WO2013176492A1 - 이차 전지용 전해액 및 첨가제 - Google Patents

이차 전지용 전해액 및 첨가제 Download PDF

Info

Publication number
WO2013176492A1
WO2013176492A1 PCT/KR2013/004510 KR2013004510W WO2013176492A1 WO 2013176492 A1 WO2013176492 A1 WO 2013176492A1 KR 2013004510 W KR2013004510 W KR 2013004510W WO 2013176492 A1 WO2013176492 A1 WO 2013176492A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
formula
secondary battery
electrolyte solution
additive
Prior art date
Application number
PCT/KR2013/004510
Other languages
English (en)
French (fr)
Inventor
신정주
박대운
이태웅
하재민
Original Assignee
에스케이케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼 주식회사 filed Critical 에스케이케미칼 주식회사
Publication of WO2013176492A1 publication Critical patent/WO2013176492A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte solution and an additive for a secondary battery, and more particularly, to a carbonate-based additive capable of increasing an oxidation start voltage and an electrolyte solution for a secondary battery including the same.
  • lithium secondary batteries Since lithium secondary batteries have advantages of high energy density and low self-discharge, they are usefully used as power sources for mobile devices and electric vehicles such as smartphones and notebook computers.
  • an electrolyte solution composed of a lithium salt as an electrolyte and a non-aqueous solvent is used.
  • the non-aqueous solvent must have a high dielectric constant in order to dissolve lithium salts and a large ionic conductivity in a wide temperature range.
  • Representative high boiling point solvents and low boiling point solvents such as dimethyl carbonate and diethyl carbonate are mixed and used.
  • various additives may be added to the electrolyte in order to improve the characteristics of the lithium secondary battery, for example, initial capacity, cycle characteristics, high temperature storage characteristics, low temperature characteristics, self discharge characteristics, overcharge characteristics, and the like.
  • a high voltage lithium secondary battery charged with a voltage of 4.2 V or more has been developed.
  • capacitance or high voltage of a battery should be made, and high voltage of a battery is more preferable among them.
  • a positive electrode of a lithium secondary battery a substance in which a part of manganese of lithium manganate (LiMn 2 O 4 ) having a spinel structure is replaced with another transition metal element can operate at around 5V.
  • LiNi 0.5 Mn 1.5 O 4 in which some manganese was substituted with nickel has high voltage charge / discharge, reversible capacity and good high temperature at around 5 V, and thus, most studies have been conducted.
  • the spinel-type manganese oxide for high voltage has a very high average discharge voltage of 4.7 V, and can use a high capacity and high safety cathode material other than carbon. Therefore, it is attracting attention as a core material of the medium-large capacity lithium ion battery used as a next-generation automotive power source.
  • an object of the present invention to provide an electrolyte additive capable of increasing the oxidation start voltage of an electrolyte for a secondary battery, particularly a lithium secondary battery.
  • Another object of the present invention is to provide an electrolyte solution for secondary batteries that can improve cycle characteristics and life characteristics of a battery even under high voltage charge and discharge conditions, that is, with improved voltage resistance.
  • a non-aqueous solvent Lithium salts; And it provides a secondary battery electrolyte comprising an additive represented by the formula (1).
  • R 1 , R 2, and R 3 are each independently an aliphatic or aromatic hydrocarbon group having 1 to 10 carbon atoms, and n is an integer of 3 or more as the number of repeating units.
  • the electrolyte additive according to the present invention increases the oxidation start voltage of the electrolyte solution for secondary batteries, and can improve cycle characteristics and life characteristics of the battery even under high voltage charge and discharge conditions.
  • the electrolyte additive according to the present invention is to increase the oxidation start voltage of a secondary battery, in particular, a lithium secondary battery electrolyte, and is a carbonate polymer having a structure represented by the following Chemical Formula 1.
  • R 1 , R 2 and R 3 are each independently an aliphatic or aromatic hydrocarbon group having 1 to 10 carbon atoms, preferably 2 to 7 carbon atoms, preferably branched, branched and / or ring N is an alkyl group or an aryl group, n is an integer of 3 or more, preferably an integer of 3 to 2,000, more preferably an integer of 3 to 1,800, and most preferably an integer of 3 to 1,500.
  • n can be an integer from 5 to 1,800 or an integer from 10 to 1,500.
  • R 1 , R 2, and R 3 may be substituted with one or more substituents such as hydroxy group (OH), fluorine group (F), nitrile group (CN), and methylsulfonyl group.
  • substituents such as hydroxy group (OH), fluorine group (F), nitrile group (CN), and methylsulfonyl group.
  • the weight average molecular weight (Mw) of the electrolyte solution additive represented by Formula 1 is 150 to 200,000, preferably 200 to 150,000, and more preferably 500 to 150,000.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) of the said additive exceeds 200,000, there exists a possibility that the viscosity of electrolyte solution may increase excessively, and when it is less than 150, there exists a possibility that the synergistic effect of an oxidation start voltage may not appear.
