WO2013176130A1 - 非水電解質二次電池 - Google Patents
非水電解質二次電池 Download PDFInfo
- Publication number
- WO2013176130A1 WO2013176130A1 PCT/JP2013/064081 JP2013064081W WO2013176130A1 WO 2013176130 A1 WO2013176130 A1 WO 2013176130A1 JP 2013064081 W JP2013064081 W JP 2013064081W WO 2013176130 A1 WO2013176130 A1 WO 2013176130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- positive electrode
- secondary battery
- electrolyte secondary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a nonaqueous electrolyte secondary battery and an assembled battery using the same. This application claims priority based on Japanese Patent Application No. 2012-116766.
- Lithium ion storage batteries are currently widely used as power sources for mobile devices. Lithium ion storage batteries are expected to be used for large power supplies such as electric vehicles and power storage because they have higher energy density than existing nickel-cadmium storage batteries and nickel-hydrogen storage batteries.
- non-aqueous electrolyte secondary batteries using lithium titanate as the negative electrode active material are attracting attention because of their good cycle characteristics and high safety.
- Patent Document 1 discloses a negative electrode active material, a first conductive material made of a carbon material, and a second binder as a binder that bonds the first conductive material and a current collector as a material constituting the negative electrode. The technique which prevents peeling of the negative electrode active material from the current collector as the cycle progresses is proposed.
- the second conductive material used in the lithium secondary battery of Patent Document 1 requires a carbonization process by heat treatment in electrode production, and thus has a drawback of increasing the number of processes.
- An object of the present invention is to provide a non-aqueous electrolyte secondary battery for use in a large power source that has excellent cycle characteristics and a simple manufacturing process.
- the present inventor has adopted a negative electrode containing a specific negative electrode active material and a current collector having a porous structure, and has a specific electrode thickness, thereby providing a large-scale power source that has excellent cycle characteristics and a simple manufacturing process.
- the present inventors have found that a nonaqueous electrolyte secondary battery for use can be obtained, and have completed the present invention.
- the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte, wherein the positive electrode is composed of at least a positive electrode active material and a current collector, and the negative electrode is It is composed of at least a negative electrode active material and a current collector, includes lithium titanate as the negative electrode active material, and the current collector of the negative electrode is aluminum having a porous structure or an alloy thereof.
- a non-aqueous electrolyte secondary battery having a size of 4 mm or more and 5 mm or less is provided.
- the negative electrode used in the nonaqueous electrolyte secondary battery of the present invention is composed of at least a negative electrode active material and a current collector.
- the negative electrode may contain a binder (binder) (hereinafter, a mixture of the negative electrode active material and the binder is referred to as a “negative electrode active material mixture”).
- the negative electrode active material mixture may contain a conductive additive as necessary.
- lithium titanate is used as the negative electrode active material.
- lithium ion insertion / extraction reaction proceeds at 0.4 V (vs. Li + / Li) or more and 2.0 V (vs. Li + / Li) or less, so aluminum is used as a current collector material. be able to.
- the reason for not using aluminum for the negative electrode is that aluminum is alloyed at about 0.4 V with respect to the lithium electrode.
- aluminum reacts. If lithium titanate is used, there is no such fear.
- the lithium titanate preferably has a spinel structure.
- the spinel structure is characterized by small expansion and contraction of the active material in the lithium ion insertion / extraction reaction.
- Lithium titanate is expressed as a molecular formula of Li 4 Ti 5 O 12 , but may contain a trace amount of elements other than lithium and titanium, such as Nb.
- Lithium titanate preferably has a half width of (400) plane of powder X-ray diffraction by CuK ⁇ ray of 0.5 ° or less. If it is larger than 0.5 °, the crystallinity of lithium titanate is low, and the stability of the electrode may be lowered.
- the lithium titanate preferably has a lithium content of 90% or more in the 8a site according to the Rietveld analysis by X-ray diffraction. If it is less than 90%, since there are many defects in the crystal of lithium titanate, the stability of the electrode may be lowered.
- Lithium titanate can be obtained by heat-treating a lithium compound or a titanium compound at 500 ° C. or higher and 1500 ° C. or lower. When the temperature is less than 500 ° C. or higher than 1500 ° C., lithium titanate having a desired structure tends to be difficult to obtain.
- the heat treatment may be performed again at a temperature of 500 ° C. or higher and 1500 ° C. or lower.
- the temperature of the reheating treatment may be the same as or different from the temperature of the first treatment.
- the heat treatment may be performed in the presence of air or in the presence of an inert gas such as nitrogen or argon. Although it does not specifically limit in heat processing, For example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln etc. can be used.
- lithium compound for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, lithium oxalate, lithium halide and the like can be used. These lithium compounds may be used alone or in combination of two or more.
- titanium oxides such as titanium dioxide and a titanium monoxide, can be used.
- the surface of lithium titanate may be covered with a carbon material, a metal oxide, a polymer or the like in order to improve conductivity or stability.
- the particle diameter of lithium titanate is preferably 0.5 ⁇ m or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less from the viewpoint of handling.
- the particle diameter is a value obtained by measuring the size of each particle from SEM and TEM images and calculating the average particle diameter.
- the specific surface area of lithium titanate is preferably 0.1 m 2 / g or more and 50 m 2 / g or less because a desired output density is easily obtained.
- the specific surface area is preferably calculated by measurement using a mercury porosimeter or BET method.
- the bulk density of lithium titanate is preferably 0.2 g / cm 3 or more and 2.0 g / cm 3 or less.
- 0.2 g / cm in the case of less than 3 tend to be economically disadvantageous because it requires a large amount of solvent in the step of preparing the slurry described below, 2.0 g / cm 3 greater than the later of conductive agent, and a binder Tend to be difficult to mix.
- the negative electrode preferably contains a binder as described above.
- the binder is not particularly limited.
- PVdF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- FEP tetrafluoroethylene / hexafluoropropylene copolymer
- styrene-butadiene rubber polyimide
- At least one selected from the group consisting of derivatives can be used. From the viewpoint of obtaining a battery in which the active material and the current collector exhibit good adhesion and, as a result, excellent cycle characteristics, it is preferable to use PVdF or PTFE.
- the binder is preferably dissolved or dispersed in a non-aqueous solvent or water from the viewpoint of easy production of the negative electrode.
- the non-aqueous solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, ethyl acetate, and tetrahydrofuran. You may add a dispersing agent and a thickener to these.
- the amount of the binder contained in the negative electrode active material mixture is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the negative electrode active material. .
- the adhesion between the negative electrode active material and the conductive additive can be maintained, and sufficient adhesion with the current collector can be obtained. As a result, the cycle characteristics of the obtained battery are good. Become.
- the negative electrode may contain a conductive additive as necessary. Although it does not specifically limit as a conductive support material, A carbon material or / and a metal microparticle are preferable.
- the carbon material include natural graphite, artificial graphite, vapor-grown carbon fiber, carbon nanotube, acetylene black, ketjen black, and furnace black.
- the metal fine particles include copper, aluminum, nickel, and an alloy containing at least one of these. Further, the fine particles of inorganic material may be plated. These carbon materials and metal fine particles may be used alone or in combination of two or more.
- the amount of the conductive additive contained in the negative electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the negative electrode active material. If it is this range, the electroconductivity of a negative electrode will be ensured. Moreover, adhesiveness with a binder is maintained and sufficient adhesiveness with a collector can be obtained. When using a larger amount of conductive aid than 30 parts by weight, the volume occupied by the conductive aid increases and the energy density tends to decrease.
- the current collector used for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention has a porous structure.
- the shape include a mesh shape body, a punching shape body, an expanded shape body, and a porous structure. With such a perforated structure, the electron conductivity in the thickness direction is maintained, the adhesion of the electrode active material is improved, and the electrode active material can be prevented from falling.
- an expanded shape body or a porous structure is preferable as a current collector because the contact area is large and the cycle preventing property of the secondary battery is improved due to the large drop prevention effect.
- the “void degree” of the current collector having a perforated structure is defined as “the total internal volume of all holes present in the unit volume including the current collector holes”.
- the porosity is measured by measuring the volume (V A ) including the current collector pores calculated from the thickness and area of the current collector, and the volume (V B ) of the material calculated from the specific gravity and weight of the current collector material. Can be calculated by introducing into the equation (1).
- the mesh-shaped body is obtained by knitting a long conductive member vertically and horizontally as shown in FIG. Specifically, metal fibers are woven. Moreover, what made the metal fiber the nonwoven fabric is also employable.
- the thickness of one metal fiber is 50 micrometers or more and 2000 micrometers or less. When the thickness is less than 50 ⁇ m, the current collector 10 is weak, and therefore, when the active material mixture is supported on the current collector 10, the current collector 10 tends to be broken.
- the opening becomes too large to keep the porosity within the range described later, and it tends to be difficult to hold the active material mixture by the metal mesh.
- the porosity can be controlled by the thickness and opening of the metal fiber.
- the punching shape body is a plate in which holes such as a circle, a rectangle, or a hexagon are formed, and the current collector 10 made of a metal plate is punched.
- Metal made of a metal plate is punched.
- the “perforation ratio” of the punching metal is defined as “the total area of the holes per unit area of the plate” in plan view. In the case of a punched shape, the porosity corresponds to the open area as it is.
- the open area ratio is related to the area of the holes and the arrangement pitch of the holes. Specifically, it is determined by the ratio between the hole diameter and the array pitch, the shape of the holes, and the like.
- the shape of the hole is not particularly limited, but from the viewpoint of increasing the open area ratio, round holes arranged on a right-angle lattice as shown in FIG. 2A, round holes arranged on a staggered lattice as shown in FIG. 2B, FIG. 2C
- the crossing angle ⁇ of the lattice shown in FIG. 2B is not particularly limited as long as it is in the range of 0 ° to 180 °, but is preferably in the range of 30 ° to 90 °, for example, 60 °.
- the expanded shape body is a plate-like cut and stretched to form a mesh
- a metal is an expanded metal.
- the center distance in the short direction of the mesh is indicated by SW
- the center distance in the long direction is indicated by LW.
- the porosity corresponds directly to the porosity.
- the opening ratio of the expanded metal is determined by the width a of the line (strand) constituting the expanded metal and the above-described center distances SW and LW.
- the porous structure is a structure in which the skeleton has a three-dimensional porous shape like a sponge, the pores are small, and the shape of the pores is not uniform.
- the number of holes is very large.
- the porous structure is specified by the average pore diameter and porosity.
- the shape of the hole may be a single hole or a continuous hole in which a plurality of holes are connected.
- the pore diameter is not particularly limited. However, a structure having a high specific surface area is preferred.
- the porosity of the current collector used in the nonaqueous electrolyte secondary battery of the present invention is preferably 40% or more and 99% or less.
- the porosity is in the above-described range, the negative electrode active material mixture can be held well, and the negative electrode active material mixture can be supported thickly, so that a non-aqueous electrolyte secondary battery for use in a large power source can be obtained.
- the porosity exceeds 99%, the strength of the current collector becomes weak, and if the porosity is less than 40%, the amount of active material present in the unit volume decreases, which is disadvantageous in terms of energy density.
- the thickness of the current collector is preferably 0.01 mm or more and 5.0 mm or less. When the thickness is less than 0.01 mm, it is difficult to carry the negative electrode active material mixture. In particular, it is preferably 0.01 mm or more and 2 mm or less for a mesh-shaped, punching-shaped, or expanded current collector 10, and preferably 0.1 mm or more and 5.0 mm or less for a porous structure.
- the metal used for the current collector of the present invention is aluminum or an alloy thereof.
- the specific gravity is 70% smaller than the copper used for the conventional current collector, the weight of the battery can be reduced, and as a result, the energy density is improved.
- high-purity aluminum represented by JIS standards 1030, 1050, 1085, 1N90, 1N99, or the like, or an alloy of aluminum and titanium, an alloy of aluminum and chromium, an alloy of aluminum and copper, or aluminum and nickel And an alloy of aluminum and manganese, or the above-mentioned three or more composite alloys containing aluminum.
- the method for producing a negative electrode in an embodiment of the present invention is produced by supporting a negative electrode active material mixture comprising a negative electrode active material, a conductive additive, and a binder on a current collector. Due to the ease of the production method, a slurry is produced with a negative electrode active material, a conductive additive, a binder, and a solvent, and after the obtained slurry is filled and applied to the outer surface of the current collector and its pores, the solvent is removed. Thus, a method for producing a negative electrode is preferable. Further, the mixture of the negative electrode active material, the conductive additive and the binder may be supported on the current collector 10 as it is without being dispersed in the solvent.
- the negative electrode active material, the conductive additive, the binder, and the solvent can be uniformly mixed, a ball mill, a planetary mixer, a jet mill, a thin film swirl mixer, a stirring and mixing granulator It is preferable to use it.
- the method for kneading the slurry is not particularly limited, but after mixing the negative electrode active material, the conductive additive, and the binder, the slurry may be added and kneaded, or the negative electrode active material, the conductive additive, the binder, and the solvent may be mixed together. They may be mixed and kneaded.
- the solid content concentration of the slurry is preferably 30 wt% or more and 90 wt% or less. If it is less than 30 wt%, the viscosity of the slurry tends to be too low, whereas if it is higher than 90 wt%, the viscosity of the slurry tends to be too high, and it may be difficult to form an electrode described later.
- the solvent used for the slurry is preferably a non-aqueous solvent or water.
- the non-aqueous solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, ethyl acetate, and tetrahydrofuran.
- NMP N-methyl-2-pyrrolidone
- dimethylformamide dimethylacetamide
- methyl ethyl ketone methyl acetate
- ethyl acetate etrahydrofuran.
- the method for supporting the negative electrode active material mixture on the current collector is not particularly limited.
- the slurry is applied by a doctor blade, a die coater, a comma coater, etc., and then the solvent is removed, or after being attached to the current collector by spraying.
