 该空调系统还可以包括第一液位控制器, 用 于根据检测到的第一储液罐中的液位进行控制, 以启动或停止动力设备。
根据本发明的另一个实施例, 该空调系统还可以包括第二液位控制器, 用 于根据检测到的第一储液罐中的液位对第一流量控制阀的开度进行控制。 根据本发明的另一个实施例, 该空调系统还可以包括第三液位控制器, 用 于根据检测到的所述第一储液罐中的液位对所述动力设备的启动或停止进行 控制, 并且对所述第一流量控制阀的开度进行控制。
根据本发明的另一个实施例, 该空调系统还可以包括油分离器, 其中, 有 油压缩机的输出端连接油分离器的输入端,油分离器的第一输出端连接冷凝设 备的输入端, 油分离器的第二输出端连接有油压缩机的第二输入端。
根据本发明的另一个实施例, 该空调系统还可以包括第二通断阀, 第二通 断阀与第一流量控制阀并联连接。
根据本发明的另一个实施例,第一流量控制阀可以被配置为当有油压缩机 启动时开启, 当有油压缩机未启动时关闭; 第二通断阀可以被配置为当有油压 缩机启动时关闭, 当有油压缩机未启动时开启。
根据本发明的另一个实施例, 该空调系统还可以包括: 第二储液罐, 用于 辅助存储空调系统中的制冷剂; 其中, 第二储液罐连接在冷凝设备的输出端和 第一流量控制阀的输入端之间。
根据本发明的另一个实施例, 该空调系统还可以包括旁路管路, 旁路管路 的第一端设置在冷凝设备的输出端与第二储液罐的输入端之间,并且旁路管路 的第二端设置在第二储液罐的输出端与第一流量控制阀的输入端之间。
根据本发明的另一个实施例,切换装置的第一通路的输出端可以经由第一 单向阀连接第一储液罐的第二输入端; 且 /或, 切换装置的第二通路的输出端 可以经由第二单向阀连接冷凝设备的输入端; 且 /或, 有油压缩机的输出端可 以经由第三单向阀连接冷凝设备的输入端。
根据本发明的另一个实施例,空调系统可以包括相互并联连接的多个有油 压缩机。
根据本发明的另一个实施例, 切换装置可以是切换阀; 或者, 切换装置可 以包括设置于蒸发器输出端至第一储液罐的第二输入端之间的通断阀,以及设 置于蒸发器输出端至冷凝设备的输入端之间的通断阀或单向阀。
根据本发明的另一个实施例,在并联连接到第一储液罐的第一输出端的每 一路蒸发器的输入端处可以都设置有流量控制阀,从而控制提供到每一路蒸发 器的制冷剂的量。
根据本发明的另一个实施例, 蒸发器之间的连接形式可以是并联、 串联, 或者并联和串联的结合。
根据本发明的另一个实施例,第一储液罐的第三输出端可以包括从第一储 液罐最高液位到最低液位排列的多个开口,多个开口依据实际液面位置打开或 闭合。
根据本发明的另一个实施例, 空调系统可以是风冷螺杆式空调系统、水冷 螺杆式空调系统、 风冷涡旋式空调系统或者水冷涡旋式空调系统。
根据本发明的上述空调系统, 可以以两种工作方式运行。在室外环境温度 高时, 可以切换到切换装置的第一通路, 通过压缩机进行制冷; 而在室外环境 温度较低时, 可以停止压缩机, 切换到切换装置的第二通路, 使冷凝设备利用 自然冷源实现制冷需求。 从而降低空调系统的电力损耗。 并且, 在自然冷源制 冷的工作方式下,在第一储液罐的第一输出端与蒸发器的输入端之间所提供的 循环动力机制, 保证了制冷剂在空调系统中的顺畅流动。
此外, 上述方案中提供的第一储液罐的第三输出端, 以及其与有油压缩机 之间的回油机制,能够充分提高润滑油回流到压缩机的量与随制冷剂气体排出 压缩机的量的比率(回油率), 从而防止因缺油对压缩机造成的损坏。 附图说明
附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发 明的实施例一并用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1是示出根据本发明实施例的空调系统的总体结构的框图;
图 2是示出根据本发明实施例的空调系统的第一实例的示意图; 图 3是示出根据本发明实施例的空调系统的第二实例的示意图; 图 4是示出根据本发明实施例的空调系统的第三实例的示意图; 图 5是示出根据本发明实施例的空调系统的第四实例的示意图; 图 6是示出根据本发明实施例的空调系统的第五实例的示意图; 图 7是示出根据本发明实施例的空调系统的第六实例的示意图; 图 8是示出根据本发明实施例的空调系统的第七实例的示意图; 图 9是示出根据本发明实施例的空调系统的第八实例的示意图; 图 10是示出根据本发明实施例的空调系统的第九实例的示意图; 图 11是示出根据本发明实施例的空调系统的第十实例的示意图; 图 12是示出根据本发明实施例的空调系统的第十一实例的示意图; 图 13是示出根据本发明实施例的空调系统的第十二实例的示意图; 图 14是示出根据本发明实施例的空调系统的第十三实例的示意图; 图 15是示出根据本发明实施例的空调系统的第十四实例的示意图。 具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解, 此处所描述的 优选实施例仅用于说明和解释本发明, 并不用于限定本发明。
下面参照附图来说明本发明的实施例。 应当注意, 为了清楚的目的, 附图 和说明中省略了与本发明无关的、本领域技术人员已知的部件和处理的表示和 描述。
图 1是示出根据本发明实施例的空调系统的总体结构的框图。该空调系统 包括: 储液罐 5、 有油压缩机 1、 冷凝设备 2、 流量控制阀 3、 蒸发器 8以及切 换装置 6。 此外, 根据本发明实施例的空调系统还被配置为具有循环动力机制 101和回油机制 102。 下面对各部分的连接关系, 以及循环动力机制 101和回 油机制 102的实现方式和作用进行具体说明。
如图 1中所示, 有油压缩机 1的输入端连接储液罐 5的输出端 Ot2 (作为
