WO2013044706A1 - 一种空调系统 - Google Patents

一种空调系统 Download PDF

Info

Publication number
WO2013044706A1
WO2013044706A1 PCT/CN2012/080494 CN2012080494W WO2013044706A1 WO 2013044706 A1 WO2013044706 A1 WO 2013044706A1 CN 2012080494 W CN2012080494 W CN 2012080494W WO 2013044706 A1 WO2013044706 A1 WO 2013044706A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid level
storage tank
output end
liquid storage
level controller
Prior art date
Application number
PCT/CN2012/080494
Other languages
English (en)
French (fr)
Inventor
苗华
陈杰
张卫星
Original Assignee
艾默生网络能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾默生网络能源有限公司 filed Critical 艾默生网络能源有限公司
Publication of WO2013044706A1 publication Critical patent/WO2013044706A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present invention claims priority to Chinese Patent Application No. 201110298126.8, entitled “An Air Conditioning System”, filed on Sep. 29, 2011, the entire contents of in. TECHNICAL FIELD
  • the present invention relates to the field of air conditioners, and more particularly to an air conditioning system. Background technique
  • the conventional computer room air conditioner is composed of a compressor 110, a condenser 120, a flow control valve 130, and an evaporator 140.
  • the condenser can be connected to the flow control valve.
  • the drying filter 150 and/or the sight glass 160 are sequentially added to the road.
  • Air conditioning is configured according to the outdoor outdoor temperature in summer.
  • the technical problem to be solved by the present invention is to provide an air conditioning system capable of performing cooling using a natural cold source and reducing power loss of the air conditioning system.
  • the embodiment of the present invention adopts the following technical solutions:
  • An embodiment of the present invention provides an air conditioning system, including: a first liquid storage tank (5), a condensing device (2), and at least one evaporator (8);
  • An output end of the evaporator (8) is connected to an input end of the condensing device (2), and an output end of the condensing device (2) is connected to a first input end of the first liquid storage tank (5);
  • the system also includes: There is a positive drop in height between the first liquid storage tank (5) and the evaporator (8), and the first output end of the first liquid storage tank (5) is connected to the evaporator (8) Input; or,
  • a first output end of the first liquid storage tank (5) is connected to an input end of the evaporator (8) through a power device (7);
  • the utility model further comprises: a compression device (1), a flow control valve (3) and a switching valve (6); wherein an input end of the compression device (1) is connected to a second output end of the first liquid storage tank (5) The output of the compression device (1) is connected to the input end of the condensing device (2);
  • the output end of the condensing device ( 2 ) is connected to the first input end of the first liquid storage tank ( 5 ) through the flow control valve ( 3 );
  • An output of the evaporator (8) is connected to an input of the condensing device (2) via a second passage of the switching valve (6), the output of the evaporator (8) also passing through the switching valve
  • the first passage of (6) is connected to the second input of the first reservoir (5).
  • the second control valve (4) is connected in parallel to both ends of the flow control valve (3); the flow control valve (3) is configured to transmit refrigerant when the compression device (1) is activated, when The compression device (1) is closed when not activated; the second control valve (4) is for transmitting refrigerant when the compression device (1) is not activated, and is turned off when the compression device (1) is activated.
  • the method further includes: a first check valve (91) and/or a second check valve (92) and/or a third check valve (93); wherein
  • a first output end of the switching valve (6) is connected to a second input end of the first liquid storage tank (5) through the first one-way valve (91); and / or
  • a second output of the switching valve (6) is coupled to an input of the condensing device (2) via the second one-way valve (92); and/or,
  • the output of the compression device (1) is connected to the input of the condensing device (2) via the third one-way valve (93).
  • the output of the condensing device (2) is connected to the input of the flow control valve (3) via the second reservoir (10) for storing excess refrigerant in the air conditioning system.
  • a first level controller wherein
  • the first liquid level controller (13) is configured to correspondingly control the flow control valve (3) according to the detected liquid level in the first liquid storage tank (5), the first liquid level Two liquid level detecting ends of the controller (13) are respectively connected to a high output end and a low output end of the first liquid storage tank (5), and an output end of the first liquid level controller (13) is connected to the The control end of the flow control valve (3).
  • a first level controller wherein
  • the first liquid level controller (13) is configured to correspondingly control the flow control valve (3) according to the detected liquid level in the first liquid storage tank (5), the first liquid level Two liquid level detecting ends of the controller (13) are respectively connected to a high output end and a low output end of the first liquid storage tank (5), and an output end of the first liquid level controller (13) is connected to the The control end of the flow control valve (3).
  • a first level controller wherein
  • the first liquid level controller (13) is configured to correspondingly control the flow control valve (3) according to the detected liquid level in the first liquid storage tank (5), the first liquid level Two liquid level detecting ends of the controller (13) are respectively connected to a high output end and a low output end of the first liquid storage tank (5), and an output end of the first liquid level controller (13) is connected to the The control end of the flow control valve (3).
  • a first level controller wherein
  • the first liquid level controller (13) is configured to correspondingly control the flow control valve (3) according to the detected liquid level in the first liquid storage tank (5), the first liquid level Two liquid level detecting ends of the controller (13) are respectively connected to a high output end and a low output end of the first liquid storage tank (5), and an output end of the first liquid level controller (13) is connected to the The control end of the flow control valve (3).
  • the system further includes: a second liquid level controller;
  • the second liquid level controller (14) is configured to perform corresponding opening or stopping control on the power device (7) according to the detected liquid level in the first liquid storage tank (5), the second Level controller ( 14 )
  • the two liquid level detecting ends are respectively connected to the high output end and the low output end of the first liquid storage tank ( 5 ), and the output end of the second liquid level controller (14) is connected to the power device (7) The console.
  • the system further includes: a second liquid level controller;
  • the second liquid level controller (14) is configured to perform corresponding opening or stopping control on the power device (7) according to the detected liquid level in the first liquid storage tank (5), the second The two liquid level detecting ends of the liquid level controller (14) are respectively connected to the high output end and the low output end of the first liquid storage tank (5), and the output end of the second liquid level controller (14) is connected. The control end of the power device (7).
  • the system further includes: a second liquid level controller;
  • the second liquid level controller (14) is configured to perform corresponding opening or stopping control on the power device (7) according to the detected liquid level in the first liquid storage tank (5), the second The two liquid level detecting ends of the liquid level controller (14) are respectively connected to the high output end and the low output end of the first liquid storage tank (5), and the output end of the second liquid level controller (14) is connected. The control end of the power device (7).
  • the system further includes: a second liquid level controller;
  • the second liquid level controller (14) is configured to perform corresponding opening or stopping control on the power device (7) according to the detected liquid level in the first liquid storage tank (5), the second The two liquid level detecting ends of the liquid level controller (14) are respectively connected to the high output end and the low output end of the first liquid storage tank (5), and the output end of the second liquid level controller (14) is connected. The control end of the power device (7).
  • the system further includes: a second liquid level controller;
  • the second liquid level controller (14) is configured to perform corresponding opening or stopping control on the power device (7) according to the detected liquid level in the first liquid storage tank (5), the second The two liquid level detecting ends of the liquid level controller (14) are respectively connected to the high output end and the low output end of the first liquid storage tank (5), and the output end of the second liquid level controller (14) is connected. The control end of the power device (7).
  • the system further includes: a second liquid level controller;
  • the second liquid level controller (14) is configured to perform corresponding opening or stopping control on the power device (7) according to the detected liquid level in the first liquid storage tank (5), the second The two liquid level detecting ends of the liquid level controller (14) are respectively connected to the high output end and the low output end of the first liquid storage tank (5), and the output end of the second liquid level controller (14) is connected.
  • the system further includes: a second liquid level controller;
  • the second liquid level controller (14) is configured to perform corresponding opening or stopping control on the power device (7) according to the detected liquid level in the first liquid storage tank (5), the second The two liquid level detecting ends of the liquid level controller (14) are respectively connected to the high output end and the low output end of the first liquid storage tank (5), and the output end of the second liquid level controller (14) is connected. The control end of the power device (7).
  • the system further includes: a second liquid level controller;
  • the second liquid level controller (14) is configured to perform corresponding opening or stopping control on the power device (7) according to the detected liquid level in the first liquid storage tank (5), the second The two liquid level detecting ends of the liquid level controller (14) are respectively connected to the high output end and the low output end of the first liquid storage tank (5), and the output end of the second liquid level controller (14) is connected.
  • the control end of the power device (7) is analyzed as follows:
  • a first output end of the first liquid storage tank is connected to an input end of each evaporator; an output end of each evaporator is connected to an input end of the condensation device, and an output end of the condensation device is connected to the first input end of the first liquid storage tank;
  • the condensing device can utilize the natural condensing device when the outdoor ambient temperature is low by the height difference between the first liquid storage tank and the evaporator and/or by the power device to realize the transmission of the refrigerant from the first liquid storage tank to the respective evaporators.
  • the cold source realizes the cooling demand, and the compressor operation is not required in the whole refrigeration process, which reduces the power loss of the air conditioning system.
  • FIG. 1 is a schematic structural view of an air conditioning system in the prior art