  • the polyalkylene carbonate additive represented by Chemical Formula 1 may be prepared according to various conventional organic synthesis methods, for example, in Korean Patent Publication No. 10-2012-0023820 (Application No. 10-2011-7030562) As disclosed, it may be prepared by a polymerization process using carbon dioxide and epoxide monomers.
  • the secondary battery is composed of a positive electrode, a negative electrode, an electrolyte and a separator, the use voltage of the secondary battery is determined by the potential difference between the positive electrode and the negative electrode, the electrolysis of the electrolyte occurs when the use voltage rises.
  • the oxidation initiation voltage was measured using linear sweep voltammetry (LSV), and the measurement standard is a voltage value measured at 0.1 mA / cm 2 .
  • the secondary battery electrolyte according to the present invention includes a non-aqueous solvent, a lithium salt and an additive represented by the formula (1).
  • the non-aqueous solvent is preferably one having high solubility in the lithium salt and the additives, and without limitation, propylene carbonate (PC), ethylene carbonate (EC), ethylmethyl carbonate; EMC), dimethyl carbonate (DEC) gamma-butyrolactone (GBL), diethyl carbonate (DEC) and the like can be used alone or in combination, preferably ethylmethyl carbonate (EMC).
  • the lithium salt is for improving the ionic conductivity of the electrolyte solution, without being limited to LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , or the like. It can be mixed and used.
  • the concentration (content) of the lithium salt is 0.9 M to 1.2 M (mol / liter), preferably 0.95 M to 1.1 M, and the content of the additive represented by Chemical Formula 1 is 0.05 To 30% by weight, preferably 0.1 to 10% by weight, more preferably 1 to 5% by weight, with the remaining components being the non-aqueous solvent.
  • the content of the lithium salt is less than 0.9 M, there is a fear that the ionic conductivity of the electrolyte solution is too low, and when the content of the lithium salt exceeds 1.2 M, the increase in the ionic conductivity relative to the amount used is not significant and economically undesirable.
  • the electrolyte solution for a secondary battery according to the present invention may be prepared by mixing and stirring a non-aqueous solvent, a lithium salt, and the additive represented by Chemical Formula 1.
  • the weight average molecular weight was measured by dissolving the sample in tetrahydrofuran (THF) solvent and using Gel Permeation Chromatography (GPC) at room temperature.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that the polymer represented by Formula 2 having a weight average molecular weight of about 30,000 was used as the carbonate polymer.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that the polymer represented by Chemical Formula 2 having a weight average molecular weight of about 5,000 was used as the carbonate polymer.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that diphenyl carbonate of Formula 3 was used instead of the carbonate polymer of Formula 2.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that dipropyl carbonate of Formula 4 was used instead of the carbonate polymer of Formula 2.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that the carbonate polymer of Formula 5 (weight average molecular weight: about 1,000, having 8 carbon atoms between carbonyl groups) was used instead of the carbonate polymer of Formula 2.
  • the carbonate polymer of Formula 5 weight average molecular weight: about 1,000, having 8 carbon atoms between carbonyl groups
  • An electrolyte solution was prepared in the same manner as in Example 1, except that the carbonate polymer of Formula 2 was not added to the 1M LiPF 6 solution.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that ethyl methyl sulfone was used instead of the carbonate polymer of Formula 2.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that tetramethylene sulfone was used instead of the carbonate polymer of Formula 2.
  • oxidation start voltage was defined as the voltage when the oxidation current reaches 0.1 mA / cm 2 .
  • Platinum (Pt) disc electrode, lithium metal as reference electrode, and Pt wire electrode as auxiliary electrode were used as the working electrode of the linear scanning voltametry.
  • the scanning speed was 20 mV / s.
  • the voltage was measured in a glove box in an argon (Ar) atmosphere having a moisture and oxygen concentration of 10 ppm or less.
  • Examples 1-3 and Comparative Examples 1-6 A liquid electrolyte, a LiNi 5 Co 2 Mn 3 positive electrode active material and LiMn 2 O 4 positive electrode active material as the positive electrode 1 manufactured by: a positive electrode material mixture to 1 (weight ratio), and lithium as the negative electrode Using a metal foil, a coin-shaped half cell was prepared in a conventional manner. The prepared battery was charged to 4.2 V at 0.2 C at room temperature, discharged to 3 V, and the result of charging and discharging 10 times is shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

