WO2022068306A1 - 回热器及具有其的制冷系统 - Google Patents

回热器及具有其的制冷系统 Download PDF

Info

Publication number
WO2022068306A1
WO2022068306A1 PCT/CN2021/105389 CN2021105389W WO2022068306A1 WO 2022068306 A1 WO2022068306 A1 WO 2022068306A1 CN 2021105389 W CN2021105389 W CN 2021105389W WO 2022068306 A1 WO2022068306 A1 WO 2022068306A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
separation chamber
refrigerant
liquid separation
Prior art date
Application number
PCT/CN2021/105389
Other languages
English (en)
French (fr)
Inventor
王书森
王铁伟
张捷
杨明威
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2022068306A1 publication Critical patent/WO2022068306A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Definitions

  • the present invention relates to refrigeration systems, in particular to regenerators and refrigeration systems having the same.
  • a vapor-compression refrigeration system generally includes four basic components, a compressor, a condenser, an expansion device, and an evaporator, and these four basic components are interconnected to form a refrigeration circuit that allows a refrigerant to circulate therein.
  • the compressor sucks in low-temperature and low-pressure gaseous refrigerant through the suction port and compresses it into high-temperature and high-pressure gaseous refrigerant.
  • the high-temperature and high-pressure gaseous refrigerant is discharged from the discharge port of the compressor and flows into the condenser along the refrigerant line.
  • the gaseous refrigerant of high temperature and high pressure is condensed into liquid refrigerant of medium temperature and high pressure by means of air cooling or water cooling.
  • the medium-temperature and high-pressure liquid refrigerant flows along the refrigerant pipeline to the expansion device, and is throttled into the low-temperature and low-pressure liquid refrigerant in the expansion device.
  • the low-temperature and low-pressure liquid refrigerant flows to the evaporator along the refrigerant pipeline.
  • the liquid refrigerant is evaporated into a low-temperature and low-pressure gaseous refrigerant by absorbing the heat of the indoor air, and the indoor air is also cooled.
  • the low-temperature and low-pressure gaseous refrigerant is then sucked and compressed by the compressor to start a new refrigeration cycle.
  • Traditional compressors such as scroll compressors, centrifugal compressors, screw compressors, etc., often require lubricating oil to provide lubrication and sealing protection to their moving parts during operation.
  • part of the lubricating oil will circulate with the refrigerant in the refrigeration circuit, so it is easy to cause the compressor to lack oil due to the poor oil return effect. Therefore, such a compressor with lubricating oil is prone to failure, and the maintenance cost is correspondingly high.
  • the system is oil-free, and there is no oil film on the surface of the heat exchange tube to generate thermal resistance, thereby improving the heat transfer efficiency outside the tube.
  • Discrete accumulators and gas-liquid separators are usually also provided in existing vapor-compression refrigeration systems.
  • the accumulator is generally arranged between the condenser and the expansion device.
  • the medium temperature and high pressure liquid refrigerant from the condenser first flows into the accumulator, and then flows from the accumulator to the expansion device. Therefore, the accumulator can be used to adjust the amount of refrigerant circulating in the system and store the excess refrigerant.
  • the gas-liquid separator is usually arranged between the evaporator and the suction port of the compressor. The gaseous refrigerant from the evaporator first flows into the gas-liquid separator to remove the liquid refrigerant and lubricating oil therefrom by gravity.
  • the separated gaseous refrigerant is then sucked into the compressor, thereby preventing the liquid hammer from occurring in the compressor.
  • the refrigerant separated by the traditional gas-liquid separator is not easy to evaporate, and in the case of poor separation, it is easy to cause liquid in the suction of the compressor.
  • the present invention provides a regenerator, the The regenerator includes: an outer casing, which encloses a gas-liquid separation chamber; and an inner casing, which is located in the gas-liquid separation chamber and encloses a liquid storage chamber separated from the gas-liquid separation chamber, in which A plurality of heat exchange tubes are arranged in the liquid chamber, the heat exchange tubes have a first end and a second end, and the first end communicates with the gas-liquid separation chamber, wherein the outer casing is provided with: a gaseous state a refrigerant input port, which is positioned close to the lower part of the gas-liquid separation chamber and communicates with the second end of the heat exchange tube; at least one gaseous refrigerant output port extends to the upper part of the gas-liquid separation
  • the present invention combines the liquid accumulator and the gas-liquid separator to form a regenerator, wherein the liquid refrigerant input interface can be connected to the condenser of the refrigeration system to receive the medium temperature from the condenser High-pressure liquid refrigerant, and the liquid refrigerant output interface can be connected to the expansion device of the refrigeration system; the gaseous refrigerant input interface can be connected to the evaporator of the refrigeration system to receive low-temperature and low-pressure gaseous refrigerant from the evaporator, and the gaseous refrigerant output interface can be The suction port of the compressor connected to the refrigeration system.
  • the low-temperature and low-pressure gaseous refrigerant flowing in through the gaseous refrigerant input port flows through the heat exchange tube in the liquid storage chamber, so it can exchange heat with the medium-temperature and high-pressure liquid refrigerant outside the heat exchange tube in the liquid storage chamber.
  • the subcooling degree of the liquid refrigerant flowing to the expansion device and the superheating degree of the low-temperature gaseous refrigerant to be inhaled by the compressor can be simultaneously improved, thereby overcoming the difficulty of evaporation of the refrigerant separated by the traditional gas-liquid separator and the In the case of poor separation, it is easy to cause the problem of liquid in the suction of the compressor.
  • a plurality of baffles staggered with each other and arranged horizontally are arranged in the gas-liquid separation chamber, and the baffles are located above the inner shell.
  • the gas-liquid separation effect of the gaseous refrigerant can be improved by interfering with the flow direction of the gaseous refrigerant through the baffle plate.
  • a spray device located above the inner shell is further provided in the gas-liquid separation chamber, and a spray device communicated with the spray device is provided on the outer shell. sprinkler interface.
  • the spray device can be used to prevent the problem of overheating of the low-temperature gaseous refrigerant to be sucked in by the compressor.
  • the spray device is fixed on the lower bottom surface of the baffle plate close to the inner casing. In this way, the installation structure of the spray device can be simplified.
  • a gaseous refrigerant distribution chamber is provided between the gaseous refrigerant input interface and the inner casing, and the gaseous refrigerant distribution chamber is respectively connected to the gaseous refrigerant input interface and each of the gaseous refrigerant distribution chambers.
  • the second ends of the heat exchange tubes communicate with each other.
  • the gaseous refrigerant distribution chamber can help the gaseous refrigerant to be evenly distributed into each heat exchange tube.
  • a liquid level gauge interface communicating with the liquid storage chamber is further provided on the outer casing. Through the liquid level gauge interface, a liquid level gauge can be installed on the outer casing to facilitate the observation of the amount of refrigerant in the liquid storage chamber.
  • the outer casing is further provided with a bypass port communicating with the bottom of the gas-liquid separation chamber.
  • the bypass interface can be used to connect to the load balancing pipeline of the compressor and the bypass pipeline used to reduce the pressure ratio of the refrigeration system, so as to receive the high-temperature gaseous refrigerant from the compressor and use the high-temperature gaseous refrigerant to vaporize gas-liquid Low temperature liquid refrigerant at the bottom of the separation chamber.