  • FIG. 2 is a schematic structural view of an air conditioning system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of an air conditioning system according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural view of a three air conditioning system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an air conditioning system according to Embodiment 4 of the present invention
  • FIG. 6 is a schematic structural view of an air conditioning system according to Embodiment 5 of the present invention
  • FIG. 7 is a schematic structural view of an air conditioning system according to Embodiment 6 of the present invention.
  • FIG. 8 is a schematic structural view of an air conditioning system according to Embodiment 7 of the present invention.
  • Embodiment 8 of the present invention is a schematic structural view of an air conditioning system according to Embodiment 8 of the present invention.
  • FIG. 10 is a schematic structural view of an air conditioning system according to Embodiment 9 of the present invention.
  • FIG. 11 is a schematic structural view of an air conditioning system according to Embodiment 10 of the present invention.
  • FIG. 12 is a schematic structural view of an air conditioning system according to Embodiment 11 of the present invention.
  • FIG. 13 is a schematic structural diagram of an air conditioning system according to Embodiment 12 of the present invention. detailed description
  • the system includes: a first liquid storage tank 5, a condensing device 2, and at least one evaporator 8; wherein, the first liquid storage tank 5 An output is connected to the input of each evaporator 8; an output of each evaporator 8 is connected to the input of the condensing device 2, and an output of the condensing device 2 is connected to the first input of the first reservoir 5.
  • the output ends of the respective evaporators 8 may be respectively connected to the input terminals of the condensing device 2, or the input ends of the condensing devices 2 may be connected after the combined connection of the output terminals, which is not limited herein.
  • the refrigerant in the first liquid storage tank 5 can be normally operated from the first by gravity.
  • the first output of the reservoir 5 flows into each of the evaporators 8.
  • the gravity acts to ensure the flow of the refrigerant in the refrigeration circuit, which greatly saves the power loss of the power equipment operation and plays a very important role in the energy saving of the air conditioning system.
  • the height relationship between the first liquid storage tank 5 and each of the evaporators 8 may not be limited.
  • the input end of each of the evaporators 8 is connected by the power device 7.
  • the input end of the power device 7 is connected to the first output end of the first liquid storage tank 5, and the output ends of the power device 7 are respectively connected to the respective outputs.
  • the refrigerant in the first liquid storage tank 5 can flow to the respective evaporators 8 by the action of the power unit 7, and the refrigerant is supplied to the respective evaporators.
  • the use of power equipment 7 to ensure the flow of refrigerant in the refrigeration circuit can provide greater power for the circulation of the refrigerant, especially if the refrigeration circuit is long, and/or the system requires greater refrigerant flow, and/or The site cannot be the first liquid storage tank 5 and the evaporator 8 provides sufficient positive drop, the use of the power unit 7 can fully meet the power requirements of the refrigeration system.
  • the first liquid storage tank 5 shown in FIG. 2 and FIG. 3 may be combined to transfer the refrigerant to the respective evaporators 8, and the structure of the air conditioning system according to the third embodiment of the present invention as shown in FIG.
  • the first output end of a liquid storage tank 5 is connected to the input end of each evaporator 8 through a parallel power device 7 and a first control valve 41.
  • the first output end of the first liquid storage tank 5 is simultaneously connected to the power device 7
  • the input end of the first control valve 41 and the input end of the first control valve 41 are respectively connected to the input ends of the respective evaporators 8, and the output ends of the first control valves 41 are respectively connected to the input ends of the respective evaporators 8.
  • both the first liquid storage tank 5 and the respective evaporators 8 may be provided with a positive drop in height, and the first liquid storage tank 5 and the respective evaporators 8 are disposed again.
  • the power device 7 minimizes the energy consumption of the system due to the operation of the power device 7 according to different operating states of the system and specific conditions on the site.
  • the switching relationship between the first control valve 41 and the power unit 7 is that when the refrigeration system can provide the refrigerant flow power by the positive drop, the power unit 7 is turned off, the first control valve 41 is opened, and the refrigerant is firstly operated by gravity.
  • the liquid storage tank 5 flows to the respective evaporators 8; when the refrigeration system needs to provide sufficient refrigerant flow power by the power equipment 7, the power equipment 7 is turned on, the first control valve 41 is closed, and the refrigerant passes through the action of the power equipment 7 from the first The liquid storage tank 5 flows to the respective evaporators 8.
  • the refrigerant when the outdoor ambient temperature is low, when the refrigerant passes through the condensing device 2 disposed outside, the refrigerant is cooled by a natural cold source such as outdoor air or chilled water, and the refrigerant is discharged from the refrigerant.
  • the gaseous state is converted into a liquid state, circulated to the first liquid storage tank 5, and then transferred from the first liquid storage tank 5 by gravity or the action of the power device 7 to the respective evaporators disposed in the chamber, and the refrigerator is absorbed in the evaporator.
  • the heat in the room is converted from a liquid state to a gaseous state, and is transferred to the condensing device 2 to realize a refrigeration cycle.
  • the outdoor low-temperature cold source is used for refrigeration, which does not need to be operated by the compressor, thereby realizing the purpose of utilizing natural cold source refrigeration, reducing power loss and power consumption of the air-conditioning system, and saving energy.
  • the outdoor natural cold source when there is a temperature difference between the temperature of the refrigerant and the outdoor cold source, the outdoor natural cold source can be used for cooling.
  • the air conditioning system shown in Figures 2 to 4 is a single-cycle air conditioning system that uses natural natural cooling sources to achieve refrigeration.
  • the air conditioning system needs to operate under the condition that the outdoor ambient temperature meets the requirements.
  • the air conditioning system usually needs to operate all year round. Therefore, the present invention also provides an air conditioning system of other embodiments to meet the air conditioning year-round.
  • the requirements for running refrigeration are shown in Figures 5-13.
  • FIG. 5 is a schematic structural diagram of an air conditioning system according to Embodiment 4 of the present invention. As shown in FIG. 5, the system differs from the air conditioning system shown in FIG. 2 in that:
  • a switching valve 6 is provided, the output end of each evaporator 8 is connected to the second input end of the first liquid storage tank 5 through a first passage of the switching valve 6, and the output end of each evaporator 8 also passes through the second passage of the switching valve
  • the input end of the condensing device is connected, wherein the first passage refers to a passage between the input end of the switching valve 6 and the switching valve 6 and the first output end, and the second passage refers to the inside of the switching valve 6 and the input end of the switching valve 6 And a path between the second output end; specifically, as shown in FIG. 5, the input end of the switching valve 6 is connected to the output end of each evaporator 8, and the first output end of the switching valve 6 is connected to the first liquid storage tank 5.
  • the second output of the switching valve 6 is connected to the input of the condensing device 2.
  • the main function of the switching valve 6 is to realize the switching of the flow path, which can be realized by a four-way valve, a three-way valve or a solenoid valve, etc., and is not limited herein.
  • a compression device 1 is arranged between the first liquid storage tank 5 and the condensation device 2, specifically, the input end of the compression device 1 is connected to the second output end of the first liquid storage tank 5, and the output of the compression device 1 The end is connected to the input of the condensing device 2.
  • the output end of the condensing device is connected to the first input end of the first liquid storage tank through the flow control valve 3; specifically, the input end of the flow control valve 3 is connected to the output of the condensing device 2 End, the output of the flow control valve 3 is connected to the first input of the first reservoir 5.
  • the flow control valve 3 may be a device having both a throttling and a conducting function, such as an electronic expansion valve, and is not limited herein. Through the setting of the flow control valve 3, the flow control and adjustment of the refrigerant in the air conditioning system can be performed, so that the refrigerant flow rate in the system is maintained at the required flow rate.
  • the refrigerant according to the compression device 1 , condensing device 2, flow control valve 3, first liquid storage tank 5, evaporator 8 and The flow direction of the switching valve 6 constitutes a refrigeration cycle in which the compression device 1 needs to be turned on for cooling; in the refrigeration cycle in the natural cold source mode: the refrigerant is in accordance with the condensing device 2, the flow control valve 3, the first liquid storage tank 5, The flow of the evaporator 8 and the switching valve 6 constitutes a refrigeration cycle in which the compression device 1 does not need to be opened, providing a cold source directly from the outdoor low temperature environment.
  • the switching between the two cooling modes can be performed by the system according to the temperature difference between the refrigerant and the outdoor temperature. Specifically, when the refrigerant temperature is higher than the outdoor cold source temperature, the cooling can be performed by the natural cold source mode, otherwise the cooling can be performed by the compression device mode. Or, in practical applications, the switching of the two modes can be artificially controlled, etc., and will not be described here.
  • FIG. 6 is a schematic structural view of an air conditioning system according to Embodiment 5 of the present invention. As shown in FIG. 6, the system differs from the air conditioning system shown in FIG. 5 in that:
  • a power device is disposed between the first output end of the first liquid storage tank 5 and the input end of each of the evaporators 8
  • the input end of the power unit 7 is connected to the first output end of the first liquid storage tank 5, and the output end of the power unit 7 is connected to the input end of each of the evaporators 8, respectively.
  • the refrigerant in the first liquid storage tank 5 can be transferred to the respective evaporators 8 by the action of the power unit 7, and the refrigerant is supplied to the respective evaporators 8.
  • the height relationship between the first liquid storage tank 5 and each of the evaporators 8 may not be limited.
  • the refrigeration cycle in the natural cold source mode and the refrigeration cycle in the compression device mode are also included; specifically, in the refrigeration cycle in the compression device mode: the refrigerant is condensed according to the compression device 1.