산화 개시 전압을 증가시킬 수 있는 카보네이트계 첨가제 및 이를 포함하는 이차전지용 전해액이 개시된다. 상기 이차 전지용 전해액은 비수계 용매; 리튬염; 및 화학식 1로 표시되는 첨가제를 포함한다. 화학식 1에서, R1, R2 및 R3은, 각각 독립적으로, 탄소수 1 내지 7의 지방족 또는 방향족 탄화수소기이고, n은 반복 단위의 개수로서, 3 이상의 정수이다.

Description

이차 전지용 전해액 및 첨가제
본 발명은 이차 전지용 전해액 및 첨가제에 관한 것으로서, 더욱 상세하게는, 산화 개시 전압을 증가시킬 수 있는 카보네이트계 첨가제 및 이를 포함하는 이차전지용 전해액에 관한 것이다.
리튬 이차 전지는 에너지 밀도가 높고, 자가 방전이 작은 장점이 있으므로, 스마트폰, 노트북 등의 모바일 기기용 전원과 전기 자동차용 전원으로 유용하게 사용되고 있다. 이러한 리튬 이차 전지에는, 전해질인 리튬염과 비수계 용제로 구성되는 전해액이 사용된다. 상기 비수계 용제는 리튬염을 용해시키기 위하여 유전율이 크며, 넓은 온도 영역에서 이온 전도도가 커야 하지만, 이러한 전해액 용제의 특성을 하나의 물질로 달성하기 어렵기 때문에, 통상, 프로필렌 카보네이트, 에틸렌 카보네이트 등으로 대표되는 고비점 용매와 디메틸카보네이트, 디에틸카보네이트 등의 저비점 용매를 혼합하여 사용한다. 또한, 리튬 이차 전지의 특성, 예를 들면, 초기 용량, 사이클 특성, 고온보존 특성, 저온 특성, 자가방전 특성, 과충전 특성 등을 개선하기 위하여, 전해액에 다양한 첨가제를 첨가하기도 한다.
한편, 리튬 이차 전지의 에너지 밀도를 향상시키기 위하여, 4.2 V 이상의 전압으로 충전되는 고전압 리튬 이차 전지가 개발되고 있다. 기술적으로, 리튬 이차 전지의 에너지 밀도를 증가시키기 위해서는, 전지의 고용량화나 고전압화가 이루어져야 하며, 그 중에서 전지의 고전압화가 보다 바람직하다. 리튬 이차 전지의 양극으로서, 스피넬 구조를 가진 망간산 리튬(LiMn2O4)의 망간 일부를 다른 전이금속 원소로 치환한 물질은, 5 V 부근에서 작동 가능하다. 그 중에서도, 일부 망간을 니켈로 치환한 LiNi0.5Mn1.5O4는 5 V 부근에서의 고전압 충방전, 가역 용량 및 양호한 고온 특성을 가지므로, 가장 많은 연구가 이루어졌다. 또한, 고전압용 스피넬형 망간계 산화물은, 평균 방전 전압이 4.7 V로 매우 높고, 카본 이외의 고용량, 고안전성 음극 소재를 사용할 수 있으므로, 높은 에너지 밀도, 고안전성, 저가격화 등이 가능한 장점이 있으며, 따라서, 차세대 자동차용 전원으로 사용되는 중대용량 리튬 이온 전지의 핵심 소재로서 주목받고 있다.
그러나, 전지의 충전 전압을 증가시키면, 양극에서 전해액이 분해되는 부반응이 발생하기 쉽고, 사이클 특성이 저하되는 문제가 있다. 일반적으로 종래의 전해액은, 4.2 V 이하의 전압에서는 사이클 특성이 양호하지만, 4.2 V 이상의 고전압으로 갈수록, 사이클 특성 등 성능이 저하되는 단점이 있다. 따라서, 고전압에서 유용한 전해액으로서, 일본특허출원 특개평 6-223874호는, 전해액의 전기분해에 의해 전지 내부 압력이 증가하는 것을 설포란을 이용하여 억제하는 기술을 개시하며, 일본 특개 2006- 351337호는, 4.4 V의 충전 전압에서 설포네이트를 함유하는 전해액의 사이클 특성이 향상됨을 개시한 바 있다. 한편, Journal of the electrochemical society 156(1) A60-65 (2009)에는, 니트릴(CN) 구조를 가지는 지방족 화합물이 전지의 내전압 특성을 개선할 수 있다는 내용이 개시되어 있다.
이와 같이, 5 V급의 고전압 양극 소재를 이용하면, 에너지 밀도가 높은 전지를 구현할 수 있지만, 종래의 전해액을 그대로 사용하고, 작동 전압 범위를 증가시키면, 전지의 사이클 특성 및 수명이 급격히 저하되는 문제가 있다. 따라서, 고전압으로 충전되는 전지의 수명 특성을 향상시키기 위해서는, 작동 전압 범위 보다 높은 산화개시 전압을 가지는 고전압 전해액의 개발이 필요하다.
따라서, 본 발명의 목적은, 이차 전지, 특히 리튬 이차 전지용 전해액의 산화개시 전압을 증가시킬 수 있는 전해액 첨가제를 제공하는 것이다.