  • the present invention also provides a refrigeration system comprising: at least one magnetic levitation compressor; a condenser; an expansion valve; a plurality of indoor air coolers connected in parallel; , the gaseous refrigerant input interface is configured to be connected to the plurality of indoor air coolers, each of the at least one gaseous refrigerant output interface is configured to be connected to the suction pipe of a corresponding magnetic levitation compressor, and the liquid refrigerant input An interface is configured to connect to the condenser, and the liquid refrigerant output interface is configured to connect to the expansion valve.
  • the refrigeration system of the present invention becomes an oil-free refrigeration system by adopting a magnetic levitation compressor, thus facilitating maintenance, low noise, and high energy efficiency ratio.
  • the refrigeration system uses the regenerator of the present invention, which can simultaneously increase the superheat and subcooling degree of the refrigerant in the system, thereby further improving the energy efficiency ratio of the entire system.
  • the refrigeration system can be applied to industries including but not limited to edible mushroom cultivation, and can significantly reduce energy consumption.
  • the at least one magnetic levitation compressor includes two parallel magnetic levitation compressors. Two maglev compressors with multiple indoor air coolers can achieve better energy-saving effect.
  • the condenser is an evaporative condenser or a fin-and-tube condenser
  • each of the indoor cooling fans includes a refrigerant evaporation coil.
  • the indoor cooling fan adopts the refrigerant evaporation coil, which can achieve the purpose of direct cooling, that is, the temperature of the indoor air can be directly lowered through the evaporation of the refrigerant in the evaporation coil.
  • FIG. 1 is a schematic diagram of an embodiment of a refrigeration system of the present invention
  • Fig. 2 is the perspective view of the embodiment of the regenerator of the present invention.
  • FIG. 3 is a first partial cross-sectional perspective schematic view of an embodiment of the regenerator of the present invention.
  • FIG. 4 is a second partial cross-sectional perspective schematic view of an embodiment of the regenerator of the present invention.
  • FIG. 5 is a third partial cross-sectional perspective view of an embodiment of the regenerator of the present invention.
  • FIG. 6 is a fourth partial cross-sectional perspective view of an embodiment of the regenerator of the present invention.
  • Refrigeration system 10. Regenerator; 101. Outer casing; 101a, outer casing top wall; 101b, first side wall of outer casing; 101c, second side wall of outer casing; 102, gaseous refrigerant output interface; 102a, The first gaseous refrigerant output interface; 102b, the first gaseous refrigerant output interface; 103, the liquid refrigerant input interface; 104, the gaseous refrigerant input interface; 105, the bypass interface; 106, the liquid refrigerant output interface; 107, the liquid level gauge interface; 108, spray interface; 109, base of regenerator; 110, gas-liquid separation chamber; 111, baffle plate; 111a, bottom surface of baffle plate; 112, inner shell; 112a, top wall of inner shell; 112b 112c, the second sidewall of the inner shell; 113, the liquid storage chamber; 114, the heat exchange tube; 114a, the first end of the heat exchange tube; 114b, the second end
  • the regenerator 10 includes: an outer casing 101, which encloses a gas-liquid separation chamber 110; and an inner casing 112, which is located in the gas-liquid separation chamber 110 and encloses a liquid storage chamber 113 separated from the gas-liquid separation chamber 110, A plurality of heat exchange tubes 114 are arranged in the liquid storage chamber 113.
  • the heat exchange tubes 114 have a first end 114a and a second end 114b, and the first end 114a communicates with the gas-liquid separation chamber 110.
  • a gaseous refrigerant input port 104 which is positioned close to the lower part of the gas-liquid separation chamber 110 and communicates with the second end 114b of the heat exchange tube 114; at least one gaseous refrigerant output port 102, which extends to the upper part of the gas-liquid separation chamber 110 ;
  • the liquid refrigerant input interface 103 and the liquid refrigerant output interface 106, the liquid refrigerant input interface 103 extends to the upper part of the liquid storage chamber 113, and the liquid refrigerant output interface 106 extends to the lower part of the liquid storage chamber 113.
  • the refrigerant mentioned in this article refers to the refrigerant that can be circulated in the refrigeration circuit when the refrigeration system is working, such as R134A and the like.
  • Compressor suction with liquid means that when the compressor inhales, the gaseous refrigerant sucked contains liquid refrigerant.
  • the present invention also provides a refrigeration system 1 .
  • the refrigeration system 1 includes: at least one magnetic levitation compressor 30; a condenser 20; an expansion valve 50; a plurality of indoor air coolers 40 connected in parallel; 104 is configured to be connected to a plurality of indoor air coolers 40, each of the at least one gaseous refrigerant output port 102 is configured to be connected to a suction pipe of a corresponding magnetic levitation compressor 30, and the liquid refrigerant input port 103 is configured to be connected to the condenser 20 , and the liquid refrigerant output port 106 is configured to be connected to the expansion valve 50 .
  • FIG. 1 is a schematic diagram of an embodiment of the refrigeration system of the present invention.
  • the refrigeration system 1 includes two parallel-connected maglev compressors 30 , a condenser 20 , a regenerator 10 , an economizer 61 , an expansion valve 50 , and five parallel-connected units
  • the indoor air cooler 40 may include one maglev compressor 30 or more than two maglev compressors 30 .
  • the refrigeration system 1 may include two parallel indoor air coolers 40, three parallel indoor air coolers 40, four parallel indoor air coolers 40, or More than five parallel indoor air coolers 40 can be used to cool multiple rooms.
  • the magnetic levitation compressor 30, the condenser 20, the regenerator 10, and the economizer 61 together form the outdoor main unit part
  • the indoor air cooler 40 and the expansion valve 50 together form the indoor unit part.
  • the two maglev compressors 30 are a first maglev compressor 30a and a second maglev compressor 30b, respectively.
  • the first maglev compressor 30a and the second maglev compressor 30b are connected in parallel.
  • the first magnetic levitation compressor 30a sucks in the low-temperature and low-pressure gaseous refrigerant through the first suction pipe 301a, and discharges the compressed high-pressure and high-temperature gaseous refrigerant through the first exhaust pipe 302a.
  • a suction pressure sensor may be arranged at a position of the first suction pipe 301a close to the suction port of the first magnetic levitation compressor 30a.
  • a first check valve 303a is provided on the first exhaust pipe 302a to prevent gaseous refrigerant from flowing into the exhaust port of the first magnetic levitation compressor 30a from the first exhaust pipe 302a when the first magnetic levitation compressor 30a is stopped (Fig. not marked).
  • Exhaust pressure sensors (not marked in the drawing) may be arranged upstream and downstream of the first check valve 303a, respectively.
  • the second magnetic levitation compressor 30b sucks in the low-temperature and low-pressure gaseous refrigerant through the second suction pipe 301b, and discharges the compressed high-pressure and high-temperature gaseous refrigerant through the second exhaust pipe 302b.
  • a suction pressure sensor may be arranged at a position of the second suction pipe 301b close to the suction port of the second magnetic levitation compressor 30b.
  • a second check valve 303b is provided on the second exhaust pipe 302b to prevent gaseous refrigerant from flowing into the exhaust port of the second magnetic levitation compressor 30b from the second exhaust pipe 302b when the second magnetic levitation compressor 30b is stopped (Fig. not marked).
  • Exhaust pressure sensors (not marked in the drawing) may be arranged upstream and downstream of the second check valve 303b, respectively.
  • a balanced load pipe 304 is provided between the first magnetic levitation compressor 30a and the second magnetic levitation compressor 30b. As shown in FIG. 1 , both ends of the balanced load pipe 304 are respectively connected to the first exhaust pipe 302a and the second exhaust pipe 302b, and the connection points are located at the first check valve 303a and the second check valve 303b respectively downstream.
  • a first load balancing valve 305a for the first magnetic levitation compressor 30a and a second load balancing valve 305b for the second magnetic levitation compressor 30b are provided on the balanced load pipe 304, respectively.