  • the flow of the device 2, the flow control valve 3, the first liquid storage tank 5, the power equipment 7, the evaporator 8, and the switching valve 6 constitutes a refrigeration cycle in which both the compression device 1 and the power device 7 need to be turned on;
  • the refrigerant constitutes a refrigeration cycle according to the flow directions of the condensing device 2, the flow control valve 3, the first liquid storage tank 5, the power equipment 7, the evaporator 8, and the switching valve 6, in which the compressor is not Need to open, just turn on the power equipment 7.
  • FIG. 7 is a schematic structural view of an air conditioning system according to Embodiment 6 of the present invention.
  • the first output end of the first liquid storage tank 5 passes.
  • the parallel power device 7 and the first control valve 41 are connected to the input ends of the respective evaporators 8.
  • the first output end of the first liquid storage tank 5 is simultaneously connected to the input end of the power device 7 and the input of the first control valve 41.
  • the output ends of the power devices 7 are respectively connected to the input ends of the respective evaporators 8, and the output ends of the first control valves 41 are respectively connected to the input ends of the respective evaporators 8.
  • the present invention provides the air conditioning system of the seventh embodiment, that is, the second control valve 4 is added in parallel at both ends of the flow control valve 3 in the above embodiment. Taking FIG.
  • the air conditioning system differs only in that: the second control valve 4 is connected in parallel to both ends of the flow control valve 3; when the air conditioning system normally performs cooling operation, flow control The valve 3 is for transmitting the refrigerant when the compression device 1 is started, and is closed when the compression device 1 is not activated; the second control valve 4 is for closing when the compression device 1 is started, and the refrigerant is transmitted when the compression device 1 is not activated.
  • the flow control valve 3 is used to open under the refrigeration cycle in the compression device mode, the refrigerant is transferred, and is closed in the refrigeration cycle in the natural cold source mode;
  • the second control valve 4 is used in the natural The refrigeration cycle in the cold source mode is turned on, and the refrigerant is transferred, and is turned off in the cooling mode in the compression device mode.
  • the flow control valve 3 has a large resistance, is closed in the refrigeration cycle in the natural cold source mode, and the second control valve 4 is opened for the refrigerant transmission, which can reduce the transmission resistance of the refrigerant in the refrigeration cycle, and reduce the power. Power loss of device 7.
  • a second control valve 4 can be connected in parallel to the flow control valve 3, in which case not only power can be reduced.
  • the power loss of the device 7 can also reduce the transmission resistance of the refrigerant in the refrigeration cycle, improve the refrigerant transmission speed and efficiency of the air conditioning system, and thereby improve the refrigeration effect of the air conditioning system.
  • the present invention provides the eighth embodiment, that is, the one-way valve is disposed in the air conditioning system of the fourth to seventh embodiments of the present invention.
  • the air conditioning system shown in FIG. 9 further includes: a first output end of the switching valve 6 connected to the second input end of the first liquid storage tank 5 through the first one-way valve 91; and/or a switching valve
  • the second output of 6 is connected to the input of the condensing device 2 via a second check valve 92; and/or the output of the compression device 1 is connected to the input of the condensing device 2 via a third check valve 93.
  • the arrangement of the check valve described above ensures that the refrigerant flows in the prescribed refrigeration circuit and prevents the refrigerant from flowing back to damage the compression device 1.
  • a second liquid storage tank 10 is also provided in the air conditioning system of the fourth to eighth embodiments.
  • the difference between the air conditioning system shown in FIG. 10 and FIG. 10 is that the output end of the condensing device 2 is connected to the input end of the flow control valve 3 through the second liquid storage tank 10, specifically, the second liquid storage.
  • An input end of the tank 10 is connected to an output end of the condensing device 2, and an output end of the second liquid storage tank 10 is connected to an input end of the flow control valve 3 and the second control valve 4.
  • the second liquid storage tank 10 may be disposed outdoors, by a high pressure liquid storage tank, and the first liquid storage tank 5 may be disposed indoors through a low pressure liquid storage tank. Since the first liquid storage tank 5 is generally installed indoors, the volume design of the first liquid storage tank 5 is often affected by the size of the indoor unit. To ensure the refrigerant supply requirements of the unit, the second liquid storage tank 10 is added to the air conditioning system. Have enough containers to store refrigerant and optimize the cooling effect of the air conditioning system. When the second liquid storage tank 10 is realized by the high pressure liquid storage tank, more refrigerant can be relatively accommodated, thereby further optimizing the cooling effect of the air conditioning system.
  • the present invention provides a tenth embodiment, that is, in the air conditioning system of the fourth to ninth embodiments, the first liquid is disposed on the first liquid storage tank 5.
  • Bit controller 13 Taking FIG. 11 as an example, the air conditioning system shown in FIG. 11 differs from FIG. 10 in that: the two liquid level detecting ends of the first liquid level controller 13 are respectively connected to the high output end and the low output end of the first liquid storage tank.
  • the output end of the first liquid level controller 13 is connected to the control end of the flow control valve 3, and the first liquid level controller 13 is configured to detect the liquid level in the first liquid storage tank 5, according to the detected first storage
  • the liquid level in the liquid tank 5 controls the flow control valve 3 accordingly, and the control here may be a switch-off control, or a linear or non-linear control, etc., which is not limited herein.
  • the flow control valve 3 can be realized by using an electric flow control element, and the corresponding electric signal is sent by the first liquid level controller 13 to control the flow control valve 3; or, the first liquid level controller 13 and the flow rate
  • the control valve 3 can also be realized mechanically.
  • a floating ball is arranged in the liquid storage tank to sense the liquid level, and when the liquid level is low, the liquid supply opening is opened, and when the liquid level is reached, the liquid supply opening is closed, and the floating ball here corresponds to the first
  • the liquid level controller 13 and the liquid supply port correspond to the flow control valve 3.
  • the first liquid level controller 13 and the flow control valve 3 may have other implementation manners, which are not described herein.
  • the first liquid level controller 13 can be configured to: detect that the liquid level of the first liquid storage tank 5 is lower than a preset first liquid level value, control the flow control valve 3 to open or increase the liquid supply; and detect the first storage The liquid level of the liquid tank 5 is higher than the preset second liquid level value, and the control flow control valve 3 is turned off or the liquid supply is reduced; thereby ensuring that the liquid level in the first liquid storage tank 5 is at the first liquid level value and the second liquid level Between the bit values, the second level value is greater than the first level value.
  • the first liquid level value and the second liquid level value The value of the liquid level corresponding to the low output end and the high output end can be respectively determined, or other liquid level values can be set independently, which can be set according to the actual application environment, and is not limited herein.
  • a second level controller 14 is provided on the first reservoir 5.
  • the air conditioning system shown in FIG. 12 differs from FIG. 10 in that: a second liquid level controller 14 is disposed on the first liquid storage tank 5, and is controlled by the output end of the second liquid level controller 14.
  • the compression device 1 may be an oil-free compression device, specifically may be composed of at least one oil-free compressor; when the compression device 1 comprises two or In the case of two or more oil-free compressors, the oil-free compressors may be connected in parallel with each other, that is, the input ends of the oil-free compressors collectively serve as the input ends of the compression device 1, and the outputs of the oil-free compressors collectively serve as the compression device 1 Output.
  • the compression device 1 is realized by the first compressor 110 and the second compressor 120 connected in parallel, wherein the input ends of the first compressor 110 and the second compressor 120 are connected.
  • the second output of the first reservoir 5, the output of the first compressor 110 and the second compressor 120 are connected to the input of the condensing device 2.
  • the compression device 1 is constructed by connecting at least two compressors in parallel, and the refrigeration is improved by using one compressor, thereby improving the ability of the air conditioning system to meet different cooling requirements, and at the same time ensuring that the air conditioning system is always operating at an optimum working condition, for example
  • the cooling demand is small, only one or part of the compressors can be controlled to be turned on.
  • the cooling needs to be increased, more or all of the compressors are turned on, and the number of compressors is controlled according to different cooling requirements, thereby improving the air conditioning system.
  • the cooling efficiency reduces the power loss of the air conditioning system.
  • there are multiple parallel compressors how to control the compressor according to the cooling demand in practical applications, which will not be described here.
  • the power device 7 can pass a pump or
  • the pump may be implemented by a plurality of pumps connected in parallel; or it may be implemented by other devices capable of providing power; the pump may be a centrifugal pump, a vortex pump, a gear pump or a screw pump, etc., which is not limited herein.
  • the evaporator 8 may be one or more, and the specific number is not limited herein.
  • the first liquid storage tank 5 can be realized by a separator.
  • the condensing device 2 in the embodiment of the present invention is a general term for a device capable of condensing a refrigerant, and can be realized by selecting a specific condensing device autonomously in practical applications.
  • the condensing device 2 can be realized by a condenser or at least two condensers connected in parallel.
  • the condensing unit 2 can be cooled by air or water.
  • the shape of the second liquid storage tank 10 is not limited by the figure, and the position of the inlet and outlet is only a schematic, and the first liquid storage tank 5 is only schematically shown in the above figure, and specifically may be various shapes such as a circle, an ellipse, a square, and the like. There is no limitation here.
  • the first liquid storage tank or the second liquid storage tank may be installed in various manners such as vertical installation or horizontal installation, and is not limited herein.
  • the first control valve 41 and the second control valve 4 and the like may be implemented by a solenoid valve or an electric ball valve, etc., and are not limited herein.

