WO2013176126A1 - 液晶表示装置、データ線駆動回路、および液晶表示装置の駆動方法 - Google Patents

液晶表示装置、データ線駆動回路、および液晶表示装置の駆動方法 Download PDF

Info

Publication number
WO2013176126A1
WO2013176126A1 PCT/JP2013/064075 JP2013064075W WO2013176126A1 WO 2013176126 A1 WO2013176126 A1 WO 2013176126A1 JP 2013064075 W JP2013064075 W JP 2013064075W WO 2013176126 A1 WO2013176126 A1 WO 2013176126A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
period
gradation
liquid crystal
crystal display
Prior art date
Application number
PCT/JP2013/064075
Other languages
English (en)
French (fr)
Inventor
宮田 英利
忠夫 森下
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/399,073 priority Critical patent/US9653013B2/en
Publication of WO2013176126A1 publication Critical patent/WO2013176126A1/ja
Priority to US15/416,332 priority patent/US20170140722A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0823Several active elements per pixel in active matrix panels used to establish symmetry in driving, e.g. with polarity inversion
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0828Several active elements per pixel in active matrix panels forming a digital to analog [D/A] conversion circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0248Precharge or discharge of column electrodes before or after applying exact column voltages
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device that performs low-frequency driving, a data line driving circuit used in the liquid crystal display device, and a driving method of the liquid crystal display device.
  • Patent Document 1 a gate electrode (scanning line) of a liquid crystal display device is sequentially selected and a pixel electrode of a voltage applied to the source line (hereinafter sometimes referred to as “source line voltage”).
  • source line voltage a voltage applied to the source line
  • a method for driving a display device in which a rest period in which all gate lines are in a non-scanning state is provided after a writing period in which writing is performed.
  • the rest period is set longer than the writing period, and the sum of the writing period and the rest period is set to one frame period (also referred to as one vertical period).
  • the idle period for example, it is possible not to give a control signal to the gate driver and / or the source driver. Accordingly, the operation of the gate driver and / or the source driver can be paused, so that power consumption can be reduced.
  • the driving performed by providing a pause period after the writing period as in the driving method described in Patent Document 1 is called, for example, “low frequency driving”.
  • a parasitic capacitance is formed between the pixel electrode and the source line.
  • the potential variation occurs in the source line, the potential variation is transmitted to the pixel electrode corresponding to the non-selected gate line via the parasitic capacitance. Therefore, the potential of the pixel electrode (hereinafter referred to as “pixel potential”) varies.
  • pixel potential the potential of the pixel electrode
  • what value is set to the voltage of the source line during the idle period is not mentioned. Therefore, depending on the setting of the voltage value of the source line during the pause period, the voltage of the source line changes greatly at the time of switching from the writing period to the pause period, and the pixel potential varies greatly.
  • the present invention provides a liquid crystal display device that suppresses deterioration of display quality when performing low-frequency driving, a data line driving circuit used in the liquid crystal display device, and a driving method of the liquid crystal display device.
  • the purpose is to do.
  • a writing period in which a plurality of scanning lines are sequentially selected and a pause period that is longer than the writing period and in which all of the plurality of scanning lines are in a non-selected state.
  • a liquid crystal display device capable of driving a liquid crystal display unit in a first drive mode that appears alternately with a first drive frame period composed of the writing period and the pause period as a cycle, A plurality of data lines, a plurality of scanning lines, a plurality of pixel electrodes arranged in a matrix corresponding to the plurality of data lines and the plurality of scanning lines, and a plurality of pixel electrodes corresponding to the plurality of pixel electrodes
  • the liquid crystal display unit including a common electrode provided;
  • a data line driving circuit for applying a data signal to the plurality of pixel electrodes via the plurality of data lines, and inverting the polarity of the data signal for each writing period;
  • the data line driving circuit includes: In the writing period, any one of a plurality of positive polarity gradation voltages or a plurality of negative polarity gradation voltages is set as the voltage of the data signal, In the idle period, the data is
  • the data line driving circuit is configured to change the voltage of the data signal to a gradation voltage indicating a maximum gradation among the plurality of positive gradation voltages and the plurality of negative gradation voltages.
  • the data line driving circuit converts the voltage of the data signal between a gradation voltage indicating a maximum gradation among the plurality of positive polarity gradation voltages and the plurality of negative polarity gradation voltages. It is characterized in that it is a value between the gradation voltage indicating the medium maximum gradation.
  • the data line driving circuit converts the voltage of the data signal between a gradation voltage indicating a maximum gradation among the plurality of positive polarity gradation voltages and the plurality of negative polarity gradation voltages. It is characterized by an average value with a gradation voltage indicating the maximum gradation among them.
  • the data line driving circuit converts the voltage of the data signal between a gradation voltage indicating a minimum gradation among the plurality of positive gradation voltages and the plurality of negative gradation voltages. It is characterized in that it is a value between the gradation voltage indicating the minimum gradation among them.
  • a sixth aspect of the present invention is the fifth aspect of the present invention,
  • the data line driving circuit converts the voltage of the data signal between a gradation voltage indicating a minimum gradation among the plurality of positive gradation voltages and the plurality of negative gradation voltages. It is characterized by an average value with a gradation voltage indicating the minimum gradation among them.
  • a common potential supply circuit for applying a common potential to the common electrode sets the common potential to the same value in the first drive mode and the second drive mode.
  • the data line driving circuit includes a first terminal for receiving a voltage signal for a pause period indicating a voltage of a data signal in the pause period, and a first signal for receiving a switching signal indicating switching between the write period and the pause period. And two terminals.
  • the display control circuit supplies the pause period voltage signal and the switching signal to the first terminal and the second terminal, respectively.
  • An eleventh aspect of the present invention is any one of the first to tenth aspects of the present invention.
  • the liquid crystal display unit further includes a thin film transistor in which each pixel electrode and a data line corresponding to the pixel electrode are connected to each other and a channel layer is formed of an oxide semiconductor.
  • a twelfth aspect of the present invention is a plurality of data lines, the plurality of scanning lines, a plurality of pixel electrodes arranged in a matrix corresponding to the plurality of data lines and the plurality of scanning lines,
  • a liquid crystal display unit including a common electrode provided corresponding to the plurality of pixel electrodes, a writing period in which the plurality of scanning lines are sequentially selected, a length longer than the scanning period, and the plurality of the plurality of scanning lines Liquid crystal capable of driving the liquid crystal display unit in a first drive mode in which a rest period in which all of the scanning lines are in a non-selected state appears alternately with a first drive frame period composed of the scan period and the rest period as a cycle.
  • a data line driving circuit that is used in a display device, applies a data signal to the plurality of pixel electrodes via the plurality of data lines, and inverts the polarity of the data signal for each writing period;
  • a first terminal for receiving a voltage signal for a pause period indicating a voltage of the data signal in the pause period;
  • a second terminal for receiving a switching signal indicating switching between the writing period and the pause period;
  • Based on the switching signal, in the writing period any one of a plurality of positive gradation voltages or a plurality of negative gradation voltages is set as the voltage of the data signal, and in the suspension period, the suspension period
  • a voltage switching circuit that uses the voltage indicated by the voltage signal for use as the voltage of the data signal,
  • the voltage indicated by the voltage signal for the pause period is within a range in which the maximum voltage among the plurality of positive polarity gradation voltages is an upper limit and the minimum voltage among the plurality of negative polarity gradation voltages is a
  • a thirteenth aspect of the present invention includes a plurality of data lines, a plurality of scanning lines, a plurality of pixel electrodes arranged in a matrix corresponding to the plurality of data lines and the plurality of scanning lines,
  • a liquid crystal display unit including a common electrode provided corresponding to a plurality of pixel electrodes, a writing period in which the plurality of scanning lines are sequentially selected, and a length longer than the scanning period and the plurality of scannings
  • a liquid crystal display capable of driving the liquid crystal display unit in a first drive mode in which a rest period in which any of the lines is in a non-selected state alternately appears with a first drive frame period composed of the scanning period and the rest period as a cycle
  • a method for driving an apparatus comprising: A data line driving step of applying a data signal to the plurality of pixel electrodes via the plurality of data lines and inverting the polarity of the data signal for each writing period;
  • the data line driving step includes: In the writing period, any one of a
  • the maximum voltage among the plurality of positive polarity gradation voltages is set as the upper limit, and the plurality of negative electrodes
  • a voltage having a value within a range having a minimum value of the minimum gray-scale voltage as a lower limit is supplied to each data line.