  • the first load balance valve 305a and the second load balance valve 305b are used for energy regulation and surge control of the first maglev compressor 30a and the second maglev compressor 30b, respectively.
  • a compressor bypass pipe 306 is provided between the first magnetic levitation compressor 30a and the second magnetic levitation compressor 30b. Both ends of the compressor bypass pipe 306 are also connected to the first exhaust pipe 302a and the second exhaust pipe 302b, respectively, and the connection points are located upstream of the first one-way valve 303a and the second one-way valve 303b, namely, It is located between the discharge port of the corresponding compressor and the corresponding one-way valve.
  • the compressor bypass pipe 306 is provided with: a first electronic expansion valve 307a and a first bypass solenoid valve 308a for the first magnetic levitation compressor 30a; a second electronic expansion valve 307b for the second magnetic levitation compressor 30b and the second bypass solenoid valve 308b.
  • the first electronic expansion valve 307a and the first bypass solenoid valve 308a and the second electronic expansion valve 307b and the second bypass solenoid valve 308b are used to reduce the pressure ratio in the refrigeration system 1, thereby assisting the first magnetic suspension compressor 30a and Start and stop of the second maglev compressor 30b.
  • the first magnetic levitation compressor 30a and the second magnetic levitation compressor 30b are further connected to the connecting pipes 79 of the supplemental air circuit, respectively.
  • the air supply circuit connecting pipes 79 are respectively connected to the air supply ports (not marked in the figure) on the first magnetic levitation compressor 30a and the second magnetic levitation compressor 30b.
  • the connecting pipe 79 of the air supply circuit is provided with: a first air supply circuit solenoid valve 309a for controlling the connection with the first magnetic levitation compressor 30a; a second air supply circuit for controlling the connection with the second magnetic suspension compressor 30b Circuit solenoid valve 309b. As shown in FIG.
  • compressor cooling inlets are respectively provided on the first magnetic levitation compressor 30a and the second magnetic levitation compressor 30b.
  • the first magnetic levitation compressor 30a and the second magnetic levitation compressor 30b are respectively connected to the compressor cooling pipes 75 through corresponding compressor cooling inlets for cooling heating components such as motors and frequency converters in the compressors when necessary.
  • a solenoid valve and a throttling orifice are generally provided inside the cooling inlet of the compressor.
  • the solenoid valve is used to control whether the refrigerant for cooling is allowed to enter, and the throttling orifice is used to expand and throttle the incoming refrigerant.
  • the solenoid valve opens; when the temperature inside the compressor and the frequency converter is lower than the predetermined temperature threshold, the solenoid valve is closed.
  • the condenser 20 is an evaporative condenser.
  • the condenser 20 may also be a finned tube condenser or other suitable form of condenser. As shown in FIG. 1 , the high-temperature and high-pressure refrigerants from the first exhaust pipe 302 a and the second exhaust pipe 302 b are discharged into the condenser 20 , respectively.
  • the condenser 20 is an evaporative condenser.
  • the condenser 20 may also be a finned tube condenser or other suitable form of condenser. As shown in FIG.
  • the condenser 20 includes: an evaporation chamber 202 ; an evaporation coil 201 located in the evaporation chamber 202 and allowing high temperature and high pressure refrigerant to flow into it; a cooling water tank 205 located at the bottom of the evaporation chamber 202 ; A fan 204 ; a shower head 203 located at the top of the evaporation chamber 202 ; a water pump 206 for pumping cooling water from the cooling water tank 205 to the shower head 203 .
  • the water pump 206 is connected to the showerhead 203 through the water pipe 207 .
  • the water pump 206 circulates the cooling water between the shower head 203 and the cooling water tank 205, and the fan 204 blows air to cool the cooling water.
  • the cooling water flows from the outer surface of the evaporation coil 201 and takes away the heat of the refrigerant in the evaporation coil 201, so that the high temperature and high pressure gaseous refrigerant in the evaporation coil 201 is condensed into the high temperature and high pressure liquid refrigerant.
  • the high-temperature and high-pressure liquid refrigerant leaving the condenser 20 enters the regenerator 10 along the condenser liquid pipe 71 .
  • the medium-temperature and high-pressure liquid refrigerant leaving the regenerator 10 enters the economizer 61 along the regenerator liquid outlet pipe 73 .
  • the medium-temperature and high-pressure liquid refrigerant is divided into two parts before entering the economizer 61: a main flow part and a bypass part.
  • the main flow part directly enters the economizer 61, while the bypass part flows into the economizer bypass 77 and is throttled and expanded into a low temperature and low pressure liquid refrigerant by the economizer electronic expansion valve 62 on the economizer bypass 77.
  • the bypass portion that becomes the low-temperature and low-pressure liquid refrigerant then flows into the economizer 61, and in the economizer 61, the temperature of the main-stream portion is reduced by absorbing the heat of the main-stream portion, and itself evaporates into a low-temperature and low-pressure gaseous refrigerant.
  • the main stream portion whose temperature has been lowered flows to the indoor unit portion through the liquid shut-off valve 80 (eg, a solenoid valve) along the cooling fan liquid pipe 78.
  • the bypass part of the gaseous refrigerant evaporated into low temperature and low pressure is sucked into the corresponding magnetic levitation compressor in the working state through the air supply circuit connecting pipe 79 for compression.
  • the economizer may be eliminated.
  • the liquid refrigerant enters the indoor unit part along the cooling fan liquid pipe 78 .
  • the liquid refrigerant is distributed to the activated indoor air coolers 40 and the corresponding expansion valves 50 according to the number and load of the indoor air coolers 40 being turned on.
  • the indoor cooling fan 40 includes a first indoor cooling fan 40a and a corresponding first expansion valve 50a, a second indoor cooling fan 40b and a corresponding second expansion valve 50b, and a third indoor cooling fan 40c and the corresponding third expansion valve 50c, the fourth indoor air cooler 40d and the corresponding fourth expansion valve 50d, and the fifth indoor air cooler 40f and the corresponding fifth expansion valve 50f.
  • each indoor air cooler adopts a refrigerant evaporating coil (eg, a fin-and-tube evaporator) to directly cool the air in the room.
  • the expansion valve 50 may be an electronic expansion valve or a thermal expansion valve. The medium temperature and high pressure liquid refrigerant is first expanded into a low temperature and low pressure liquid refrigerant by the corresponding expansion valve 50, and then enters the corresponding indoor air cooler 40 to cool the air in the room, and the refrigerant itself is evaporated into a low temperature and low pressure gaseous refrigerant.
  • the low-temperature and low-pressure gaseous refrigerants from different indoor air coolers 40 are collected and then enter the regenerator 10 along the air cooler gas pipe 72 and undergo gas-liquid separation in the regenerator 10.
  • the gaseous refrigerant after gas-liquid separation can be sucked into the corresponding magnetic levitation compressor through the first suction pipe 301a and the second suction pipe 301b respectively.
  • FIGS. 2 to 6 The regenerator of the present invention will be described below with reference to FIGS. 2 to 6 .
  • FIG. 3 is a schematic perspective view of a first partial cross-section of an embodiment of the regenerator of the present invention
  • FIG. 4 is a second partial cross-section of the embodiment of the regenerator of the present invention.
  • Schematic perspective view FIG. 5 is a third partial cross-sectional three-dimensional schematic view of an embodiment of the regenerator of the present invention
  • FIG. 6 is a fourth partial cross-sectional three-dimensional schematic view of an embodiment of the regenerator of the present invention. As shown in FIGS.
  • the regenerator 10 includes a base 109 , an outer casing 101 located on the base 109 and enclosing a gas-liquid separation chamber 110 , and an inner casing 112 enclosing a liquid storage chamber 113 .
  • the inner case 112 is located at a lower portion inside the gas-liquid separation chamber 110, and the gas-liquid separation chamber 110 and the liquid storage chamber 113 are separated from each other.