본 발명의 다른 목적은, 고전압 충방전 조건에서도, 전지의 사이클 특성 및 수명 특성을 개선할 수 있는, 즉, 내전압성이 향상된 이차 전지용 전해액을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 비수계 용매; 리튬염; 및 하기 화학식 1로 표시되는 첨가제를 포함하는 이차 전지용 전해액을 제공한다.
[화학식 1]
Figure PCTKR2013004510-appb-I000001
상기 화학식 1에서, R1, R2 및 R3은, 각각 독립적으로, 탄소수 1 내지 10의 지방족 또는 방향족 탄화수소기이며, n은 반복 단위의 개수로서, 3 이상의 정수이다.
본 발명에 따른 전해액 첨가제는, 이차 전지용 전해액의 산화개시 전압을 증가시켜, 고전압 충방전 조건에서도, 전지의 사이클 특성 및 수명 특성을 개선할 수 있다.
이하, 본 발명을 상세히 설명한다.
본 발명에 따른 전해액 첨가제는, 이차 전지, 특히, 리튬 이차 전지용 전해액의 산화개시 전압을 증가시키기 위한 것으로서, 하기 화학식 1의 구조를 가지는 카보네이트 중합체이다.
[화학식 1]
Figure PCTKR2013004510-appb-I000002
상기 화학식 1에서, R1, R2 및 R3은, 각각 독립적으로, 탄소수 1 내지 10, 바람직하게는 탄소수 2 내지 7의 지방족 또는 방향족 탄화수소기, 바람직하게는 가지형, 분지형 및/또는 고리형 알킬기 또는 아릴기이며, n은 반복 단위의 개수로서, 3 이상의 정수, 바람직하게는 3 내지 2,000의 정수, 더욱 바람직하게는 3 내지 1,800의 정수, 가장 바람직하게는 3 내지 1,500의 정수이다. 예를 들면, n은 5 내지 1,800의 정수이거나, 10 내지 1,500의 정수일 수 있다. 필요에 따라, 상기 R1, R2 및 R3은 히드록시기(OH), 불소기(F), 니트릴기(CN), 메틸설포닐기 등의 하나 이상의 치환기로 치환되어 있을 수 있다. 여기서, 상기 R1, R2 및 R3의 탄소수가 7을 초과하면, 산화개시 전압이 감소할 우려가 있고, 상기 n이 너무 크면, 전해액의 점도가 과도하게 증가할 우려가 있다.
상기 화학식 1로 표시되는 전해액 첨가제의 중량평균 분자량(Mw)은 150 내지 20만, 바람직하게는 200 내지 15만, 더욱 바람직하게는 500 내지 15만이다. 여기서, 상기 첨가제의 중량평균 분자량(Mw)이 20만을 초과하면, 전해액의 점도가 과도하게 증가할 우려가 있고, 150 미만이면, 산화개시 전압의 상승 효과가 나타나지 않을 우려가 있다.
상기 화학식 1로 표시되는 폴리알킬렌카보네이트 첨가제는, 통상의 다양한 유기 합성법에 따라 제조될 수 있으며, 예를 들면, 대한민국 특허공개 10-2012-0023820호(출원번호: 10-2011-7030562호)에 개시된 바와 같이, 이산화탄소와 에폭사이드 단량체를 사용한 중합 공정에 의해 제조될 수 있다.
이차전지는 양극, 음극, 전해액 및 분리막으로 구성되고, 이차전지의 사용 전압은 양극과 음극의 전위 차이로 결정되며, 상기 사용 전압이 상승하면, 전해액의 전기분해가 발생한다. 이와 같이 전해액의 전기분해가 발생하는 전압인 산화개시 전압은 높을수록 바람직하다. 본 명세서에 있어서, 상기 산화개시 전압은 선형 주사 볼타메트리(Linear sweep voltammetry: LSV)를 이용하여 측정하였으며, 측정 기준은 0.1 mA/cm2 에서 측정된 전압값이다.
본 발명에 따른 이차 전지용 전해액은, 비수계 용매, 리튬염 및 상기 화학식 1로 표시되는 첨가제를 포함한다. 상기 비수계 용매로는, 상기 리튬염 및 첨가제에 대한 용해도가 높은 것이 바람직하며, 비한정적으로, 프로필렌 카보네이트(propylene carbonate; PC), 에틸렌 카보네이트(ethylene carbonate; EC), 에틸메틸 카보네이트(ethylmethyl carbonate; EMC), 디메틸 카보네이트(dimethyl carbonate; DEC) 감마부티로락톤(gamma- butyrolactone; GBL), 디에틸 카보네이트(diethyl carbonate; DEC) 등을 단독 또는 혼합하여 사용할 수 있으며, 바람직하게는 에틸메틸 카보네이트(EMC), 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC) 등의 선형 카보네이트와 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC) 등의 고리형 카보네이트를 혼합하여 사용할 수 있다. 또한, 상기 리튬염은, 전해액의 이온 전도도를 향상시키기 위한 것으로서, 비한정적으로, LiClO4, LiCF3SO3, LiPF6, LiBF4, LiAsF6, LiN(CF3SO2)2 등을 단독 또는 혼합하여 사용할 수 있다.