  • the potential fluctuation of the data line at the time of switching from the write period to the pause period becomes smaller than the conventional one.
  • the fluctuation of the pixel potential that occurs at the time of switching from the writing period to the pause period is smaller than in the past.
  • the difference between the display brightness in the pause period and the display brightness in the writing period of the next frame period becomes smaller than in the past. Therefore, flicker that occurs at the time of switching from the pause period to the writing period (at the time of switching the frame period) is suppressed more than in the past.
  • the deterioration of display quality can be suppressed as compared with the conventional case.
  • the voltage of the data signal in the pause period is a gradation voltage (maximum gradation positive voltage) indicating a maximum gradation among the plurality of positive gradation voltages, a plurality of gradation voltages.
  • the gradation voltage indicating the maximum gradation among the negative gradation voltages (maximum gradation negative voltage)
  • the gradation voltage indicating the minimum gradation among the positive gradation voltages minimum gradation positive voltage
  • minimum gradation negative voltage the average value of the gradation voltages (minimum gradation negative voltage) indicating the minimum gradation among the plurality of negative gradation voltages.
  • the voltage of the data signal in the idle period is set to a value between the maximum gradation positive polarity voltage and the maximum gradation negative polarity voltage.
  • the same effect can be achieved.
  • writing from the suspension period is performed with the positive polarity and the negative polarity.
  • the variation of the pixel potential at the time of switching to the period is made substantially uniform. Thereby, the suppression effect of a display quality fall can further be improved.
  • the voltage of the data signal during the idle period is the average value of the maximum gradation positive polarity voltage and the maximum gradation negative polarity voltage. For this reason, the fluctuation of the pixel potential at the time of switching from the pause period to the writing period is substantially uniformed between the positive polarity and the negative polarity. Thereby, the suppression effect of a display quality fall can further be improved.
  • the voltage of the data signal in the idle period is set to a value between the minimum grayscale positive voltage and the maximum grayscale negative voltage.
  • the same effect can be achieved.
  • writing from the suspension period is performed with the positive polarity and the negative polarity.
  • the variation of the pixel potential at the time of switching to the period is made substantially uniform. Thereby, the suppression effect of a display quality fall can further be improved.
  • the voltage of the data signal in the idle period is the average value of the minimum gradation positive voltage and the maximum gradation negative voltage. For this reason, the fluctuation of the pixel potential at the time of switching from the rest period to the writing period is substantially uniformed between the positive polarity and the negative polarity. Thereby, the suppression effect of a display quality fall can further be improved.
  • the seventh aspect of the present invention it is possible to switch between the first drive mode and the second drive mode, so that it is possible to display according to the application.
  • the common potential becomes the same value in the first drive mode and the second drive mode. There is no need to switch the common potential according to the switching of the drive mode. For this reason, the deterioration of display quality can be suppressed with a simple configuration.
  • the ninth aspect of the present invention it is possible to realize a liquid crystal display device capable of suppressing a reduction in display quality when performing low-frequency driving using a data line driving circuit including a first terminal and a second terminal.
  • the display control circuit provides the data line driving circuit with the pause period voltage signal and the switching signal, and thereby the same effect as in the first aspect of the present invention can be achieved.
  • a thin film transistor in which a channel layer is formed of an oxide semiconductor is used. For this reason, the pixel potential can be sufficiently maintained. As a result, even if a pause period longer than the writing period is provided, display quality is unlikely to deteriorate.
  • the data line driving circuit according to the twelfth aspect is used in a liquid crystal display device capable of driving a liquid crystal display unit in the first driving mode, thereby The same effects as in the above aspect can be obtained.
  • the same effects as in the first aspect of the present invention can be achieved.
  • FIG. 1 is a block diagram illustrating an overall configuration of a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram for explaining a parasitic capacitance formed in a pixel formation portion in the liquid crystal display device shown in FIG. 1. It is a figure for demonstrating a flicker pattern.
  • (A) is a figure which shows a flicker pattern.
  • (B) is a diagram showing the polarity in the Nth frame.
  • (C) is a diagram showing the polarity in the (N + 1) th frame. It is a figure for demonstrating the display brightness
  • (A) is a waveform diagram showing the voltage of the source line SLj.
  • (B) is a waveform diagram showing a pixel potential in the pixel formation portion 110 in the i-th row and j-th column corresponding to the source line SLj.
  • (C) is a waveform diagram showing display luminance in the pixel formation unit 110 in the i-th row and j-th column. It is a figure which shows the simulation result of the display brightness
  • (A) is a waveform diagram showing the voltage of the source line SLj.
  • (B) is a waveform diagram showing a pixel potential in the pixel formation portion 110 in the i-th row and j-th column corresponding to the source line SLj.
  • (C) is a waveform diagram showing display luminance in the pixel formation unit 110 in the i-th row and j-th column. It is the figure which compared the display brightness obtained by the liquid crystal display device which concerns on a prior art example, and the display brightness obtained by the liquid crystal display device which concerns on the said 1st Embodiment.
  • (A) is a figure which shows the display brightness
  • (B) is a figure which shows the display brightness
  • (A) is a waveform diagram showing the voltage of the source line SLj.
  • (B) is a waveform diagram showing a pixel potential in the pixel formation portion 110 in the i-th row and j-th column corresponding to the source line SLj. It is a figure for demonstrating operation
  • (A) is a waveform diagram showing the voltage of the source line SLj.
  • (B) is a waveform diagram showing a pixel potential in the pixel formation portion 110 in the i-th row and j-th column corresponding to the source line SLj. It is a block diagram for demonstrating the structure of the source driver in the 3rd Embodiment of this invention.
  • the codes relating to voltage, potential, and capacitance may represent the magnitude of the voltage, potential, and capacitance.
  • each of m and n represents an integer of 2 or more.
  • FIG. 1 is a block diagram showing the configuration of an active matrix type liquid crystal display device 10 according to the first embodiment of the present invention.
  • the liquid crystal display device 10 includes a liquid crystal display unit 100, a display control circuit 200, a source driver (data line driving circuit) 300, a gate driver (scanning line driving circuit) 400, a common potential supply circuit 500, and A reference voltage generation circuit 600 is provided.
  • Each of the source driver 300, the gate driver 400, the common potential supply circuit 500, and the reference voltage generation circuit 600 is supplied with power from a power supply circuit (not shown).
  • the liquid crystal display device 10 according to the present embodiment is a liquid crystal display device that can operate with low-frequency driving.
  • low-frequency driving mode a mode in which low-frequency driving (driving in which one frame period is composed of a writing period and a pause period)
  • normal driving driving in which one frame period is composed of a writing period
  • the mode to be performed is called “normal drive mode”.
  • the low frequency drive mode and the normal drive mode correspond to the first drive mode and the second drive mode, respectively.