  • a plurality of heat exchange tubes 114 are arranged in the liquid storage chamber 113 in parallel and spaced apart from each other.
  • the heat exchange tubes 114 have a first end 114 a and a second end 114 b.
  • the outer casing 101 is provided with: a gaseous refrigerant input port 104 , which is located near the lower part of the gas-liquid separation chamber 110 and is connected to the heat exchange tube 114 two gaseous refrigerant output ports 102, which respectively extend to the upper part of the gas-liquid separation chamber 110; a liquid refrigerant input port 103 and a liquid refrigerant output port 106, the liquid refrigerant input port 103 extends to the storage The upper part of the liquid chamber 113, and the liquid refrigerant output port 106 extends to the lower part of the liquid storage chamber 113; a bypass port 105 is connected to the bottom of the gas-liquid separation chamber 110; a liquid level gauge port 107 is connected to the The upper part in the liquid storage chamber 113 ; a spray interface 108 , which can be communicated to the upper part in the gas-liquid separation chamber 110 .
  • a gaseous refrigerant input port 104 which is located near the lower part of the gas-liquid separation chamber 110 and
  • the number of gaseous refrigerant output ports 102 corresponds to the number of compressors in the refrigeration system. When the number of compressors is one, the number of gaseous refrigerant output ports 102 is also one. When the number of compressors exceeds two, the number of gaseous refrigerant output ports 102 also exceeds two.
  • two baffles 111 staggered from each other in the vertical direction are arranged in the upper part of the gas-liquid separation chamber 110 .
  • more baffles 111 may be arranged in the gas-liquid separation chamber 110 .
  • the baffle 111 is located above the inner casing 112 .
  • the two baffles 111 are spaced apart from each other in the vertical direction, and respectively extend horizontally from two opposite side walls of the outer casing 101 and exceed each other, so as to interfere with the upward flow of the gaseous refrigerant in the gas-liquid separation chamber 110, The liquid refrigerant entrained therein is separated from the gaseous refrigerant under the action of gravity. As shown in FIG.
  • a spray device 115 is further provided in the gas-liquid separation chamber 110 .
  • the spray device 115 is a substantially rectangular box, and a plurality of spray holes 118 are provided on the bottom wall of the rectangular box.
  • the spray device 115 is directly fixed on the lower bottom surface 111 a of the baffle plate 111 near the top wall 112 a of the inner casing 112 .
  • the spray device 115 can also be fastened to the side wall of the outer casing 101 by means of a separate connecting device.
  • the outer casing 101 is a box-shaped body having a top wall 101a, four side walls, and a bottom wall.
  • the liquid refrigerant input port 103 and the two gaseous refrigerant output ports 102 are both arranged on the top wall 101 a of the outer casing 101 .
  • the two gaseous refrigerant output ports 102 extend through the top wall 101a of the outer casing 101 and terminate at the top of the gas-liquid separation chamber 110 or an upper portion near the top.
  • the two gaseous refrigerant output ports 102 can be respectively connected to the first suction pipe 301a and the second suction pipe 301b. As shown in FIGS.
  • the liquid refrigerant input port 103 sequentially extends through the top wall 101 a of the outer casing 101 , the gas-liquid separation chamber 110 , and the top wall 112 a of the inner casing 112 and terminates in the liquid storage chamber 113 . upper.
  • the liquid refrigerant input port 103 may be connected to the condenser liquid pipe 71 .
  • the gaseous refrigerant input interface 104 is positioned on the lower portion of the first side wall 101 b of the outer casing 101 .
  • a distribution chamber 116 is formed between the first side wall 101 b of the outer casing 101 and the first side wall 112 b of the inner casing 112 .
  • the distribution chamber 116 is enclosed by the distribution chamber housing 117, and the distribution chamber housing 117 includes the distribution chamber housing top wall 117a and the distribution chamber housing back wall 117b, so that the distribution chamber 116 is respectively connected with the gas-liquid separation chamber 110 and the liquid storage chamber. 113 separated.
  • the gaseous refrigerant input port 104 communicates with the distribution chamber 116 through the first side wall 101 b of the outer casing 101 .
  • Distribution holes 119 corresponding to the second end 114b of each heat exchange tube 114 are distributed on the back wall 117b of the distribution chamber shell, so that the gaseous refrigerant entering from the gaseous refrigerant input port 104 can be evenly distributed into each heat exchange tube 114 .
  • the gaseous refrigerant input interface 104 may be connected to the air cooler gas pipe 72 .
  • the liquid refrigerant output interface 106 , the liquid level gauge interface 107 , and the spray interface 108 are all positioned on the second side wall 101 c of the outer casing 101 .
  • the liquid refrigerant output interface 106 is located on the lower part of the second side wall 101c of the outer casing 101, and extends through the second side wall 101c of the outer casing 101, the gas-liquid separation chamber 110, and the second side wall of the inner casing 112 in sequence
  • the lower part of 112c communicates with the lower part or bottom of the liquid storage chamber 113 .
  • the liquid refrigerant output port 106 may be connected to the liquid outlet pipe 73 of the regenerator.
  • the liquid level gauge interface 107 extends through the second side wall 101 c of the outer casing 101 , the gas-liquid separation chamber 110 , and the second side wall 112 c of the inner casing 112 in sequence to communicate with the upper portion of the liquid storage chamber 113 .
  • the upper end of the liquid level gauge 121 can be connected to the liquid level gauge interface 107
  • the lower end of the liquid level gauge 121 can be connected to the liquid refrigerant output interface 106 .
  • the spray interface 108 extends through the second side wall 101 c of the outer casing 101 and enters the upper part of the gas-liquid separation chamber 110 to communicate with the spray device 115 . Referring to FIG.
  • the spray interface 108 may be connected to the regenerator cooling branch 76 branching off from the regenerator liquid outlet pipe 73 .
  • a cooling electronic expansion valve 120 is provided on the regenerator cooling branch 76 for cooling when the superheat of the gaseous refrigerant in the gas-liquid separation chamber 110 is too high.
  • the bypass port 105 is located near the bottom of the first side wall 101 b of the outer casing 101 and extends through the first side
  • the wall 101b communicates with the bottom of the gas-liquid separation chamber 110 .
  • the bypass port 105 generally communicates with the load balance pipe 304 and the compressor bypass pipe 306 through the load balance connection pipe 74 , respectively.
  • the bottom of the gas-liquid separation chamber is usually liquid refrigerant.
  • the corresponding control valve When the compressor is switched on or off or the compressor surges, the corresponding control valve is opened, and the high-temperature gaseous refrigerant is introduced from the corresponding compressor to the bottom of the gas-liquid separation chamber 110 through the load balance connecting pipe 74, so that the bottom of the Liquid refrigerant (if any) vaporizes.
  • a cooling interface may also be provided on the bottom of the side wall of the outer casing 101 .
  • the cooling interface extends through the side wall of the outer casing, the gas-liquid separation chamber, and the side wall of the inner casing 112 in sequence to communicate with the lower or bottom of the liquid storage chamber 113 .
  • the cooling interface can be connected to the cooling inlet of the corresponding compressor through the compressor cooling pipe 75, so as to lead the high-pressure liquid refrigerant from the liquid storage chamber 113 to the cooling inlet of the compressor when necessary.
  • the design of the regenerator 10 of the present invention places the accumulator inside the gas-liquid separator, and the heat exchange tube 114 passes through the interior of the accumulator, so that the low-temperature gaseous refrigerant evaporated from the indoor air cooler first passes through the accumulator The inner heat exchange tube 114 then enters the gas-liquid separator. Therefore, the low-temperature gaseous refrigerant increases its superheat degree by absorbing the heat of the liquid refrigerant in the accumulator, and at the same time, the liquid refrigerant in the accumulator is cooled by the low-temperature gaseous refrigerant and increases its subcooling degree.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