본 발명에 따른 이차 전지용 전해액에 있어서, 상기 리튬염의 농도(함량)은 0.9 M 내지 1.2 M (mol/liter), 바람직하게는 0.95 M 내지 1.1 M 이며, 상기 화학식 1로 표시되는 첨가제의 함량은 0.05 내지 30 중량%, 바람직하게는 0.1 내지 10 중량%, 더욱 바람직하게는 1 내지 5 중량%이며, 나머지 성분은 상기 비수계 용매이다. 여기서, 상기 리튬염의 함량이 0.9 M 미만이면, 전해액의 이온 전도도가 너무 낮아질 우려가 있고, 1.2 M을 초과하면, 사용량 대비, 이온 전도도의 증가가 현저하지 않고, 경제적으로 바람직하지 못하다. 또한, 상기 첨가제의 함량이 0.05 중량% 미만이면, 산화개시 전압의 상승 효과가 불충분할 우려가 있고, 30 중량%를 초과하면 전해액의 이온 전도도가 감소하게될 우려가 있다. 본 발명에 따른 이차 전지용 전해액은, 비수계 용매, 리튬염 및 상기 화학식 1로 표시되는 첨가제를 혼합하고 교반함으로써 제조될 수 있다.
이하, 구체적인 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다. 하기 실시예에서, 중량 평균 분자량은 테트라하이드로퓨란(THF) 용매에 시료를 용해시키고, 상온에서 겔투과 크로마토그래피(Gel Permeation Chromatography: GPC)를 이용하여 측정하였다.
[실시예 1] 전해질 용액의 제조
에틸렌 카보네이트(EC) 396 g 및 에틸메틸 카보네이트(EMC) 707 g을 혼합하고, 이 혼합액에 152 g의 LiPF6을 투입하여, 1M LiPF6 용액을 제조한 다음, 하기 화학식 2로 표시되는 카보네이트 중합체(중량평균 분자량: 약 130,000)를 3.0 중량%의 함량으로 첨가하여, 전해질 용액(전해액)을 제조하였다.
[화학식 2]
Figure PCTKR2013004510-appb-I000003
[실시예 2] 전해질 용액의 제조
카보네이트 중합체로서, 중량 평균 분자량 약 30,000의 화학식 2로 표시되는 중합체를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해질 용액을 제조하였다.
[실시예 3] 전해질 용액의 제조
카보네이트 중합체로서, 중량 평균 분자량 약 5,000의 화학식 2로 표시되는 중합체를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해질 용액을 제조하였다.
[비교예 1] 전해질 용액의 제조
화학식 2의 카보네이트 중합체 대신, 하기 화학식 3의 디페닐 카보네이트를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해질 용액을 제조하였다.
[화학식 3]
Figure PCTKR2013004510-appb-I000004
[비교예 2] 전해질 용액의 제조
화학식 2의 카보네이트 중합체 대신, 하기 화학식 4의 디프로필 카보네이트를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해질 용액을 제조하였다.
[화학식 4]
Figure PCTKR2013004510-appb-I000005
[비교예 3] 전해질 용액의 제조
화학식 2의 카보네이트 중합체 대신, 하기 화학식 5의 카보네이트 중합체(중량평균 분자량: 약 1,000, 카보닐기 사이의 탄소수: 8개)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해질 용액을 제조하였다.
[화학식 5]
Figure PCTKR2013004510-appb-I000006