"第一储液罐的第二输出端" 的示例), 以从储液罐 5接收制冷剂气体。 有油 压缩机 1的输出端连接冷凝设备 2的输入端,以将经压缩从而具有足够冷凝压 力的制冷剂气体输送到冷凝设备 2。 冷凝设备 2的输出端经由流量控制阀 3连 接储液罐 5的输入端 Itl (作为 "第一储液罐的第一输入端" 的示例), 以将冷 凝后的制冷剂液体经过流量控制阀 3 节流之后存储到储液罐 5 中。 储液罐 5 的输出端 Otl (作为 "第一储液罐的第一输出端" 的示例)连接蒸发器 8的输 入端。 经过流量控制阀 3节流后的制冷剂是气液混合的, 这些制冷剂在储液罐 5中进行气液分离, 液体进入蒸发器 8 , 气体进入压缩机 1。 蒸发器 8通过制 冷剂液体的蒸发进行制冷。 在根据本发明的空调系统中,还设置有用于切换从蒸发器 8输出的制冷剂 气体的循环路径的切换装置 6。 切换装置 6可以在其第一通路和第二通路之间 进行切换。如图 1中所示, 蒸发器 8的输出端可以经由切换装置 6的第一通路 连接储液罐 5的输入端 It2 (作为 "第一储液罐的第二输入端,, 的示例)。 另夕卜, 蒸发器 8的输出端可以经由切换装置 6的第二通路连接冷凝设备 2的输入端。 即, 直接将从蒸发器 8输出的制冷剂蒸汽送入冷凝设备 2中。
这里, "切换装置" 是对用于切换从蒸发器 8输出的制冷剂蒸汽的传输路 径的装置或装置组的统称, 并不限于某种特定的实现。 例如, 切换装置 6可以 是切换阀。 则切换装置 6的第一通路是指切换阀内部、切换阀的输入端与第一 输出端之间的通路,切换装置 6的第二通路是指切换阀内部、切换阀的输入端 与第二输出端之间的通路。 具体地, 如图 1所示, 切换阀 6的输入端连接蒸发 器 8的输出端, 切换阀 6的第一输出端连接储液罐 5的输入端 It2, 切换阀 6 的第二输出端连接冷凝设备 2的输入端。实现切换装置 6的切换阀主要的作用 在于实现流路的切换, 可以通过四通阀、 三通阀或者电磁阀等实现, 但不限于 此。 另外, 还可以使用分立的元件, 诸如通断阀等来实现切换转置 6, 将在后 面进行伴细 4 述。
如上设置了切换装置 6的空调系统,可以在自然冷源模式下的制冷循环和 压缩机模式下的制冷循环两种制冷方式下工作。 具体地,在压缩机模式下的制 冷循环中, 启动压缩机 1进行制冷。 制冷剂按照有油压缩机 1、 冷凝设备 2、 流量控制阀 3、 储液罐 5、 蒸发器 8、 切换装置 6、 再到储液罐 5的流向构成制 冷循环。 在自然冷源模式下的制冷循环中, 压缩机 1停止工作, 制冷剂按照冷 凝设备 2、 流量控制阀 3、 储液罐 5、 蒸发器 8、 切换装置 6、 再到冷凝设备 2 的流向构成制冷循环, 直接由室外环境为制冷剂提供冷源。
停止压缩机而使用天然冷源进行制冷, 可以显著减少空调系统的能耗,有 利于节能简排。但需要考虑的是: 在没有压缩机输出高压气体从而产生制冷剂 循环动力的情况下, 可能会出现制冷剂循环动力不足的情况。
针对这个问题, 在根据本实施例的空调系统中, 在储液罐 5的输出端 Otl 和蒸发器 8的输入端之间布置循环动力机制 101。 当空调系统在蒸发器 8的输 出端经由切换装置 6的第二通路连接冷凝设备 2的输入端的状态(即自然冷源 制冷模式)下工作时, 循环动力机制 101能够产生足够的动力, 使得制冷剂在 空调系统中运行。 当然, 当在压缩机制冷模式下, 由于管路较长等原因, 空调 系统中制冷剂循环动力不足时, 也可以启用该动力循环机制 101。
结合图 1 , 循环动力机制 101用虚线框表示即旨在说明: 该循环动力机制 可以只在使用天然冷源进行制冷的模式下启用 (或说布置), 或者, 也可以在 使用压缩机制冷模式的情况下也启用 (或说布置)。
在本文中, 各种 "机制" 可能通过三种手段实现: 通过增加新的部件来实 现; 通过在已有部件的基础上调整特定部件的配置关系, 诸如配合、位置关系 来实现; 通过上述两种手段的结合来实现。
根据空调系统的不同需求和特点,可以以本领域技术人员能够想到的各种 方式来实现循环动力机制 101 , 只要能够在没有压缩机工作的情况下为制冷剂 提供循环的动力即可。 下文中将举例详细说明循环动力机制 101的具体实现。
此外, 考虑使用有油压缩机的情况,在根据本实施例的空调系统中还设置 布置在储液罐 5的输出端 Ot3 (作为 "第一储液罐的第三输出端" 的示例 )和 有油压缩机 1的输入端之间的回油机制 102。 回油机制 102用于对有油压缩机 1进行回油。
根据空调系统的不同需求和特点,可以以本领域技术人员能够想到的各种 方式来实现回油机制 102, 只要能够保证维持压缩机正常工作所需的回油率即 可。 后面将举例详细说明回油机制 102的实现。
如上所述, 本空调系统可以在压缩机模式和自然冷源制冷模式下工作。 当 室外环境温度较高时, 系统以传统的压缩机模式运行。从蒸发器 8中输出的制 冷剂蒸汽经由切换装置 6的第一通路输送到储液罐 5。
当室外环境温度较低时, 系统在自然冷源制冷模式下工作。 从蒸发器 8 中输出的制冷剂蒸汽经由切换装置 6的第二通路直接输送到冷凝设备 2。 在冷 凝设备 2中,依靠室外环境作为自然冷源对制冷蒸汽进行冷凝。制冷剂从气态 转换为液态, 经由流量控制阀 3循环到储液罐 5中,再从储液罐 5中通过循环 动力机制 101的作用传输到设置在室内的蒸发器 8。 制冷剂在蒸发器 8中吸收 室内的热量, 从液态再次转换为气态, 传输到冷凝设备 2中, 实现制冷循环。
在自然冷源模式下的制冷循环中, 利用室外低温空气实现制冷, 不需要通 过压缩机的运行,从而实现了利用自然冷源制冷, 降低空调系统的功率损耗和 电能消耗, 节约能源的目的。
其中, 当制冷剂的温度高于室外温度时,都可以利用室外的自然冷源来进 行制冷剂的制冷。 因此, 两种制冷方式的切换可以由系统根据制冷剂与室外温 度的温差进行, 具体地, 制冷剂温度高于室外温度时, 可以通过自然冷源模式 进行制冷, 否则, 可以通过压缩机模式进行制冷。 可选择地, 在实际应用中, 两制冷方式的切换还可以由人工控制等, 这里不贅述。
在图 1所示的空调系统中, 术语 "冷凝设备"是指能够对制冷剂进行冷凝 处理的设备, 即冷却高温制冷剂气体并使之液化的热交换器。 在实际应用中, 可以自主选择具体的冷凝设备来实现。例如, 冷凝设备 2可以通过一个冷凝设 备或者并联的至少两个冷凝设备实现。 此时, 并联的至少两个冷凝设备的输入 端作为冷凝设备的输入端,并联的至少两个冷凝设备的输出端作为冷凝设备的 输出端。 冷凝设备的冷却方式可以是风冷、 水冷或者蒸发式冷凝等。