- a method of removing the solvent and a method of removing the solvent after impregnating the current collector in the slurry are preferable.
- the solid content concentration is high, a sheet may be produced only from the negative electrode active material mixture and attached to the current collector.
- the method for removing the solvent is preferable because it is easy to dry using an oven or a vacuum oven. Examples of the atmosphere include room temperature or high temperature air, an inert gas, and a vacuum state.
- the formation time point of the negative electrode may be before or after forming the positive electrode described later.
- the mixture of the negative electrode active material, the conductive additive and the binder is not dispersed in the solvent, in order to uniformly mix the negative electrode active material, the conductive additive and the binder, a ball mill, a planetary mixer, a jet mill, a thin film swirl mixer, It is preferable to carry the mixture on a current collector after preparing the mixture using a stirring and mixing granulator.
- the method of supporting the mixture on the current collector is not particularly limited, but a method of pressing the mixture after applying the mixture to the current collector is preferable. When pressing, it may be heated. Moreover, you may compress a negative electrode using a roll press machine etc. after negative electrode preparation. The negative electrode may be compressed before or after the positive electrode described later is formed.
- FIG. 4 is a cross-sectional view showing a state in which the negative electrode active material layer 11 is supported on the current collector 10.
- the thickness of the negative electrode is preferably 0.4 mm or more and 5 mm or less.
- the size is smaller than 0.4 mm, it is difficult to increase the size of the battery.
- the size is larger than 5 mm, it is difficult to infiltrate the electrolyte into the electrode, and in addition, the ion diffusion distance increases. There is a tendency that the performance as is not obtained. More preferably, it is 0.5 mm or more and 3 mm or less, and if the thickness is within this range, the substance diffusion tends to proceed easily.
- the thickness T of the negative electrode is preferably x mm over the entire surface of the current collector 10 as compared with the thickness of the current collector 10 (indicated by “D” in FIG. 4).
- “x” is preferably in the range of more than 0 mm and 2 mm or less.
- the current collector 10 is exposed from the negative electrode, and the later-described separator tends to be destroyed.
- it is thicker than 2 mm the negative electrode active material mixture may fall off.
- the density of the negative electrode is preferably 1.0 g / cm 3 or more and 4.0 g / cm 3 or less. If it is less than 1.0 g / cm ⁇ 3 >, the contact with a negative electrode active material and a conductive support material may become inadequate, and electronic conductivity may fall. On the other hand, when it is larger than 4.0 g / cm 3 , an electrolyte solution described later hardly penetrates into the negative electrode, and lithium ion conductivity may be lowered.
- the negative electrode may be compressed.
- the compression method is not particularly limited, and can be performed using, for example, a roll press or a hydraulic press.
- the electrode may be compressed before or after the positive electrode is formed.
- the negative electrode preferably has an electric capacity of 5 mAh or more and 50 mAh or less per rectangular parallelepiped having a square with a unit area of 1 cm 2 as a bottom surface and a thickness T of the negative electrode. If it is less than 5 mAh, the size of the battery may be large. On the other hand, if it is more than 50 mAh, it may be difficult to obtain a desired output density.
- the electric capacity of the negative electrode can be calculated by measuring charge / discharge characteristics after preparing the negative electrode and then preparing a half battery using lithium metal as a counter electrode.
- the positive electrode used in the nonaqueous electrolyte secondary battery of the present invention is composed of at least a positive electrode active material layer and a current collector.
- the positive electrode active material layer includes at least a positive electrode active material, preferably further includes a binder, and includes a conductive additive as necessary.
- the positive electrode active material is not particularly limited, but is preferably a lithium manganese compound because of excellent cycle stability.
- the lithium manganese compound for example, Li 2 MnO 3, Li a M b Mn 1-b N c O 4 (0 ⁇ a ⁇ 2,0 ⁇ b ⁇ 0.5,1 ⁇ c ⁇ 2, M 2 to Li 1+ , at least one selected from the group consisting of elements belonging to Group 13 and belonging to the third and fourth periods, N being at least one selected from the group consisting of elements belonging to Groups 14 to 16 and belonging to the third period) x M y Mn 2-xy O 4 (0 ⁇ x ⁇ 0.34,0 ⁇ y ⁇ 0.6, at least 1 M is selected from the group consisting of elements belonging to a and the third to fourth period 2-13 group A lithium manganese compound represented by Species).
- M is at least one selected from elements belonging to the groups 2 to 13 and belonging to the 3rd to 4th periods, but Al, Mg, Zn, Ni, Co, Fe and Cr are preferred, Al, Mg, Zn, Ni and Cr are more preferred, and Al, Mg, Zn and Ni are even more preferred.
- N is preferably Si, P, or S because the effect of improving the stability is large.
- a lithium manganese compound represented by at least one selected from the group consisting of elements belonging to the third to fourth periods is particularly preferable.
- x ⁇ 0 the capacity of the positive electrode active material tends to decrease.
- x> 0.34 there is a tendency that many impurities such as lithium carbonate are included.
- y 0, the stability of the positive electrode active material tends to be low.
- y> 0.6 a large amount of impurities such as M oxide tends to be contained.
- the lithium manganese compound preferably has a spinel structure. This is because in the case of the spinel structure, the expansion and contraction of the active material in the reaction of insertion / extraction of lithium ions is small.
- the lithium manganese compound preferably has a half width of (400) plane of powder X-ray diffraction by CuK ⁇ rays of 0.5 ° or less. When it is larger than 0.5 °, the crystallinity of the positive electrode active material is low, and thus the stability of the electrode may be lowered.
- the lithium manganese compound preferably has a lithium content of 90% or more in the 8a site according to the Rietveld analysis by X-ray diffraction. If it is less than 90%, there are many defects in the crystal of the positive electrode active material, and the stability of the electrode may be lowered.
- the particle size of the lithium manganese compound is preferably 0.5 ⁇ m or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less from the viewpoint of handling.
- the particle diameter here is a value obtained by measuring the size of each particle from the SEM and TEM images and calculating the average particle diameter.
- the specific surface area of the lithium manganese compound is preferably 0.1 m 2 / g or more and 50 m 2 / g or less because a desired output density is easily obtained.
- the specific surface area can be calculated by measurement by the BET method.
- the bulk density of the lithium manganese compound is preferably 0.2 g / cm 3 or more and 2.0 g / cm 3 or less.
- 0.2 g / cm economically be disadvantageous because it requires a large amount of solvent in the step of preparing the slurry below in the case of less than 3, 2.0 g / cm 3 conductive agent described later is greater than, it is mixed with a binder It tends to be difficult.
- the lithium manganese compound can be obtained by heat-treating a lithium compound, a manganese compound, and if necessary, a compound of M and a compound of N at 500 ° C. or more and 1500 ° C. or less. When the temperature is lower than 500 ° C. or higher than 1500 ° C., a positive electrode active material having a desired structure may not be obtained.
- the heat treatment may be a heat treatment by mixing a lithium compound and a manganese compound, and if necessary, an M compound or an N compound, or after the heat treatment of the manganese compound and the M compound or the N compound, the lithium compound You may heat-process.
- reheating treatment may be performed at 400 ° C. or higher and 1500 ° C. or lower.
- the temperature of the reheating treatment may be the same as or different from the initial temperature.
- the heat treatment may be performed in the presence of air or in the presence of an inert gas such as nitrogen or argon.
- an inert gas such as nitrogen or argon.
- a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln etc. can be used.
- lithium compound for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, lithium oxalate, lithium halide and the like can be used. These lithium compounds may be used alone or in combination of two or more.
- manganese compounds examples include manganese oxides such as manganese dioxide, manganese carbonate, manganese nitrate, and manganese hydroxide. These manganese compounds may be used alone or in combination of two or more.
- the compound of M for example, carbonate, oxide, nitrate, hydroxide, sulfate and the like can be used.
- the amount of Li a M b Mn 1-b N c O 4 and Li 1 + x M y Mn M contained in the 2-xy O 4 can be controlled by the amount of the compound of M in the heat treatment.
- One type of M compound may be used, or two or more types may be used.
- the N compound for example, a simple substance, an oxide, an oxo acid and a salt thereof can be used.
- the amount of Li a M b Mn 1-b N c O 4 contained in the N can be controlled by the amount of compound of N in the heat treatment.
- One type of N compound may be used, or two or more types may be used.
- Li 1 + x M y Mn 2-xy O 4 (0 ⁇ x ⁇ 0.34,0 ⁇ y ⁇ 0.6
- M is a group consisting of elements belonging to a and the third to fourth period 2-13 Group At least one selected from the group consisting of a lithium compound, a manganese compound and an M compound, the atomic ratio of lithium, manganese and M is 1 + x (lithium) and 2-x, respectively.
- -Y (manganese) and y (M) provided that 0 ⁇ x ⁇ 0.34 and 0 ⁇ y ⁇ 0.6.
- the blending ratio is set to around 1.5 depending on the properties of the raw materials and heating conditions, but some width may be allowed.
- the surface of the positive electrode active material may be covered with a carbon material, metal oxide, polymer, or the like in order to improve conductivity or stability.
- a binder may be mixed in the positive electrode active material mixture. What was illustrated by the binder used for the negative electrode active material layer mentioned above is applicable similarly.
- the binder is preferably dissolved or dispersed in a non-aqueous solvent or water from the viewpoint of easy production of the positive electrode.
- a non-aqueous solvent those exemplified above for the non-aqueous solvent can be similarly applied. You may add a dispersing agent and a thickener to these.
- the amount of the binder contained in the positive electrode active material mixture is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the positive electrode active material.
- the binder species PVdF, PTFE, or FEP is preferably used from the viewpoint that the active material and the current collector exhibit good adhesion, and as a result, a battery having excellent cycle characteristics can be obtained. If it is the said range and the said binder seed
- the conductive material may be contained in the positive electrode as necessary. Although it does not specifically limit as a conductive support material, A carbon material or a metal microparticle is preferable. Examples of the carbon material include the same carbon materials that can be contained in the negative electrode. Examples of the metal fine particles include aluminum and aluminum alloys. Further, the fine particles of inorganic material may be plated. These carbon materials and metal fine particles may be used alone or in combination of two or more.
- the amount of the conductive additive contained in the positive electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. If it is this range, the electroconductivity of a positive electrode will be ensured. Moreover, adhesiveness with a binder is maintained and sufficient adhesiveness with a collector can be obtained. On the other hand, when a larger amount of conductive aid than 30 parts by weight is used, the volume occupied by the conductive aid increases and the energy density tends to decrease.
- the nonaqueous electrolyte secondary battery of the present invention is produced by, for example, supporting a positive electrode active material layer containing a positive electrode active material, a conductive additive, and a binder on a current collector.
- a method for producing a positive electrode by preparing a slurry with a positive electrode active material, a conductive additive, a binder and a solvent, filling and applying the obtained slurry to the pores and the outer surface of the current collector, and then removing the solvent.
- the mixture of the positive electrode active material, the conductive additive and the binder may be supported on the current collector as it is without being dispersed in the solvent.
- the method for preparing the slurry, the solid content concentration of the slurry, the solvent used for the slurry, the method for supporting the active material layer on the current collector, and the compression of the electrode can be similarly applied to the preparation of the positive electrode. .
- the thickness of the positive electrode is not particularly limited, but is preferably 0.4 mm or more and 5 mm or less. If it is smaller than 0.4 mm, it is difficult to increase the size, and if it is larger than 5 mm, it becomes difficult to penetrate the electrolyte into the electrode, and in addition, the diffusion distance of ions becomes larger. There is a tendency that performance cannot be obtained. More preferably, it is 0.5 mm or more and 3 mm or less. If the thickness is within this range, the material diffusion tends to proceed easily. Further, the thickness of the positive electrode is preferably x mm thicker than the thickness of the current collector. Here, “x” is preferably in the range of more than 0 mm and 2 mm or less.
- the current collector In the case of 0 mm, the current collector is exposed from the positive electrode active material mixture and tends to break the separator described later. If it is thicker than 2 mm, the positive electrode active material mixture may fall off. Moreover, you may cover with the below-mentioned separator in order to prevent drop-off.
- the density of the positive electrode active material layer is preferably 1.0 g / cm 3 or more and 4.0 g / cm 3 or less. If it is less than 1.0 g / cm ⁇ 3 >, a contact with a positive electrode active material and a conductive support material may become inadequate, and electronic conductivity may fall. On the other hand, when it is larger than 4.0 g / cm 3 , an electrolyte solution described later hardly penetrates into the positive electrode, and lithium ion conductivity may be lowered.
- the positive electrode may be compressed to a desired thickness and density.
- the compression method is not particularly limited, and can be performed using, for example, a roll press, a hydraulic press, or the like. The electrode may be compressed before or after the positive electrode is formed.
- the electric capacity per 1 cm 2 of the positive electrode is preferably 5 mAh or more and 50 mAh or less. If it is less than 50 mAh, the size of the battery may be large. On the other hand, if it is more than 50 mAh, it may be difficult to obtain a desired output density.
- the calculation of the electric capacity per 1 cm 2 of the positive electrode can be calculated by measuring charge / discharge characteristics after preparing a half cell using lithium metal as a counter electrode after preparing the positive electrode.
- the electric capacity per 1 cm 2 of the positive electrode is not particularly limited, but can be controlled by a method of controlling by the weight of the positive electrode formed per unit area of the current collector, for example, the coating thickness at the time of the positive electrode coating described above.
- the ratio of the electric capacity of the positive electrode and the electric capacity of the negative electrode in the nonaqueous electrolyte secondary battery of the present invention preferably satisfies the following formula (2).
- A shows the electric capacity per 1 cm ⁇ 2 > of positive electrodes
- B shows the electric capacity per 1 cm ⁇ 2 > of negative electrodes.
- the area ratio between the positive electrode and the negative electrode in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but preferably satisfies the following formula (3).