本发明公开了一种回热器和具有其的制冷系统。回热器包括:外壳体,其围成气液分离室;和内壳体,其位于气液分离室内并围成与气液分离室隔开的储液室,在储液室内布置有多个换热管,换热管具有第一端和第二端,第一端与气液分离室连通,其中,在外壳体上设有:气态冷媒输入接口,其定位靠近气液分离室的下部并且与换热管的第二端连通;至少一个气态冷媒输出接口,其延伸到气液分离室内的上部;液态冷媒输入接口和液态冷媒输出接口,液态冷媒输入接口延伸到储液室内的上部,并且液态冷媒输出接口延伸到储液室内的下部。该回热器集合气液分离器和储液器功能,克服了传统气液分离器分离出来的冷媒不易蒸发的问题。对应的制冷系统具有更高的能效比。

Description

回热器及具有其的制冷系统 技术领域
本发明涉及制冷系统,具体地涉及回热器及具有其的制冷系统。
背景技术
蒸汽压缩式制冷系统通常包括压缩机、冷凝器、膨胀装置、和蒸发器四种基本部件,并且这四种基本部件互联可形成允许冷媒在其中循环流动的制冷回路。在制冷循环中,压缩机通过吸气口吸入低温低压的气态冷媒并且将其压缩成高温高压的气态冷媒。该高温高压的气态冷媒从压缩机的排气口排出并且沿着冷媒管路流入到冷凝器中。在冷凝器中,借助于风冷或水冷方式,高温高压的气态冷媒被冷凝成中温高压的液态冷媒。中温高压的液态冷媒从冷凝器离开后沿着冷媒管路流到膨胀装置中,并且在膨胀装置中被节流成低温低压的液态冷媒。该低温低压的液态冷媒沿着冷媒管路流向蒸发器。在蒸发器中,该液态冷媒通过吸收室内空气的热量而被蒸发成低温低压的气态冷媒,同时室内空气也得到冷却。该低温低压的气态冷媒然后又被压缩机吸入和压缩,从而开始新的制冷循环。传统的压缩机,例如涡旋压缩机、离心压缩机、螺杆压缩机等,在工作的时候往往需要润滑油对其运动部件提供润滑和密封保护。在制冷系统工作时,部分润滑油会随着冷媒在制冷回路中循环,因此很容易发生回油效果不好导致压缩机缺油等状况。因此这种带润滑油的压缩机容易发生故障,维修成本相应地也高。同时系统无油,换热管表面无油膜产生热阻从而提高管外传热效率。
在现有蒸汽压缩式制冷系统中通常还设有分立的储液器和气液分离器。储液器一般布置在冷凝器与膨胀装置之间,来自冷凝器的中温高压的液态冷媒先流入储液器,然后再从储液器流向膨胀装置。因此,储液器可用于调节系统中的冷媒循环量,存储多余的冷媒。气液分离器通常布置在蒸发器与压缩机的吸气口之间。来自蒸发器的气态冷媒先流入气液分离器,以便利用重力从其中除去液态冷媒和润滑油。经过分离的气态冷媒再被压缩机吸入,从而可阻止压缩机发生液击现象。然而,传统气液分离器分离出来的冷媒不易蒸发,并且在分离不好的情况下还容易造成压缩机吸气带液。
相应地,本领域需要一种新的技术方案来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决传统气液分离器分离出来的冷媒不易蒸发和分离不好容易造成压缩机吸气带液的问题,本发明提供一种回热器,所述回热器包括:外壳体,其围成气液分离室;和内壳体,其位于所述气液分离室内并围成与所述气液分离室隔开的储液室,在所述储液室内布置有多个换热管,所述换热管具有第一端和第二端,所述第一端与所述气液分离室连通,其中,在所述外壳体上设有:气态冷媒输入接口,其定位靠近所述气液分离室的下部并且与所述换热管的第二端连通;至少一个气态冷媒输出接口,其延伸到所述气液分离室内的上部;液态冷媒输入接口和液态冷媒输出接口,所述液态冷媒输入接口延伸到所述储液室内的上部,并且所述液态冷媒输出接口延伸到所述储液室内的下部。
本领域技术人员能够理解的是,本发明是将储液器和气液分离器结合到一起形成了回热器,其中,液态冷媒输入接口可连接到制冷系统的冷凝器以接收来自冷凝器的中温高压的液体冷媒,而液态冷媒输出接口可连接到制冷系统的膨胀装置;气态冷媒输入接口可连接到制冷系统的蒸发器以接收来自蒸发器的低温低压的气态冷媒,而气态冷媒输出接口则可连接到制冷系统的压缩机的吸气口。通过气态冷媒输入接口流入的低温低压的气态冷媒从储液室内的换热管内流过,因此可与储液室内的位于换热管外部的中温高压的液态冷媒产生热交换。通过这样的回热器设计,能够同时提高流向膨胀装置的液态冷媒的过冷度和压缩机所要吸入的低温气态冷媒的过热度,进而克服了传统气液分离器分离出来的冷媒不易蒸发和在分离不好的情况下还容易造成压缩机吸气带液的问题。
在上述回热器的优选技术方案中,在所述气液分离室内设有多个彼此交错并水平布置的折流板,所述折流板位于所述内壳体上方。通过折流板干扰气态冷媒的流向,可提高气态冷媒的气液分离效果。
在上述回热器的优选技术方案中,在所述气液分离室内还设有位于所述内壳体上方的喷淋装置,并且在所述外壳体上设有与所述喷淋装置连通的喷淋接口。该喷淋装置可用于防止压缩机所要吸入的低温气态冷媒的过热度过高的问题。
在上述回热器的优选技术方案中,所述喷淋装置被固定在靠近所述内壳体的所述折流板的下底面上。这样可简化喷淋装置的安装结构。
在上述回热器的优选技术方案中,在所述气态冷媒输入接口与所述内壳体之间设有气态冷媒分配室,所述气态冷媒分配室分别与所述气态冷媒输入接口和每个所述换热管的第二端连通。气态冷媒分配室可帮助气态冷媒均匀地分配到各个换热管中。
在上述回热器的优选技术方案中,在所述外壳体上还设有连通所述储液室的液位计接口。通过液位计接口可在外壳体安装便于观察储液室内的冷媒量的液位计。
在上述回热器的优选技术方案中,在所述外壳体上还设有连通所述气液分离室底部的旁通接口。该旁通接口可用于连接到压缩机的负载平衡管路和用于降低制冷系统的压力比的旁通管路,以接收来自压缩机的高温气态冷媒并利用该高温气态冷媒来气化气液分离室底部的低温液态冷媒。
本发明还提供一种制冷系统,所述制冷系统包括:至少一台磁悬浮压缩机;冷凝器;膨胀阀;并联的多台室内冷风机;以及根据上面所述的任一种回热器,其中,所述气态冷媒输入接口配置成连接到所述多台室内冷风机,所述至少一个气态冷媒输出接口的每一个配置成连接到对应一台磁悬浮压缩机的吸气管,所述液态冷媒输入接口配置成连接到所述冷凝器,并且所述液态冷媒输出接口配置成连接到所述膨胀阀。
本领域技术人员能够理解的是,本发明制冷系统通过采用磁悬浮压缩机而变成无油制冷系统,因此便于维护,噪音低,而且能效比也高。该制冷系统使用本发明的回热器,可同时增加系统冷媒过热度和过冷度,从而进一步提高整个系统的能效比。进一步地,该制冷系统通过用磁悬浮压缩机带动多台室内冷风机,可适用于包括但不限于食用菌养殖行业,并且能显著降低能耗。
在上述制冷系统的优选技术方案中,所述至少一台磁悬浮压缩机包括两台并联的磁悬浮压缩机。两台磁悬浮压缩机带多台室内冷风机可实现更佳的节能效果。
在上述制冷系统的优选技术方案中,所述冷凝器为蒸发式冷凝器或翅片管式冷凝器,并且每台所述室内冷风机都包括冷媒蒸发盘管。室内冷 风机采用冷媒蒸发盘管,可实现直冷的目的,即通过冷媒在蒸发盘管内的蒸发,直接降低室内空气的温度。
附图说明
下面参照附图来描述本发明的优选实施方式,附图中:
图1是本发明制冷系统的实施例的示意图;
图2是本发明回热器的实施例的立体示意图;
图3是本发明回热器的实施例的第一局部剖面立体示意图;
图4是本发明回热器的实施例的第二局部剖面立体示意图;
图5是本发明回热器的实施例的第三局部剖面立体示意图;
图6是本发明回热器的实施例的第四局部剖面立体示意图。
附图标记列表
1、制冷系统;10、回热器;101、外壳体;101a、外壳体顶壁;101b、外壳体第一侧壁;101c、外壳体第二侧壁;102、气态冷媒输出接口;102a、第一气态冷媒输出接口;102b、第一气态冷媒输出接口;103、液态冷媒输入接口;104、气态冷媒输入接口;105、旁通接口;106、液态冷媒输出接口;107、液位计接口;108、喷淋接口;109、回热器的底座;110、气液分离室;111、折流板;111a、折流板下底面;112、内壳体;112a、内壳体顶壁;112b、内壳体第一侧壁;112c、内壳体第二侧壁;113、储液室;114、换热管;114a、换热管第一端;114b、换热管第二端;115、喷淋装置;116、分配室;117、分配室壳体;117a、分配室壳体顶壁;117b、分配室壳体背壁;118、喷淋孔;119、分配孔;120、冷却电子膨胀阀;121、液位计;20、冷凝器;201、换热盘管;202、喷淋室;203、喷淋头;204、风机;205、冷却水槽;206、水泵;207、水管;30、磁悬浮压缩机;30a、第一磁悬浮压缩机;30b、第二磁悬浮压缩机;301a、第一吸气管;301b、第二吸气管;302a、第一排气管;302b、第二排气管;303a、第一单向阀;303b、第二单向阀;304、负载平衡管;305a、第一负载平衡阀;305b、第二负载平衡阀;306、压缩机旁通管;307a、第一旁通电子膨胀阀;307b、第二旁通电子膨胀阀;308a、第一旁通电磁阀;308b、第二旁通电磁阀;309a、第一补气回路电磁阀;309b、第二补气回路电磁阀;40、室内冷风机;40a、第一室内冷风机;40b、第二室内冷风机;40c、第三室内冷风机;40d、第四室内冷 风机;40f、第五室内冷风机;50、膨胀阀;50a、第一膨胀阀;50b、第二膨胀阀;50c、第三膨胀阀;50d、第四膨胀阀;50f、第五膨胀阀;61、经济器;62、经济器电子膨胀阀;71、冷凝器液体管;72、冷风机气体管;73、回热器出液管;74、负载平衡连接管;75、压缩机冷却管;76、回热器冷却支路;77、经济器旁路;78、冷风机液体管;79、补气回路连接管;80、液体截止阀。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