  • Each frame period in the low frequency drive mode and each frame period in the normal drive mode correspond to a first drive frame period and a second drive frame period, respectively.
  • the liquid crystal display device 10 according to the present embodiment can be switched between, for example, a low-frequency drive mode and a normal drive mode, but it is sufficient that it can be operated at least in the low-frequency drive mode. Further, in the liquid crystal display devices according to the present embodiment and each of the embodiments described later, polarity inversion driving is performed to prevent the deterioration of the liquid crystal.
  • the liquid crystal display unit 100 includes n source lines (data lines) SL1 to SLn, m gate lines (scanning lines) GL1 to GLm, these n source lines SL1 to SLn and m gate lines GL1.
  • a plurality of (m ⁇ n) pixel forming portions 110 provided corresponding to the intersections with GLm are provided.
  • One pixel one subpixel in the case of color display
  • One pixel forming unit 110 includes a TFT (Thin Film Transistor) 111 having a gate terminal connected to a gate line GLi passing through a corresponding intersection and a source terminal connected to a source line SLj passing through the intersection.
  • a pixel electrode 112 connected to the drain terminal of the TFT 111, a common electrode (also referred to as a counter electrode) 113 commonly provided corresponding to the m ⁇ n pixel formation portions 110, an auxiliary electrode 114,
  • the liquid crystal layer is sandwiched between the pixel electrode 112 and the common electrode 113.
  • the auxiliary electrode 114 is provided along each gate line, for example.
  • the pixel electrode 112 and the common electrode 113 form a liquid crystal capacitor Clc, and the pixel electrode 112 and the auxiliary electrode 114 form an auxiliary capacitor Cst.
  • the common electrode 113 and the auxiliary electrode 114 are given the same potential.
  • the auxiliary electrode 114 may be driven for each row.
  • the liquid crystal display unit 100 in this embodiment is a normally black system. Note that the liquid crystal display unit 100 in this embodiment may be either a vertical electric field method or a horizontal electric field method.
  • an oxide TFT is used as the TFT 111.
  • the channel layer of the TFT 111 is formed of IGZO (InGaZnOx) containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as main components.
  • IGZO-TFT a TFT using IGZO as a channel layer.
  • a silicon-based TFT (referred to as a TFT using amorphous silicon or the like as a channel layer) has a relatively large off-leakage current
  • a silicon-based TFT when used as the TFT 111, the charge held in the pixel capacitor Leakage occurs through the TFT 111, and as a result, the voltage to be held in the OFF state varies.
  • the IGZO-TFT has much smaller off-leakage current than the silicon-based TFT. For this reason, the voltage written in the pixel capacitor can be held for a longer period.
  • oxide semiconductors other than IGZO for example, indium, gallium, zinc, copper (Cu), silicon (Si), tin (Sn), aluminum (Al), calcium (Ca), germanium (Ge), and lead ( A similar effect can be obtained even when an oxide semiconductor containing at least one of Pb) is used for the channel layer.
  • the display control circuit 200 receives an image signal DAT sent from the outside and a timing signal group TG such as a horizontal synchronization signal and a vertical synchronization signal, and controls the digital video signal DV and image display on the liquid crystal display unit 100 in the writing period.
  • a timing signal group TG such as a horizontal synchronization signal and a vertical synchronization signal
  • Source start pulse SSP, source clock SCK, latch strobe signal LS, polarity signal POL, switching signal SW, gate start pulse GSP, and gate clock GCK The switching signal SW indicates switching between the writing period and the pause period in the low frequency driving mode.
  • the display control circuit 200 stops the output of, for example, the digital video signal DV, the source start pulse SSP, the source clock SCK, the latch strobe signal LS, the polarity signal POL, the gate start pulse GSP, and the gate clock GCK in the idle period. Or set them at a fixed potential.
  • the source driver 300 receives a digital video signal DV, a source start pulse SSP, a source clock SCK, a latch strobe signal LS, a polarity signal POL, and a switching signal SW output from the display control circuit 200, and sends a data signal to each source line. Supply. Based on the switching signal SW, the source driver 300 can operate in accordance with the writing period or the rest period. In the writing period, the source driver 300 sequentially holds the digital video signal DV indicating the gradation value corresponding to the data voltage to be applied to each source line at the timing when the pulse of the source clock SCK is generated.
  • the source driver 300 converts the held digital video signal DV into a grayscale voltage which is an analog voltage in accordance with the polarity signal POL at the timing when the pulse of the latch strobe signal LS is generated, and after the conversion, A data signal indicating a gradation voltage (data voltage) is supplied to all source lines.
  • the polarity inversion drive is performed by inverting the polarity of the voltage of each source line in accordance with the polarity signal POL.
  • the source driver 300 applies the idle period voltage V_m to all the source lines.
  • the source driver 300 has one of the plurality of positive gradation voltages or the plurality of negative gradation voltages when the polarity of the data signal should be positive or negative. Any one of them is used as a data voltage, and in the idle period, the idle period voltage V_m is used as a data voltage. In the present embodiment, the idle period voltage V_m may be generated in the source driver 300 or may be supplied from the outside of the source driver 300 (for example, the display control circuit 200). A detailed description of the rest period voltage V_m will be described later. In the low frequency driving mode, the source driver 300 repeats the operation in the writing period and the operation in the idle period as a cycle of one frame period.
  • the reference voltage generation circuit 600 generates a plurality of reference voltage signals VR that are used as a reference when a data signal for displaying a predetermined gradation on the liquid crystal display unit 100 is generated in the source driver 300.
  • a reference voltage signal VR is supplied to the source driver 300.
  • the gate driver 400 applies the active scanning signal to each of the gate lines GL1 to GLm based on the gate start pulse GSP and the gate clock GCK output from the display control circuit 200, whereby the gate driver 400 The lines GL1 to GLm are scanned. Further, the gate driver 400 does not scan the gate lines GL1 to GLm during the idle period. In the low frequency drive mode, the gate driver 400 repeats the operation in the writing period and the operation in the idle period as a cycle of one frame period.
  • the common potential supply circuit 500 applies a predetermined common potential Vcom to each of the common electrode 113 and the auxiliary electrode 114.
  • the pixel capacitor holds a voltage corresponding to a potential difference between the pixel potential and the common potential Vcom.
  • the common potential supply circuit 500 applies the common potential Vcom only to the common electrode 113, and each auxiliary electrode 114 is supplied with a predetermined value from, for example, the auxiliary electrode drive circuit. Is given.
  • an image based on the image signal DAT transmitted from the outside of the liquid crystal display device 10 is displayed on the liquid crystal display unit 100.
  • FIG. 2 is a circuit diagram for explaining the parasitic capacitance formed in the pixel formation portion 110 in the liquid crystal display device 10 shown in FIG.
  • a parasitic capacitance Cgd (hereinafter referred to as “first parasitic capacitance”) is formed between the pixel electrode 112 and the i-th gate line GLi.
  • a parasitic capacitance Csa (hereinafter referred to as “second parasitic capacitance”) is formed between the pixel electrode 112 and the j-th source line SLj, and a parasitic capacitance is formed between the pixel electrode 112 and the j + 1-th column source line SLj + 1.
  • a capacitor Csb (hereinafter referred to as “third parasitic capacitor”) is formed.
  • the flicker pattern is a display of white gradation or intermediate gradation (hereinafter simply referred to as “white gradation”) and black gradation, as shown in FIG. Is a pattern in which each pixel 20 is alternately performed.
  • white gradation or intermediate gradation
  • black gradation as shown in FIG. Is a pattern in which each pixel 20 is alternately performed.