[비교예 4] 전해질 용액의 제조
1M LiPF6 용액에, 화학식 2의 카보네이트 중합체를 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 전해질 용액을 제조하였다.
[비교예 5] 전해질 용액의 제조
화학식 2의 카보네이트 중합체 대신, 에틸 메틸 설폰(ethyl methyl sulfone)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해질 용액을 제조하였다.
[비교예 6] 전해질 용액의 제조
화학식 2의 카보네이트 중합체 대신, 테트라메틸렌 설폰(tetramethylene sulfone)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해질 용액을 제조하였다.
[실험예 1] 전해액의 산화개시 전압 측정
실시예 1 ~ 3 및 비교예 1 ~ 6에서 제조한 전해액들에 대하여, 선형 주사 볼타메트리(Linear sweep voltammetry)를 수행하여, 산화개시 전압을 측정하였으며, 그 결과를 하기 표 1에 나타내었다. 이때, 산화개시 전압은 산화전류가 0.1 mA/cm2에 도달한 경우의 전압으로 정의하였다. 선형주사 볼타메트리의 작업 전극으로는 백금(Pt) 원판 전극, 기준 전극으로 리튬 금속, 보조 전극으로 백금(Pt) 선(wire) 전극을 사용하였으며, 주사 속도는 20 mV/s 였고, 산화개시 전압의 측정은 수분과 산소 농도가 10 ppm 이하인 아르곤(Ar) 분위기의 글로브박스(glove box)에서 수행하였다.
표 1
Figure PCTKR2013004510-appb-T000001
상기 표 1로부터, 첨가제를 첨가하지 않거나(비교예 4), 다른 종류의 첨가제를 첨가하는 경우(비교예 1 ~ 3)와 비교하여, 본 발명의 카보네이트 중합체를 첨가한 경우(실시예 1 내지 3), 산화개시 전압이 증가함을 알 수 있다. 따라서, 본 발명에 따른 첨가제를 사용하면, 전지 내 산화분해 반응을 개선하여, 전지의 사용 전압을 증가시킬 수 있다.
[실험예 2] 리튬 이차 전지의 성능(수명 유지율, %) 평가
실시예 1 ~ 3 및 비교예 1 ~ 6에서 제조한 전해액, 양극으로서 LiNi5Co2Mn3 양극 활물질과 LiMn2O4 양극 활물질을 1 : 1 (중량비)로 혼합한 양극재, 및 음극으로서 리튬 금속 호일(Foil)을 사용하여, 통상의 방법으로 코인 형태의 반쪽 전지를 제조하였다. 제조된 전지를 상온에서 0.2 C로 4.2 V까지 충전하고, 3 V까지 방전하며, 10회 충방전한 결과를 하기 표 2에 나타내었다.
표 2
Figure PCTKR2013004510-appb-T000002
상기 표 2로부터, 본 발명에 따른 전해액을 사용할 경우, 산화개시 전압이 높으면서도, 수명 유지율이 우수함을 알 수 있다. 반면, 종래의 산화개시 전압 상승용 첨가제(고전압 첨가제)를 포함하는 비교예 5 및 6의 전해액을 사용할 경우, 수명 유지율이 바람직하지 못하다. 따라서, 본 발명에 따른 전해액은 전지 충방전 특성에 나쁜 영향을 미치지 않으면서, 전해액의 산화개시 전압을 상승시킨다.
[실험예 3] 리튬 이차 전지의 성능(충방전 효율, %) 평가
실시예 1 ~ 3 및 비교예 1 ~ 4에서 제조한 전해액, 양극으로서 LiNi5Co2Mn3 양극 활물질과 LiMn2O4 양극 활물질을 1 : 1 (중량비)로 혼합한 양극재, 및 음극으로서 리튬 금속 호일(Foil)을 사용하여, 통상의 방법으로 코인 형태의 반쪽 전지를 제조하였다. 제조된 전지를 상온에서 0.2 C로 4.2 V까지 충전하고, 3 V까지 방전하며, 1회 충방전한 결과를 하기 표 3에 나타내었다.
표 3
Figure PCTKR2013004510-appb-T000003
상기 표 3으로부터, 본 발명에 따른 전해액을 사용할 경우, 산화개시 전압이 높으면서도, 1회 충방전 효율이 우수함을 알 수 있다. 반면, 종래의 산화개시 전압 상승용 첨가제(고전압 첨가제)를 포함하는 비교예 5 및 6의 전해액을 사용할 경우, 1회 충방전 효율이 바람직하지 못하다. 따라서, 본 발명에 따른 전해액은 전지 충방전 특성에 나쁜 영향을 미치지 않고, 전해액의 산화개시 전압을 상승시킨다.