- the area ratio between the separator and the negative electrode used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but preferably satisfies the following formula (4).
- separator used in the nonaqueous electrolyte secondary battery of the present invention include porous materials and nonwoven fabrics.
- the material of the separator is preferably one that does not dissolve in the organic solvent that constitutes the electrolytic solution.
- a polyolefin polymer such as polyethylene or polypropylene, a polyester polymer such as polyethylene terephthalate, cellulose, or glass.
- Inorganic materials such as polyethylene or polypropylene, a polyester polymer such as polyethylene terephthalate, cellulose, or glass.
- the thickness of the separator is preferably 1 to 500 ⁇ m. If it is less than 1 ⁇ m, it tends to break due to insufficient mechanical strength of the separator and cause an internal short circuit. On the other hand, when it is thicker than 500 ⁇ m, the load characteristics of the battery tend to be reduced due to the increase in the internal resistance of the battery and the distance between the positive and negative electrodes. A more preferred thickness is 10 to 50 ⁇ m.
- Non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, but a polymer is impregnated with an electrolytic solution in which a solute is dissolved in a non-aqueous solvent, or an electrolytic solution in which a solute is dissolved in a non-aqueous solvent.
- a gel electrolyte or the like can be used.
- the non-aqueous solvent preferably contains a cyclic aprotic solvent and / or a chain aprotic solvent.
- a cyclic aprotic solvent include cyclic carbonates, cyclic esters, cyclic sulfones and cyclic ethers.
- chain aprotic solvent include chain carbonates, chain carboxylic acid esters and chain ethers.
- a solvent generally used as a solvent for non-aqueous electrolytes such as acetonitrile may be used.
- dimethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, 1,2-dimethoxyethane, sulfolane, dioxolane, propionic acid Methyl and the like can be used.
- These solvents may be used singly or in combination of two or more. However, from the viewpoint of ease of dissolving the solute described later and the high conductivity of lithium ions, a mixed solvent of two or more types is used. It is preferable to use it.
- a gel electrolyte in which an electrolyte is impregnated in a polymer can also be used.
- the solute is not particularly limited.
- LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (Oxalato) Borate), LiN (SO 2 CF 3 ) 2, etc. are dissolved in the solvent. It is preferable because it is easy to.
- the concentration of the solute contained in the electrolytic solution is preferably 0.5 mol / L or more and 2.0 mol / L or less. If it is less than 0.5 mol / L, the desired lithium ion conductivity may not be exhibited. On the other hand, if it is higher than 2.0 mol / L, the solute may not be dissolved any more.
- the non-aqueous electrolyte may contain a trace amount of additives such as a flame retardant and a stabilizer.
- Non-aqueous electrolyte secondary battery may have a form in which one type of electrode is formed on one side or both sides of the current collector, the positive electrode on one side of the current collector, and the one side of the current collector A form in which a negative electrode is formed, that is, a bipolar electrode may be used.
- the bipolar electrode When a bipolar electrode is used, it is necessary to prevent a liquid junction between the positive electrode and the negative electrode through the current collector. For this reason, the bipolar electrode itself has a structure that does not allow liquid to pass between the surface on the positive electrode side and the surface on the negative electrode side.
- the current collector used for the positive electrode or negative electrode of the present invention since the current collector used for the positive electrode or negative electrode of the present invention has a porous structure, it is necessary to reliably close these holes with the positive electrode active material mixture or the negative electrode active material mixture.
- a separator is disposed between the positive electrode side and the negative electrode side of the opposing bipolar electrode, and the periphery of the positive electrode and the negative electrode is prevented in order to prevent liquid junction from the layer in which the positive electrode side and the negative electrode side face each other.
- An insulating material is disposed on the part.
- the non-aqueous electrolyte secondary battery of the present invention may be one obtained by winding or laminating a separator disposed between the positive electrode side and the negative electrode side.
- the positive electrode, the negative electrode, and the separator are impregnated with a nonaqueous electrolyte that is responsible for lithium ion conduction.
- the electrolyte may be impregnated in the positive electrode and the negative electrode, or may be in a state only between the positive electrode and the negative electrode. If the positive electrode and the negative electrode are not in direct contact with the gel electrolyte, it is not necessary to use a separator.
- the amount of the nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but is preferably 0.1 mL or more per 1 Ah of battery capacity. If it is less than 0.1 mL, the conduction of lithium ions accompanying the electrode reaction may not catch up, and the desired battery performance may not be exhibited.
- the non-aqueous electrolyte may be added to the positive electrode, the negative electrode, and the separator in advance, or may be added after winding or laminating a separator disposed between the positive electrode side and the negative electrode side.
- a gel-like non-aqueous electrolyte it may be gelled after impregnation with a monomer, or may be placed between the positive electrode and the negative electrode after gelling in advance.
- the non-aqueous electrolyte secondary battery of the present invention may be wound with a laminate film after winding the laminate or a plurality of laminates, and may be rectangular, elliptical, cylindrical, coin-shaped, button-shaped, or sheet-shaped. It may be packaged with a metal can.
- the exterior may be provided with a mechanism for releasing the generated gas or the like. Further, a mechanism for injecting an additive for recovering the function of the deteriorated nonaqueous electrolyte secondary battery from the outside of the battery may be provided. The number of stacked layers can be stacked until a desired battery capacity is exhibited.
- the non-aqueous electrolyte secondary battery of the present invention can be an assembled battery by connecting a plurality of the non-aqueous electrolyte secondary batteries.
- the assembled battery of the present invention can be produced by appropriately connecting in series or in parallel according to a desired size, capacity, and voltage.
- a control circuit is attached to the assembled battery in order to confirm the state of charge of each battery and improve safety.
- a Li 4 Ti 5 O 12 / Li 1.1 Al 0.1 Mn 1.8 O 4 battery in which the negative electrode active material was Li 4 Ti 5 O 12 and the positive electrode active material was Li 1.1 Al 0.1 Mn 1.8 O 4 was produced as follows.
- the negative electrode active material Li 4 Ti 5 O 12 was prepared by the method described in the literature (Journal of Electrochemical Society, 142, 1431 (1995)).
- titanium dioxide and lithium hydroxide are mixed so that the molar ratio of titanium and lithium is 5: 4, and then this mixture is heated at 800 ° C. for 12 hours in a nitrogen atmosphere to obtain a negative electrode active material. Produced.
- this negative electrode active material 100 parts by weight of this negative electrode active material, 6.8 parts by weight of conductive additive (acetylene black), and polyvinylidene fluoride (PVdF) binder (KF7305, manufactured by Kureha Chemical Co., Ltd.) (solid content concentration 5 wt%, NMP solution)
- a slurry was prepared by mixing 6.8 parts by weight of a solid content.
- the negative electrode thickness was 0.4 mm, and the capacity per unit area was 5 mAh. A method for measuring the capacity will be described later.
- the positive electrode active material Li 1.1 Al 0.1 Mn 1.8 O 4 was prepared by the method described in the literature (Electrochemical and Solid-State Letters, 9 (12), A557 (2006)).
- an aqueous dispersion of manganese dioxide, lithium carbonate, aluminum hydroxide, and boric acid was prepared, and a mixed powder was prepared by a spray drying method.
- the amounts of manganese dioxide, lithium carbonate and aluminum hydroxide were adjusted so that the molar ratio of lithium, aluminum and manganese was 1.1: 0.1: 1.8.
- the mixed powder was heated at 900 ° C. for 12 hours in an air atmosphere, and then again heated at 650 ° C. for 24 hours. Finally, the powder was washed with water at 95 ° C. and dried to prepare a positive electrode active material.
- this positive electrode active material 100 parts by weight of this positive electrode active material, 6.8 parts by weight of a conductive additive (acetylene black), and PVdF binder (KF7305, manufactured by Kureha Chemical Co., Ltd.) (solid content concentration 5 wt%, NMP solution) 6.8 parts by weight.
- the thickness of the positive electrode was 0.4 mm, and the capacity per unit area was 5 mAh.
- the measuring method of each capacity of the negative electrode and the positive electrode produced in the examples is as follows.
- HJ1005SD8 charge / discharge test apparatus
- This half-cell was repeatedly subjected to constant current discharge (end voltage: 1.0 V) and constant current charge (end voltage: 3.0 V) at a current value (1 / 12C) at 25 ° C. for 12 hours 5 times. The result was taken as the capacity of the negative electrode.
- HJ1005SD8 charge / discharge test apparatus
- This half-cell was repeated 5 times with a constant current charge (end voltage: 5.0 V) and a constant current discharge (end voltage: 3.0 V) at 25 ° C. and a current value of 12 hours (1 / 12C). The result was taken as the capacity of the positive electrode.
- the positive / negative electrode thickness of the nonaqueous electrolyte secondary battery (Li 4 Ti 5 O 12 / Li 1.1 Al 0.1 Mn 1.8 O 4 battery) of Example 1 is 0.4 mm, the capacity per unit area is 5 mAh, and the amount of electrolyte Is 1.0 mL.
- the obtained non-aqueous electrolyte secondary battery was subjected to 3 cycles at 25 ° C., a 1 / 12C rate and a voltage range of 1-2.7 V, then 1000 cycles at 1/2 C, and again a cycle at 1/12 C.
- the capacity retention rate was calculated using the capacity at 1 / 12C rate around 1000 cycles.
- the “battery capacity maintenance rate” is a numerical value (unit%) obtained by dividing “battery capacity after repeated charging / discharging a predetermined number of times” by “battery capacity in the first cycle of charging / discharging cycle test”.
- the 1C rate is a current value at which discharge is terminated in just one hour after a constant current discharge is performed on a cell having a nominal capacity value.
- “1 / 12C rate” means a current value that is 1/12 of a current value corresponding to 1C.
- Example 2 The nonaqueous electrolyte secondary battery (Li 4 Ti) was the same as in Example 1, except that the positive electrode / negative electrode thickness was 1.0 mm, the capacity per unit area was 10 mAh, and the amount of the electrolyte was 2.0 mL in Example 1. 5 O 12 / Li 1.1 Al 0.1 Mn 1.8 O 4 battery).
- Example 3 A non-aqueous electrolyte secondary battery (Li 4 Ti 5) was used in the same manner as in Example 1 except that the thickness of the positive electrode / negative electrode was 2.0 mm, the capacity per unit area was 20 mAh, and the amount of the electrolyte was 4.0 mL. O 12 / Li 1.1 Al 0.1 Mn 1.8 O 4 battery) was produced.
- Example 4 A nonaqueous electrolyte secondary battery (Li 4 Ti 5) was used in the same manner as in Example 1 except that the positive electrode / negative electrode thickness was 5.0 mm, the capacity per unit area was 50 mAh, and the amount of the electrolyte was 6.0 mL. O 12 / Li 1.1 Al 0.1 Mn 1.8 O 4 battery) was produced.
- Example 5 An aluminum porous structure (foamed aluminum (porous aluminum) manufactured by Mitsubishi Materials Corporation, pore diameter 600 ⁇ m, thickness 1 mm, porosity 90%) was used as the current collector for the positive electrode and the negative electrode.
- a non-aqueous secondary battery Li 4 Ti 5 O 12 / Li 1.1 Al 0.1 Mn 1.8 O 4 battery
- the thickness of the electrolyte was 1.0 mm and the amount of the electrolyte was 2.0 mL. did.
- Example 6 A nonaqueous electrolyte secondary battery (Li 4 Ti 5 O 12 / LiNi 0.5 Mn 1.5 O 4 battery) was prepared in the same manner as in Example 1 except that LiNi 0.5 Mn 1.5 O 4 was used as the positive electrode active material in Example 1. did.
- the operating voltage range of the obtained non-aqueous electrolyte secondary battery was 1.0-3.4V.
- LiNi 0.5 Mn 1.5 O 4 used for the positive electrode active material was prepared by the method described in the literature (Journal of Power Sources, 81-82, p.90 (1999)).
- lithium hydroxide, manganese oxide hydroxide, and nickel hydroxide were first mixed so that the molar ratio of lithium, manganese, and nickel was 1: 1.5: 0.5.
- the mixture was heated at 1000 ° C. in an air atmosphere, and then heated again at 700 ° C. to prepare a positive electrode active material.
- the positive / negative electrode thickness of the nonaqueous electrolyte secondary battery (Li 4 Ti 5 O 12 / LiNi 0.5 Mn 1.5 O 4 battery) of Example 6 was 0.4 mm, the capacity per unit area was 5 mAh, and the amount of the electrolyte was 1 0.0 mL.
- Example 7 A nonaqueous electrolyte secondary battery (Li 4 Ti 5) was used in the same manner as in Example 6, except that the positive electrode / negative electrode thickness was 1.0 mm, the capacity per unit area was 10 mAh, and the amount of the electrolyte was 2.0 mL. O 12 / LiNi 0.5 Mn 1.5 O 4 battery) was produced.
- Example 8 A nonaqueous electrolyte secondary battery (Li 4 Ti 5) was used in the same manner as in Example 6, except that the positive electrode / negative electrode thickness was 2.0 mm, the capacity per unit area was 20 mAh, and the amount of the electrolyte was 4.0 mL. O 12 / LiNi 0.5 Mn 1.5 O 4 battery) was produced.
- Example 9 A nonaqueous electrolyte secondary battery (Li 4 Ti 5) was used in the same manner as in Example 6, except that the thickness of the positive electrode / negative electrode was 5.0 mm, the capacity per unit area was 50 mAh, and the amount of the electrolyte was 6.0 mL. O 12 / LiNi 0.5 Mn 1.5 O 4 battery) was produced.
- Example 1 A non-aqueous electrolyte secondary battery (Li 4 Ti 5) was used in the same manner as in Example 1, except that the positive electrode / negative electrode thickness was 6.0 mm, the capacity per unit area was 60 mAh, and the amount of the electrolyte was 6.5 mL. O 12 / Li 1.1 Al 0.1 Mn 1.8 O 4 battery) was produced.