此外, 在图 1所示的空调系统中, 蒸发器可以为一个或者多个, 具体个数 不受限制。 各个蒸发器 8的输出端可以分别连接切换装置 6的输入端。 或者, 也可以先进行输出端的合并连接后,再连接切换装置 6的输入端, 这里并不限 定。 各蒸发器 8的输入端与储液罐 5的输出端 Otl (或循环动力机制 101的输 出端)的连接亦然。 蒸发器之间的连接形式可以是并联、 串联、 或者并联和串 联的结合。
此外,在图 1所示的空调系统中,储液罐 5可以通过低压储液罐或者分离 器实现, 但不限于此。
下面结合图 2、图 3和图 4详细描述根据本发明实施例的空调系统的实例, 尤其举例对循环动力机制的具体实现进行说明。 图 2、 图 3和图 4分别是示出 根据本发明实施例的空调系统的第一至第三实例的示意图。图中管路上标注的 箭头表示管路中制冷剂的流向。
图 2所示的空调系统的第一实例包括: 储液罐 5、 有油压缩机 1、 冷凝设 备 2、 流量控制阀 3、 蒸发器 8以及切换装置 6。
有油压缩机 1 的输入端 Icl (作为 "有油压缩机的第一输入端" 的示例) 连接储液罐 5的输出端 Ot2,有油压缩机 1的输出端连接冷凝设备 2的输入端, 冷凝设备 2的输出端经由流量控制阀 3连接储液罐 5的输入端 Itl , 储液罐 5 的输出端 Otl连接蒸发器 8的输入端。
在空调系统不同的工作模式下, 蒸发器 8 的输出端可以经由切换装置 6 的第一通路连接储液罐 5的输入端 It2,或者经由切换装置 6的第二通路连接冷 凝设备 2的输入端。
在图 2所示实例中, 布置在储液罐 5的输出端 Otl与蒸发器 8的输入端之 间的循环动力机制是: 储液罐 5的输出端 Otl与蒸发器 8的输入端之间在高度 上存在的正落差。从而, 制冷剂能够在重力的作用下从储液罐 5流入各个蒸发 器 8。
此实例适用于使用空调系统的设施(例如机房)坐落在诸如高层建筑中等 能够提供储液罐 5的输出端 (¾与蒸发器 8的输入端之间的正落差的场地中的 场景。 例如, 可以将空调系统中的储液罐设置在楼顶等较高的位置, 而将一个 或多个蒸发器设置在下面的楼层中,从而利用该高度落差间存在的重力势能产 生制冷剂从储液罐流向蒸发器的动力。直接通过重力作用保证制冷剂在制冷回 路中的循环, 大大节省任何动力设备运行的功率损耗,对空调系统节能起到非 常大的作用。
但是,在一些情况下, 安装空调系统的场地不允许在储液罐向蒸发器的输 出口和蒸发器之间设置合适的高度落差; 或者, 所设置的高度落差不足以提供 足够的循环动力。 因而, 需要使用其它方式来布置循环动力机制。
图 3中示出实现循环动力机制的另一个实例。该实例与图 2中所示实例的 不同之处在于: 布置在储液罐 5的输出端(¾与蒸发器 8的输入端之间的循环 动力机制是动力设备 7。
具体地, 如图 3所示, 储液罐 5的输出端 Otl经由动力设备 7连接蒸发器 8的输入端。这里,动力设备 7可以通过一个泵或者多个并联的泵实现; 或者, 也可以通过其它可以提供动力的设备实现。 泵可以是离心泵、 旋涡泵、 齿轮泵 或螺杆泵等, 但不限于此。 此外, 这里, 各个蒸发器 8的输入端可以分别连接 动力设备 7的输出端, 或者, 也可以先对各个蒸发器 8进行输入端的合并连接 后, 再连接动力设备 7的输出端, 但不限于此。
与在储液罐 5的输出端(¾和蒸发器 8的输入端之间设置正落差相比, 动 力设备 7 的设置提供了更充足循环动力。 尤其在制冷回路管路较长、 和 /或系 统对制冷剂流量要求较大的情况下。此外,使用动力设备 7提供循环动力更加 灵活。尤其在多个泵并联的例子中, 可以依据系统制冷需要启动泵的部分或全 部, 从而在能够提供充足循环动力的同时, 还能降低不必要的电力损耗。 图 3 中的其它单元的结构和连接与图 2中的相同, 因而省略其描述。
当然,在安装条件允许的情况下,也可以结合布置上面说明的两种循环动 力机制。 如图 4中所示, 储液罐 5的输出端 与蒸发器 8的输入端在高度上 存在正落差, 并且, 储液罐 5的输出端 Otl经由并联的动力设备 7和通断阀 41 (作为 "第一通断阀" 的示例)连接蒸发器 8的输入端。
在这样布置的情况下,循环动力机制可以在两种状态下工作: 关闭动力设 备 7, 打开通断阀 41 , 制冷剂依靠重力作用从储液罐 5流向蒸发器 8 , 并在空 调管路中进行循环; 启动动力设备 7 , 关闭通断阀 41 , 制冷剂在动力设备 7 所产生动力下在空调管路中循环。这种布置使得既可以为制冷剂提供充足的循 环动力, 又可以利用有利的安装落差尽可能地减小电力消耗。 在本实例中, 通 断阀 41也可以实现为多个通断阀的并联连接。
上面结合图 2至图 4分别说明了采用重力和电力方式提供制冷剂循环动力 的循环动力机制的例子。 但是, 本领域技术人员也可以采用其它可能的方式, 只要能够在空调系统中制冷剂循环动力不足时,诸如压缩机不工作时, 为制冷 剂提供合适的循环动力即可。
下面,详细说明为对有油压缩机 1进行回油所布置的回油机制(图 1中的 回油机制 102 ) 的实例。
在图 2至图 4的实施例中, 示例性地使用了一种回油机制: 储液罐 5的输 出端 Ot3与有油压缩机 1的输入端 1^在高度上存在正落差。
一般地, 油的密度小于制冷剂的密度, 因此, 油一般漂浮于储液罐 5中制 冷剂的表面。 从而, 如图 2至图 4中所示, 储液罐 5的输出端 Ot3可以设置于 储液罐 5液面稍靠下的位置, 以便通过输出端 Ot3顺利实现回油。 输出端 Ot3 的位置与液面之间的距离可以自主设定, 这里并不限制。 此外, 输出端 Ot3可 以包括位于储液罐 5的侧壁上的一个或多个开口。 并且, 在包括多个开口时, 该多个开口可以从储液罐 5的最高液位到最低液位排列。在实际应用中, 该多 个开口可以依据储液罐 5中的实际液面位置打开或闭合。
上述回油机制可以在不增加任何部件的情况下提高有油压缩机的回油率, 从而使有油压缩机能够持续正常工作。
图 5是示出根据本发明实施例的空调系统的第四实例的示意图。在该第四 实例中, 回油机制是: 设置于储液罐 5的输出端 OT3与有油压缩机 1的输入端 ICL之间的引射泵 15。 具体来说, 储液罐 5的输出端 OT3连接引射泵 15的输入 端, 引射泵 15的输出端连接有油压缩机 1的输入端 ICL