  • 3B and 3C respectively show the polarities of the pixels in the Nth frame period (N is a natural number) and the N + 1th frame period when the flicker pattern is displayed by performing dot inversion driving.
  • 3 is a diagram illustrating the polarity of a pixel 20. As shown in FIGS. 3B and 3C, the polarity of each pixel 20 is inverted in each of the horizontal direction and the vertical direction, and the polarity of each pixel 20 is inverted every frame period. In the flicker patterns shown in FIGS. 3A to 3C, the white gradation pixels 20 all have the same polarity in each frame and the polarity is inverted every frame period. Such a flicker pattern is suitable for a purpose of examining a luminance difference between polarities.
  • FIG. 4 is a diagram for explaining the display luminance obtained by the liquid crystal display device according to the conventional example. More specifically, FIG. 4A is a waveform diagram showing a voltage (data voltage) of the source line SLj, and FIG. 4B is a graph in the pixel formation unit 110 in the i-th row and j-th column corresponding to the source line SLj. FIG. 4C is a waveform diagram showing display luminance in the pixel formation portion 110 in the i-th row and j-th column. In FIGS. 4A to 4C, the flicker patterns shown in FIGS. 3A to 3C are displayed. The display luminance shown in FIG. 4C changes in accordance with the potential difference between the pixel potential shown in FIG. 4B and the common potential Vcom.
  • FIG. 4B the value of the common potential Vcom illustrated in FIG. 4B is merely an example, and is not limited to the value. It should be noted that the waveform bluntness and the length of each period in FIGS. 4A to 4C are schematically shown (FIGS. 6A to 6C described later). ), FIG. 8 (A), FIG. 8 (B), FIG. 9 (A), and FIG. 9 (B)).
  • the Nth to N + 2 frame periods are represented by “F (N) to F (N + 2)”, respectively, and the pixel forming unit 110 in the i-th row and j-th column has a positive polarity.
  • a period during which a data voltage is to be written (hereinafter referred to as “positive writing period”) is represented by “HWP”, and a period during which a negative data voltage is to be written into the pixel formation unit 110 in the i-th row and j-th column (hereinafter referred to as “negative-polarity writing”).
  • the period is referred to as “LWP”, and the suspension period is represented as “SP”.
  • the positive polarity writing period HWP is a writing period for performing positive white gradation display and negative black gradation display in the flicker pattern.
  • the negative polarity writing period LWP is a writing period for performing negative white gradation display and positive black gradation display in the flicker pattern.
  • Each frame period includes a writing period and a pause period. The length of each frame period is 200 ms, the length of each writing period is 16.7 ms, and the length of the pause period SP is 183.3 ms. That is, the refresh rate is 5 Hz. Note that the suspension period SP may be longer than each writing period, and the length of each period and the refresh rate are not limited to the example shown here.
  • a gray scale voltage indicating the maximum gray scale among a plurality of positive gray scale voltages (hereinafter referred to as “maximum gray scale positive voltage”) is represented by “V_hmax” and a plurality of negative polarities.
  • a gradation voltage indicating the maximum gradation among the gradation voltages (hereinafter referred to as “maximum gradation negative voltage”) is represented by “V_lmax”, and the minimum gradation among the plurality of positive gradation voltages is represented by “V_lmax”.
  • the gradation voltage (hereinafter referred to as “minimum gradation positive voltage”) is represented by “V_hmin”, and the gradation voltage indicating the minimum gradation among the plurality of negative gradation voltages (hereinafter referred to as “minimum gradation negative electrode”). "V.Imin”).
  • the maximum gradation positive voltage V_hmax is the maximum voltage among the plurality of positive gradation voltages
  • the maximum gradation negative voltage V_lmax is the plurality of negative gradation levels.
  • the minimum voltage among the regulated voltages, the minimum gradation positive voltage V_hmin is the minimum voltage among the plurality of positive gradation voltages, and the minimum gradation negative voltage V_lmin is the plurality of negative gradation voltages. Is the maximum voltage.
  • the magnitude relationship among the maximum gradation positive voltage V_hmax, the maximum gradation negative voltage V_lmax, the minimum gradation positive voltage V_hmin, and the minimum gradation negative voltage V_lmin is given by the following equation (1).
  • the operation in the Nth frame period F (N) will be described.
  • the voltage of the source line SLj in the j-th column is the maximum gradation positive voltage V_hmax and the minimum floor in the positive writing period HWP.
  • the negative polarity voltage V_lmin is repeated every horizontal period.
  • the polarity and the black and white gradation are inverted for each pixel 20, so that the voltage of the source line SLj + 1 in the (j + 1) th column is set to the maximum gradation positive voltage V_hmax and the minimum gradation negative voltage V_lmin by one horizontal.
  • the gate lines GL1 to GLm are scanned (selected sequentially) based on the gate start pulse GSP and the gate clock GCK. Note that the operation before the data voltage is actually written to the pixel formation unit 110 in the i-th row and j-th column in the positive polarity writing period HWP will be described later in the description of the operation in the Nth frame period F (N + 2).
  • the TFT 111 in the pixel forming unit 110 in the i-th row and j-th column is turned on, and the maximum gradation positive voltage V_max is applied to the pixel electrode via the j-th source line SLj. 112 is applied.
  • the potential fluctuation of the gate line GLi is transmitted to the pixel electrode 112 via the first parasitic capacitance Cgd.
  • the field through voltage ⁇ Vgd generated at the pixel electrode 112 in this way is given by the following equation (2).
  • ⁇ Vgd (Cgd / ⁇ C) (Vgh-Vgl) (2)
  • ⁇ C represents the total of the total capacitance contributing to the pixel electrode 112
  • Vgh represents the high level (level at the time of selection) of the gate line GLi
  • Vgl represents the low level (level at the time of non-selection) of the gate line GLi. .
  • the j-th source line SLj and the j + 1-th source line SLj + 1 have opposite polarities and change every horizontal period.
  • the gate line GLi in the i-th row is not selected, potential fluctuations in the source line SLj in the j-th column and the source line SLj + 1 in the j + 1-th column are applied to the pixel electrode 112 via the second parasitic capacitance Csa and the third parasitic capacitance Csb, respectively. introduce.
  • the variation ⁇ Vg_s of the pixel potential generated in this way (hereinafter referred to as “the variation of the pixel potential related to the source line after writing in the writing period”) is given by the following equation (3).
  • ⁇ Vg_s (Csa / ⁇ C) ⁇ Vsa + (Csb / ⁇ C) ⁇ Vsb (3)
  • ⁇ Vsa represents the potential fluctuation of the j-th source line SLj
  • ⁇ Vsb represents the potential fluctuation of the j + 1-th source line SLj + 1.
  • the average pixel potential VGhwa (hereinafter referred to as “average pixel potential after positive polarity writing”) after completion of writing in the positive polarity writing period HWP is given by the following equation (4).
  • VGhwa Vs- ⁇ Vgd + ⁇ Vg_s (4)
  • ⁇ Vg_s in Equation (4) is actually an average value.
  • the voltage of the source line SLj is set to 0 V, for example.
  • each of the voltages of the j-th source line SLj and the j + 1-th source line SLj + 1 changes to 0V. . Therefore, the potential fluctuations of the j-th source line SLj and the (j + 1) -th source line SLj + 1 are transmitted to the pixel electrode 112 via the second parasitic capacitance Csa and the third parasitic capacitance Csb, respectively.
  • the variation ⁇ V_hs of the pixel potential at the time of switching from the positive writing period HWP to the pause period SP, which occurs in this way, is approximately given by the following equation (5).
  • ⁇ V_hs [(Csa / ⁇ C) (V_hmax + V_lmin) / 2 + (Csb / ⁇ C) (V_hmax + V_lmin) / 2] / 2 ...