- Graphite (MAGE, Hitachi Chemical) is used as the negative electrode material, 100 parts by weight of the negative electrode active material, and 5.3 parts by weight of PVdF binder (KF7305, manufactured by Kureha Chemical Co., Ltd.) (solid content concentration 5 wt%, NMP solution).
- a nonaqueous electrolyte secondary battery (C / Li 1.1 Al 0.1 Mn 1.8 O 4 battery) was produced in the same manner as in Example 2 except that the negative electrode was used.
- Example 3 a non-aqueous secondary battery (Li 4 Ti 5) was used in the same manner as in Example 1 except that a 20 ⁇ m-thick aluminum foil without holes was used for the negative electrode current collector and the thicknesses of the positive electrode and the negative electrode were 0.4 mm. O 12 / Li 1.1 Al 0.1 Mn 1.8 O 4 battery) was produced.
- Example 1 a non-aqueous secondary battery (Li 4 Ti 5 O 12) was used in the same manner as in Example 1 except that a copper foil having a thickness of 20 ⁇ m was used for the negative electrode current collector and the thicknesses of the positive electrode and the negative electrode were 0.4 mm. / Li 1.1 Al 0.1 Mn 1.8 O 4 battery).
- Example 6 A nonaqueous electrolyte secondary battery (Li 4 Ti 5) was used in the same manner as in Example 6, except that the positive electrode / negative electrode thickness was 6.0 mm, the capacity per unit area was 60 mAh, and the amount of the electrolyte was 6.5 mL. O 12 / LiNi 0.5 Mn 1.5 O 4 battery) was produced.
- Table 1 shows the results of Examples and Comparative Examples.
- the capacity retention ratio is improved as the thickness of the positive electrode and the negative electrode is reduced. Further, the binder was present so as to surround the current collector, and the electrode was not dropped off.
- Comparative Example 1 only 60% of the designed capacity was obtained in charge / discharge at the initial 1 / 12C rate. This is presumably because the electrode is too thick and the diffusion of ions has not caught up.
- the non-aqueous electrolyte secondary battery of Example 5 has substantially the same capacity as the non-aqueous electrolyte secondary battery of Example 1 except that an aluminum porous structure is used as the current collector. Since the value of the maintenance factor is obtained, it can be seen that the same effect of the present invention as that of the expanded metal is obtained even with a porous structure.
- Comparative Example 4 the conditions are the same as those of the nonaqueous electrolyte secondary battery of Example 1 except that copper expanded metal is used for the current collector, but the capacity retention rate is reduced and the electrode is peeled off from the current collector. Is also happening.
- LTO is used for the negative electrode active material, there is an unexpected effect that the adhesiveness is better when aluminum is used as the material.
- the capacity retention ratio is improved as the thickness of the positive electrode / negative electrode is reduced. The electrode was not dropped.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
サイクル特性に優れかつ製造工程が簡便である大型電源用途の非水電解質二次電池を提供する。正極、負極、セパレータ及び非水電解質を用いて構成される非水電解質二次電池であって、前記正極が少なくとも正極活物質と集電体とで構成され、前記負極が少なくとも負極活物質11と集電体10とで構成され、前記負極活物質11としてチタン酸リチウムを含み、前記負極の集電体10は有孔構造を有するアルミニウム又はその合金であり、前記負極の厚みTが0.4mm以上5mm以下である。
Description
本発明は、非水電解質二次電池(nonaqueous electrolyte secondary battery)、及びそれを用いた組電池に関するものである。本出願は日本国特許出願:特願2012-116766号に基づく優先権を主張する。
リチウムイオン蓄電池はモバイル機器用電源として現在幅広く使用されている。リチウムイオン蓄電池は、既存のニッケル-カドミウム蓄電池やニッケル-水素蓄電池と比較して高エネルギー密度であるために、電気自動車や電力貯蔵などの大型電源用途としても期待されている。
特に、負極活物質にチタン酸リチウムを用いる非水電解質二次電池はサイクル特性が良いこと及び安全性が高いことから注目を浴びている。
非水電解質二次電池を大容量にするためには、電極の厚みを維持したまま電極の長さを長くすること、あるいは、電極の長さを維持したまま電極の厚みを厚くすることが有効である。しかしながら、電極の長さを長くした場合には、捲回数が多くなり、捲回中心部に位置する電極の活物質層が圧力で破壊されることがあり、電極作製が困難となるという問題がある。
そこで、電極の厚みを厚くする検討が積極的になされているが、金属箔集電体に活物質層を厚く形成した場合は、金属箔集電体から活物質層が容易に欠落しやすく、したがってサイクル特性が低下するという問題がある。
例えば、特許文献1は、負極を構成する物質として、負極活物質と、炭素材料からなる第一の導電材と、第一の導電材と集電体とを接着する結着材としての第二の導電材とを使用することで、サイクル経過に伴う負極活物質の集電体からの剥離を防止する技術を提案している。
特許文献1のリチウム二次電池で用いられる第二の導電材は、電極作製において熱処理による炭化工程が必要とされており、したがって工程増につながるという欠点がある。
本発明の目的は、サイクル特性に優れ、かつ製造工程が簡便である大型電源用途の非水電解質二次電池を提供することである。
本発明者は、特定の負極活物質を含有する負極及び有孔構造を有する集電体を採用し、かつ特定の電極厚みとすることにより、サイクル特性に優れかつ製造工程が簡便である大型電源用途の非水電解質二次電池を得られることを見出し、本発明を完成するに至った。
すなわち、本発明は、正極、負極、セパレータ及び非水電解質を用いて構成される非水電解質二次電池であって、前記正極が少なくとも正極活物質と集電体とで構成され、前記負極が少なくとも負極活物質と集電体とで構成され、前記負極活物質としてチタン酸リチウムを含み、前記負極の集電体は有孔構造を有するアルミニウム又はその合金であり、前記負極の厚みが0.4mm以上5mm以下である、非水電解質二次電池を提供する。
本発明によれば、サイクル特性に優れかつ製造工程が簡便な非水電解質二次電池を提供することができる。
本発明における上述の、又はさらに他の利点、特徴及び効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
以下、本発明の実施の形態を説明する。なお、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
<1.負極>
本発明の非水電解質二次電池に用いられる負極は、少なくとも負極活物質と集電体とで構成される。負極は、バインダー(結着材)を含んでいてもよい(以下、負極活物質とバインダーとの混合物を、「負極活物質混合物」という)。負極活物質混合物は、必要に応じて導電助材を含んでよい。
本発明の非水電解質二次電池に用いられる負極は、少なくとも負極活物質と集電体とで構成される。負極は、バインダー(結着材)を含んでいてもよい(以下、負極活物質とバインダーとの混合物を、「負極活物質混合物」という)。負極活物質混合物は、必要に応じて導電助材を含んでよい。
本発明の非水電解質二次電池においては、負極活物質として、チタン酸リチウムが使用される。チタン酸リチウムはリチウムイオンの挿入・脱離反応が0.4V(vs.Li+/Li)以上2.0V(vs.Li+/Li)以下で進行するため、集電体材料にアルミニウムを用いることができる。
従来、負極にアルミニウムを用いることが注目されなかったのは、アルミニウムはリチウム電極基準で約0.4Vで合金化するためである。また黒鉛を負極材料として用いた場合、アルミニウムが反応してしまう。チタン酸リチウムであればこのようなおそれはない。
チタン酸リチウムは、スピネル構造であることが好ましい。スピネル構造の場合、リチウムイオンの挿入・脱離の反応における活物質の膨張収縮が小さいという特徴がある。チタン酸リチウムは分子式としてLi4Ti5O12で表されるが、例えばNbなどの、リチウム、チタン以外の元素が微量含まれていてもよい。
チタン酸リチウムは、CuKα線による粉末X線回折の(400)面の半値幅が0.5°以下であることが好ましい。0.5°より大きいと、チタン酸リチウムの結晶性が低いため、電極の安定性が低下する場合がある。
チタン酸リチウムは、X線回折によるリートベルト解析法による8aサイトに占めるリチウム含有率が90%以上であることが好ましい。90%未満であると、チタン酸リチウムの結晶中の欠陥が多いため、電極の安定性が低下する場合がある。
チタン酸リチウムは、リチウム化合物、チタン化合物を500℃以上1500℃以下で加熱処理することによって得ることができる。温度が500℃未満、又は1500℃より高いと、所望の構造をしたチタン酸リチウムを得ることができにくい傾向がある。チタン酸リチウムの結晶性を向上させるため、加熱処理後、再び500℃以上1500℃以下で再加熱処理してもよい。再加熱処理の温度は、最初に処理した温度と同じでもよいし、違っていてもよい。加熱処理は、空気存在下でもよいし、窒素あるいはアルゴンなどの不活性ガスの存在下で行ってもよい。加熱処理には、特に限定されないが、例えば、箱型炉、管状炉、トンネル炉、ロータリーキルン等を用いることができる。
リチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム、シュウ酸リチウム、ハロゲン化リチウムなどを用いることができる。これらリチウム化合物は、1種類でもよいし、2種類以上用いてもよい。
チタン化合物としては、特に限定されないが、例えば、二酸化チタン、一酸化チタンなどのチタン酸化物を用いることができる。
リチウム化合物、チタン化合物の配合比は、リチウム、チタンの原子比Ti/Li=1.25前後であればよいが、原料の性状や加熱条件によって多少の幅をもたせてもよい。
チタン酸リチウムの表面は、導電性向上、あるいは安定性向上のため、炭素材料、金属酸化物、あるいは高分子等で覆われてもよい。
チタン酸リチウムの粒子径は、0.5μm以上50μm以下であることが好ましく、さらに1μm以上30μm以下であることが取り扱いの観点からさらに好ましい。粒子径はSEM、TEM像から各粒子の大きさを測定し、平均粒子径を算出した値である。
チタン酸リチウムの比表面積は、0.1m2/g以上50m2/g以下であることが、所望の出力密度を得やすいことから好ましい。比表面積は、水銀ポロシメータ、BET法での測定により算出するのがよい。
チタン酸リチウムの嵩密度は、0.2g/cm3以上2.0g/cm3以下であることが好ましい。0.2g/cm3未満の場合では後述のスラリー作製時に多量の溶媒が必要となるため経済的に不利となる傾向があり、2.0g/cm3より大きいと後述の導電助材、バインダーとの混合が困難となる傾向がある。
負極は前述したようにバインダーを含むことが好ましい。バインダーは、特に限定されないが、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、スチレン-ブタジエンゴム、ポリイミド及びそれらの誘導体からなる群から選ばれる少なくとも1種を用いることができる。活物質と集電体が良好な密着性を示し、結果として優れたサイクル特性を示す電池が得られるという観点から、PVdFもしくはPTFEを用いることが好ましい。
バインダーは負極の作製しやすさから、非水溶媒又は水に、溶解され又は分散されていることが好ましい。非水溶媒は、特に限定されないが、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、酢酸エチル、及びテトラヒドロフランなどを挙げることができる。これらに分散剤、増粘剤を加えてもよい。
本発明において、負極活物質混合物に含まれるバインダーの量は、負極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは2重量部以上15重量部以下である。前述の範囲であれば、負極活物質と導電助材との接着性が維持され、集電体との接着性を十分に得ることができ、結果として、得られた電池のサイクル特性が良好となる。