一般地,有油压缩机 1的输入端的压力小于储液罐 5中的压力,从而通过 两者之间的压力差实现回油。 此外, 引射泵 15通过内部面积的变化, 压力能 和动力能相互转化, 形成不同的压差。 引射泵 15例如是拉伐尔管, 但不限于 此。 相似地, 在本实施例中, 储液罐 5的输出端 OT3同样可以设置到储液罐的 液面稍靠下的位置。 或者, 输出端 OT3可以包括位于储液罐 5的侧壁上的一个 或多个开口。
图 5中实施例的优点是: 相比于在储液罐 5的输出端 OT3和压缩机 1的输 入端 ICL之间设置正落差的第一至第三实例, 第四实例的回油机制降低了对空 调系统安装空间的要求,可以减少进入有油压缩机 1的输入端 ICL的液体的量, 从而能够防止由于过量液体流入造成压缩机的损坏。
为了进一步提高回油率, 并减小流回压缩机的液体的量, 可以提供进一步 的改进。 图 6是示出根据本发明个实施例的空调系统的第五实例的示意图。如 图 6中所示, 引射泵 15具有两个输入端, IP P Ip2; 储液罐 5的输出端 OT3连 接引射泵 15的输入端 IPL (作为 "引射泵的第一输入端" 的示例), 引射泵 15 的输入端 IP2 (作为 "引射泵的第二输入端" 的示例)连接在有油压缩机 1 的 输出端与冷凝设备 2 的输入端之间, 引射泵的输出端连接有油压缩机的输入 端。 如图 6中所示。
虽然, 在图 6的实施例中, 引射泵 15的输入端 IP2连接在有油压缩机 1的 输出端与冷凝设备 2的输入端之间, 但并不限于此。 事实上, 只要引射泵 15 的输入端 IP2连接在空调系统的高压管路中即可。
此时, 引射泵 15的输入端 IP2连接的管路压力高于引射泵 15中的压力, 两者之间存在压差。 而且, 引射泵 15的压力高于有油压缩机 1中的压力, 两 者之间也存在压差。 因此, 制冷剂和润滑油的混合物在引射泵 15的输入端 Ip2 与引射泵 15之间压差的作用下回流到引射泵 15中, 在引射泵 15中与储液罐 5的输出端 Ot3回流的润滑油 (夹杂有制冷剂)相互作用。 具体地, 在引射泵 15 中, 高温制冷剂和低温制冷剂中和, 并且由于压力降低, 制冷剂液体都蒸 发成气体, 而润滑油不发生相变。 之后, 润滑油(另有制冷剂气体)继续在引 射泵 15与有油压缩机 1之间压差的作用下, 回流到有油压缩机 1中, 从而实 现了高压喷射引射回油。
在该第五实例中, 如上面说明的, 在引射泵 15中, 由于压力降低, 以及 温度的中和, 大部分制冷剂液体都会蒸发成气体之后才回到压缩机, 因而减少 了对压缩机的伤害。
下面结合图 7至图 15说明根据本发明实施例的空调系统的其它实例。 为了减少有油压缩机 1的润滑油进入制冷剂中的油量,提高空调系统的效 率, 节约能耗, 可以在有油压缩机 1的输出端设置油分离器。
图 7是示出根据本发明实施例的空调系统的第六实例的示意图。该实例相 对于图 6所示的空调系统, 区别在于: 还包括油分离器 16。 具体地, 有油压 缩机 1的输出端连接油分离器 16的输入端, 油分离器 16的输出端 Odl (作为 "油分离器的第一输出端" 的示例)连接冷凝设备 2的输入端, 油分离器 16 的输出端 (作为 "油分离器的第二输出端" 的示例)连接有油压缩机 1的 与输入端 Icl不同的输入端 Ic2 (作为 "有油压缩机的第二输入端" 的示例)。
油分离器 16能够将有油压缩机 1的输出端输出的制冷剂中混杂的润滑油 分离出来, 送回有油压缩机 1中, 为有油压缩机 1提供润滑功效。
在其它各实施例中, 也可以增加油分离器 16。 具体实现结构与图 7所示 的结构相似, 这里不贅述。
在上面描述的各实施例中, 流量控制阀 3可以使用电子膨胀阀、 二通阀、 电动球阀、 热力膨胀阀、 或者孔板 +控制阀等方式实现, 但并不限于此。
在实际应用中, 当流量控制阀 3通过热力膨胀阀实现时, 由于热力膨胀阀 对管路中流体的阻力很大, 可以考虑在热力膨胀阀上并联一通断阀 4, 从而在 自然冷源模式下的制冷循环中,通过通断阀进行制冷剂的流量控制,在压缩机 模式下的制冷循环中, 通过热力膨胀阀进行制冷剂的流量控制。 从而, 可以进 行空调系统中制冷剂的流量控制和调节 ,使得系统中制冷剂流量保持在所需的 流量上。 当然, 在使用电子膨胀阀之外的其它方式实现流量控制阀 3时, 也可 以以并联通断阀的方式进行流量控制。
图 8是示出根据本发明实施例的空调系统的第七实例的示意图。相对于图 6所示的空调系统, 其区别在于: 空调系统还设置有通断阀 4 (作为 "第二通 断阀" 的示例), 该通断阀 4与流量控制阀 3并联连接。
在空调系统正常进行制冷工作时, 有油压缩机启动。 此时, 可以将流量控 制阀 3开启, 用于制冷剂的传输, 并且将通断阀 4关闭。 在自然冷源模式下进 行制冷时, 有油压缩机关闭。 此时, 可以将流量控制阀 3 关闭, 将通断阀 4 开启, 用于制冷剂的传输。
由于通断阀 4阻力较小, 从而可以降低制冷剂在制冷循环中的传输阻力, 减少动力设备 7的功率损耗,提高空调系统的制冷剂传输速度和效率, 进而提 高空调系统的制冷效果。
图 9是示出根据本发明实施例的空调系统的第八实例的示意图。该实例与 图 8中所示实例相比, 区别在于: 在储液罐 5之外, 还可以设置用于辅助存储 空调系统中的制冷剂的储液罐 10 (作为 "第二储液罐" 的示例)。 具体地, 储 液罐 10可以设置于冷凝设备 2的输出端和流量控制阀 3的输入端之间。
这里, 储液罐 10可以通过高压储液罐实现。 而储液罐 5可以通过低压储 液罐实现。 由于储液罐 5的体积设计往往受到空调系统机组尺寸的影响, 为防 止空调系统的室内机组的停开机或者室内负荷变化造成系统制冷剂循环量的 变化, 设置储液罐 10。 储液罐 10在制冷剂循环量变化时能够将制冷剂存储起 来。 当储液罐 10通过高压储液器实现时, 可以相对储液罐 5容纳较多制冷剂, 从而进一步优化空调系统的制冷效果。
需要说明的是: 储液罐 10的形状不受图形限制, 进出口位置仅为示意性 的。 另外, 储液罐 5在图中也仅为示意性的, 具体可以是圓形、 椭圓形、 方形 等各种形状, 这里并不限制。 另外, 储液罐 5或者储液罐 10的安装方式可以 是立式安装或卧式安装等各种安装方式, 这里也并不限制。 此外, 储液罐 5 和 10二者都既可以设置在室内也可以设置在室外, 可由本领域技术人员根据 具体情况确定。 图 10和图 11分别是示出根据本发明实施例的空调系统的第九和第十实例 的示意图。