  • “(V_hmax + V_lmin) / 2” approximately represents the voltage of the source line SLj in the j-th column and the voltage of the source line SLj + 1 in the j + 1-th column at the end of the positive write period HWP. Note that the value varies depending on the image to be displayed.
  • the pixel potential VGhs in the pause period SP (hereinafter sometimes referred to as “positive polarity pause period”) after the positive polarity write period HWP is given by the following equation (6).
  • VGhs VGhwa- ⁇ V_hs (6)
  • the potential difference (voltage held in the pixel capacitor) between the pixel potential and the common potential Vcom is reduced by the potential fluctuation ⁇ V_hs at the time of switching from the positive writing period HWP to the pause period SP. .
  • the display luminance is lower than that at the end of the positive polarity writing period HWP.
  • the off-leakage current is extremely small. Therefore, in the description of this embodiment, the value of the pixel potential VGhs does not change during the positive polarity pause period.
  • the potential fluctuations of the j-th source line SLj and the (j + 1) -th source line SLj + 1 are transmitted to the pixel electrode 112 via the second parasitic capacitance Csa and the third parasitic capacitance Csb, respectively.
  • the pixel potential fluctuates when switching from the pause period SP to the negative write period LWP.
  • the change in the pixel potential that occurs when switching from the pause period SP to the negative write period LWP is referred to as “the change in the pixel potential during the transition to the negative write period”.
  • the voltage of the source line SLj in the j-th column repeats the maximum gradation negative voltage V_lmax and the minimum gradation positive voltage V_hmin every horizontal period.
  • the voltage of the source line SLj + 1 in the (j + 1) th column repeats the maximum gradation negative voltage V_lmax and the minimum gradation positive voltage V_hmin in a reverse order to the voltage of the jth source line SLj for each horizontal period. .
  • Pixel potential VGlwb (hereinafter referred to as “average pixel potential before negative polarity writing”) is determined.
  • the average pixel potential VGlwb before such negative polarity writing becomes higher than the pixel potential VGhs during the positive polarity pause period, as shown in FIG.
  • the potential difference between the average pixel potential VGlwb before the negative polarity writing and the common potential Vcom is larger than the potential difference between the pixel potential VGhs and the common potential Vcom in the positive polarity pause period.
  • a sharp luminance change (brightness increase) occurs at the time of switching from the Nth frame period F (N) to the (N + 1) th frame period F (N + 1).
  • flicker occurs.
  • the j-th source line SLj is connected to the pixel electrode 112 in the pixel formation unit 110 in the i-th row and j-th column by the same operation as in the positive polarity writing period HWP.
  • the negative maximum gray scale voltage V_lmax is applied via.
  • the selection of the i-th gate line GLi is completed and the field through voltage ⁇ Vgd is generated when the TFT 111 is turned off, and the write in the write period is performed.
  • the average pixel potential VGhwa (hereinafter referred to as “average pixel potential after negative polarity writing”) after writing in the negative polarity writing period LWP is the same as that in the positive polarity writing period HWP (4).
  • the potential difference between the average pixel potential VGhwa after the negative polarity writing and the common potential Vcom is relatively larger than the potential difference between the average pixel potential VGlwb before the negative polarity writing and the common potential Vcom.
  • ⁇ V_ls [(Csa / ⁇ C) (V_lmax + V_hmin) / 2 + (Csb / ⁇ C) (V_lmax + V_hmin) / 2] / 2 ... (7)
  • “(V_lmax + V_hmin) / 2” approximately represents the voltage of the source line SLj in the j-th column and the voltage of the source line SLj + 1 in the j + 1-th column at the end of the negative write period LWP. Note that the value varies depending on the image to be displayed.
  • the pixel potential VGls in the pause period SP (hereinafter also referred to as “negative polarity pause period”) after the negative polarity write period LWP is given by the following equation (8).
  • VGls VGlwa- ⁇ V_ls (8)
  • the potential difference between the pixel potential and the common potential Vcom increases due to the change ⁇ V_ls in the pixel potential at the time of switching from the negative writing period LWP to the pause period SP.
  • the display luminance is higher than that at the end of the negative polarity writing period LWP.
  • the potential fluctuations of the j-th source line SLj and the (j + 1) -th source line SLj + 1 are transmitted to the pixel electrode 112 via the second parasitic capacitance Csa and the third parasitic capacitance Csb, respectively.
  • the pixel potential fluctuates when switching from the pause period SP to the positive writing period HWP.
  • the change in pixel potential that occurs when switching from the pause period SP to the positive writing period HWP is referred to as “fluctuation in pixel potential during transition to the positive writing period”.
  • the voltage of the source line SLj in the j-th column repeats the maximum gradation positive voltage V_hmax and the minimum gradation negative voltage V_lmin every horizontal period.
  • the voltage of the source line SLj + 1 in the (j + 1) th column repeats the maximum gradation positive voltage V_hmax and the minimum gradation negative voltage V_lmin in the order opposite to the voltage of the jth source line SLj for each horizontal period. .
  • a pixel potential VGhwb (hereinafter referred to as “average pixel potential before positive polarity writing”) is determined.
  • the average pixel potential VGhwb before such positive polarity writing becomes higher than the pixel potential VGls in the negative polarity pause period as shown in FIG.
  • the potential difference between the average pixel potential VGhwa after the positive writing and the common potential is relatively larger than the potential difference between the average pixel potential VGhwb and the common potential Vcom before the positive writing. growing. Therefore, not only the luminance change at the time of switching from the above-mentioned N + 1 frame period F (N + 1) to the N + 2 frame period F (N + 2), but also the luminance change before and after writing in the positive polarity writing period HWP (luminance increase). It is relatively large. This further deteriorates the flicker level.
  • FIG. 5 is a diagram showing a simulation result of the display brightness shown in FIG.
  • the horizontal axis represents time t [ms]
  • the vertical axis represents display luminance L [cd / m 2 ].
  • FIG. 5 it can be seen that a particularly large flicker occurs when the frame period is switched. Such flicker becomes a cause of deterioration in display quality.
  • a large flicker occurs due to a large fluctuation in the pixel potential when the frame period is switched.
  • the cause is considered as follows. If the pixel potential fluctuates greatly when switching from each writing period to the rest period, the pixel potential in the rest period and the average pixel potential before writing in the next writing period (the average value of the pixel potential fluctuated due to the influence of parasitic capacitance) and The difference becomes larger. For this reason, the pixel potential greatly fluctuates when the frame period is switched, and the difference between the display luminance in the pause period and the display luminance in the writing period of the next frame period increases.
  • the voltage (data voltage) of each source line in the idle period SP is set to the idle period voltage V_m. To do.
  • a luminance difference is generated between the positive polarity writing period HWP and the negative polarity writing period LWP.
  • the cause is considered as follows.
  • the data voltage in the idle period SP is 0 V, which is a voltage outside the gradation voltage range.
  • the difference between the data voltage in the positive write period HWP and the data voltage in the idle period SP is significantly different from the difference between the data voltage in the negative write period LWP and the data voltage in the idle period SP. It will be.
  • the magnitude of the variation in pixel potential differs between when the suspension period SP is switched to the positive polarity writing period HWP and when the suspension period SP is switched to the negative polarity writing period LWP. Therefore, a luminance difference occurs between the positive polarity writing period HWP and the negative polarity writing period LWP.
  • the setting of the pause period voltage V_m also suppresses this luminance difference.