为了解决传统气液分离器分离出来的冷媒不易蒸发和在分离不好时还容易造成压缩机吸气带液的问题的技术问题,本发明提供一种回热器10。回热器10包括:外壳体101,其围成气液分离室110;和内壳体112,其位于气液分离室110内并围成与气液分离室110隔开的储液室113,在储液室113内布置有多个换热管114,换热管114具有第一端114a和第二端114b,第一端114a与气液分离室110连通,其中,在外壳体101上设有:气态冷媒输入接口104,其定位靠近气液分离室110的下部并且与换热管114的第二端114b连通;至少一个气态冷媒输出接口102,其延伸到气液分离室110内的上部;液态冷媒输入接口103和液态冷媒输出接口106,液态冷媒输入接口103延伸到储液室113内的上部,并且液态冷媒输出接口106延伸到储液室113内的下部。
在本文中所提及的冷媒是指在制冷系统工作时可在制冷回路中循环的制冷剂,例如R134A等。压缩机吸气带液是指压缩机在吸气时,吸入的气态冷媒中含有液态冷媒。
为了解决传统带油制冷系统容易发生故障、维修成本高、能耗高的问题,本发明还提供一种制冷系统1。制冷系统1包括:至少一台磁悬浮压缩机30;冷凝器20;膨胀阀50;并联的多台室内冷风机40;以及根据上面所述的任一种回热器10,其中,气态冷媒输入接口104配置成连接到多台室内冷风机40,至少一个气态冷媒输出接口102的每一个配置成连接到对应一台 磁悬浮压缩机30的吸气管,液态冷媒输入接口103配置成连接到冷凝器20,并且液态冷媒输出接口106配置成连接到膨胀阀50。
图1是本发明制冷系统的实施例的示意图。如图1所示,在一种或多种实施例中,制冷系统1包括两台并联的磁悬浮压缩机30、冷凝器20、回热器10、经济器61、膨胀阀50、和五台并联的室内冷风机40。在替代的实施例中,制冷系统1可包括一台磁悬浮压缩机30或多于两台的磁悬浮压缩机30。在替代的实施例中,制冷系统1可包括与磁悬浮压缩机30的功率相匹配的两台并联的室内冷风机40、三台并联的室内冷风机40,四台并联的室内冷风机40、或多于五台的并联的室内冷风机40,以便可用于多个房间的制冷。磁悬浮压缩机30、冷凝器20、回热器10、和经济器61一起形成室外主机部分,而室内冷风机40和膨胀阀50一起形成室内机部分。
如图1所示,两台磁悬浮压缩机30分别为第一磁悬浮压缩机30a和第二磁悬浮压缩机30b。第一磁悬浮压缩机30a和第二磁悬浮压缩机30b形成并联连接。第一磁悬浮压缩机30a通过第一吸气管301a吸入低温低压的气态冷媒,并且通过第一排气管302a排出压缩后的高压高温的气态冷媒。在第一吸气管301a的靠近第一磁悬浮压缩机30a吸气口的位置上可布置吸气压力传感器。在第一排气管302a上设有第一单向阀303a,以便在第一磁悬浮压缩机30a停机时阻止气态冷媒从第一排气管302a流入第一磁悬浮压缩机30a的排气口(图中未标注)。在第一单向阀303a的上游和下游可分别布置有排气压力传感器(图中未标注)。第二磁悬浮压缩机30b通过第二吸气管301b吸入低温低压的气态冷媒,并且通过第二排气管302b排出压缩后的高压高温的气态冷媒。在第二吸气管301b的靠近第二磁悬浮压缩机30b吸气口的位置上可布置吸气压力传感器。在第二排气管302b上设有第二单向阀303b,以便在第二磁悬浮压缩机30b停机时阻止气态冷媒从第二排气管302b流入第二磁悬浮压缩机30b的排气口(图中未标注)。在第二单向阀303b的上游和下游可分别布置有排气压力传感器(图中未标注)。
为了平衡第一磁悬浮压缩机30a和和第二磁悬浮压缩机30b之间的负载,在第一磁悬浮压缩机30a和第二磁悬浮压缩机30b之间设有平衡负载管304。如图1所示,该平衡负载管304的两端分别连接到第一排气管302a和第二排气管302b上,并且连接点分别位于第一单向阀303a和第二单向阀303b的下游。在平衡负载管304上分别设置用于第一磁悬浮压缩机30a的第一负载 平衡阀305a和用于第二磁悬浮压缩机30b的第二负载平衡阀305b。第一负载平衡阀305a和第二负载平衡阀305b分别用于第一磁悬浮压缩机30a和和第二磁悬浮压缩机30b的能量调节和喘振控制。
如图1所示,在第一磁悬浮压缩机30a和和第二磁悬浮压缩机30b之间设有压缩机旁通管306。压缩机旁通管306的两端也分别连接到第一排气管302a和第二排气管302b上,并且连接点分别位于第一单向阀303a和第二单向阀303b的上游,即位于对应压缩机的排气口与对应的单向阀之间。在压缩机旁通管306上设有:用于第一磁悬浮压缩机30a的第一电子膨胀阀307a和第一旁通电磁阀308a;用于第二磁悬浮压缩机30b的第二电子膨胀阀307b和第二旁通电磁阀308b。第一电子膨胀阀307a和第一旁通电磁阀308a以及第二电子膨胀阀307b和第二旁通电磁阀308b均用于降低制冷系统1中的压力比,进而协助第一磁悬浮压缩机30a和第二磁悬浮压缩机30b的启停。
如图1所示,第一磁悬浮压缩机30a和第二磁悬浮压缩机30b还分别连接到补气回路连接管79。该补气回路连接管79分别连接到第一磁悬浮压缩机30a和第二磁悬浮压缩机30b上的补气接口(图中未标注)。在补气回路连接管79上设有:控制与第一磁悬浮压缩机30a之间通断的第一补气回路电磁阀309a;控制与第二磁悬浮压缩机30b之间通断的第二补气回路电磁阀309b。如图1所示,在第一磁悬浮压缩机30a和第二磁悬浮压缩机30b上分别设有压缩机冷却入口(图中未标注)。第一磁悬浮压缩机30a和第二磁悬浮压缩机30b通过对应的压缩机冷却入口分别连接到压缩机冷却管75,用于在需要的时候对压缩机内的电机和变频器等发热部件进行冷却。在压缩机冷却入口内部一般都设有电磁阀和节流孔板,电磁阀用于控制是否允许用于冷却的冷媒的进入,而节流孔板用于对进入的冷媒进行膨胀节流。当压缩机内部及变频器温度达到或超过预定温度阈值时,该电磁阀打开;当压缩机内部及变频器温度低于预定温度阈值时,该电磁阀就关闭。
如图1所示,来自第一排气管302a和第二排气管302b的高温高压的冷媒分别被排入到冷凝器20中。在一种或多种实施例中,冷凝器20为蒸发式冷凝器。在替代的实施例中,冷凝器20也可以是翅片管式冷凝器或其它合适形式的冷凝器。如图1所示,冷凝器20包括:蒸发室202;位于蒸发室202中并且允许高温高压的冷媒流入其中的蒸发盘管201;位于蒸发室202底部的冷却水槽205;位于蒸发室202上方的风机204;位于蒸发室202内顶部的喷淋 头203;将冷却水从冷却水槽205泵到喷淋头203的水泵206。水泵206通过水管207连接到喷淋头203。在冷凝器20工作时,水泵206和风机204均启动。水泵206在喷淋头203与冷却水槽205之间循环冷却水,而风机204吹送空气来冷却冷却水。冷却水从蒸发盘管201外表面上流过并带走蒸发盘管201内冷媒的热量,使得蒸发盘管201内的高温高压的气态冷媒被冷凝到高温高压的液态冷媒。如图1所示,离开冷凝器20的高温高压的液态冷媒沿着冷凝器液体管71进入回热器10。
如图1所示,从回热器10离开的中温高压的液态冷媒沿着回热器出液管73进入经济器61。该中温高压的液体冷媒在进入经济器61之前被分为两部分:主流部分和旁通部分。主流部分直接进入经济器61,而旁通部分流入经济器旁路77并被经济器旁路77上的经济器电子膨胀阀62节流膨胀成低温低压的液态冷媒。变成低温低压的液态冷媒的旁通部分然后流入经济器61,并在经济器61中通过吸收主流部分的热量来降低主流部分的温度,而其自身蒸发成低温低压的气态冷媒。被降低温度的主流部分离开经济器61后沿着冷风机液体管78经由液体截止阀80(例如电磁阀)流向室内机部分。被蒸发成低温低压的气态冷媒的旁通部分通过补气回路连接管79被吸入到处于工作状态的对应磁悬浮压缩机中以进行压缩。通过旁通膨胀制冷的方式来稳定主流部分的液态冷媒,可提高制冷系统的容量和效率。在替代的实施例中,根据制冷系统的实际配置,可取消经济器。
如图1所示,液态冷媒沿着冷风机液体管78进入室内机部分。在室内机部分中,该液态冷媒根据室内冷风机40的开机台数和负荷被分配给已开机的室内冷风机40和对应的膨胀阀50。在一种或多种实施例中,室内冷风机40包括第一室内冷风机40a和对应的第一膨胀阀50a、第二室内冷风机40b和对应的第二膨胀阀50b、第三室内冷风机40c和对应的第三膨胀阀50c、第四室内冷风机40d和对应的第四膨胀阀50d、第五室内冷风机40f和对应的第五膨胀阀50f。这些室内冷风机并联地布置在不同的房间内。在一种或多种实施例中,每台室内冷风机均采用冷媒蒸发盘管(例如翅片管式蒸发器)以实现对房间内的空气直接制冷目的。膨胀阀50可以是电子膨胀阀,也可以是热力膨胀阀。中温高压的液态冷媒首先被对应的膨胀阀50膨胀成低温低压的液态冷媒,然后进入对应的室内冷风机40,以对房间内的空气进行冷却,而冷媒自身被蒸发成低温低压的气态冷媒。来自不同室内冷风机40的低温低压的气 态冷媒汇集后沿着冷风机气体管72进入回热器10并且在回热器10中经历气液分离。经过气液分离的气态冷媒可分别通过第一吸气管301a和第二吸气管301b被吸入到对应的磁悬浮压缩机中。