Abstract

一种空调系统,包括:第一储液罐(5)、冷凝器(20)以及至少一个蒸发器(8);其中各个蒸发器(8)的输出端分别连接冷凝器(2)的输入端,冷凝器(2)的输出端连接第一储液罐(5)的第一输入端;该系统还包括:第一储液罐(5)与各个蒸发器(8)之间在高度上存在正落差,第一储液罐(5)的第一输出端连接各个蒸发器(8)的输入端;或者,第一储液罐(5)的第一输出端通过动力设备(7)连接各个蒸发器(8)的输入端;或者,第一储液罐(5)与各个蒸发器(8)之间在高度上存在正落差,第一储液罐(5)的第一输出端通过并联的动力设备(7)和第一控制阀(41)连接各个蒸发器的输入端。该空调系统能够利用自然冷源进行制冷,降低空调系统的功率损耗。

Description

一种空调系统 本申请要求于 2011 年 9 月 29 日提交中国专利局、 申请号为 201110298126.8、 发明名称为"一种空调系统"的中国专利申请的优先权, 其全 部内容通过引用结合在本申请中。 技术领域 本发明涉及空调领域, 尤其涉及一种空调系统。 背景技术
现代化信息技术的发展,使得通信机房日益普及。 由于通信机房设备发热 量大,故机房空调要求全年制冷。如图 1所示,传统的机房空调由压缩机 110、 冷凝器 120、 流量控制阀 130和蒸发器 140构成, 为防止制冷剂系统中存在水 分, 还可以在冷凝器至流量控制阀的连接管路中依次增加干燥过滤器 150和 / 或视液镜 160。 其不足之处在于: 空调按照夏季的室外环境温度进行配置, 当 在冬季或春秋两季室外环境温度较低的情况下,需要模拟夏季工况来维持压缩 机系统的正常工作, 即压缩机需全年运行以维持机房空调的正常温度。机房中 空调用电约占整个机房用电的一半,而传统的空调系统中压缩机耗电又占据了 空调耗电的绝大部分。伴随国家节能减排政策的推出,各大通信运营商在拓展 业务的同时也在想尽办法减少支出, 特别是电费支出。 发明内容
有鉴于此, 本发明要解决的技术问题是, 提供一种空调系统, 能够利用自 然冷源进行制冷, 降低空调系统的功率损耗。 为此, 本发明实施例采用如下技术方案:
本发明实施例提供一种空调系统, 包括: 第一储液罐(5 )、 冷凝设备(2 ) 以及至少一个蒸发器(8 ); 其中,
所述蒸发器(8 )的输出端连接所述冷凝设备(2 )的输入端, 所述冷凝设 备( 2 ) 的输出端连接所述第一储液罐 ( 5 ) 的第一输入端;
该系统还包括: 所述第一储液罐 ( 5 )与所述蒸发器( 8 )之间在高度上存在正落差, 所述 第一储液罐 (5) 的第一输出端连接所述蒸发器(8) 的输入端; 或者,
所述第一储液罐( 5 )的第一输出端通过动力设备 ( 7 )连接所述蒸发器( 8 ) 的输入端; 或者,
所述第一储液罐(5)与所述蒸发器(8)之间在高度上存在正落差, 所述 第一储液罐( 5 )的第一输出端通过并联的所述动力设备( 7 )和第一控制阀( 41 ) 连接所述蒸发器(8) 的输入端。
还包括: 压缩设备(1)、 流量控制阀 (3)和切换阀 (6); 其中, 所述压缩设备 ( 1 )的输入端连接所述第一储液罐(5 )的第二输出端, 所 述压缩设备 ( 1 ) 的输出端连接所述冷凝设备 ( 2 ) 的输入端;
所述冷凝设备 ( 2 )的输出端通过所述流量控制阀( 3 )连接所述第一储液 罐(5) 的第一输入端;
所述蒸发器(8)的输出端通过所述切换阀(6)的第二通路连接所述冷凝 设备 (2) 的输入端, 所述蒸发器(8) 的输出端还通过所述切换阀 (6) 的第 一通路连接所述第一储液罐 (5) 的第二输入端。
还包括: 第二控制阀 (4); 其中,
所述第二控制阀 (4)并联于所述流量控制阀 (3)的两端; 所述流量控制 阀 (3)用于当所述压缩设备(1) 启动时传输制冷剂, 当所述压缩设备 (1) 未启动时关闭; 所述第二控制阀 (4)用于当所述压缩设备 ( 1 )未启动时传输 制冷剂, 当所述压缩设备 ( 1 )启动时关闭。
还包括: 第一单向阀(91)和 /或第二单向阀(92)和 /或第三单向阀(93); 其中,
所述切换阀 (6) 的第一输出端通过所述第一单向阀 (91 )连接所述第一 储液罐 (5) 的第二输入端; 和 /或,
所述切换阀 ( 6 ) 的第二输出端通过所述第二单向阀 ( 92 )连接所述冷凝 设备 (2) 的输入端; 和 /或,
所述压缩设备 ( 1) 的输出端通过所述第三单向阀 (93)连接所述冷凝设 备(2) 的输入端。
还包括: 第二储液罐(10); 其中, 所述冷凝设备 (2) 的输出端通过用于存储空调系统中多余制冷剂的所述 第二储液罐(10)连接所述流量控制阀 (3) 的输入端。
还包括: 第二储液罐(10); 其中,
所述冷凝设备 (2) 的输出端通过用于存储空调系统中多余制冷剂的所述 第二储液罐 ( 10 )连接所述流量控制阀 ( 3 ) 的输入端。
还包括: 第一液位控制器; 其中,
所述第一液位控制器(13)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述流量控制阀 (3)相应进行控制, 所述第一液位控制器(13) 的两 个液位检测端分别连接所述第一储液罐( 5 ) 的高位输出端和低位输出端, 所 述第一液位控制器(13) 的输出端连接所述流量控制阀 (3) 的控制端。
还包括: 第一液位控制器; 其中,
所述第一液位控制器(13)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述流量控制阀 (3)相应进行控制, 所述第一液位控制器(13) 的两 个液位检测端分别连接所述第一储液罐( 5 ) 的高位输出端和低位输出端, 所 述第一液位控制器(13) 的输出端连接所述流量控制阀 (3) 的控制端。
还包括: 第一液位控制器; 其中,
所述第一液位控制器(13)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述流量控制阀 (3)相应进行控制, 所述第一液位控制器(13) 的两 个液位检测端分别连接所述第一储液罐( 5 ) 的高位输出端和低位输出端, 所 述第一液位控制器(13) 的输出端连接所述流量控制阀 (3) 的控制端。
还包括: 第一液位控制器; 其中,
所述第一液位控制器(13)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述流量控制阀 (3)相应进行控制, 所述第一液位控制器(13) 的两 个液位检测端分别连接所述第一储液罐( 5 ) 的高位输出端和低位输出端, 所 述第一液位控制器(13) 的输出端连接所述流量控制阀 (3) 的控制端。
在所述第一储液罐 (5)与所述蒸发器(8)之间存在所述动力设备(7) 时, 该系统还包括: 第二液位控制器; 其中,
所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
在所述第一储液罐 (5)与所述蒸发器(8)之间存在所述动力设备(7) 时, 该系统还包括: 第二液位控制器; 其中,
所述第二液位控制器( 14 )用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
在所述第一储液罐 (5)与所述蒸发器(8)之间存在所述动力设备(7) 时, 该系统还包括: 第二液位控制器; 其中,
所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
在所述第一储液罐 ( 5 )与所述蒸发器( 8 )之间存在所述动力设备( 7 ) 时, 该系统还包括: 第二液位控制器; 其中,
所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
在所述第一储液罐 (5)与所述蒸发器(8)之间存在所述动力设备(7) 时, 该系统还包括: 第二液位控制器; 其中,
所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
在所述第一储液罐 (5)与所述蒸发器(8)之间存在所述动力设备(7) 时, 该系统还包括: 第二液位控制器; 其中, 所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
在所述第一储液罐 ( 5 )与所述蒸发器( 8 )之间存在所述动力设备( 7 ) 时, 该系统还包括: 第二液位控制器; 其中,
所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
在所述第一储液罐 (5)与所述蒸发器(8)之间存在所述动力设备(7) 时, 该系统还包括: 第二液位控制器; 其中,
所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。 对于上述技术方案的技术效果分析如下:
第一储液罐的第一输出端连接各个蒸发器的输入端;各个蒸发器的输出端 连接冷凝设备的输入端, 冷凝设备的输出端连接第一储液罐的第一输入端; 并 且, 通过第一储液罐与蒸发器之间的高度落差和 /或通过动力设备实现制冷剂 从第一储液罐到各个蒸发器的传输,从而在室外环境温度较低时, 冷凝设备可 以利用自然冷源实现制冷需求, 整个制冷过程中无需压缩机运行, 降低了空调 系统的功率损耗。 附图说明
图 1为现有技术中一种空调系统结构示意图;
图 2为本发明实施例一空调系统结构示意图;
图 3为本发明实施例二空调系统结构示意图;
图 4为本发明实施例三空调系统结构示意图;
图 5为本发明实施例四空调系统结构示意图; 图 6为本发明实施例五空调系统结构示意图;
图 7为本发明实施例六空调系统结构示意图;
图 8为本发明实施例七中的一种空调系统结构示意图;
图 9为本发明实施例八中的一种空调系统结构示意图;
图 10为本发明实施例九中的一种空调系统结构示意图;
图 11为本发明实施例十中的一种空调系统结构示意图;
图 12为本发明实施例十一中的一种空调系统结构示意图;
图 13为本发明实施例十二中的一种空调系统结构示意图。 具体实施方式
以下, 结合附图详细说明本发明实施例空调系统的实现。
图 2为本发明实施例一空调系统结构示意图, 如图 2所示, 该系统包括: 第一储液罐 5、 冷凝设备 2以及至少一个蒸发器 8; 其中, 第一储液罐 5的第 一输出端连接各个蒸发器 8的输入端; 各个蒸发器 8的输出端连接冷凝设备 2 的输入端, 冷凝设备 2的输出端连接第一储液罐 5的第一输入端。 这里, 各个 蒸发器 8的输出端可以分别连接冷凝设备 2的输入端, 或者,也可以先进行输 出端的合并连接后, 连接冷凝设备 2的输入端, 这里并不限定。
其中,如图 2所示, 第一储液罐 5与各个蒸发器 8之间在高度上存在正落 差; 此时, 通过重力作用第一储液罐 5中的制冷剂可以正常的从第一储液罐 5 的第一输出端流动到各个蒸发器 8中。直接通过重力作用保证制冷剂在制冷回 路中的流动, 大大节省了动力设备运行的功率损耗,对空调系统的节能起到非 常大的作用。
或者,也可以不限定第一储液罐 5与各个蒸发器 8之间的高度关系,如图 3所示的本发明实施例二空调系统结构示意图, 第一储液罐 5的第一输出端通 过动力设备 7连接各个蒸发器 8的输入端, 具体的, 如图 3所示, 动力设备 7 的输入端连接第一储液罐 5的第一输出端,动力设备 7的输出端分别连接各个 蒸发器 8的输入端。此时, 第一储液罐 5中的制冷剂可以通过动力设备 7的作 用流动到各个蒸发器 8 , 为各个蒸发器提供制冷剂。 利用动力设备 7保证制冷 剂在制冷回路中的流程, 可以为制冷剂的循环提供更大的动力, 尤其在制冷回 路管路较长、 和 /或系统对制冷剂流量要求较大、 和 /或现场无法为第一储液罐 5和蒸发器 8提供足够的正落差情况下, 使用动力设备 7可以充分满足制冷系 统对动力的需求。
或者,也可以将图 2和图 3中所示的第一储液罐 5向各个蒸发器 8传输制 冷剂的方式结合起来,如图 4所示的本发明实施例三空调系统结构示意图, 第 一储液罐 5的第一输出端通过并联的动力设备 7和第一控制阀 41连接各个蒸 发器 8 的输入端, 具体的, 第一储液罐 5 的第一输出端同时连接动力设备 7 的输入端以及第一控制阀 41的输入端, 动力设备 7的输出端分别连接各个蒸 发器 8的输入端, 第一控制阀 41的输出端分别连接各个蒸发器 8的输入端。 这样, 在实际应用中, 若条件允许, 可以既设置第一储液罐 5与各个蒸发器 8 之间在高度上存在正落差,且第一储液罐 5与各个蒸发器 8之间又设置动力设 备 7, 根据系统的不同运行状态和现场的具体情况, 最大限度地降低系统因动 力设备 7的运行而产生的能耗。 第一控制阀 41和动力设备 7的切换关系为, 当制冷系统可以利用正落差提供制冷剂流动动力时, 动力设备 7关闭, 第一控 制阀 41打开, 制冷剂在重力的作用下从第一储液罐 5流动到各个蒸发器 8; 当制冷系统需要利用动力设备 7提供充足制冷剂流动动力时,动力设备 7打开, 第一控制阀 41关闭, 制冷剂通过动力设备 7的作用从第一储液罐 5流动到各 个蒸发器 8。
在图 2~4所示的空调系统中, 当室外环境温度较低时,制冷剂通过设置在 室外的冷凝设备 2时,依靠室外空气或者冷冻水等自然冷源来冷却制冷剂, 制 冷剂从气态转换为液态,循环到第一储液罐 5中,再从第一储液罐 5中通过重 力或者动力设备 7的作用传输到设置在室内的各个蒸发器中,制冷器在蒸发器 中吸收室内的热量, 从液态再转换为气态, 传输到冷凝设备 2中, 实现制冷循 环。 整个制冷过程, 利用室外低温冷源实现制冷, 不需要通过压缩机的运行, 从而实现了利用自然冷源制冷, 降低空调系统的功率损耗和电能消耗, 节约能 源的目的。
其中, 当制冷剂的温度与室外冷源存在温差时,都可以利用室外的自然冷 源来进行制冷。 图 2~图 4所示的空调系统为完全利用自然冷源实现制冷的单循环空调系 统, 空调系统需要在室外环境温度满足条件的情况下才能运行,但在实际应用 中, 现场通常需要空调系统全年运行, 因此, 本发明还提供了其他实施例的空 调系统以满足空调全年运行制冷的需求, 如图 5~13所示。
图 5为本发明实施例四空调系统结构示意图,如图 5所示, 该系统相对于 图 2所示的空调系统, 区别在于:
设置切换阀 6, 各个蒸发器 8的输出端通过切换阀 6的第一通路连接第一 储液罐 5的第二输入端,且各个蒸发器 8的输出端还通过该切换阀的第二通路 连接冷凝设备的输入端, 其中第一通路是指切换阀 6内部、切换阀 6的输入端 与第一输出端之间的通路, 第二通路是指切换阀 6内部、切换阀 6的输入端与 第二输出端之间的通路; 具体的, 如图 5所示, 切换阀 6的输入端连接各个蒸 发器 8的输出端,切换阀 6的第一输出端连接第一储液罐 5的第二输入端, 切 换阀 6的第二输出端连接冷凝设备 2的输入端。其中, 所述切换阀 6主要的作 用在于实现流路的切换, 可以通过四通阀、 三通阀或者电磁阀等实现, 这里并 不限制。
所述区别还在于: 第一储液罐 5与冷凝设备 2之间设置压缩设备 1 , 具体 的,压缩设备 1的输入端连接第一储液罐 5的第二输出端,压缩设备 1的输出 端连接冷凝设备 2的输入端。
所述区别还在于: 如图 5所示, 冷凝设备的输出端通过流量控制阀 3连接 第一储液罐的第一输入端; 具体的, 流量控制阀 3 的输入端连接冷凝设备 2 的输出端, 流量控制阀 3的输出端连接第一储液罐 5的第一输入端。所述流量 控制阀 3 可以为电子膨胀阀等同时具备节流和导通功能的器件, 这里并不限 制。通过流量控制阀 3的设置,可以进行空调系统中制冷剂的流量控制和调节, 使得系统中制冷剂流量保持在所需的流量上。
在图 5所示的空调系统中,第一储液罐 5与各个蒸发器 8之间在高度上存 在正落差; 此时, 第一储液罐 5中的制冷剂通过重力作用流动到各个蒸发器 8 中。
在图 5所示的空调系统中, 不仅包括自然冷源模式下的制冷循环,还包括 压缩设备模式下的制冷循环; 具体的, 在压缩设备模式下的制冷循环中: 制冷 剂按照压缩设备 1、 冷凝设备 2、 流量控制阀 3、 第一储液罐 5、 蒸发器 8以及 切换阀 6的流向构成制冷循环,在循环中压缩设备 1需要开启进行制冷; 在自 然冷源模式下的制冷循环中: 制冷剂按照冷凝设备 2、 流量控制阀 3、 第一储 液罐 5、 蒸发器 8以及切换阀 6的流向构成制冷循环, 在该循环中压缩设备 1 不需要开启, 直接由室外低温环境为制冷剂提供冷源。 两个制冷模式的切换可 以由系统根据制冷剂与室外温度的温差进行, 具体的, 制冷剂温度高于室外冷 源温度时, 可以通过自然冷源模式进行制冷, 否则可以通过压缩设备模式进行 制冷; 或者, 在实际应用中, 两模式的切换可以人为控制等, 这里不赘述。
图 6为本发明实施例五空调系统结构示意图,如图 6所示, 该系统相对于 图 5所示的空调系统, 其区别在于:
在第一储液罐 5的第一输出端与各个蒸发器 8的输入端之间设置动力设备
7, 其中, 动力设备 7的输入端连接第一储液罐 5的第一输出端, 动力设备 7 的输出端分别连接各个蒸发器 8的输入端。此时, 第一储液罐 5中的制冷剂可 以通过动力设备 7的作用传输到各个蒸发器 8, 为各个蒸发器 8提供制冷剂。
此时, 第一储液罐 5与各个蒸发器 8之间的高度关系可以不限制。