为了防止在空调系统内制冷剂循环量比较小的情况下,持续使用作为循环 动力机制的动力设备对动力设备的损耗较大,可以设置用于根据检测到的低压 储液罐中的液位进行控制以启动或停止动力设备的液位控制器。
在图 10所示实例中, 液位控制器 14 (作为 "第一液位控制器" 的示例) 的两个液位检测端分别连接储液罐 5的高位输出端和低位输出端,液位控制器 14的信号输出端连接动力设备 7的控制端, 从而通过液位控制器 14的输出信 号控制动力设备 7的开启和停止。 在具体应用中, 液位控制器 14可以将液位 检测端检测到的信号输出给控制板。控制板再通过逻辑计算产生控制信号, 并 将控制信号输出给动力设备 7。 具体地, 液位控制器 14可以用于: 当检测到 储液罐 5的液位高于低位输出端时,控制动力设备 7开启;检测到液位低于低 位输出端时,控制动力设备 7停止工作。从而保证只有在液位足够的情况下才 开启动力设备 7, 防止动力设备 7过度损耗。
此外, 当位于冷凝设备与储液罐之间的流量控制阀可控时, 可以在低压储 液罐上设置液位控制器,用于根据检测到的低压储液罐中的液位对流量控制阀 进行控制。 具体地, 对流量控制阀的开度进行控制。
如图 11中所示, 液位控制器 13 (作为 "第二液位控制器" 的示例) 的两 个液位检测端分别连接储液罐 5的高位输出端和低位输出端, 液位控制器 13 的信号输出端连接流量控制阀 3的控制端。 液位控制器 13用于检测储液罐 5 中的液位,根据检测到的储液罐 5中的液位对流量控制阀 3相应进行控制。 这 里的控制可以为打开或者关断控制,或者,也可以进行线性或者非线性控制等, 这里不限定。
此时, 流量控制阀 3 可以使用电动的流量控制元件实现, 由液位控制器 13发出对应的电信号进行流量控制阀 3的控制。 或者, 液位控制器 13和流量 控制阀 3也可以通过机械方式实现。 例如, 在储液罐中设置浮球来感应液位, 液位低时供液口开启, 液位达到时供液口关闭。 则这里的浮球对应液位控制器 13 , 而供液口则对应流量控制阀 3。 当然, 在实际应用中液位控制器 13和流 量控制阀 3还可以有其它的实现方式, 这里不贅述。 具体地, 液位控制器 13可以用于: 检测储液罐 5的液位低于预设第一液 位值,控制流量控制阀 3开启或加大供液;检测储液罐 5的液位高于预设第二 液位值,控制流量控制阀 3关断或者减少供液。从而保证储液罐 5中的液位处 于第一液位值和第二液位值之间。 这里, 第二液位值大于第一液位值。 第一液 位值和第二液位值可以分别取值为低位输出端和高位输出端对应的液位值,或 者, 也可以自主设定其它的液位值。 可以根据实际应用环境设定, 这里并不限 制。 在具体应用中, 例如液位控制器 13可以将液位检测端检测到的信号输出 给控制板等控制器件。控制板再通过逻辑计算产生控制信号, 并将控制信号输 出给流量控制阀 3。
需要说明的是, 这里为了清楚起见, 将液位控制器 13和 14分开说明。 而 在实际应用中, 这二者也可以实现为: 在储液罐 5上设置一个液位检测器, 该 检测器将液位检测信号以电信号的形式输出到控制板, 由控制板的 CPU进行 处理后分别生成控制动力设备 7的信号和控制流量控制阀 3的信号,并分别输 出到动力设备 7和流量控制阀 3 , 以进行控制 (作为 "第三液位控制器" 的示 例)。 液位控制器 13和 14可以使用本领域已知的诸如传感器的各种液位控制 器实现。
另外, 为了防止空调系统中的制冷循环中发生制冷剂倒流的现象, 可以在 空调系统中设置单向阀。 例如, 在如图 10和图 11所示的实例中, 切换装置 6 的第一输出端 (第一通路的输出端) 经由单向阀 91 (作为 "第一单向阀" 的 示例 )连接储液罐 5的输入端 It2; 切换装置 6的第二输出端 (第二通路的输出 端)经由单向阀 92 (作为 "第二单向阀" 的示例)连接冷凝设备 2的输入端; 并且有油压缩机 1 的输出端经由单向阀 93 (作为 "第三单向阀" 的示例)连 接冷凝设备 2的输入端。从而, 分别防止制冷剂回流到蒸发器 8或者有油压缩 机 1中。 或者, 单向阀 91、 92和 93可以选择性地单独设置。
优选地,在本发明实施例的空调系统中,还可以进一步设置干燥过滤器和
/或视液镜。
干燥过滤器和 /或视液镜可以设置于油分离器 16到有油压缩机 1的回油路 径上。 在图 10和图 11所示实例中, 油分离器 16的回油输出端依次通过干燥 过滤器 111和视液镜 121连接有油压缩机 1的接收油分离器回油的输入端。干 燥过滤器 111用于滤除回流润滑油中的水分。
此外, 干燥过滤器 111和视液镜 121所在的路径上还可以设置通断阀 17。 具体地,通断阀 17可以设置于干燥过滤器 111和油分离器 16的回油输出端之 间、或者视液境 121和有油压缩机 1接收油分离器回油的输入端之间、或者干 燥过滤器 111和视液镜 121之间等。 例如图 10和图 11所示, 油分离器 16的 回油输出端依次通过干燥过滤器 111、 通断阀 17以及视液镜 121连接有油压 缩机 1的接收油分离器回油的输入端。
通断阀 17的作用在于通过自身的通断或开度,控制油分离器 16和有油压 缩机 1之间的回油量。
此外, 干燥过滤器和 /或视液镜还可以设置于冷凝设备 2与流量控制阀 3 之间。干燥过滤器和视液镜与冷凝设备 2以及储液罐 5之间的连接关系可以包 括: 冷凝设备 2的输出端通过干燥过滤器 11连接流量控制阀 3的输入端; 或 者, 冷凝设备 2的输出端通过视液镜 12连接流量控制阀 3的输入端; 或者, 冷凝设备 2的输出端依次通过干燥过滤器 11和视液镜 12连接流量控制阀 3的 输入端。 干燥过滤器 11用于滤除制冷剂中的水分。
通过增加干燥过滤器和视液镜, 可以吸收和观测制冷剂中的水分, 以防止 制冷剂中水份过多导致制冷量下降。