  • FIG. 6 is a diagram for explaining the display luminance obtained by the liquid crystal display device 10 according to the present embodiment. More specifically, FIG. 6A is a waveform diagram showing a voltage (data voltage) of the source line SLj, and FIG. 6B is a graph in the pixel formation unit 110 in the i-th row and j-th column corresponding to the source line SLj. FIG. 6C is a waveform diagram showing display luminance in the pixel formation portion 110 in the i-th row and j-th column. 6A to 6C, the flicker patterns shown in FIGS. 3A to 3C are displayed as in FIGS. 4A to 4C. The display luminance illustrated in FIG.
  • the value of the common potential Vcom illustrated in FIG. 6B is merely an example, and is not limited to the value. Note that description of portions common to the operation of the conventional liquid crystal display device (particularly, operation in each writing period) will be omitted as appropriate.
  • the length of each frame period is 200 ms
  • the length of the writing period is 16.7 ms
  • the length of the pause period is 183.3 ms. That is, the refresh rate is 5 Hz.
  • the suspension period SP may be longer than each writing period, and the length of each period and the refresh rate are not limited to the example shown here.
  • the voltage of each source line in the suspension period SP is the suspension period voltage V_m. Therefore, at the time of switching from the positive writing period HWP to the idle period SP, as shown in FIG. 6A, the voltages of the j-th source line SLj and the j + 1-th source line SLj + 1 are for the idle period, respectively.
  • the voltage changes to V_m.
  • the value of the suspension period voltage V_m is a value within a range in which the maximum gradation positive voltage V_hmax is an upper limit and the maximum gradation negative voltage V_lmax is a lower limit.
  • the rest period voltage V_m takes any one of the following first to fourth rest period voltages.
  • V_m (V_hmax + V_lmax + V_hmin + V_lmin) / 4 (9)
  • V_m (V_hmax + V_lmax) / 2 (10)
  • V_m (V_hmin + V_lmin) / 2 (11)
  • the fourth rest period voltage is a value within a range in which the minimum gradation positive voltage V_hmin is an upper limit and the minimum gradation negative voltage V_lmin is a lower limit.
  • the positive write period HWP is changed to the pause period SP.
  • the potential fluctuations of the j-th source line SLj and the j + 1-th source line SLj + 1 at the time of switching are reduced.
  • the variation ⁇ V_hs of the pixel potential at the time of switching from the positive writing period HWP to the pause period SP is smaller than that in the conventional example.
  • ⁇ V_hs [(Csa / ⁇ C) [(V_hmax + V_lmin) / 2-V_m] + (Csb / ⁇ C) [(V_hmax + V_lmin) / 2-V_m]] / 2 (12)
  • the pixel potential VGhs in the positive polarity pause period in the present embodiment is closer to the average pixel potential VGhwa after the positive polarity writing than in the conventional example.
  • the operation in the negative polarity writing period LWP of the (N + 1) th frame period F (N + 1) is as described above, and the negative polarity writing is performed by the change in the pixel potential at the time of the negative polarity writing period transition and the fluctuation in the pixel potential before the negative polarity writing.
  • the previous average pixel potential VGlwb is determined. Since the fluctuation of the pixel potential at the time of transition to the negative polarity writing period in this embodiment is smaller than that in the conventional example as described above, the average pixel potential VGlwb before negative polarity writing in this embodiment is positive in comparison with the conventional example. It becomes a value close to the pixel potential VGhs in the pause period.
  • the potential difference between the average pixel potential VGlwb and the common potential Vcom before the negative polarity writing in this embodiment and the potential difference between the pixel potential VGhs and the common potential Vcom during the positive polarity pause period are close to each other compared to the conventional example. It becomes size.
  • the luminance change at the time of switching from the Nth frame period F (N) to the (N + 1) th frame period F (N + 1) in this embodiment is smaller than that in the conventional example. .
  • flicker is suppressed compared to the conventional example.
  • the display luminance at the time of switching from the Nth frame period F (N) to the (N + 1) th frame period F (N + 1) changes in a decreasing direction.
  • the average pixel potential VGlwa after negative polarity writing is given by the above formula (4) as in the conventional example.
  • the fluctuation of the pixel potential at the time of transition to the negative polarity writing period is smaller than that of the conventional example, so that the potential difference between the average pixel potential VGlwb before the negative polarity writing and the common potential Vcom, The potential difference between the average pixel potential VGlwa after the negative writing and the common potential Vcom is close to that of the conventional example.
  • the present embodiment not only the luminance change at the time of switching from the Nth frame period F (N) to the N + 1th frame period F (N + 1), but also the luminance change before and after writing in the negative polarity writing period LWP. Is smaller than the conventional example. Thereby, the flicker in the negative polarity writing period LWP is sufficiently suppressed.
  • the voltages of the source line SLj in the j-th column and the source line SLj + 1 in the j + 1-th column are respectively set to the idle period voltage V_m. Change. Therefore, compared with the conventional example in which the voltage of each source line in the suspension period SP is 0 V, the j-th source line SLj and the j + 1-th source line at the time of switching from the negative write period LWP to the suspension period SP. Each potential fluctuation of SLj + 1 becomes small.
  • the fluctuation ⁇ V_ls of the pixel potential at the time of switching from the negative polarity writing period LWP to the pause period SP is smaller than that in the conventional example.
  • the variation ⁇ V_ls of the pixel potential at the time of switching from the negative polarity writing period LWP to the pause period SP in this embodiment is given by the following equation (13).
  • ⁇ V_ls [(Csa / ⁇ C) [(V_lmax + V_hmin) / 2-V_m] + (Csb / ⁇ C) [(V_lmax + V_hmin) / 2-V_m]] / 2 ...
  • the pixel potential VGls in the negative polarity pause period in the present embodiment is closer to the average pixel potential VGlwa after negative polarity writing than in the conventional example.
  • ⁇ V_hs and ⁇ V_ls are typically different from each other.
  • ⁇ V_hs and ⁇ V_ls have the same sign depending on the setting of the maximum gradation positive voltage V_hmax, the maximum gradation negative voltage V_lmax, the minimum gradation positive voltage V_hmin, and the minimum gradation negative voltage V_lmin. Note that there are also.
  • the operation in the positive polarity writing period HWP of the (N + 2) th frame period F (N + 2) is as described above, and the positive polarity writing is performed by the change in the pixel potential at the transition of the positive polarity writing period and the fluctuation in the pixel potential before the positive polarity writing.
  • the previous average pixel potential VGhwb is determined. Since the fluctuation of the pixel potential at the time of transition to the positive writing period in this embodiment is smaller than that in the conventional example as described above, the average pixel potential VGhwb before the positive writing in this embodiment is negative in comparison with the conventional example. It becomes a value close to the pixel potential VGls in the pause period.
  • the potential difference between the average pixel potential VGhwb before the positive polarity writing and the common potential Vcom and the potential difference between the pixel potential VGls and the common potential Vcom during the negative polarity pause period in the present embodiment are closer to each other than in the conventional example. It becomes size.
  • the luminance change at the time of switching from the (N + 1) th frame period F (N + 1) to the (N + 2) th frame period F (N + 2) in this embodiment is smaller than that in the conventional example. .
  • flicker is suppressed compared to the conventional example.
  • the display brightness at the time of switching to (N + 1) changes in the same direction (decreasing direction).
  • the average pixel potential VGlwa after positive polarity writing is given by the above equation (4) as described above.
  • the fluctuation of the pixel potential at the time of transition to the positive polarity writing period is smaller than that in the conventional example, and therefore, the potential difference between the average pixel potential VGhwb and the common potential Vcom before the positive polarity writing, The potential difference between the average pixel potential VGhwa and the common potential Vcom after positive writing becomes close to that of the conventional example.