負極は必要に応じて導電助材を含有してもよい。導電助材としては、特に限定されないが、炭素材料又は/及び金属微粒子が好ましい。炭素材料として、例えば、天然黒鉛、人造黒鉛、気相成長炭素繊維、カーボンナノチューブ、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどが挙げられる。金属微粒子として、例えば、銅、アルミニウム、ニッケル及びこれら少なくとも1種を含む合金が挙げられる。また、無機材料の微粒子にめっきを施したものでもよい。これら炭素材料及び金属微粒子は1種類でもよいし、2種類以上用いてもよい。
負極に含まれる導電助材の量は、負極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは1重量部以上15重量部以下である。この範囲であれば、負極の導電性が確保される。また、バインダーとの接着性が維持され、集電体との接着性を十分に得ることができる。30重量部よりも多量の導電助材を使用する場合、導電助材の占める体積が増大し、エネルギー密度が低下する傾向がある。
本発明の非水電解質二次電池の負極に用いられる集電体は、有孔構造を有する。その形状としては、例えば、メッシュ形状体、パンチング形状体、エキスパンド形状体、又は、多孔質構造体が挙げられる。このような有孔構造によって、厚さ方向の電子伝導性が維持されるとともに、電極活物質の付着性が向上し、電極活物質の落下を防止することができる。
特に、エキスパンド形状体又は多孔質構造体は接触面積が大きく、脱落防止効果が大きくなることにより二次電池のサイクル性が向上するため、集電体として好ましい。
ここに有孔構造を有する集電体の「空隙度」を、「集電体の孔を含む単位体積内に存在する全孔合計の内容積」と定義する。空隙度の測定は、集電体の厚み及び面積から算出した集電体の孔を含む体積(VA)と、集電体の材料の比重及び重量から算出した材料の体積(VB)とを、式(1)に導入することにより算出することができる。
空隙度(%)={(VA-VB)/VA}×100 (1)
ここで、メッシュ形状体とは、図1に示すように、長尺の導電性部材を、縦・横に編んだものである。具体的には、金属の繊維を織布にしたものである。また、金属の繊維を不織布にしたものも採用可能である。金属繊維を用いる場合、1本の金属繊維の太さは50μm以上2000μm以下であることが好ましい。50μm未満の場合は集電体10の強度が弱いために、活物質混合物を集電体10に担持させた際、集電体10が破壊されやすい傾向がある。一方、2000μmより太い繊維を用いた場合、空隙度を後述の範囲内とするには目開きが大きくなりすぎ、金属メッシュによる活物質混合物の保持が困難になる傾向がある。空隙度の制御は、金属繊維の太さと目開きで制御することができる。
ここで、メッシュ形状体とは、図1に示すように、長尺の導電性部材を、縦・横に編んだものである。具体的には、金属の繊維を織布にしたものである。また、金属の繊維を不織布にしたものも採用可能である。金属繊維を用いる場合、1本の金属繊維の太さは50μm以上2000μm以下であることが好ましい。50μm未満の場合は集電体10の強度が弱いために、活物質混合物を集電体10に担持させた際、集電体10が破壊されやすい傾向がある。一方、2000μmより太い繊維を用いた場合、空隙度を後述の範囲内とするには目開きが大きくなりすぎ、金属メッシュによる活物質混合物の保持が困難になる傾向がある。空隙度の制御は、金属繊維の太さと目開きで制御することができる。
パンチング形状体とは、図2A、図2B、図2Cに示すように、板に円形、四角形、又は六角形などの孔を開けたものであり、集電体10が金属板からなるものがパンチングメタルである。パンチングメタルの「開孔率」を、平面視して「板の単位面積あたりの孔の面積の合計」と定義する。パンチング形状体の場合、空隙度は開孔率にそのまま対応する。開孔率は、孔の面積と孔の配列ピッチに関係する。具体的には、孔径と配列ピッチとの比率、孔の形状等によって決定される。
孔の形状は特に限定されないが、開孔率上昇の観点から、図2Aに示すような直角格子上に配列した丸孔、図2Bに示すような千鳥格子上に配列した丸孔、図2Cに示すような角孔千鳥・並列型が好ましい。千鳥格子の場合、図2Bに示す格子の交差角θは0°~180°の範囲であれば特に限定されないが、好ましくは30°~90°の範囲、例えば60°である。
エキスパンド形状体とは、図3に示すように、板に千鳥状の切れ目を入れ、引き伸ばして網目状にしたもので、金属からなるものがエキスパンドメタルである。網目の短目方向の中心間距離をSW、長目方向の中心間距離をLWで示す。エキスパンドメタルの場合、空隙度は開孔率にそのまま対応する。エキスパンドメタルの開孔率は、エキスパンドメタルを構成する線(ストランド)の幅a、前述した中心間距離SW,LWによって決定される。
多孔質構造体とは、骨格がスポンジのように3次元の多孔質形状になっているもので、その孔は小さく、孔の形状も統一されていない。孔の数は非常に多い。多孔質構造は平均孔径及び気孔率で特定される。孔の形状は、単独の孔でもよく、複数の孔がつながった連続孔でもよい。孔径も特に限定されない。しかし、高比表面積を有する構造が好ましい。
本発明の非水電解質二次電池に用いる集電体の空隙度は40%以上99%以下であることが好ましい。空隙度が前述の範囲の場合、負極活物質混合物の保持が良好であり、厚く負極活物質混合物を担持することができ、大型電源用途の非水電解質二次電池を得ることができる。空隙度が99%を超えると、集電体の強度が弱くなり、空隙度が40%よりも小さくなると、単位体積に存在する活物質の量が少なくなり、エネルギー密度の点で不利になる。
集電体の厚みは、0.01mm以上5.0mm以下であることが好ましい。厚みが0.01mm未満の場合は負極活物質混合物を担持することが難しい。特にメッシュ形状、パンチング形状、エキスパンド形状の集電体10では0.01mm以上2mm以下が好ましく、多孔質構造体では0.1mm以上5.0mm以下であることが好ましい。
本発明の集電体に用いられる金属は、アルミニウム又はその合金である。これにより、従来の集電体に用いられる銅と比べ比重が70%小さいため、電池の重量を軽くすることができ、その結果エネルギー密度が向上する。特に限定されないが、JIS規格1030、1050、1085、1N90、1N99等に代表される高純度アルミニウム、又はアルミニウムとチタンとの合金、アルミニウムとクロムとの合金、アルミニウムと銅との合金、アルミニウムとニッケルとの合金、アルミニウムとマンガンとの合金、あるいはアルミニウムを含む前記3種類以上の複合合金が例示される。
本発明の実施形態における負極の作製方法は、負極活物質、導電助材、及びバインダーからなる負極活物質混合物を集電体に担持することによって作製される。作製方法の容易さから、負極活物質、導電助材、バインダー及び溶媒でスラリーを作製し、得られたスラリーを集電体の外面及びその空孔部に充填及び塗布した後に、溶媒を除去することによって負極を作製する方法が好ましい。また、負極活物質、導電助材及びバインダーの混合物を溶媒に分散させず、そのまま集電体10に担持させても良い。
スラリーを作製する場合は、特に限定されないが、負極活物質、導電助材、バインダー、及び溶媒を均一に混合できることから、ボールミル、プラネタリミキサ、ジェットミル、薄膜旋回型ミキサー、撹拌混合造粒装置を用いることが好ましい。スラリーの混練方法は、特に限定されないが、負極活物質、導電助材、及びバインダーを混合した後に溶媒を加えて混練してもよいし、負極活物質、導電助材、バインダー、及び溶媒を一緒に混合して混練してもよい。
スラリーの固形分濃度は、30wt%以上90wt%以下であることが好ましい。30wt%未満の場合、スラリーの粘度が低すぎる傾向があり、一方、90wt%より高い場合は、スラリーの粘度が高すぎる傾向があるため、後述の電極の形成が困難となる場合がある。
スラリーに用いられる溶媒は、非水溶媒、あるいは水であることが好ましい。非水溶媒は、特に限定されないが、例えば、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、酢酸エチル、及びテトラヒドロフランなどを挙げることができる。また、これらに分散剤、増粘剤を加えてもよい。
集電体上への負極活物質混合物の担持方法は、特に限定されないが、例えばスラリーをドクターブレード、ダイコータ、コンマコータ等により塗布した後に溶媒を除去する方法、スプレーにより集電体に付着させた後に溶媒を除去する方法、スラリーに集電体を含浸させた後に溶媒を除去する方法が好ましい。固形分濃度が高い場合は、負極活物質混合物のみでシートを作製し集電体に張り付けても良い。溶媒を除去する方法は、オーブンや真空オーブンを用いた乾燥が簡単であり好ましい。雰囲気としては室温、あるいは高温とした空気、不活性ガス、真空状態などが挙げられる。負極の形成時点は、後述の正極を形成する前でも、後でもよい。
負極活物質、導電助材及びバインダーの混合物を溶媒に分散させない場合は、負極活物質、導電助材、及びバインダーを均一に混合するために、ボールミル、プラネタリミキサ、ジェットミル、薄膜旋回型ミキサー、撹拌混合造粒装置を用いて混合物を作製したのちに、集電体に担持することが好ましい。混合物を集電体に担持する方法としては、特に限定されないが、混合物を集電体に塗布した後にプレスする方法が好ましい。プレスするとき、加熱させても良い。また、負極作製後、ロールプレス機などを用いて負極を圧縮させてもよい。負極の圧縮は、後述の正極を形成する前でも、後でもよい。
図4は、集電体10上へ負極活物質層11を担持させた状態を示す断面図である。
本発明の実施形態において、負極の厚み(図4に"T"で示す)は0.4mm以上5mm以下であるのが好ましい。0.4mmより小さい場合には電池の大型化が困難となり、5mmより大きい場合には電極内部まで電解液を浸透させることが困難になることに加え、イオンの拡散距離が大きくなることから、電池としての性能が得られない傾向がある。より好ましくは、0.5mm以上3mm以下であり、この範囲の厚みであれば物質拡散は容易に進行する傾向がある。また、負極の厚みTは、集電体10の全面にわたって、集電体10の厚み(図4に"D"で示す)と比べてxmm厚いことが好ましい。ここで"x"として0mmを超え2mm以下の範囲であることが好ましい。"x"が0mmの場合は、負極から集電体10が露出し後述のセパレータを破壊する傾向がある。2mmより厚い場合は負極活物質混合物が脱落する可能性がある。なお、脱落防止のために、後述のセパレータで覆ってもよい。
負極の密度は、1.0g/cm3以上4.0g/cm3以下であることが好ましい。1.0g/cm3未満であれば、負極活物質、導電助材との接触が不十分となり電子伝導性が低下する場合がある。一方、4.0g/cm3より大きい場合は、後述の電解液が負極内に浸透しにくくなり、リチウムイオン伝導性が低下する場合がある。
負極は、圧縮させてもよい。圧縮法は、特に限定されないが、例えば、ロールプレス、油圧プレス等を用いて行うことができる。電極の圧縮時点は、前述の正極を形成する前でも、後でもよい。
本発明の実施形態において負極は、その単位面積1cm2の正方形を底面とし、負極の厚みTを高さとする直方体当たり、5mAh以上50mAh以下の電気容量を有することが好ましい。5mAh未満である場合は電池の大きさが大きくなる場合があり、一方、50mAhより多い場合は所望の出力密度を得ることが難しい場合がある。負極の電気容量の算出は、負極作製後、リチウム金属を対極とした半電池を作製した後に、充放電特性を測定することによって算出できる。
<2.正極>
本発明の非水電解質二次電池に用いられる正極は、少なくとも正極活物質層と集電体とで構成される。正極活物質層は、少なくとも正極活物質を含み、好ましくはさらにバインダーを含み、必要に応じて導電助材を含む。
本発明の非水電解質二次電池に用いられる正極は、少なくとも正極活物質層と集電体とで構成される。正極活物質層は、少なくとも正極活物質を含み、好ましくはさらにバインダーを含み、必要に応じて導電助材を含む。
正極活物質は、特に限定されないが、サイクル安定性が優れることから、リチウムマンガン化合物であることが好ましい。
リチウムマンガン化合物としては、例えば、Li2MnO3、LiaMbMn1-bNcO4(0<a≦2、0≦b≦0.5、1≦c≦2、Mは2~13族でかつ第3、4周期に属する元素からなる群から選ばれる少なくとも1種、Nは14~16族でかつ第3周期に属する元素からなる群から選ばれる少なくとも1種)、Li1+xMyMn2-x-yO4(0≦x≦0.34、0<y≦0.6、Mは2~13族でかつ第3~4周期に属する元素からなる群から選ばれる少なくとも1種)で表されるリチウムマンガン化合物が挙げられる。ここでのMは、2~13族でかつ第3~4周期に属する元素から選ばれる少なくとも1種であるが、安定性向上の効果が大きい点から、Al、Mg、Zn、Ni、Co、Fe及びCrが好ましく、Al、Mg、Zn、Ni及びCrがより好ましく、Al、Mg、Zn及びNiがさらに好ましい。また、ここでのNは安定性向上の効果が大きい点から、Si、P及びSが好ましい。
中でも、正極活物質の安定性が高いことから、Li1+xMyMn2-x-yO4(0≦x≦0.34、0<y≦0.6、Mは2~13族でかつ第3~4周期に属する元素からなる群から選ばれる少なくとも1種)で表されるリチウムマンガン化合物であることが特に好ましい。x<0の場合は、正極活物質の容量が減少する傾向がある。また、x>0.34の場合は炭酸リチウムなどの不純物が多く含まれるようになる傾向がある。y=0の場合は、正極活物質の安定性が低くなる傾向がある。また、y>0.6の場合はMの酸化物などの不純物が多く含まれるようになる傾向がある。
リチウムマンガン化合物は、スピネル構造であることが好ましい。スピネル構造の場合、リチウムイオンの挿入・脱離の反応における活物質の膨張収縮が小さいからである。
リチウムマンガン化合物は、CuKα線による粉末X線回折の(400)面の半値幅が0.5°以下であることが好ましい。0.5°より大きいと、正極活物質の結晶性が低いため、電極の安定性が低下する場合がある。
リチウムマンガン化合物は、X線回折によるリートベルト解析法による8aサイトに占めるリチウム含有率は、90%以上であることが好ましい。90%未満であると、正極活物質の結晶中の欠陥が多いため、電極の安定性が低下する場合がある。
リチウムマンガン化合物の粒子径は、0.5μm以上50μm以下であることが好ましく、1μm以上30μm以下であることは取り扱いの観点からさらに好ましい。ここでの粒子径はSEM、TEM像から各粒子の大きさを測定し、平均粒子径を算出した値である。
リチウムマンガン化合物の比表面積は、0.1m2/g以上50m2/g以下であることは所望の出力密度を得やすいことから好ましい。比表面積はBET法での測定により算出できる。
リチウムマンガン化合物の嵩密度は、0.2g/cm3以上2.0g/cm3以下であることが好ましい。0.2g/cm3未満の場合では後述のスラリー作製時に多量の溶媒が必要となるため経済的に不利となり、2.0g/cm3より大きい場合では後述の導電助材、バインダーとの混合が困難となる傾向がある。
リチウムマンガン化合物は、リチウム化合物、マンガン化合物、必要に応じてMの化合物、Nの化合物を500℃以上、1500℃以下で加熱処理することによって得ることができる。500℃未満、又は1500℃より高いと、所望の構造をした正極活物質を得ることができない場合がある。加熱処理は、リチウム化合物及びマンガン化合物、必要に応じてMの化合物やNの化合物を混合して加熱処理もよいし、マンガン化合物とMの化合物やNの化合物とを加熱処理した後に、リチウム化合物と加熱処理してもよい。正極活物質の結晶性を向上させるため、加熱処理後、400℃以上、1500℃以下で再加熱処理してもよい。再加熱処理の温度は、最初におこなった温度と同じでもよいし、違っていてもよい。加熱処理は、空気存在下でもよいし、窒素あるいはアルゴンなどの不活性ガスの存在下でおこなってもよい。加熱処理には、特に限定されないが、例えば、箱型炉、管状炉、トンネル炉、ロータリーキルン等を用いることができる。
リチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム、シュウ酸リチウム、ハロゲン化リチウムなどを用いることができる。これらリチウム化合物は、1種類でもよいし、2種類以上用いてもよい。
マンガン化合物としては、例えば、二酸化マンガン等のマンガン酸化物、炭酸マンガン、硝酸マンガン、マンガン水酸化物などを用いることができる。これらマンガン化合物は、1種類でもよいし、2種類以上用いてもよい。
Mの化合物としては、例えば、炭酸化物、酸化物、硝酸化物、水酸化物、硫酸化物などを用いることができる。LiaMbMn1-bNcO4やLi1+xMyMn2-x-yO4に含まれるMの量は、加熱処理時におけるMの化合物の量で制御することができる。Mの化合物は、1種類でもよいし、2種類以上用いてもよい。
Nの化合物としては、例えば、単体、酸化物、オキソ酸及びその塩などを用いることができる。LiaMbMn1-bNcO4に含まれるNの量は、加熱処理時におけるNの化合物の量で制御することができる。Nの化合物は、1種類でもよいし、2種類以上用いてもよい。
例えば、Li1+xMyMn2-x-yO4(0≦x≦0.34、0<y≦0.6、Mは2~13族でかつ第3~4周期に属する元素からなる群から選ばれる少なくとも1種)で表わされるリチウムマンガン化合物を製造する場合、リチウム化合物、マンガン化合物及びMの化合物の配合比は、リチウム、マンガン及びMの原子比をそれぞれ1+x(リチウム)、2-x-y(マンガン)、及びy(M)、但し、0≦x≦0.34、0<y≦0.6を満たす範囲で選択される。例えば、Mn/Liの原子比1.5の正極活物質を作製する場合、原料の性状や加熱条件によって配合比を1.5前後とするが、多少の幅をもたせてもよい。
正極活物質の表面には、導電性向上、あるいは安定性向上のため、炭素材料、金属酸化物、あるいは高分子等で覆われてもよい。
正極活物質混合物にはバインダーを混合してよい。前述した負極活物質層に使用されるバインダーで例示されたものを同様に適用できる。バインダーは正極の作製しやすさから、非水溶媒又は水に、溶解又は分散されていることが好ましい。非水溶媒は、前述した非水溶媒で例示されたものを同様に適用できる。これらに分散剤、増粘剤を加えてもよい。
本発明において、正極活物質混合物に含まれるバインダーの量は、正極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは2重量部以上15重量部以下である。バインダー種は、活物質と集電体が良好な密着性を示し、結果として優れたサイクル特性を示す電池が得られるという観点から、PVdF,PTFE若しくはFEPを用いることが好ましい。前記範囲及び前記バインダー種であれば、正極活物質と導電助材との接着性が維持され、集電体との接着性を十分に得ることができ、結果としてサイクル特性が向上する。
正極には必要に応じて導電助材を含有してもよい。導電助材としては、特に限定されないが、炭素材料もしくは金属微粒子が好ましい。炭素材料としては、前述の負極に含有されうる炭素材料と同一のものが例示される。金属微粒子として、例えば、アルミニウム及びアルミニウム合金が挙げられる。また、無機材料の微粒子にめっきを施したものでもよい。これら炭素材料及び金属微粒子は1種類でもよいし、2種類以上用いてもよい。
正極に含まれる導電助材の量は、正極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは1重量部以上15重量部以下である。この範囲であれば、正極の導電性が確保される。また、バインダーとの接着性が維持され、集電体との接着性を十分に得ることができる。一方、30重量部よりも多量の導電助材を使用した場合、導電助材の占める体積が増大し、エネルギー密度が低下する傾向がある。
本発明の非水電解質二次電池の正極に用いられる集電体は前述した負極に用いられる集電体で例示されたもの及び箔状のものを同様に適用できる。
本発明の非水電解質二次電池は、例えば、正極活物質、導電助材、及びバインダーを含む正極活物質層を集電体に担持することによって作製されるが、作製方法の容易さから、正極活物質、導電助材、バインダー及び溶媒でスラリーを作製し、得られたスラリーを集電体の空孔部及びその外面に充填及び塗布した後に、溶媒を除去することによって正極を作製する方法が好ましい。また、正極活物質、導電助材及びバインダーの混合物を溶媒に分散させず、そのまま集電体に担持させても良い。
前述した負極の作製における、スラリーの作製法、スラリーの固形分濃度、スラリーに用いる溶媒、集電体上への活物質層の担持方法、電極の圧縮は、正極の作製においても同様に適用できる。
正極の厚みは特に限定されないが、0.4mm以上5mm以下であることが好ましい。0.4mmより小さい場合には大型化が困難となり、5mmより大きい場合には電極内部まで電解液を浸透させることが困難になることに加え、イオンの拡散距離が大きくなることから、電池としての性能が得られない傾向がある。より好ましくは、0.5mm以上3mm以下であることが好ましい。この範囲の厚みであれば物質拡散は容易に進行する傾向がある。また、正極厚みは、集電体の厚みに比べてxmm厚いことが好ましい。ここで"x"として0mmを超え2mm以下の範囲であることが好ましい。0mmの場合は、正極活物質混合物から集電体が露出し後述のセパレータを破壊する傾向がある。2mmより厚い場合は正極活物質混合物が脱落する可能性がある。また、脱落防止のために、後述のセパレータで覆ってもよい。
本発明において、正極活物質層の密度は、1.0g/cm3以上4.0g/cm3以下であることが好ましい。1.0g/cm3未満であれば、正極活物質、導電助材との接触が不十分となり電子伝導性が低下する場合がある。一方、4.0g/cm3より大きい場合は、後述の電解液が正極内に浸透しにくくなり、リチウムイオン伝導性が低下する場合がある。正極は、所望の厚み、密度まで圧縮させてもよい。圧縮方法は、特に限定されないが、例えば、ロールプレス、油圧プレス等を用いて行うことができる。電極の圧縮時点は、前述の正極を形成する前でも、後でもよい。
本発明において、正極の1cm2あたりの電気容量は、5mAh以上50mAh以下であることが好ましい。50mAh未満である場合は電池の大きさが大きくなる場合があり、一方、50mAhより多い場合は所望の出力密度を得ることが難しい場合がある。正極の1cm2あたりの電気容量の算出は、正極作製後、リチウム金属を対極とした半電池を作製した後に、充放電特性を測定することによって算出できる。正極1cm2あたりの電気容量は、特に限定されないが、集電体単位面積あたりに形成させる正極の重量で制御する方法、例えば、前述の正極塗工時の塗工厚みで制御することができる。
<3.負極と正極の容量比及び面積比>
本発明の非水電解質二次電池における正極の電気容量と負極の電気容量との比は、下記式(2)を満たすことが好ましい。
本発明の非水電解質二次電池における正極の電気容量と負極の電気容量との比は、下記式(2)を満たすことが好ましい。
0.7≦B/A≦1.3 (2)
但し、式(2)中、Aは正極1cm2あたりの電気容量を示し、Bは負極1cm2あたりの電気容量を示す。
但し、式(2)中、Aは正極1cm2あたりの電気容量を示し、Bは負極1cm2あたりの電気容量を示す。
B/Aが0.7未満である場合は、過充電時に負極の電位がリチウムの析出電位になる場合があり、一方、B/Aが1.3より大きい場合は電池反応に関与しない負極活物質が多いために副反応が起こる場合がある。
本発明の非水電解質二次電池における正極と負極との面積比は、特に限定されないが、下記式(3)を満たすことが好ましい。
1≦D/C≦1.2 (3)
(但し、Cは正極の面積、Dは負極の面積を示す。)
D/Cが1未満である場合は、例えば先述のB/A=1の場合、負極の容量が正極よりも小さくなるため、過充電時に負極の電位がリチウムの析出電位になる恐れがある。一方、D/Cが1.2より大きい場合は、正極と接していない部分の負極が大きいため、電池反応に関与しない負極活物質が副反応を起こす場合がある。正極及び負極の面積の制御は特に限定されないが、例えば、スラリー塗工の際、塗工幅を制御することによって行うことができる。
(但し、Cは正極の面積、Dは負極の面積を示す。)
D/Cが1未満である場合は、例えば先述のB/A=1の場合、負極の容量が正極よりも小さくなるため、過充電時に負極の電位がリチウムの析出電位になる恐れがある。一方、D/Cが1.2より大きい場合は、正極と接していない部分の負極が大きいため、電池反応に関与しない負極活物質が副反応を起こす場合がある。正極及び負極の面積の制御は特に限定されないが、例えば、スラリー塗工の際、塗工幅を制御することによって行うことができる。
本発明の非水電解質二次電池に用いるセパレータと負極との面積比は特に限定されないが、下記式(4)を満たすことが好ましい。
1≦F/E≦1.5 (4)
(但し、Eは負極の面積、Fはセパレータの面積を示す。)
F/Eが1未満である場合は、正極と負極とが接触し、1.5より大きい場合は外装に要する体積が大きくなり、電池の出力密度が低下する場合がある。
(但し、Eは負極の面積、Fはセパレータの面積を示す。)
F/Eが1未満である場合は、正極と負極とが接触し、1.5より大きい場合は外装に要する体積が大きくなり、電池の出力密度が低下する場合がある。
<4.セパレータ>
本発明の非水電解質二次電池に用いるセパレータとしては、多孔質材料又は不織布等が挙げられる。セパレータの材質としては、電解液を構成する有機溶媒に対して溶解しないものが好ましく、具体的にはポリエチレンやポリプロピレンのようなポリオレフィン系ポリマー、ポリエチレンテレフタレートのようなポリエステル系ポリマー、セルロース、ガラスのような無機材料が挙げられる。
本発明の非水電解質二次電池に用いるセパレータとしては、多孔質材料又は不織布等が挙げられる。セパレータの材質としては、電解液を構成する有機溶媒に対して溶解しないものが好ましく、具体的にはポリエチレンやポリプロピレンのようなポリオレフィン系ポリマー、ポリエチレンテレフタレートのようなポリエステル系ポリマー、セルロース、ガラスのような無機材料が挙げられる。
セパレータの厚みは1~500μmが好ましい。1μm未満であるとセパレータの機械的強度の不足により破断し、内部短絡する傾向がある。一方、500μmより厚い場合、電池の内部抵抗と、正極負極の電極間距離が増大することにより、電池の負荷特性が低下する傾向がある。より好ましい厚みは、10~50μmである。
<5.非水電解質>
本発明の非水電解質二次電池に用いる非水電解質は、特に限定されないが、非水溶媒に溶質を溶解させた電解液、非水溶媒に溶質を溶解させた電解液を高分子に含浸させたゲル電解質などを用いることができる。
本発明の非水電解質二次電池に用いる非水電解質は、特に限定されないが、非水溶媒に溶質を溶解させた電解液、非水溶媒に溶質を溶解させた電解液を高分子に含浸させたゲル電解質などを用いることができる。
非水溶媒としては、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を含むことが好ましい。環状の非プロトン性溶媒としては、環状カーボネート、環状エステル、環状スルホン及び環状エーテルなどが例示される。鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル及び鎖状エーテルなどが例示される。また、これに加えアセトニトリルなどの一般的に非水電解質の溶媒として用いられる溶媒を用いても良い。より具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、1,2-ジメトキシエタン、スルホラン、ジオキソラン、プロピオン酸メチルなどを用いることができる。これら溶媒は1種類で用いてもよいし、2種類以上混合して用いてもよいが、後述の溶質を溶解させやすさ、リチウムイオンの伝導性の高さから、2種類以上混合した溶媒を用いることが好ましい。また、高分子に電解液をしみこませたゲル状電解質も用いることができる。
溶質は、特に限定されないが、例えば、LiClO4、LiBF4、LiPF6、LiAsF6、LiCF3SO3、LiBOB(Lithium Bis (Oxalato) Borate)、LiN(SO2CF3)2などは溶媒に溶解しやすいことから好ましい。電解液に含まれる溶質の濃度は、0.5mol/L以上2.0mol/L以下であることが好ましい。0.5mol/L未満では所望のリチウムイオン伝導性が発現しない場合があり、一方、2.0mol/Lより高いと、溶質がそれ以上溶解しない場合がある。非水電解質には、難燃剤、安定化剤などの添加剤が微量含まれてもよい。
<6.非水電解質二次電池>
本発明の非水電解質二次電池の正極及び負極は、集電体の片面又は両面に一種類の電極を形成させた形態であってもよく、集電体の片面に正極、一方の面に負極を形成させた形態、すなわち、バイポーラ電極であってもよい。
本発明の非水電解質二次電池の正極及び負極は、集電体の片面又は両面に一種類の電極を形成させた形態であってもよく、集電体の片面に正極、一方の面に負極を形成させた形態、すなわち、バイポーラ電極であってもよい。
バイポーラ電極とする場合、集電体を介した正極と負極の液絡を防止する必要がある。このため、バイポーラ電極自体、正極側の面と負極側の面との間で、液体を通さない構造とする。特に本発明の正極又は負極に用いる集電体は有孔構造となっているので、これらの孔を正極活物質混合物又は負極活物質混合物で確実に塞いでおくことが必要である。
また、バイポーラ電極とする場合は、向き合うバイポーラ電極の正極側と負極側との間にセパレータを配置し、正極側と負極側とが対向した層からの液絡を防止するため正極及び負極の周辺部に絶縁材料が配置されている。
本発明の非水電解質二次電池は、正極側と負極側との間にセパレータを配置したものを倦回したものであってもよいし、積層したものであってもよい。正極、負極、及びセパレータには、リチウムイオン伝導を担う非水電解質が含浸している。ただし、非水電解としてゲル状のものを使用する場合は、電解質が正極及び負極に含浸していても良く、正極・負極間のみにある状態でもよい。ゲル状電解質により正極・負極間が直接接触していなければ、セパレータを使用する必要はない。
本発明の非水電解質二次電池に用いる非水電解質の量は、特に限定されないが、電池容量1Ahあたり、0.1mL以上であることが好ましい。0.1mL未満の場合、電極反応に伴うリチウムイオンの伝導が追いつかず、所望の電池性能が発現しない場合がある。
非水電解質は、あらかじめ正極、負極及びセパレータに含ませてもよいし、正極側と負極側との間にセパレータを配置したものを倦回し、あるいは積層した後に添加してもよい。ゲル状の非水電解質を使用する場合は、モノマーを含浸させた後ゲル状にしても、予めゲル状にした後に正極と負極の間に配置してもよい。
本発明の非水電解質二次電池は、前記積層体を倦回し、あるいは複数積層した後にラミネートフィルムで外装してもよいし、角形、楕円形、円筒形、コイン形、ボタン形、シート形の金属缶で外装してもよい。外装には発生したガス等を放出するための機構が備わっていてもよい。また、劣化した当該非水電解質二次電池の機能を回復させるための添加剤を電池外部から注入する機構が備わっていてもよい。積層体の積層数は、所望の電池容量を発現するまで積層させることができる。
本発明の非水電解質二次電池は、複数接続することによって組電池とすることができる。本発明の組電池は、所望の大きさ、容量、電圧によって適宜直列、並列に接続することによって作製することができる。また、各電池の充電状態の確認、安全性向上のため、組電池に制御回路が付属されていることが好ましい。
<実施例1>