图 12是示出根据本发明实施例的空调系统的第十一实例的示意图。 在本 实施例中, 储液罐 10被设置有与其并行连接的旁路管路 10L。 旁路管路 10L 的第一端设置在冷凝设备 2的输出端与第二储液罐 10的输入端之间, 并且旁 路管路 10L的第二端设置在储液罐 10的输出端与流量控制阀 3的输入端之间。
在空调系统供液不稳定时, 或者在压缩机不运行(即工作于自然冷源制冷 模式下) 时, 旁路管路 10L的设置使得制冷剂可以绕过储液罐 10而直接输送 到流量控制阀 3的输入端。从而加快对储液罐 5的制冷剂供应, 减小循环中的 阻力。
在图 12的实施例中, 旁路管路 10L的第二端直接连接流量控制阀 3的输 入端。 在其它实施例中, 例如, 旁路管路 10L 的第二端也可以连接在储液罐 10与干燥器 11之间、 干燥器 11和视液镜 12之间, 等等。 换句话说, 只要旁 路管路 10L的设置能够使制冷剂的传输绕过储液罐 10即可。 旁路管路 10L的 第一端的设置也是如此。
在根据本发明实施例的空调系统中,有油压缩机 1可以由至少一个有油压 缩机构成。 当有油压缩机 1包括两个或两个以上的有油压缩机时,有油压缩机 之间可以相互并联, 相互并联的有油压缩机的输入端共同作为有油压缩机 1 的输入端, 相互并联的有油压缩机的输出端共同作为有油压缩机 1的输出端。
图 13 是根据本发明实施例的空调系统的第十二实例的示意图。 如图 13 所示,有油压缩机 1通过并联的有油压缩机 110和有油压缩机 120实现。其中, 有油压缩机 110和有油压缩机 120的输入端连接储液罐 5的输出端 Ot2 , 有油 压缩机 110和有油压缩机 120的输出端连接冷凝设备 2的输入端。
采用至少两个有油压缩机并联的方式构成有油压缩机 1 , 相对于使用一个 有油压缩机进行制冷,提高了空调系统满足不同制冷需求的能力, 同时可以保 证空调系统一直运行在最佳工况。 例如, 当制冷需求较小时, 可以只控制一台 或部分有油压缩机开启, 而当制冷需要提高时,控制较多或全部有油压缩机开 启。 根据不同制冷需求, 控制有油压缩机运行的台数, 从而提高空调系统的制 冷效率, 减少空调系统的功率损耗。
图 14是示出根据本发明实施例的空调系统的第十三实例的示意图。 在该 实例中,代替使用切换阀,切换装置 6可以包括设置于蒸发器 8的输出端至储 液罐 5的输入端 It2之间的通断阀 62 (作为 "第三通断阀" 的示例), 以及设置 于蒸发器 8的输出端至冷凝设备的输入端之间的通断阀 61 (作为 "第四通断 阀,, 的示例)。 可选择地, 还可以使用单向阀 (作为 "第四单向阀,, 的示例) 来替换通断阀 61。 虽然图 14中示出的通断阀 61和 62是电磁阀, 但可以理解 还可以采用其它通断阀,诸如手动球阀来实现。在其它图中示出的各个通断阀 也是如此。 既可以用电磁阀实现, 也可以用电动球阀、 手动球阀、 电动二通阀 等各种常用通断阀来实现。在一些实施例中,通断阀 61和 62的开度可以进行 调节。
当空调系统在压缩机模式下运行时, 通断阀 62打开, 通断阀 61关闭。 换 句话说, 切换装置的第一通路即通断阀 62所在管路打开, 切换装置的第二通 路即通断阀 61所在的管路关闭。 当空调系统在自然冷源制冷模式下运行时, 通断阀 61打开, 通断阀 62关闭。 换句话说, 切换装置的第二通路即通断阀 61所在管路打开, 切换装置的第一通路即通断阀 62所在的管路关闭。
图 15是示出根据本发明实施例的空调系统的第十四实例的示意图。 在该 实例中, 在并联连接到储液罐 5的输出端 Ot 每一路蒸发器 81、 82、 83的 输入端处都设置有流量控制阀 181、 182、 183 (作为 "第二流量控制阀" 的示 例), 从而控制提供到每一路蒸发器的制冷剂的量。 这里, 蒸发器 81、 82、 83 可以分别是单独一个蒸发器,多个蒸发器的串联、并联、或串联和并联的结合。
另外, 在实际应用中, 在蒸发器的附近需要设置风机, 通过风机加快蒸发 器周围的空气流动速度,加快蒸发器与外界温度之间的冷热交换。冷凝设备的 冷却方式有风冷和水冷两种方式。 当冷凝设备采用风冷的冷却方式时, 冷凝设 备的附近需要设置风机,通过风机加快冷凝设备周围的空气流动速度,加快冷 凝设备与外界温度之间的冷热交换; 当冷凝设备采用水冷的冷却方式时, 冷凝 设备的附近需要设置冷却水管路,通过冷却水管路与外界温度之间进行冷热交 换。
上述各实施例中所述的空调系统可以是风冷螺杆式空调系统、水冷螺杆式 空调系统、 风冷涡旋式空调系统、 或者水冷涡旋式空调系统。
在此需要说明, 上面结合附图对本发明的若干实施例进行了详细描述,但 是, 本领域技术人员理解, 这些实施例并非穷举而且也不是意在对本公开所涵 盖的范围进行限制。在确保能够实现空调系统的基本功能的情况下, 上面结合 附图描述的各实施例中相关的功能部件的配置可以进行任意组合,通过这些组 合得到的空调系统也应被认为落入本公开所保护的范围内。
本文中所使用的 "第一"、 "第二" 等(例如, "第一输出端"、 "第二输出 端"、 "第一输入端"、 "第二输入端", 等等), 只是为了描述清楚起见而对相应 部件或者部件的端子等进行区别, 不旨在限制任何次序或者强调重要性等。 此 夕卜, 在本文中使用的术语 "连接,,在不进行特别说明的情况下, 可以是直接相 连, 也可是经由其它部件间接相连。
在前面的说明书中参照特定实施例描述了本发明。然而本领域的普通技术 人员理解,在不偏离如权利要求书限定的本发明的范围的前提下可以进行各种 爹改和改变。

Claims

权 利 要 求
1. 一种空调系统, 包括: 第一储液罐、 有油压缩机、 冷凝设备、 第一流 量控制阀、 蒸发器以及切换装置;
有油压缩机的第一输入端连接第一储液罐的第二输出端,有油压缩机的输 出端连接冷凝设备的输入端,冷凝设备的输出端经由第一流量控制阀连接第一 储液罐的第一输入端, 第一储液罐的第一输出端连接蒸发器的输入端;
蒸发器的输出端经由切换装置的第一通路连接第一储液罐的第二输入端 , 并且蒸发器的输出端经由切换装置的第二通路连接冷凝设备的输入端;
其中, 所述空调系统还包括:
布置在所述第一储液罐的第三输出端和有油压缩机的第一输入端之间的 回油机制, 所述回油机制用于对有油压缩机进行回油;
布置在第一储液罐的第一输出端与蒸发器的输入端之间的循环动力机制。