Claims (8)

  1. 비수계 용매; 리튬염; 및 하기 화학식 1로 표시되는 첨가제를 포함하는 이차 전지용 전해액.
    [화학식 1]
    Figure PCTKR2013004510-appb-I000007
    상기 화학식 1에서, R1, R2 및 R3은, 각각 독립적으로, 탄소수 1 내지 10의 지방족 또는 방향족 탄화수소기이고, n은 반복 단위의 개수로서, 3 이상의 정수이다.
  2. 청구항 1에 있어서, 상기 R1, R2 및 R3은, 각각 독립적으로, 탄소수 2 내지 7의 지방족 또는 방향족 탄화수소기이며, 상기 n은 3 내지 2,000의 정수인 것인 이차 전지용 전해액.
  3. 청구항 1에 있어서, 상기 R1, R2 및 R3은, 각각 독립적으로, 탄소수 1 내지 10의 가지형, 분지형 및/또는 고리형 알킬기 또는 아릴기이며, 상기 n은 3 내지 1,800의 정수인 것인 이차 전지용 전해액.
  4. 청구항 1 내지 3 중 어느 한 항에 있어서, 상기 n은 3 내지 1,500의 정수인 것인 이차 전지용 전해액.
  5. 청구항 1에 있어서, 상기 R1, R2 및 R3은, 히드록시기(OH), 불소기(F), 니트릴기(CN) 및 메틸설포닐기로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 치환되어 있는 것인 이차 전지용 전해액.
  6. 청구항 1에 있어서, 상기 리튬염의 농도는 0.9 M 내지 1.2 M이며, 상기 화학식 1로 표시되는 첨가제의 함량은 0.05 내지 30 중량%이고, 나머지 성분은 상기 비수계 용매인 것인 이차 전지용 전해액.
  7. 청구항 1에 있어서, 상기 화학식 1로 표시되는 전해액 첨가제의 중량평균 분자량(Mw)은 150 내지 20만인 것인 이차 전지용 전해액.
  8. 하기 화학식 1의 구조를 가지는 리튬 이차 전지용 전해액 첨가제.
    [화학식 1]
    Figure PCTKR2013004510-appb-I000008
    상기 화학식 1에서, R1, R2 및 R3은, 각각 독립적으로, 탄소수 1 내지 7의 지방족 또는 방향족 탄화수소기이고, n은 반복 단위의 개수로서, 3 이상의 정수이다.
PCT/KR2013/004510 2012-05-24 2013-05-23 이차 전지용 전해액 및 첨가제 WO2013176492A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0055202 2012-05-24
KR1020120055202A KR20130131565A (ko) 2012-05-24 2012-05-24 이차 전지용 전해액 및 첨가제