負極活物質をLi4Ti5O12とし、正極活物質をLi1.1Al0.1Mn1.8O4とする、Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池を次のとおり作製した。
負極活物質をLi4Ti5O12とし、正極活物質をLi1.1Al0.1Mn1.8O4とする、Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池を次のとおり作製した。
(負極の製造)
負極活物質のLi4Ti5O12は、文献(Journal of Electrochemical Society, 142, 1431(1995))に記載されている方法で作製した。
負極活物質のLi4Ti5O12は、文献(Journal of Electrochemical Society, 142, 1431(1995))に記載されている方法で作製した。
すなわち、まず二酸化チタンと水酸化リチウムを、チタンとリチウムとのモル比を5:4となるように混合し、次にこの混合物を窒素雰囲気下800℃で12時間加熱することによって負極活物質を作製した。
この負極活物質を100重量部、導電助材(アセチレンブラック)を6.8重量部、及びポリフッ化ビニリデン(PVdF)バインダー(KF7305、クレハ化学社製)(固形分濃度5wt%、NMP溶液)を固形分6.8重量部混合してスラリーを作製した。このスラリーを、30mm×40mmに切り取った厚み0.3mmのアルミエキスパンドメタル(SW=4mm、LW=8mm、空隙度60%)に塗工した後に、150℃で真空乾燥することによって負極を作製した。負極厚みは0.4mm、単位面積当たりの容量は5mAhであった。容量の測定方法は後述する。
(正極の製造)
正極活物質のLi1.1Al0.1Mn1.8O4は、文献(Electrochemical and Solid-State Letters, 9(12), A557(2006))に記載されている方法で作製した。
正極活物質のLi1.1Al0.1Mn1.8O4は、文献(Electrochemical and Solid-State Letters, 9(12), A557(2006))に記載されている方法で作製した。
すなわち、二酸化マンガン、炭酸リチウム、水酸化アルミニウム、及びホウ酸の水分散液を調製し、スプレードライ法で混合粉末を作製した。このとき、二酸化マンガン、炭酸リチウム及び水酸化アルミニウムの量は、リチウム、アルミニウム及びマンガンのモル比が1.1:0.1:1.8となるように調製した。次に、この混合粉末を空気雰囲気下900℃で12時間加熱した後、再度650℃で24時間加熱した。最後に、この粉末を95℃の水で洗浄後、乾燥させることによって正極活物質を作製した。
この正極活物質を100重量部、導電助材(アセチレンブラック)を6.8重量部、及びPVdFバインダー(KF7305、クレハ化学社製)(固形分濃度5wt%、NMP溶液)を固形分6.8重量部混合してスラリーを作製した。このスラリーを、30mm×40mmに切り取った厚み0.3mmのアルミエキスパンドメタル(SW=4mm、LW=8mm、空隙度60%)に塗工した後に、150℃で真空乾燥することによって正極を作製した。正極厚みは0.4mm、単位面積当たりの容量は5mAhであった。
実施例で作製された負極及び正極の各容量の測定方法は次のとおりである。
(負極の容量)
作製された負極を作用極とした。Li金属を30mm×40mmに打ち抜き対極とした。これらの電極を用いて、作用極/セパレータ(Celgard#2500、Celgard社製)/Li金属の順に、袋状にしたアルミラミネートシート内に積層し、非水電解質(エチレンカーボネート/ジメチルカーボネート=3/7vol%、LiPF6 1mol/L)を1.0mL入れ、半電池を作製した。この半電池を25℃で一日放置した後、充放電試験装置(HJ1005SD8、北斗電工社製)に接続した。この半電池を25℃、12時間率の電流値(1/12C)で定電流放電(終止電圧:1.0V)及び定電流充電(終止電圧:3.0V)を5回繰り返し、5回目の結果を負極の容量とした。
作製された負極を作用極とした。Li金属を30mm×40mmに打ち抜き対極とした。これらの電極を用いて、作用極/セパレータ(Celgard#2500、Celgard社製)/Li金属の順に、袋状にしたアルミラミネートシート内に積層し、非水電解質(エチレンカーボネート/ジメチルカーボネート=3/7vol%、LiPF6 1mol/L)を1.0mL入れ、半電池を作製した。この半電池を25℃で一日放置した後、充放電試験装置(HJ1005SD8、北斗電工社製)に接続した。この半電池を25℃、12時間率の電流値(1/12C)で定電流放電(終止電圧:1.0V)及び定電流充電(終止電圧:3.0V)を5回繰り返し、5回目の結果を負極の容量とした。
(正極の容量)
作製された正極を作用極とした。Li金属を30mm×40mmに打ち抜き対極とした。これらの電極を用いて、作用極/セパレータ(Celgard#2500、Celgard社製)/Li金属の順に、袋状にしたアルミラミネートシート内に積層し、非水電解質(エチレンカーボネート/ジメチルカーボネート=3/7vol%、LiPF6 1mol/L)を1.0mL入れ、半電池を作製した。この半電池を25℃で一日放置した後、充放電試験装置(HJ1005SD8、北斗電工社製)に接続した。この半電池を25℃、12時間率の電流値(1/12C)で定電流充電(終止電圧:5.0V)及び定電流放電(終止電圧:3.0V)を5回繰り返し、5回目の結果を正極の容量とした。
作製された正極を作用極とした。Li金属を30mm×40mmに打ち抜き対極とした。これらの電極を用いて、作用極/セパレータ(Celgard#2500、Celgard社製)/Li金属の順に、袋状にしたアルミラミネートシート内に積層し、非水電解質(エチレンカーボネート/ジメチルカーボネート=3/7vol%、LiPF6 1mol/L)を1.0mL入れ、半電池を作製した。この半電池を25℃で一日放置した後、充放電試験装置(HJ1005SD8、北斗電工社製)に接続した。この半電池を25℃、12時間率の電流値(1/12C)で定電流充電(終止電圧:5.0V)及び定電流放電(終止電圧:3.0V)を5回繰り返し、5回目の結果を正極の容量とした。
(非水電解質二次電池の製造)
最初に、得られた正極/セパレータ/得られた負極の順に積層した。セパレータは、セルロース不織布(25μm、20cm2)を用いた。次に、両端の正極及び負極に、引き出し電極としてのアルミニウムタブを振動溶着させた後に、袋状のアルミラミネートシートに入れた。非水電解液(エチレンカーボネート/ジメチルカーボネート=3/7vol%、LiPF6 1mol/L)を1.0mL入れた後に、減圧しながら封止することによって非水電解質二次電池を作製した。この実施例1の非水電解質二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)の正極・負極厚みは0.4mm、単位面積当たりの容量は5mAh、電解液量は1.0mLである。
最初に、得られた正極/セパレータ/得られた負極の順に積層した。セパレータは、セルロース不織布(25μm、20cm2)を用いた。次に、両端の正極及び負極に、引き出し電極としてのアルミニウムタブを振動溶着させた後に、袋状のアルミラミネートシートに入れた。非水電解液(エチレンカーボネート/ジメチルカーボネート=3/7vol%、LiPF6 1mol/L)を1.0mL入れた後に、減圧しながら封止することによって非水電解質二次電池を作製した。この実施例1の非水電解質二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)の正極・負極厚みは0.4mm、単位面積当たりの容量は5mAh、電解液量は1.0mLである。
得られた非水電解質二次電池を25℃、1/12Cレート、電圧範囲1-2.7Vで3サイクルさせたのち、1/2Cで1000サイクルさせ、再度1/12Cでサイクルさせた。1000サイクル前後の1/12Cレートでの容量を用いて容量維持率を計算した。ここで「電池容量維持率」とは、「所定回充放電を繰り返した後の電池容量」を「充放電サイクル試験1サイクル目の電池容量」で割った数値(単位%)である。また、1Cレートとは公称容量値の容量を有するセルを定電流放電して、ちょうど1時間で放電終了となる電流値のことである。例えば「 1/12Cレート」とは1Cに相当する電流値の12分の1の電流値を言う。
<実施例2>
実施例1において正極・負極厚みを1.0mm、単位面積当たりの容量を10mAh、電解液量を2.0mLにしたこと以外は、実施例1と同様に非水電解質二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
実施例1において正極・負極厚みを1.0mm、単位面積当たりの容量を10mAh、電解液量を2.0mLにしたこと以外は、実施例1と同様に非水電解質二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
<実施例3>
実施例1において正極・負極厚みを2.0mm、単位面積当たりの容量を20mAh、電解液量を4.0mLにした以外は、実施例1と同様に非水電解質二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
実施例1において正極・負極厚みを2.0mm、単位面積当たりの容量を20mAh、電解液量を4.0mLにした以外は、実施例1と同様に非水電解質二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
<実施例4>
実施例1において正極・負極厚みを5.0mm、単位面積当たりの容量を50mAh、電解液量を6.0mLにした以外は、実施例1と同様に非水電解質二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
実施例1において正極・負極厚みを5.0mm、単位面積当たりの容量を50mAh、電解液量を6.0mLにした以外は、実施例1と同様に非水電解質二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
<実施例5>
実施例1において正極及び負極の集電体にアルミニウム多孔質構造体(三菱マテリアル株式会社製の発泡アルミ(多孔質アルミ)、孔径600μm、厚さ1mm、空隙率90%)を用い、正極及び負極の厚みを1.0mm、電解液量を2.0mLとした以外は、実施例1と同様に非水二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
実施例1において正極及び負極の集電体にアルミニウム多孔質構造体(三菱マテリアル株式会社製の発泡アルミ(多孔質アルミ)、孔径600μm、厚さ1mm、空隙率90%)を用い、正極及び負極の厚みを1.0mm、電解液量を2.0mLとした以外は、実施例1と同様に非水二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
<実施例6>
実施例1において正極活物質にLiNi0.5Mn1.5O4を用いた以外は、実施例1と同様に非水電解質二次電池(Li4Ti5O12/LiNi0.5Mn1.5O4電池)を作製した。得られた非水電解質二次電池の作動電圧範囲は1.0-3.4Vとした。
実施例1において正極活物質にLiNi0.5Mn1.5O4を用いた以外は、実施例1と同様に非水電解質二次電池(Li4Ti5O12/LiNi0.5Mn1.5O4電池)を作製した。得られた非水電解質二次電池の作動電圧範囲は1.0-3.4Vとした。
正極活物質に使用したLiNi0.5Mn1.5O4は、文献(Journal of Power Sources, 81-82, p.90 (1999))に記載されている方法で作製した。
すなわち、まず水酸化リチウム、酸化水酸化マンガン、及び水酸化ニッケルをリチウム、マンガン及びニッケルのモル比が1:1.5:0.5となるように混合した。次に、この混合物を空気雰囲気下1000℃で加熱した後に、再度700℃で加熱することによって正極活物質を作製した。この実施例6の非水電解質二次電池(Li4Ti5O12/LiNi0.5Mn1.5O4電池)の正極・負極厚みは0.4mm、単位面積当たりの容量は5mAh、電解液量は1.0mLである。
<実施例7>
実施例6において正極・負極厚みを1.0mm、単位面積当たりの容量を10mAh、電解液量を2.0mLにした以外は、実施例6と同様に非水電解質二次電池(Li4Ti5O12/LiNi0.5Mn1.5O4電池)を作製した。
実施例6において正極・負極厚みを1.0mm、単位面積当たりの容量を10mAh、電解液量を2.0mLにした以外は、実施例6と同様に非水電解質二次電池(Li4Ti5O12/LiNi0.5Mn1.5O4電池)を作製した。
<実施例8>
実施例6において正極・負極厚みを2.0mm、単位面積当たりの容量を20mAh、電解液量を4.0mLにした以外は、実施例6と同様に非水電解質二次電池(Li4Ti5O12/LiNi0.5Mn1.5O4電池)を作製した。
実施例6において正極・負極厚みを2.0mm、単位面積当たりの容量を20mAh、電解液量を4.0mLにした以外は、実施例6と同様に非水電解質二次電池(Li4Ti5O12/LiNi0.5Mn1.5O4電池)を作製した。
<実施例9>
実施例6において正極・負極厚みを5.0mm、単位面積当たりの容量を50mAh、電解液量を6.0mLにした以外は、実施例6と同様に非水電解質二次電池(Li4Ti5O12/LiNi0.5Mn1.5O4電池)を作製した。
実施例6において正極・負極厚みを5.0mm、単位面積当たりの容量を50mAh、電解液量を6.0mLにした以外は、実施例6と同様に非水電解質二次電池(Li4Ti5O12/LiNi0.5Mn1.5O4電池)を作製した。
<比較例1>
実施例1において正極・負極厚みを6.0mm、単位面積当たりの容量を60mAh、電解液量を6.5mLにした以外は、実施例1と同様に非水電解質二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
実施例1において正極・負極厚みを6.0mm、単位面積当たりの容量を60mAh、電解液量を6.5mLにした以外は、実施例1と同様に非水電解質二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
<比較例2>
負極材料としてグラファイト(MAGE、日立化成)を使用し、負極活物質を100重量部及びPVdFバインダー(KF7305、クレハ化学社製)(固形分濃度5wt%、NMP溶液)を固形分5.3重量部混合してスラリーを作製した。このスラリーを30mm×40mmに切り取った銅エキスパンドメタル(SW=4mm、LW=8mm、空隙度60%)に塗工した後に、150℃で真空乾燥することによって負極を作製した。負極厚みは0.7mmであった。前記負極を用いた以外は、実施例2と同様に非水電解質二次電池(C/Li1.1Al0.1Mn1.8O4電池)を作製した。
負極材料としてグラファイト(MAGE、日立化成)を使用し、負極活物質を100重量部及びPVdFバインダー(KF7305、クレハ化学社製)(固形分濃度5wt%、NMP溶液)を固形分5.3重量部混合してスラリーを作製した。このスラリーを30mm×40mmに切り取った銅エキスパンドメタル(SW=4mm、LW=8mm、空隙度60%)に塗工した後に、150℃で真空乾燥することによって負極を作製した。負極厚みは0.7mmであった。前記負極を用いた以外は、実施例2と同様に非水電解質二次電池(C/Li1.1Al0.1Mn1.8O4電池)を作製した。
<比較例3>
実施例1において負極集電体に厚さ20μmの孔無しアルミニウム箔を用い、正極及び負極の厚みを0.4mmとした以外は、実施例1と同様に非水二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