2. 根据权利要求 1所述的空调系统, 其中, 所述循环动力机制包括: 所述第一储液罐的第一输出端与所述蒸发器的输入端被配置为在高度上 存在正落差; 或者,
所述第一储液罐的第一输出端经由动力设备连接所述蒸发器的输入端;或 者,
所述第一储液罐的第一输出端与所述蒸发器的输入端在高度上存在正落 差, 并且, 所述第一储液罐的第一输出端经由并联的动力设备和第一通断阀连 接所述蒸发器的输入端。
3. 根据权利要求 1或 2所述的空调系统, 其中, 所述回油机制包括: 第 一储液罐的第三输出端与有油压缩机的第一输入端在高度上存在正落差。
4. 根据权利要求 1或 2所述的空调系统, 其中, 所述回油机制包括: 设 置于第一储液罐的第三输出端与有油压缩机的第一输入端之间的引射泵, 其 中, 第一储液罐的第三输出端连接引射泵的第一输入端, 引射泵的输出端连接 有油压缩机的第一输入端。
5. 根据权利要求 4所述的空调系统, 其中, 所述引射泵的第二输入端连 接在所述有油压缩机的输出端与所述第一流量控制阀的输入端之间。
6. 根据权利要求 2至 5中任一个所述的空调系统, 还包括第一液位控制 器,用于根据检测到的第一储液罐中的液位进行控制,以启动或停止动力设备。
7. 根据权利要求 1至 6中任一个所述的空调系统, 还包括: 第二液位控 制器,用于根据检测到的第一储液罐中的液位对第一流量控制阀的开度进行控 制。
8. 根据权利要求 2至 5中任一个所述的空调系统, 还包括: 第三液位控 制器,用于根据检测到的所述第一储液罐中的液位对所述动力设备的启动或停 止进行控制, 并且对所述第一流量控制阀的开度进行控制。
9. 根据权利要求 1至 8中任一个所述的空调系统, 还包括油分离器, 其 中, 所述有油压缩机的输出端连接油分离器的输入端, 油分离器的第一输出端 连接冷凝设备的输入端, 油分离器的第二输出端连接有油压缩机的第二输入 端。
10. 根据权利要求 1至 9中任一个所述的空调系统, 还包括第二通断阀, 所述第二通断阀与所述第一流量控制阀并联连接。
11. 根据权利要求 10所述的空调系统, 其中,
所述第一流量控制阀被配置为当所述有油压缩机启动时开启,当所述有油 压缩机未启动时关闭;
所述第二通断阀被配置为当所述有油压缩机启动时关闭,当所述有油压缩 机未启动时开启。
12. 根据权利要求 1至 11 中任一个所述的空调系统, 还包括: 第二储液 罐, 用于辅助存储空调系统中的制冷剂; 其中,所述第二储液罐连接在所述冷凝设备的输出端和所述第一流量控制 阀的输入端之间。
13. 根据权利要求 12所述的空调系统, 还包括: 旁路管路, 所述旁路管 路的第一端设置在所述冷凝设备的输出端与所述第二储液罐的输入端之间,并 且所述旁路管路的第二端设置在所述第二储液罐的输出端与第一流量控制阀 的输入端之间。
14. 根据权利要求 1至 13中任一个所述的空调系统, 其中,
所述切换装置的第一通路的输出端经由第一单向阀连接所述第一储液罐 的第二输入端; 且 /或,
所述切换装置的第二通路的输出端经由第二单向阀连接所述冷凝设备的 输入端; 且 /或,
所述有油压缩机的输出端经由第三单向阀连接所述冷凝设备的输入端。
15. 根据权利要求 1至 14中任一个所述的空调系统, 其中, 所述空调系 统包括相互并联连接的多个有油压缩机。
16. 根据权利要求 1至 15中任一个所述的空调系统, 其中,
所述切换装置是切换阀; 或者,
所述切换装置包括设置于所述蒸发器输出端至所述第一储液罐的第二输 入端之间的第三通断阀,以及设置于所述蒸发器输出端至所述冷凝设备的输入 端之间的第四通断阀或第四单向阀。
17. 根据权利要求 1至 16中任一个所述的空调系统, 其中, 在并联连接 到第一储液罐的第一输出端的每一路蒸发器的输入端处都设置有第二流量控 制阀 , 从而控制提供到每一路蒸发器的制冷剂的量。
18. 根据权利要求 1至 17中任一个所述的空调系统, 其中, 蒸发器之间 的连接形式是并联、 串联、 或者并联和串联的结合。
19. 根据权利要求 1至 18中任一个所述的空调系统, 其中, 所述第一储 液罐的第三输出端包括从所述第一储液罐最高液位到最低液位排列的多个开 口, 所述多个开口依据实际液面位置打开或闭合。
20. 根据权利要求 1至 19中任一个所述的空调系统, 其中, 所述空调系 统是风冷螺杆式空调系统、水冷螺杆式空调系统、风冷涡旋式空调系统或者水 冷涡旋式空调系统。
PCT/CN2012/081224 2012-05-31 2012-09-11 空调系统 WO2013177871A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210178480.1A CN103453704B (zh) 2012-05-31 2012-05-31 空调系统
CN201210178480.1 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013177871A1 true WO2013177871A1 (zh) 2013-12-05

Family

ID=49672338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081224 WO2013177871A1 (zh) 2012-05-31 2012-09-11 空调系统

Country Status (2)

Country Link
CN (1) CN103453704B (zh)
WO (1) WO2013177871A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205403225U (zh) * 2015-11-18 2016-07-27 吴家伟 一种改进回油系统的co2复叠制冷装置
CN105650788B (zh) * 2016-03-11 2018-10-30 任俊 一种冰蓄冷中央空调装置
CN106052191B (zh) * 2016-06-12 2018-06-29 上海柯茂机械有限公司 螺杆式低环温空气源高温热泵