  • FIG. 7 is a diagram comparing the display luminance obtained by the liquid crystal display device according to the conventional example and the display luminance obtained by the liquid crystal display device 10 according to the present embodiment. More specifically, FIG. 7A is a diagram showing display luminance obtained by the liquid crystal display device according to the conventional example. FIG. 7B is a diagram showing display luminance obtained by the liquid crystal display device 10 according to the present embodiment. 7A and 7B correspond to FIGS. 4C and 6C, respectively. As shown in FIG. 7 (A) and FIG. 7 (B), the contrast approximate flicker ⁇ 5 cd / m 2 in the conventional example are present, flicker in the present embodiment is roughly suppressed to ⁇ 1 cd / m 2 .
  • the rest period voltage V_m is supplied to each source line during the rest period SP in the low frequency drive mode. For this reason, mainly due to the presence of the second and third parasitic capacitances Csa and Csb, fluctuations in the pixel potential that occur when switching from each writing period to the idle period SP are as follows.
  • the voltage of the source line in the suspension period SP becomes the suspension period voltage V_m
  • the potential fluctuation is smaller than that of the conventional example.
  • the fluctuation ⁇ V_hs of the pixel potential at the time of switching from the positive writing period HWP to the pause period SP is smaller than that in the conventional example.
  • the difference between the display brightness in the pause period SP and the display brightness in the negative polarity writing period LWP in the next frame period becomes smaller than in the past. Therefore, flicker that occurs at the time of switching from the frame period including the positive polarity write period HWP to the frame period including the negative polarity write period LWP is suppressed as compared with the conventional example.
  • the voltage of the source line in the idle period SP becomes the idle period voltage V_m
  • the j-th source line SLj and the j + 1-th source line SLj + 1 at the time of switching from the negative polarity write period LWP to the idle period SP becomes smaller than the conventional example.
  • the fluctuation ⁇ V_ls of the pixel potential at the time of switching from the negative polarity writing period LWP to the idle period SP is smaller than that in the conventional example.
  • the difference between the display brightness in the pause period SP and the display brightness in the positive polarity writing period HWP of the next frame period becomes smaller than in the past.
  • the difference is close to that of the conventional example. Therefore, the difference between the change in the pixel potential at the time of switching from the pause period SP to the positive polarity write period HWP and the change in the pixel potential at the time of switching from the pause period SP to the negative polarity write period LWP is smaller than that in the conventional example.
  • the effect of suppressing the deterioration of display quality can be enhanced.
  • Such an effect can be sufficiently enhanced by employing the first to fourth rest period voltages.
  • the difference between the minimum grayscale negative voltage V_lmin and the data voltage in the idle period SP is substantially the same as the difference between the minimum grayscale voltage V_hmin and the data voltage in the idle period SP.
  • the difference between the negative voltage V_lmin and the data voltage in the idle period SP is substantially the same as the difference between the minimum grayscale positive voltage V_hmin and the data voltage in the idle period SP.
  • the liquid crystal display device 10 according to the second embodiment of the present invention is configured to be switchable between a low frequency drive mode and a normal drive mode.
  • the basic configuration of the liquid crystal display device 10 according to the present embodiment is the same as that in the first embodiment, and the same elements as those in the first embodiment among the components in the present embodiment are described. The same reference numerals are assigned and the description is omitted as appropriate.
  • the display control circuit 200 controls switching between the low frequency drive mode and the normal drive mode. In the low frequency drive mode, the display control circuit 200 repeats the operation in the above-described writing period and the operation in the idle period with a period of one frame period. On the other hand, in the normal drive mode, the display control circuit 200 repeats the above-described operation in the writing period with a period of one frame period. In the normal drive mode, the display control circuit 200 does not need to output the switching signal SW.
  • FIG. 8 is a diagram for explaining the operation in the normal drive mode of the liquid crystal display device according to the conventional example. More specifically, FIG. 8A is a waveform diagram showing a voltage (data voltage) of the source line SLj, and FIG. 8B is a graph in the pixel formation unit 110 in the i-th row and j-th column corresponding to the source line SLj. It is a wave form diagram which shows pixel electric potential.
  • the common potential in the normal driving mode (hereinafter referred to as “normal common potential”) is represented by “Vcomn”, and the common potential in the low frequency driving mode (hereinafter referred to as “low frequency common potential”) is “ Vcoml ”. Note that the low-frequency common potential Vcoml illustrated in FIG. 8B has the same value as the common potential Vcom illustrated in FIG.
  • each frame period is composed of a writing period, and the positive polarity writing period HWP and the negative polarity writing period LWP are sequentially repeated every frame period.
  • the normal common potential Vcomn is set, for example, as in the following equation (14).
  • the length of the pause period SP may also be represented by the code SP itself. This is because even when an oxide TFT is used as the TFT 111, a slight off-leakage current flows, and the pixel potential varies depending on the length of the pause period SP.
  • ⁇ Vmod (Vcomn-Vcomlw) (WP / F) + (Vcomn-Vcomls) (SP / F) ...
  • Vcomlw and Vcomls each represent a low-frequency common potential in the writing period and the pause period SP
  • WP represents the length of the writing period
  • F represents the length of one frame period. Note that only the driving frequency is different between the writing period in the normal driving mode and the writing period in the low-frequency driving mode, and the field through voltage ⁇ Vgd has the same value. For this reason, Formula (15) is rewritten to following Formula (16).
  • ⁇ Vmod (Vcomn-Vcomls) (SP / F) (16)
  • Vcomn ⁇ Vcomls in the equation (16) is given by the following equation (17).
  • Vcomn-Vcomls ( ⁇ V_hs + ⁇ V_ls) / 2 (17)
  • equation (17) is rewritten to the following equation (18).
  • ⁇ Vmod (V_hmax + V_lmax + V_hmin + V_lmin) (Csa + Csb) (SP / F) / 4 ⁇ C ... (19) Since ⁇ Vmod is not 0 as shown in Expression (19), in the conventional example, it is necessary to set the normal common potential Vcomn and the low-frequency common potential Vcoml to different values. In this case, the circuit configuration is complicated as compared with the case where a single common potential is used.
  • FIG. 9 is a diagram for explaining the operation in the normal drive mode of the liquid crystal display device 10 according to the present embodiment. More specifically, FIG. 9A is a waveform diagram showing a voltage (data voltage) of the source line SLj, and FIG. 9B is a graph in the pixel formation unit 110 in the i-th row and j-th column corresponding to the source line SLj. It is a wave form diagram which shows pixel electric potential. As shown in FIGS. 9A and 9B, the waveform indicating the voltage of the source line SLj and the pixel potential in the pixel formation unit 110 in the i-th row and j-th column corresponding to the source line SLj in this embodiment are shown.
  • each of the waveforms is the same as in the conventional example.
  • the common potential Vcom having the same value is used in both the low frequency drive mode and the normal drive mode.
  • the operation in the low frequency drive mode in the present embodiment is the same as that in the first embodiment.
  • the first idle period voltage is used as the idle period voltage V_m.
  • ⁇ V_hs is given by the above equation (12)
  • ⁇ V_ls is given by the above equation (13), so that the above equation (17) is rewritten into the following equation (20).
  • V_m is the first idle period voltage
  • Vcomn ⁇ Vcomls becomes 0 when V_m given by the above equation (9) is substituted into the equation (20).
  • ⁇ Vmod is also zero. That is, the common potential can be set to the same value (Vcom shown in FIG. 9B) in the low frequency drive mode and the normal drive mode.
  • the common potential becomes the same value in the low frequency drive mode and the normal drive mode. There is no need to switch the common potential accordingly. For this reason, the deterioration of display quality can be suppressed with a simple configuration.