実施例1において負極集電体に厚さ20μmの孔無しアルミニウム箔を用い、正極及び負極の厚みを0.4mmとした以外は、実施例1と同様に非水二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
<比較例4>
実施例1において負極集電体に30mm×40mmに切り取った銅エキスパンドメタル(SW=4mm、LW=8mm、空隙度60%)を使用し、厚みを0.4mmとした以外は、実施例1と同様に非水二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
実施例1において負極集電体に30mm×40mmに切り取った銅エキスパンドメタル(SW=4mm、LW=8mm、空隙度60%)を使用し、厚みを0.4mmとした以外は、実施例1と同様に非水二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
<比較例5>
実施例1において負極集電体に厚さ20μmの銅箔を用い、正極及び負極の厚みを0.4mmとした以外は、実施例1と同様に非水二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
実施例1において負極集電体に厚さ20μmの銅箔を用い、正極及び負極の厚みを0.4mmとした以外は、実施例1と同様に非水二次電池(Li4Ti5O12/Li1.1Al0.1Mn1.8O4電池)を作製した。
<比較例6>
実施例6において正極・負極厚みを6.0mm、単位面積当たりの容量を60mAh、電解液量を6.5mLにした以外は、実施例6と同様に非水電解質二次電池(Li4Ti5O12/LiNi0.5Mn1.5O4電池)を作製した。
実施例6において正極・負極厚みを6.0mm、単位面積当たりの容量を60mAh、電解液量を6.5mLにした以外は、実施例6と同様に非水電解質二次電池(Li4Ti5O12/LiNi0.5Mn1.5O4電池)を作製した。
実施例及び比較例の結果を表1に示す。
表1から分かるように、実施例1~4の非水電解質二次電池は、正極・負極の電極の厚みが薄くなるほど容量維持率が向上している。またバインダーが集電体を取り囲むように存在し、電極の脱落等は見られなかった。
比較例1では、初期1/12Cレートでの充放電において設計容量の60%しか容量が得られなかった。これは電極が厚くなりすぎ、イオンの拡散が追いついていないためと推測される。
実施例5の非水電解質二次電池は、集電体にアルミニウム多孔質構造体を用いていること以外は、実施例1の非水電解質二次電池とほぼ同じ条件であり、良く似た容量維持率の数値が得られているので、多孔質構造体であっても、エキスパンドメタルと同様の本発明の効果が得られていることがわかる。
負極材料としてグラファイトを使用した比較例2では、500サイクル以降容量減少が顕著となった。測定後セルを分解すると負極が脱落していた。サイクル時の膨張収縮が大きいことによる電極の脆性破壊による脱落であったと推測される。
比較例3,5では、非水電解質二次電池作成時に負極活物質層が集電体より剥離した。これは集電体と活物質層の線膨張係数の違いによる剥離と考えられ、集電体の材質にかかわらず剥離する結果となったため、箔への塗付は厚みのある電極には向かないことがわかる。
比較例4では、銅のエキスパンドメタルを集電体に用いていること以外は実施例1の非水電解質二次電池と同じ条件であるが、容量維持率が減少し集電体からの電極剥離も起こっている。負極活物質にLTOを用いた場合、材質としてアルミニウムを用いるほうが接着性が良いという予想外の効果がある。
実施例6~9の非水電解質二次電池は、正極・負極の電極の厚みが薄くなるほど容量維持率が向上している。電極の脱落等は見られなかった。
比較例6では、初期1/12Cレートでの充放電において設計容量の58%しか容量が得られなかった。電極が厚くなりすぎ、イオンの拡散が追いついていないことがわかる。
10 集電体
11 負極活物質層
11 負極活物質層
Claims (8)
- 正極、負極、セパレータ及び非水電解質を用いて構成される非水電解質二次電池であって、前記正極が少なくとも正極活物質と集電体とで構成され、前記負極が少なくとも負極活物質と集電体とで構成され、次の(a),(b)及び(c)の全ての要件を満たす、非水電解質二次電池。
(a)前記負極活物質としてチタン酸リチウムを含む、
(b)前記負極の集電体は有孔構造を有するアルミニウム又はその合金である、
(c)前記負極の厚みが0.4mm以上5mm以下である。 - 前記負極の集電体の有孔構造がメッシュ形状、パンチング形状、エキスパンド形状又は多孔質構造の何れかである、請求項1に記載の非水電解質二次電池。
- 前記正極活物質としてLi1+xMyMn2-x-yO4(0≦x≦0.34、0<y≦0.6、MはAl、Mg、Zn、Ni、Co、Fe及びCrからなる群から選ばれる少なくとも1種)を含む、請求項1又は請求項2に記載の非水電解質二次電池。
- 前記正極の集電体が有孔構造を有するアルミニウム又はその合金である、請求項1又は請求項2に記載の非水電解質二次電池。
- 前記正極の厚みが0.4mm以上5mm以下である、請求項1又は請求項2に記載の非水電解質二次電池。
- 前記正極の集電体の有孔構造がメッシュ形状、パンチング形状、エキスパンド形状又は多孔質構造の何れかである、請求項1又は請求項2に記載の非水電解質二次電池。
- 前記チタン酸リチウムがスピネル構造である、請求項1又は請求項2に記載の非水電解質二次電池。
- 請求項1又は請求項2に記載の非水電解質二次電池を複数個接続してなる組電池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-116766 | 2012-05-22 | ||
JP2012116766A JP2013243090A (ja) | 2012-05-22 | 2012-05-22 | 非水電解質二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013176130A1 true WO2013176130A1 (ja) | 2013-11-28 |
Family
ID=49623819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/064081 WO2013176130A1 (ja) | 2012-05-22 | 2013-05-21 | 非水電解質二次電池 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2013243090A (ja) |
TW (1) | TW201405926A (ja) |
WO (1) | WO2013176130A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111115680A (zh) * | 2019-12-30 | 2020-05-08 | 浙江凯社德材料技术有限公司 | 一种钛酸锂材料的制备方法 |
CN111137916A (zh) * | 2019-12-30 | 2020-05-12 | 浙江凯社德材料技术有限公司 | 一种自活性钛酸锂材料的制备方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5961067B2 (ja) * | 2012-08-02 | 2016-08-02 | 古河電池株式会社 | 非水電解質二次電池、及び非水電解質二次電池の製造方法 |
EP3273517B1 (en) | 2015-02-16 | 2023-01-18 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte battery and battery pack |
US10957936B2 (en) | 2015-11-06 | 2021-03-23 | Showa Denko Materials Co., Ltd. | Lithium ion secondary battery |
CN108866369B (zh) | 2017-05-08 | 2020-03-17 | 清华大学 | 三维多孔复合材料 |
CN108878895B (zh) | 2017-05-08 | 2021-01-05 | 清华大学 | 燃料电池电极及燃料电池 |
CN108872338B (zh) | 2017-05-08 | 2021-08-03 | 清华大学 | 生物传感器微电极及生物传感器 |
CN108878768B (zh) * | 2017-05-08 | 2020-12-04 | 清华大学 | 锂离子电池负极及锂离子电池 |
CN109030595B (zh) | 2017-06-09 | 2023-09-26 | 清华大学 | 生物传感器电极及生物传感器 |
CN109037699B (zh) | 2017-06-09 | 2021-10-12 | 清华大学 | 燃料电池电极及燃料电池 |
CN109016778B (zh) | 2017-06-09 | 2020-09-08 | 清华大学 | 多孔金属复合结构的制备方法 |
CN109019563B (zh) | 2017-06-09 | 2021-02-26 | 清华大学 | 多孔金属复合结构 |
JP7411942B2 (ja) * | 2020-05-29 | 2024-01-12 | パナソニックIpマネジメント株式会社 | 非水電解質電池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004296256A (ja) * | 2003-03-27 | 2004-10-21 | Toshiba Corp | 非水電解質二次電池 |
JP2008071612A (ja) * | 2006-09-14 | 2008-03-27 | Hitachi Maxell Ltd | 扁平形非水電解液二次電池 |
JP2011181367A (ja) * | 2010-03-02 | 2011-09-15 | Sumitomo Chemical Co Ltd | 非水電解質二次電池 |
JP2011222388A (ja) * | 2010-04-13 | 2011-11-04 | Sharp Corp | 積層型二次電池 |
JP2011233277A (ja) * | 2010-04-26 | 2011-11-17 | Panasonic Corp | 蓄電デバイス |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008060028A (ja) * | 2006-09-04 | 2008-03-13 | Kri Inc | 蓄電デバイス |
-
2012
- 2012-05-22 JP JP2012116766A patent/JP2013243090A/ja active Pending
-
2013
- 2013-05-21 WO PCT/JP2013/064081 patent/WO2013176130A1/ja active Application Filing
- 2013-05-22 TW TW102118109A patent/TW201405926A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004296256A (ja) * | 2003-03-27 | 2004-10-21 | Toshiba Corp | 非水電解質二次電池 |
JP2008071612A (ja) * | 2006-09-14 | 2008-03-27 | Hitachi Maxell Ltd | 扁平形非水電解液二次電池 |
JP2011181367A (ja) * | 2010-03-02 | 2011-09-15 | Sumitomo Chemical Co Ltd | 非水電解質二次電池 |
JP2011222388A (ja) * | 2010-04-13 | 2011-11-04 | Sharp Corp | 積層型二次電池 |
JP2011233277A (ja) * | 2010-04-26 | 2011-11-17 | Panasonic Corp | 蓄電デバイス |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111115680A (zh) * | 2019-12-30 | 2020-05-08 | 浙江凯社德材料技术有限公司 | 一种钛酸锂材料的制备方法 |
CN111137916A (zh) * | 2019-12-30 | 2020-05-12 | 浙江凯社德材料技术有限公司 | 一种自活性钛酸锂材料的制备方法 |
CN111115680B (zh) * | 2019-12-30 | 2022-05-06 | 江苏众钠能源科技有限公司 | 一种钛酸锂材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201405926A (zh) | 2014-02-01 |
JP2013243090A (ja) | 2013-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013176130A1 (ja) | 非水電解質二次電池 | |
JP6775923B2 (ja) | リチウム二次電池用正極および負極、そしてこれらの製造方法 | |
JP6746506B2 (ja) | 非水電解液二次電池 | |
JP6163613B2 (ja) | リチウム二次電池 | |
KR20130012007A (ko) | 비수 전해액 2차 전지용 양극 활물질과 그 제조 방법 및 그것을 이용한 비수 전해액 2차 전지 | |
JP2012174546A (ja) | 非水電解質二次電池 | |
CN109417167A (zh) | 用于锂离子电池的包覆钛酸锂 | |
JP2015118742A (ja) | 非水電解質二次電池 | |
JP2006318868A (ja) | リチウム二次電池 | |
JP2014006971A (ja) | 非水電解質二次電池及びそれを用いた組電池 | |
JP2012129095A (ja) | 非水電解質二次電池用バイポーラ電極、および、それを用いた非水電解質二次電池。 | |
JP2012156087A (ja) | 非水電解質二次電池 | |
JP2014022321A (ja) | 捕捉剤を含む非水電解質二次電池 | |
JP6136057B2 (ja) | 非水電解質二次電池及び二次電池モジュール | |
JP2013191484A (ja) | 負極活物質層、その製造方法及び非水電解質二次電池 | |
WO2013108841A1 (ja) | 捕捉体を含む非水電解質二次電池 | |
WO2013084840A1 (ja) | 非水電解質二次電池及びそれを用いた組電池 | |
JP7003775B2 (ja) | リチウムイオン二次電池 | |
JP2015187929A (ja) | 非水電解質二次電池 | |
CN108695513A (zh) | 锂离子二次电池用正极活性物质、正极及锂离子二次电池 | |
JP6331246B2 (ja) | 非水電解質二次電池用電極及びそれを用いた電池 | |
JP5758731B2 (ja) | 非水電解質二次電池 | |
JP2015225761A (ja) | 電極活物質混合物、それを用いて作製した電極及び非水電解質二次電池 | |
JP2017183048A (ja) | 正極活物質、及びそれを用いた正極並びにリチウムイオン二次電池 | |
JP4021651B2 (ja) | リチウムイオン二次電池用正極板およびそれを用いたリチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13793547 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13793547 Country of ref document: EP Kind code of ref document: A1 |