CN106091510B (zh) * 2016-08-19 2018-10-16 芜湖美智空调设备有限公司 空调器的控制方法、控制装置及空调器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2814269Y (zh) * 2005-07-01 2006-09-06 烟台冰轮股份有限公司 一种可引射回油的制冷系统
WO2007042869A1 (en) * 2005-10-14 2007-04-19 Guangzhou Keli New Energy Co., Ltd. A hot water device utilizing solar heat and a heat pump
CN201072192Y (zh) * 2007-06-27 2008-06-11 艾默生网络能源有限公司 通信机房制冷循环系统
CN101512255A (zh) * 2006-09-29 2009-08-19 开利公司 带闪蒸罐接收器的制冷剂蒸汽压缩系统
US20090229285A1 (en) * 2008-03-13 2009-09-17 Aisin Seiki Kabushiki Kaisha Air conditioning system and accumulator thereof
CN101694311A (zh) * 2009-10-23 2010-04-14 清华大学 一种带自然冷却功能的液泵供液多联式空调机组
CN201858734U (zh) * 2010-11-19 2011-06-08 广东申菱空调设备有限公司 自然冷却节能空调机
CN102141328A (zh) * 2010-01-28 2011-08-03 乐金电子(天津)电器有限公司 带有多个回油孔的储液罐

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441983C (zh) * 2007-01-30 2008-12-10 江苏天舒电器有限公司 用于热泵机组的容量调节系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2814269Y (zh) * 2005-07-01 2006-09-06 烟台冰轮股份有限公司 一种可引射回油的制冷系统
WO2007042869A1 (en) * 2005-10-14 2007-04-19 Guangzhou Keli New Energy Co., Ltd. A hot water device utilizing solar heat and a heat pump
CN101512255A (zh) * 2006-09-29 2009-08-19 开利公司 带闪蒸罐接收器的制冷剂蒸汽压缩系统
CN201072192Y (zh) * 2007-06-27 2008-06-11 艾默生网络能源有限公司 通信机房制冷循环系统
US20090229285A1 (en) * 2008-03-13 2009-09-17 Aisin Seiki Kabushiki Kaisha Air conditioning system and accumulator thereof
CN101694311A (zh) * 2009-10-23 2010-04-14 清华大学 一种带自然冷却功能的液泵供液多联式空调机组
CN102141328A (zh) * 2010-01-28 2011-08-03 乐金电子(天津)电器有限公司 带有多个回油孔的储液罐
CN201858734U (zh) * 2010-11-19 2011-06-08 广东申菱空调设备有限公司 自然冷却节能空调机

Also Published As

Publication number Publication date
CN103453704B (zh) 2016-04-13
CN103453704A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
CN103196252B (zh) 复叠式热泵
CN105444453B (zh) 一种双温制冷及制热系统
WO2017219650A1 (zh) 空调系统、复合冷凝器、空调系统的运行控制方法及装置
US10041705B2 (en) Outdoor device for an air conditioner
KR20070111919A (ko) 지열을 이용한 공기조화 시스템
US20150330673A1 (en) Air-conditioning apparatus
WO2013177868A1 (zh) 空调系统
WO2013177872A1 (zh) 空调系统
US20230221046A1 (en) Systems and methods for cooling electrical equipment
CN105987535A (zh) 一种超远距离输送制冷剂的大容量多联式空调热泵机组
CN105444476A (zh) 换热系统
WO2013177871A1 (zh) 空调系统
CN106288045A (zh) 空气处理设备及控制方法
CN107514830A (zh) 一种单多级压缩自动转换多功能热泵系统
JP2010078164A (ja) 冷凍空調装置
CN205373127U (zh) 一种双温制冷及制热系统
CN111678198A (zh) 一种高能效比机房空调系统
CN107178932A (zh) 一种超远距离输送制冷剂的高能效多联式空调机组
CN213119316U (zh) 采用节流阀的空调机组
CN213238035U (zh) 一种集成氟泵的机房冷却机组
WO2022068306A1 (zh) 回热器及具有其的制冷系统
CN204593946U (zh) 空调热水系统
CN202141238U (zh) 一种温度与湿度独立控制的双蒸发温度空调器
CN205448417U (zh) 换热系统
CN105841398A (zh) 引射增流型热泵空调系统及其操作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877791

Country of ref document: EP

Kind code of ref document: A1