下面参考图2至图6描述本发明的回热器。图2是本发明回热器的实施例的立体示意图,图3是本发明回热器的实施例的第一局部剖面立体示意图,图4是本发明回热器的实施例的第二局部剖面立体示意图,图5是本发明回热器的实施例的第三局部剖面立体示意图,而图6是本发明回热器的实施例的第四局部剖面立体示意图。如图2至图6所示,回热器10包括底座109、位于底座109上的围成气液分离室110的外壳体101、和围成储液室113的内壳体112。内壳体112位于气液分离室110内的下部,并且气液分离室110与储液室113彼此隔开。在储液室113内布置有多个彼此平行且隔开布置的换热管114,换热管114具有第一端114a和第二端114b,第一端114a与气液分离室110连通。
如图2至图6所示,在一种或多种实施例中,在外壳体101上设有:一个气态冷媒输入接口104,其定位靠近气液分离室110的下部并且与换热管114的第二端114b连通;两个气态冷媒输出接口102,其分别延伸到气液分离室110内的上部;一个液态冷媒输入接口103和一个液态冷媒输出接口106,液态冷媒输入接口103延伸到储液室113内的上部,并且液态冷媒输出接口106延伸到储液室113内的下部;一个旁通接口105,其连通到气液分离室110的底部;一个液位计接口107,其连通到储液室113内的上部;一个喷淋接口108,其可连通到气液分离室110内的上部。气态冷媒输出接口102的数量与制冷系统中的压缩机的数量相对应。当压缩机的数量为一时,气态冷媒输出接口102的数量也为一。当压缩机的数量超过两个时,气态冷媒输出接口102的数量也超过两个。
如图2至图6所示,在一种或多种实施例中,在气液分离室110内的上部布置有两个在竖直方向上彼此错开的折流板111。替代地,在气液分离室110内可布置更多个折流板111。折流板111位于内壳体112上方。两个折流板111在竖直方向上彼此间隔开,并分别从外壳体101的两个相对侧壁相向水平地延伸且超过彼此,以便干扰气态冷媒在气液分离室110内向上的流动,使得其中所夹带的液态冷媒在重力作用下与气态冷媒分离。如图3至图6所示,在气液分离室110内还设有喷淋装置115。在一种或多种实施例中,喷淋 装置115为大致矩形盒,并且在该矩形盒的底壁上设有多个喷淋孔118。在一种或多种实施例中,该喷淋装置115直接固定在靠近内壳体112的顶壁112a的折流板111的下底面111a上。替代地,该喷淋装置115也可通过单独的连接装置固定到外壳体101的侧壁上。
如图3至图6所示,外壳体101为具有顶壁101a、四个侧壁、和底壁的盒状体。在一种或多种实施例中,液态冷媒输入接口103和两个气态冷媒输出接口102都布置在外壳体101的顶壁101a上。两个气态冷媒输出接口102延伸穿过外壳体101的顶壁101a并终止在气液分离室110的顶部或靠近顶部的上部。参见图1,两个气态冷媒输出接口102可分别连接第一吸气管301a和第二吸气管301b。如图4至图6所示,液态冷媒输入接口103依次延伸穿过外壳体101的顶壁101a、气液分离室110、和内壳体112的顶壁112a并终止在储液室113内的上部。参见图1,液态冷媒输入接口103可连接到冷凝器液体管71。
如图2、图5、和图6所示,在一种或多种实施例中,气态冷媒输入接口104定位在外壳体101的第一侧壁101b的下部上。如图5和图6所示,在外壳体101的第一侧壁101b与内壳体112的第一侧壁112b之间形成有分配室116。分配室116由分配室壳体117围成,并且分配室壳体117包括分配室壳体顶壁117a和分配室壳体背壁117b,使得分配室116分别与气液分离室110和储液室113隔开。气态冷媒输入接口104穿过外壳体101的第一侧壁101b与分配室116连通。在分配室壳体背壁117b上分布对应每个换热管114的第二端114b的分配孔119,使得从气态冷媒输入接口104进入的气态冷媒可均匀地分配到每个换热管114中。参见图1,气态冷媒输入接口104可连接到冷风机气体管72。
如图2至图5所示,在一种或多种实施例中,液态冷媒输出接口106、液位计接口107、和喷淋接口108均定位在外壳体101的第二侧壁101c上。液态冷媒输出接口106位于外壳体101的第二侧壁101c的下部上,并依次延伸穿过外壳体101的第二侧壁101c、气液分离室110、和内壳体112的第二侧壁112c的下部以与储液室113的下部或底部连通。参见图1,液态冷媒输出接口106可连接到回热器出液管73。液位计接口107依次延伸穿过外壳体101的第二侧壁101c、气液分离室110、和内壳体112的第二侧壁112c以与储液室113的上部连通。参见图1,液位计121的上端可与液位计接口107形成连接,而 液位计121的下端可连接到液态冷媒输出接口106。喷淋接口108延伸穿过外壳体101的第二侧壁101c进入气液分离室110的上部与喷淋装置115连通。参见图1,喷淋接口108可连接到从回热器出液管73分出的回热器冷却支路76。在回热器冷却支路76上设有冷却电子膨胀阀120,用于当气液分离室110内的气态冷媒过热度过高时实施冷却。
如图2、图3和图5所示,在一种或多种实施例中,旁通接口105位于外壳体101的第一侧壁101b的靠近底部的位置上,并且延伸穿过第一侧壁101b与气液分离室110的底部连通。参见图1,旁通接口105通常通过负载平衡连接管74分别与负载平衡管304和压缩机旁通管306形成连通。气液分离室的最底部通常都是液态冷媒。当压缩机开关机时或压缩机发生喘振时,打开对应的控制阀,通过负载平衡连接管74将高温气态冷媒从对应的压缩机引入到气液分离室110内的底部,可使底部的液态冷媒(如果有的话)汽化。
参见图1,在一种或多种实施例中,在外壳体101的侧壁底部上还可设置冷却接口(图中未标注)。该冷却接口依次延伸穿过外壳体的侧壁、气液分离室、和内壳体112的侧壁以连通储液室113的下部或底部。该冷却接口可通过压缩机冷却管75连接到对应压缩机的冷却入口,以在需要时从储液室113引高压液态冷媒到压缩机冷却入口。
本发明回热器10的设计将储液器放置于气液分离器内部,且储液器内部被换热管114穿过,使得从室内冷风机蒸发回来的低温气态冷媒先穿过储液器内的换热管114再进入气液分离器。因此,低温气态冷媒通过吸收储液器内液态冷媒的热量而提升了其过热度,同时储液器内的液态冷媒因被低温气态冷媒冷却而提高了其过冷度。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种回热器,其特征在于,所述回热器包括:
    外壳体,其围成气液分离室;和
    内壳体,其位于所述气液分离室内并围成与所述气液分离室隔开的储液室,在所述储液室内布置有多个换热管,所述换热管具有第一端和第二端,所述第一端与所述气液分离室连通,
    其中,在所述外壳体上设有:气态冷媒输入接口,其定位靠近所述气液分离室的下部并且与所述换热管的第二端连通;至少一个气态冷媒输出接口,其延伸到所述气液分离室内的上部;液态冷媒输入接口和液态冷媒输出接口,所述液态冷媒输入接口延伸到所述储液室内的上部,并且所述液态冷媒输出接口延伸到所述储液室内的下部。
  2. 根据权利要求1所述的回热器,其特征在于,在所述气液分离室内设有多个彼此交错并水平布置的折流板,所述折流板位于所述内壳体上方。
  3. 根据权利要求2所述的回热器,其特征在于,在所述气液分离室内还设有位于所述内壳体上方的喷淋装置,并且在所述外壳体上设有与所述喷淋装置连通的喷淋接口。
  4. 根据权利要求3所述的回热器,其特征在于,所述喷淋装置被固定在靠近所述内壳体的所述折流板的下底面上。
  5. 根据权利要求1所述的回热器,其特征在于,在所述气态冷媒输入接口与所述内壳体之间设有气态冷媒分配室,所述气态冷媒分配室分别与所述气态冷媒输入接口和每个所述换热管的第二端连通。
  6. 根据权利要求1所述的回热器,其特征在于,在所述外壳体上还设有连通所述储液室的液位计接口。
  7. 根据权利要求1所述的回热器,其特征在于,在所述外壳体上还设有连通所述气液分离室底部的旁通接口。
  8. 一种制冷系统,其特征在于,所述制冷系统包括:
    至少一台磁悬浮压缩机;
    冷凝器;
    膨胀阀;
    并联的多台室内冷风机;以及
    根据权利要求1-7任一项所述的回热器,其中,所述气态冷媒输入接口配置成连接到所述多台室内冷风机,所述至少一个气态冷媒输出接口的每一个配置成连接到对应一台磁悬浮压缩机的吸气管,所述液态冷媒输入接口配置成连接到所述冷凝器,并且所述液态冷媒输出接口配置成连接到所述膨胀阀。
  9. 根据权利要求8所述的制冷系统,其特征在于,所述至少一台磁悬浮压缩机包括两台并联的磁悬浮压缩机。
  10. 根据权利要求9所述的制冷系统,其特征在于,所述冷凝器为蒸发式冷凝器或翅片管式冷凝器,并且每台室内冷风机都包括冷媒蒸发盘管。
PCT/CN2021/105389 2020-12-31 2021-07-09 回热器及具有其的制冷系统 WO2022068306A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011634618.5 2020-12-31
CN202011634618.5A CN112762641B (zh) 2020-12-31 2020-12-31 回热器及具有其的制冷系统