在图 6所示的空调系统中,也包括自然冷源模式下的制冷循环和压缩设备 模式下的制冷循环; 具体的, 在压缩设备模式下的制冷循环中: 制冷剂按照压 缩设备 1、 冷凝设备 2、 流量控制阀 3、 第一储液罐 5、 动力设备 7、 蒸发器 8 以及切换阀 6的流向构成制冷循环,在循环中压缩设备 1和动力设备 7都需要 开启; 在自然冷源模式下的制冷循环中: 制冷剂按照冷凝设备 2、 流量控制阀 3、 第一储液罐 5、 动力设备 7、 蒸发器 8以及切换阀 6的流向构成制冷循环, 在该循环中压缩机不需要开启, 只开启动力设备 7即可。
图 7为本发明实施例六空调系统结构示意图, 如图 7所示, 在图 5和图 6 所示的空调系统中可以与图 4类似的,第一储液罐 5的第一输出端通过并联的 动力设备 7和第一控制阀 41连接各个蒸发器 8的输入端, 具体的, 第一储液 罐 5的第一输出端同时连接动力设备 7的输入端以及第一控制阀 41的输入端, 动力设备 7的输出端分别连接各个蒸发器 8的输入端, 第一控制阀 41的输出 端分别连接各个蒸发器 8的输入端。此时, 第一储液罐 5和各个蒸发器 8之间 在高度上需要存在正落差, 以便动力设备 7不工作时, 第一储液罐 5中的制冷 剂能够通过第一控制阀 41正常流动到蒸发器 8中。 图 7所示的空调系统的工 作原理这里不赘述, 请参见图 4~6实施例的相关说明。 优选地, 为了尽可能降低空调系统在不同制冷模式下制冷回路中的阻力, 本发明提供了实施例七空调系统,即在上述实施例中流量控制阀 3的两端并联 增加第二控制阀 4, 以图 8为例说明, 相对于图 6所示的空调系统, 空调系统 区别仅在于: 第二控制阀 4并联于流量控制阀 3的两端; 在空调系统正常进行 制冷工作时, 流量控制阀 3用于当压缩设备 1启动时传输制冷剂, 压缩设备 1 未启动时关闭; 第二控制阀 4用于压缩设备 1启动时关闭,压缩设备 1未启动 时传输制冷剂。也即是说: 流量控制阀 3用于在压缩设备模式下的制冷循环下 开启, 进行制冷剂的传输, 在自然冷源模式下的制冷循环中关闭; 第二控制阀 4则用于在自然冷源模式下的制冷循环下开启, 进行制冷剂的传输, 在压缩设 备模式下的制冷模式中关闭。
一般的, 流量控制阀 3阻力较大, 在自然冷源模式下的制冷循环中关闭, 而开启第二控制阀 4进行制冷剂的传输,可以降低制冷剂在制冷循环中的传输 阻力, 减少动力设备 7的功率损耗。
与图 8所示的空调系统相似的,在本发明实施例图 5和图 7所示的空调系 统中, 流量控制阀 3上也可以并联一第二控制阀 4 , 这时, 不但可以减少动力 设备 7的功率损耗,还可以降低制冷剂在制冷循环中的传输阻力,提高空调系 统的制冷剂传输速度和效率, 进而提高空调系统的制冷效果。 优选地,为了防止本发明实施例空调系统中的制冷循环中发生制冷剂倒流 的现象, 本发明提供了实施例八, 即在上述本发明实施例四 ~七的空调系统中 设置单向阀, 具体结构说明以图 9为例。 相对于图 8, 图 9所示的空调系统还 进一步包括: 切换阀 6的第一输出端通过第一单向阀 91连接第一储液罐 5的 第二输入端; 和 /或, 切换阀 6的第二输出端通过第二单向阀 92连接冷凝设备 2的输入端; 和 /或, 压缩设备 1的输出端通过第三单向阀 93连接冷凝设备 2 的输入端。从而,通过上述单向阀的设置保证制冷剂在规定的制冷回路中流动 及防止制冷剂倒流对压缩设备 1的损坏。
优选地, 为利于空调系统存储更多的制冷剂, 本发明提供了实施例九, 即 在实施例四 ~八的空调系统中还设置了第二储液罐 10。 以图 10为例, 相对于 图 9, 图 10所示空调系统的区别在于: 冷凝设备 2的输出端通过第二储液罐 10连接流量控制阀 3的输入端, 具体的, 第二储液罐 10的输入端连接冷凝设 备 2的输出端, 第二储液罐 10的输出端连接流量控制阀 3以及第二控制阀 4 的输入端。
这里, 第二储液罐 10可以设置于室外, 通过高压储液罐实现, 而第一储 液罐 5可以设置于室内,通过低压储液罐实现。 由于第一储液罐 5—般设置于 室内, 第一储液罐 5体积设计往往受到室内机组尺寸的影响, 为确保机组制冷 剂供液要求, 故增加第二储液罐 10, 以便空调系统具有足够的容器存储制冷 剂, 优化空调系统的制冷效果。 当第二储液罐 10通过高压储液器实现时, 可 以相对容纳较多制冷剂, 从而进一步优化空调系统的制冷效果。
优选地,为保证第一储液罐 5中有足够的制冷剂,本发明提供了实施例十, 即在实施例四 ~九的空调系统中, 在第一储液罐 5上设置第一液位控制器 13。 以图 11为例, 相对于图 10, 图 11所示空调系统的区别在于: 第一液位控制 器 13的两个液位检测端分别连接第一储液罐的高位输出端和低位输出端, 第 一液位控制器 13的输出端连接流量控制阀 3的控制端, 所述第一液位控制器 13用于检测第一储液罐 5中的液位, 根据检测到的第一储液罐 5中的液位对 流量控制阀 3相应进行控制, 这里的控制可以为打开关断控制, 或者, 也可以 进行线性或者非线性控制等, 这里不限定。 此时, 流量控制阀 3可以使用电动 的流量控制元件实现, 由第一液位控制器 13发出对应的电信号进行流量控制 阀 3的控制; 或者, 所述第一液位控制器 13和流量控制阀 3也可以通过机械 方式实现, 例如, 在储液罐中设置浮球来感应液位, 液位低时供液口开启, 液 位达到时供液口关闭, 则这里的浮球对应第一液位控制器 13 , 而供液口则对 应流量控制阀 3 , 当然,在实际应用中所述第一液位控制器 13和流量控制阀 3 还可以有其他的实现方式, 这里不赘述。 具体的, 第一液位控制器 13可以用 于: 检测第一储液罐 5的液位低于预设第一液位值,控制流量控制阀 3开启或 加大供液; 检测第一储液罐 5的液位高于预设第二液位值, 控制流量控制阀 3 关断或者减少供液;从而保证第一储液罐 5中的液位处于第一液位值和第二液 位值之间, 第二液位值大于第一液位值。 这里, 所述第一液位值和第二液位值 可以分别取值为低位输出端和高位输出端对应的液位值, 或者,也可以自主设 定其他的液位值, 可以根据实际应用环境设定, 这里并不限制。
优选地, 为防止由于第一储液罐 5 制冷剂量偏少而导致流过动力设备 7 的制冷剂量偏小, 对动力设备 7造成损耗, 本发明提供了实施例十一, 即在上 述存在动力设备 7的实施例中, 在第一储液罐 5上设置第二液位控制器 14。 以图 12为例, 相对于图 10, 图 12所示空调系统的区别在于: 在第一储液罐 5 上设置第二液位控制器 14, 通过第二液位控制器 14的输出端控制动力设备 7 的开启和停止装置, 此时, 第二液位控制器 14的输出端连接动力设备 7的控 制端, 所述第二液位控制器 14可以用于: 检测第一储液罐 5的液位高于低位 输出端时, 控制动力设备 7 开启; 液位低于低位输出端时, 控制动力设备 7 停止工作。 从而保证只有在液位足够的情况下才开启动力设备 7, 保护动力设 备 7不受损耗。
优选地,在本发明提供的上述存在压缩设备 1的实施例中, 所述压缩设备 1可以为无油压缩设备, 具体的可以由至少一个无油压缩机构成; 当压缩设备 1包括两个或两个以上的无油压缩机时, 无油压缩机之间可以相互并联, 即无 油压缩机的输入端共同作为压缩设备 1的输入端,无油压缩机的输出端共同作 为压缩设备 1的输出端。 例如, 图 13所示的本发明实施例空调系统, 压缩设 备 1通过并联的第一压缩机 110和第二压缩机 120实现, 其中, 第一压缩机 110和第二压缩机 120的输入端连接第一储液罐 5的第二输出端, 第一压缩机 110和第二压缩机 120的输出端连接冷凝设备 2的输入端。
采用至少两个压缩机并联的方式构成所述压缩设备 1 , 相对于使用一个压 缩机进行制冷,提高了空调系统满足不同制冷需求的能力, 同时可以保证空调 系统一直运行在最佳工况, 例如, 当制冷需求较小时, 可以只控制一台或部分 压缩机开启, 而当制冷需要提高时, 控制较多或全部压缩机开启, 根据不同制 冷需求, 控制压缩机运行的台数, 从而提高空调系统的制冷效率, 减少空调系 统的功率损耗。 当存在多台并联的压缩机时,如何在实际应用中根据制冷需求 进行压缩机控制, 这里不赘述。 以上所述的本发明实施例空调系统中,所述动力设备 7可以通过一个泵或 者多个并联的泵实现; 或者, 也可以通过其他可以提供动力的设备实现; 所述 泵可以为离心泵、 旋涡泵、 齿轮泵或螺杆泵等, 这里不限定。 所述蒸发器 8 可以为一个或者多个, 具体个数这里不限制。所述第一储液罐 5可以通过分离 器实现。
本发明实施例中的所述冷凝设备 2是指能够对制冷剂进行冷凝处理的设 备的统称, 在实际应用中可以自主选择具体的冷凝设备来实现。 例如, 所述冷 凝设备 2 可以通过一个冷凝器或者并联的至少两个冷凝器实现。 冷凝设备 2 的冷却方式可以是风冷或水冷。
第二储液罐 10的形状不受图形限制, 进出口位置仅为示意, 第一储液罐 5在上述图中也仅为示意, 具体可以是圓形、 橢圓形、 方形等各种形状, 这里 并不限制, 另外, 第一储液罐或者第二储液罐的安装方式可以是立式安装或卧 式安装等各种安装方式, 这里也并不限制。