Publications (1)

Publication Number Publication Date
WO2013176492A1 true WO2013176492A1 (ko) 2013-11-28

Family

ID=49624104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004510 WO2013176492A1 (ko) 2012-05-24 2013-05-23 이차 전지용 전해액 및 첨가제

Country Status (2)

Country Link
KR (1) KR20130131565A (ko)
WO (1) WO2013176492A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766967B1 (ko) * 2006-11-20 2007-10-15 삼성에스디아이 주식회사 리튬 이차 전지용 전극, 및 이로부터 제조된 리튬 이차전지
KR20080020238A (ko) * 2006-08-31 2008-03-05 에스케이케미칼주식회사 전해질 용액 및 이를 포함하는 초고용량 커패시터
KR20080081749A (ko) * 2007-03-06 2008-09-10 주식회사 엘지화학 고온 저장 특성이 우수한 리튬 이차전지용 비수계 전해액
KR20110080913A (ko) * 2010-01-07 2011-07-13 에스케이케미칼주식회사 초고용량 커패시터용 전해질 용액
US20110183215A1 (en) * 2006-04-10 2011-07-28 Greatbatch Ltd. Layered Electrode For An Electrochemical Cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110183215A1 (en) * 2006-04-10 2011-07-28 Greatbatch Ltd. Layered Electrode For An Electrochemical Cell
KR20080020238A (ko) * 2006-08-31 2008-03-05 에스케이케미칼주식회사 전해질 용액 및 이를 포함하는 초고용량 커패시터
KR100766967B1 (ko) * 2006-11-20 2007-10-15 삼성에스디아이 주식회사 리튬 이차 전지용 전극, 및 이로부터 제조된 리튬 이차전지
KR20080081749A (ko) * 2007-03-06 2008-09-10 주식회사 엘지화학 고온 저장 특성이 우수한 리튬 이차전지용 비수계 전해액
KR20110080913A (ko) * 2010-01-07 2011-07-13 에스케이케미칼주식회사 초고용량 커패시터용 전해질 용액

Also Published As

Publication number Publication date
KR20130131565A (ko) 2013-12-04

Similar Documents

Publication Publication Date Title
KR100515332B1 (ko) 리튬 전지용 전해질 및 이를 포함하는 리튬 전지
KR100527827B1 (ko) 비수성 전해질 및 이를 포함하는 리튬 이차 전지
WO2013168882A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 구비하는 리튬 이차 전지
WO2013165077A1 (ko) 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2015126082A1 (ko) 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
WO2013073901A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
WO2012021029A2 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
US5744262A (en) Stable high-voltage electrolyte for lithium secondary battery
KR100471973B1 (ko) 비수성 전해질 및 이를 포함하는 리튬 이차 전지
KR100463188B1 (ko) 리튬 이온 전지용 전해질 및 이를 포함하는 리튬 이온 전지
KR20180102666A (ko) 전해질 용액, 양극, 및 상기 전해질 용액 및/또는 상기 양극을 포함하는 리튬-이온 배터리
WO2013137596A1 (ko) 리튬 이차전지용 비수 전해액 및 그를 포함하는 리튬 이차전지
KR100412522B1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
CN101252206A (zh) 一种锂离子电池负极成膜电解质复合盐及其功能电解液的制备方法
KR20040043993A (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
CN1558464A (zh) 含有机磷化合物的锂离子电池电解液及组成的电池
KR20090053467A (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2011087205A2 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
KR100450199B1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
US20150099165A1 (en) Electrolyte additive for a lithium-based energy storage device
KR100766930B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR100458570B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR100658742B1 (ko) 리튬 전지용 전해질 및 이를 포함하는 리튬 전지
KR20070103919A (ko) 4.4v 이상의 고전압용 리튬 2차전지용 비수성 전해액 및 이를 포함하는 리튬 2차전지
WO2013176492A1 (ko) 이차 전지용 전해액 및 첨가제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793489

Country of ref document: EP

Kind code of ref document: A1