Publications (1)

Publication Number Publication Date
WO2022068306A1 true WO2022068306A1 (zh) 2022-04-07

Family

ID=75699648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105389 WO2022068306A1 (zh) 2020-12-31 2021-07-09 回热器及具有其的制冷系统

Country Status (2)

Country Link
CN (1) CN112762641B (zh)
WO (1) WO2022068306A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112762641B (zh) * 2020-12-31 2022-10-25 青岛海尔空调电子有限公司 回热器及具有其的制冷系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100132927A1 (en) * 2007-07-03 2010-06-03 Wtk S.R.L. Tube-Bundle Heat Exchanger
CN104329964A (zh) * 2014-09-09 2015-02-04 北京航空航天大学 一种用于微型燃气轮机的高效低成本管式回热器
CN206258001U (zh) * 2016-11-30 2017-06-16 重庆特力冷冻机设备制造有限责任公司 一种回热器
CN109114851A (zh) * 2018-11-12 2019-01-01 珠海格力电器股份有限公司 回热器及制冷循环系统
CN210532756U (zh) * 2019-07-08 2020-05-15 南京冷德节能科技有限公司 一种用于制冷系统的回热器
CN112762641A (zh) * 2020-12-31 2021-05-07 青岛海尔空调电子有限公司 回热器及具有其的制冷系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679607A (zh) * 2012-06-07 2012-09-19 中山市隐福电器有限公司 一种利用余热制冷的方法及其制冷系统
CN103528256B (zh) * 2013-10-28 2015-07-15 周伟 用于大型设备的带有自然冷却功能的复合型蒸发式冷却装置
CN203710930U (zh) * 2013-12-19 2014-07-16 常熟市东南应用技术研究院 一种制备纳米流体的微分添加雾化分散装置
CN105202825A (zh) * 2014-05-28 2015-12-30 青岛海尔空调电子有限公司 空调用冷媒过冷结构及中央空调
CN206195554U (zh) * 2016-10-31 2017-05-24 山东智恒磁浮科技有限公司 一种用于冷却磁悬浮冷媒压缩机中直流永磁电机的系统
DE112017007594T5 (de) * 2017-06-01 2020-03-12 Mitsubishi Electric Corporation Klimatisierungssystem

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100132927A1 (en) * 2007-07-03 2010-06-03 Wtk S.R.L. Tube-Bundle Heat Exchanger
CN104329964A (zh) * 2014-09-09 2015-02-04 北京航空航天大学 一种用于微型燃气轮机的高效低成本管式回热器
CN206258001U (zh) * 2016-11-30 2017-06-16 重庆特力冷冻机设备制造有限责任公司 一种回热器
CN109114851A (zh) * 2018-11-12 2019-01-01 珠海格力电器股份有限公司 回热器及制冷循环系统
CN210532756U (zh) * 2019-07-08 2020-05-15 南京冷德节能科技有限公司 一种用于制冷系统的回热器
CN112762641A (zh) * 2020-12-31 2021-05-07 青岛海尔空调电子有限公司 回热器及具有其的制冷系统

Also Published As

Publication number Publication date
CN112762641A (zh) 2021-05-07
CN112762641B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
JP4123829B2 (ja) 冷凍サイクル装置
EP1788325B1 (en) Freezing apparatus
AU2018202225B2 (en) Air conditioner
US9243827B2 (en) Chiller system including an oil separator and ejector connection
US20080053114A1 (en) Variable Capacity Modular Combined Refrigerating Installation by Frequency Conversion
KR20070007771A (ko) 냉동장치
KR20070046967A (ko) 냉동장치
KR101706865B1 (ko) 공기조화기
WO2019134492A1 (zh) 空调用循环系统、空调及空调控制方法
US11268739B2 (en) System for head pressure control
CN104185765A (zh) 制冷装置
WO2022068306A1 (zh) 回热器及具有其的制冷系统
KR20100046694A (ko) 히트펌프 연동 수열교환식 공기조화기
CN106949657B (zh) 带过冷装置的空调系统及其控制方法
CN113137789B (zh) 制冷系统的控制方法及制冷系统
WO2013177871A1 (zh) 空调系统
CN211716931U (zh) 气液分离器及冷水机组
CN210154138U (zh) 一种膨胀阀组件、双向节流系统及空调器
CN109682105B (zh) 空调系统
JP6291684B2 (ja) 冷凍装置
KR101157498B1 (ko) 에너지 절감형 클린룸용 히트펌프 공조시스템
WO2021120453A1 (zh) 冷水机组及其控制方法
CN107631515A (zh) 热泵空调机组
KR101404105B1 (ko) 공기조화기
WO2023067807A1 (ja) 二元冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873968

Country of ref document: EP

Kind code of ref document: A1