本发明实施例中, 所述第一控制阀 41和第二控制阀 4等可以通过电磁阀 或者电动球阀等实现, 这里并不限制。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种空调系统, 其特征在于, 包括: 第一储液罐(5)、 冷凝设备(2) 以及至少一个蒸发器(8); 其中,
所述蒸发器( 8 )的输出端连接所述冷凝设备 ( 2 )的输入端, 所述冷凝设 备(2) 的输出端连接所述第一储液罐 (5) 的第一输入端;
该系统还包括:
所述第一储液罐(5)与所述蒸发器(8)之间在高度上存在正落差, 所述 第一储液罐 (5) 的第一输出端连接所述蒸发器(8) 的输入端; 或者,
所述第一储液罐( 5 )的第一输出端通过动力设备( 7 )连接所述蒸发器( 8 ) 的输入端; 或者,
所述第一储液罐(5)与所述蒸发器(8)之间在高度上存在正落差, 所述 第一储液罐( 5 )的第一输出端通过并联的所述动力设备( 7 )和第一控制阀( 41 ) 连接所述蒸发器(8) 的输入端。
2、根据权利要求 1所述的空调系统,其特征在于,还包括:压缩设备( 1 )、 流量控制阀 (3)和切换阀 (6); 其中,
所述压缩设备 ( 1 )的输入端连接所述第一储液罐 ( 5 )的第二输出端, 所 述压缩设备 ( 1) 的输出端连接所述冷凝设备 (2) 的输入端;
所述冷凝设备 ( 2 )的输出端通过所述流量控制阀( 3 )连接所述第一储液 罐(5) 的第一输入端;
所述蒸发器(8)的输出端通过所述切换阀(6)的第二通路连接所述冷凝 设备 (2) 的输入端, 所述蒸发器(8) 的输出端还通过所述切换阀 (6) 的第 一通路连接所述第一储液罐 (5) 的第二输入端。
3、 根据权利要求 2所述的空调系统, 其特征在于, 还包括: 第二控制阀 (4); 其中,
所述第二控制阀 (4)并联于所述流量控制阀 (3)的两端; 所述流量控制 阀 (3)用于当所述压缩设备(1 )启动时传输制冷剂, 当所述压缩设备 (1) 未启动时关闭; 所述第二控制阀 (4)用于当所述压缩设备 ( 1 )未启动时传输 制冷剂, 当所述压缩设备 ( 1 )启动时关闭。
4、 根据权利要求 2或 3所述的空调系统, 其特征在于, 还包括: 第一单 向阀 (91)和 /或第二单向阀 (92)和 /或第三单向阀 (93); 其中,
所述切换阀 (6) 的第一输出端通过所述第一单向阀 (91 )连接所述第一 储液罐 (5) 的第二输入端; 和 /或,
所述切换阀 ( 6 ) 的第二输出端通过所述第二单向阀 ( 92 )连接所述冷凝 设备 (2) 的输入端; 和 /或,
所述压缩设备 ( 1) 的输出端通过所述第三单向阀 (93)连接所述冷凝设 备(2) 的输入端。
5、 根据权利要求 2或 3所述的空调系统, 其特征在于, 还包括: 第二储 液罐 ( 10); 其中,
所述冷凝设备 (2) 的输出端通过用于存储空调系统中多余制冷剂的所述 第二储液罐(10)连接所述流量控制阀 (3) 的输入端。
6、 根据权利要求 4所述的空调系统, 其特征在于, 还包括: 第二储液罐 (10); 其中,
所述冷凝设备 (2) 的输出端通过用于存储空调系统中多余制冷剂的所述 第二储液罐(10)连接所述流量控制阀 (3) 的输入端。
7、 根据权利要求 2或 3所述的空调系统, 其特征在于, 还包括: 第一液 位控制器; 其中,
所述第一液位控制器(13)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述流量控制阀 ( 3 )相应进行控制, 所述第一液位控制器( 13 ) 的两 个液位检测端分别连接所述第一储液罐( 5 ) 的高位输出端和低位输出端, 所 述第一液位控制器(13) 的输出端连接所述流量控制阀 (3) 的控制端。
8、 根据权利要求 4所述的空调系统, 其特征在于, 还包括: 第一液位控 制器; 其中,
所述第一液位控制器( 13 )用于根据检测到的所述第一储液罐 (5) 中的 液位对所述流量控制阀 (3)相应进行控制, 所述第一液位控制器(13) 的两 个液位检测端分别连接所述第一储液罐( 5 ) 的高位输出端和低位输出端, 所 述第一液位控制器(13) 的输出端连接所述流量控制阀 (3) 的控制端。
9、 根据权利要求 5所述的空调系统, 其特征在于, 还包括: 第一液位控 制器; 其中,
所述第一液位控制器(13)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述流量控制阀 (3)相应进行控制, 所述第一液位控制器(13) 的两 个液位检测端分别连接所述第一储液罐( 5 ) 的高位输出端和低位输出端, 所 述第一液位控制器(13) 的输出端连接所述流量控制阀 (3) 的控制端。
10、 根据权利要求 6所述的空调系统, 其特征在于, 还包括: 第一液位控 制器; 其中,
所述第一液位控制器(13)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述流量控制阀 ( 3 )相应进行控制, 所述第一液位控制器( 13 ) 的两 个液位检测端分别连接所述第一储液罐( 5 ) 的高位输出端和低位输出端, 所 述第一液位控制器(13) 的输出端连接所述流量控制阀 (3) 的控制端。
11、 根据权利要求 1或 2或 3其中任一项所述的空调系统, 其特征在于, 在所述第一储液罐 (5)与所述蒸发器(8)之间存在所述动力设备(7) 时, 该系统还包括: 第二液位控制器; 其中,
所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
12、根据权利要求 4所述的空调系统,其特征在于,在所述第一储液罐( 5 ) 与所述蒸发器(8)之间存在所述动力设备(7)时, 该系统还包括: 第二液位 控制器; 其中,
所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
13、根据权利要求 5所述的空调系统,其特征在于,在所述第一储液罐(5) 与所述蒸发器(8)之间存在所述动力设备(7)时, 该系统还包括: 第二液位 控制器; 其中, 所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
14、根据权利要求 6所述的空调系统,其特征在于,在所述第一储液罐(5) 与所述蒸发器(8)之间存在所述动力设备(7)时, 该系统还包括: 第二液位 控制器; 其中,
所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
15、根据权利要求 7所述的空调系统,其特征在于,在所述第一储液罐( 5 ) 与所述蒸发器(8)之间存在所述动力设备(7)时, 该系统还包括: 第二液位 控制器; 其中,
所述第二液位控制器( 14 )用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
16、根据权利要求 8所述的空调系统,其特征在于,在所述第一储液罐(5) 与所述蒸发器(8)之间存在所述动力设备(7)时, 该系统还包括: 第二液位 控制器; 其中,
所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
17、根据权利要求 9所述的空调系统,其特征在于,在所述第一储液罐( 5 ) 与所述蒸发器(8)之间存在所述动力设备(7)时, 该系统还包括: 第二液位 控制器; 其中, 所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
18、 根据权利要求 10所述的空调系统, 其特征在于, 在所述第一储液罐 (5) 与所述蒸发器(8)之间存在所述动力设备 (7) 时, 该系统还包括: 第 二液位控制器; 其中,
所述第二液位控制器(14)用于根据检测到的所述第一储液罐 (5) 中的 液位对所述动力设备( 7 )相应进行开启或停止控制,所述第二液位控制器( 14 ) 的两个液位检测端分别连接所述第一储液罐 ( 5 )的高位输出端和低位输出端, 所述第二液位控制器(14) 的输出端连接所述动力设备 (7) 的控制端。
PCT/CN2012/080494 2011-09-29 2012-08-23 一种空调系统 WO2013044706A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110298126.8 2011-09-29
CN2011102981268A CN103032924A (zh) 2011-09-29 2011-09-29 一种空调系统

Publications (1)

Publication Number Publication Date
WO2013044706A1 true WO2013044706A1 (zh) 2013-04-04

Family

ID=47994242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080494 WO2013044706A1 (zh) 2011-09-29 2012-08-23 一种空调系统

Country Status (2)

Country Link
CN (1) CN103032924A (zh)
WO (1) WO2013044706A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103615764B (zh) * 2013-12-18 2017-03-08 北京丰联奥睿科技有限公司 一种节能空调

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2241849Y (zh) * 1995-07-25 1996-12-04 陈乃贤 强制混合循环供液装置
CN101245955A (zh) * 2008-03-17 2008-08-20 时代嘉华(中国)科技有限公司 冷媒自然循环并用型单元式空调机组
CN201173633Y (zh) * 2008-03-17 2008-12-31 时代嘉华(中国)科技有限公司 一种冷媒自然循环并用型单元式空调机组
CN101504222A (zh) * 2009-02-19 2009-08-12 艾默生网络能源有限公司 一种空调
CN101694311A (zh) * 2009-10-23 2010-04-14 清华大学 一种带自然冷却功能的液泵供液多联式空调机组
CN101936616A (zh) * 2010-08-03 2011-01-05 清华大学 一种蒸发式冷凝液泵循环全年制冷装置
CN201757534U (zh) * 2010-08-03 2011-03-09 清华大学 一种蒸发式冷凝液泵循环全年制冷装置
CN202392912U (zh) * 2011-09-29 2012-08-22 艾默生网络能源有限公司 一种空调系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2762028Y (zh) * 2004-12-24 2006-03-01 广东美的电器股份有限公司 一种空气调节器
CN1789867A (zh) * 2005-12-31 2006-06-21 清华大学 一种液泵供液直接蒸发多联式供冷方法及系统
CN201555311U (zh) * 2009-10-23 2010-08-18 清华大学 带自然冷却功能的液泵供液多联式空调机组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2241849Y (zh) * 1995-07-25 1996-12-04 陈乃贤 强制混合循环供液装置
CN101245955A (zh) * 2008-03-17 2008-08-20 时代嘉华(中国)科技有限公司 冷媒自然循环并用型单元式空调机组
CN201173633Y (zh) * 2008-03-17 2008-12-31 时代嘉华(中国)科技有限公司 一种冷媒自然循环并用型单元式空调机组
CN101504222A (zh) * 2009-02-19 2009-08-12 艾默生网络能源有限公司 一种空调
CN101694311A (zh) * 2009-10-23 2010-04-14 清华大学 一种带自然冷却功能的液泵供液多联式空调机组
CN101936616A (zh) * 2010-08-03 2011-01-05 清华大学 一种蒸发式冷凝液泵循环全年制冷装置
CN201757534U (zh) * 2010-08-03 2011-03-09 清华大学 一种蒸发式冷凝液泵循环全年制冷装置
CN202392912U (zh) * 2011-09-29 2012-08-22 艾默生网络能源有限公司 一种空调系统

Also Published As

Publication number Publication date
CN103032924A (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
CN202002246U (zh) 一种自然冷却式冷水机组
CN107763892B (zh) 一种融霜空气源热泵系统
CN103277880A (zh) 一种机房的制冷控制方法、装置及系统
CN203286826U (zh) 一种机房的制冷控制系统
CN102788392A (zh) 一种热管热泵复合系统
CN202229351U (zh) 双工况通信专用节能空调
CN105352066A (zh) 一种适用于温湿度独立控制系统的热回收新风机组及其控制方法
CN203964427U (zh) 一种复叠式高温热泵的智能保护系统
CN202002247U (zh) 一种自然冷却式空调机组
CN202835949U (zh) 新型多联机空调系统
CN103032930B (zh) 一种温度控制装置
CN104566720A (zh) 一种精密机房空调压缩机氟泵制冷循环系统
CN109340960A (zh) 机房和房间的组合空调系统及其控制方法
WO2020233186A1 (zh) 热水器
CN102829519B (zh) 带载冷换热器的双冷源全新风热泵除湿机组
CN208365702U (zh) 一种节能空调系统
WO2013177871A1 (zh) 空调系统
CN111121200A (zh) 一种空调系统
CN203274104U (zh) 变温差非对称热管节能装置
CN108019974B (zh) 中间补气的一次节流中间不完全冷却热泵系统
CN203518084U (zh) 一种除湿调温的风冷机组
CN205561325U (zh) 一种机柜散热空调系统
CN104501340A (zh) 节能型环境控制系统
WO2013044706A1 (zh) 一种空调系统
CN203671807U (zh) 通信机房用节能一体化空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835638

Country of ref document: EP

Kind code of ref document: A1