  • the first idle period voltage is used as the idle period voltage V_m, but the present invention is not limited to this.
  • ⁇ Vmod is smaller than that of the conventional example even in the idle period voltage V_m other than the first idle period voltage (see the above (16) and the equation (20)). For this reason, even if the common potential is set to the same value in the low frequency drive mode and the normal drive mode, in the conventional example, it is possible to suppress deterioration in display quality in which the common potential is set to the same value in the low frequency drive mode and the normal drive mode.
  • FIG. 10 is a block diagram for explaining the configuration of the source driver 300 according to the third embodiment of the present invention.
  • the liquid crystal display device 10 according to the present embodiment is configured to supply a pause period voltage signal VM indicating a pause period voltage V_m from the display control circuit 200 to the source driver 300. Since other configurations are the same as those in the first embodiment, description thereof will be omitted. This embodiment can be used in combination with any of the first embodiment and the second embodiment.
  • the display control circuit 200 receives the digital video signal DV, the source start pulse SSP, the source clock SCK, the latch strobe signal LS, the polarity signal POL, the switching signal SW, the gate start pulse GSP, the gate clock GCK, and the pause period voltage signal VM. Output to the source driver 300.
  • the reference voltage generation circuit 600 outputs a plurality of reference voltage signals VR to the source driver 300.
  • the source driver 300 includes first to eighth input terminals IT1 to IT8, first to mth output terminals OT1 to OTn, a shift register 310, a sampling circuit 320, a latch circuit 330, a gradation voltage generation circuit 340, a D / A conversion.
  • a circuit 350, a voltage switching circuit 360, and an output circuit 370 are provided.
  • the first terminal is realized by the seventh input terminal IT7
  • the second terminal is realized by the sixth input terminal IT6.
  • the first input terminal IT1 is a terminal for receiving the source start pulse SSP.
  • the second input terminal IT2 is a terminal for receiving the source clock SCK.
  • the third input terminal IT3 is a terminal for receiving the digital video signal DV.
  • the fourth input terminal IT4 is a terminal for receiving the latch strobe signal LS.
  • the fifth input terminal IT5 is a terminal for receiving the polarity signal POL.
  • the sixth input terminal IT6 is a terminal for receiving the switching signal SW.
  • the seventh input terminal is a terminal for receiving the idle period voltage signal VM.
  • the eighth input terminal IT8 is a terminal for receiving the reference voltage signal VR.
  • the eighth input terminal IT8 is actually provided in the same number as the number of reference voltage signals VR, but is illustrated as being one for convenience.
  • the first to mth output terminals OT1 to OTn are terminals for outputting data voltages to the source lines SL1 to SLn, respectively.
  • the shift register 310 sequentially outputs a predetermined sampling pulse by sequentially transferring the source start pulse SSP output from the display control circuit 200 in synchronization with the source start pulse SSP output from the display control circuit 200.
  • the sampling circuit 320 sequentially stores the gradation values for one row indicated by the digital video signal DV output from the display control circuit 200 at the timing of the sampling pulse.
  • the latch circuit 330 captures and holds the gradation value for one row stored in the sampling circuit 320 in accordance with the latch strobe signal LS output from the display control circuit 200, and also holds the one row worth of the held gradation value.
  • the gradation value is output to the D / A conversion circuit 350 as a gradation signal for each column (that is, for each pixel). Note that the gradation signal output from the latch circuit 330 is actually boosted by a predetermined level shifter and then supplied to the D / A conversion circuit 350, but the description thereof is omitted here for convenience.
  • the gradation voltage generation circuit 340 generates a plurality of gradation voltages corresponding to the polarity based on the plurality of reference voltages VR output from the reference voltage generation circuit 600 and the polarity signal POL output from the display control circuit 200. At the same time, the plurality of gradation voltages are output to the D / A conversion circuit 350.
  • the polarity signal POL indicates a different polarity for each column.
  • the D / A conversion circuit 350 selects a gradation voltage corresponding to the gradation value for each column from the plurality of gradation voltages output from the gradation voltage generation circuit 340, and outputs the selected gradation voltage. The voltage is output to the voltage switching circuit 360.
  • the voltage switching circuit 360 switches the voltage to be output to the output circuit 370 based on the switching signal SW output from the display control circuit 200. Specifically, the voltage switching circuit 360 outputs the gradation voltage (data voltage) for each column output from the D / A conversion circuit 350 to the output circuit 370 in the write signal. In addition, the voltage switching circuit 360 outputs the idle period voltage V_m (data voltage) indicated by the idle period voltage signal VM output from the display control circuit 200 to the output circuit 370 for each column in the idle period. .
  • the voltage switching circuit 360 is based on the switching signal SW, and in the writing period, when the polarity of the data signal is to be positive or negative, the voltage switching circuit 360 is one of a plurality of positive polarity grayscale voltages or a plurality of grayscale voltages.
  • One of the negative gradation voltages is used as a data voltage, and during the idle period, the idle period voltage V_m indicated by the idle period voltage signal VM is used as the data voltage.
  • the voltage of the inactive period voltage signal VM itself does not have to be the inactive period voltage V_m, and the voltage switching circuit 360 performs a predetermined conversion process on the inactive period voltage signal VM so that the inactive period voltage V_m It may be possible to acquire.
  • the output circuit 370 applies the grayscale voltage or the pause period voltage V_m for each column output from the voltage switching circuit 360 to each of the corresponding source lines SL1 to SLn.
  • the output circuit 370 is composed of, for example, n voltage follower circuits.
  • the configuration of the source driver 300 shown here is merely an example.
  • the source driver 300 includes at least a sixth terminal IT6 and a seventh input terminal IT7, and data to be applied to each source line during the writing period and the rest period based on the switching signal SW received via the sixth input terminal IT6. Any other configuration can be used as long as the voltage can be switched and the quiescent period voltage V_m indicated by the quiescent period voltage signal VM received from the seventh terminal IT7 can be applied to each source line in the quiescent period. There may be.
  • Second parasitic capacitance Csb Third parasitic capacitance IT1-IT8 ... First to eighth input terminals OT1-OTn ... First to n-th output terminals POL ... Polarity signal SW ... switching signal V_hmax ... maximum gradation positive voltage V_hmin ... minimum gradation positive voltage V_lmax ... maximum gradation negative voltage V_lmin ... minimum gradation negative voltage V_m ... interval voltage VM ... interval voltage Signal F ... Frame period HWP ... Positive polarity write period LWP ... Negative polarity write period SP ... Pause period

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

低周波駆動を行う際の表示品位の低下を従来よりも抑制する液晶表示装置を提供する。液晶表示装置は、低周波駆動モードで動作する。ソースドライバは、書き込み期間HWP,LWPでは階調電圧を各ソースラインに印加し、休止期間SPでは休止期間用電圧V_mを各ソースラインに印加する。休止期間用電圧V_mの値は、例えば、最大階調正極性電圧V_hmax、最大階調負極性電圧V_lmax、最小階調正極性電圧V_hmin、最小階調負極性電圧V_lminおよびの平均値である。休止期間SPにおける各ソースラインの電圧を休止期間用電圧V_mとすることにより、書き込み期間HWP,LWPから休止期間SPへの切り替わり時のソースラインの電位変動が従来よりも小さくなる。

Description

液晶表示装置、データ線駆動回路、および液晶表示装置の駆動方法
 本発明は、液晶表示装置に関し、特に、低周波駆動を行う液晶表示装置、その液晶表示装置で使用されるデータ線駆動回路、およびその液晶表示装置の駆動方法に関する。
 従来から、液晶表示装置などの表示装置において、消費電力の低減が求められている。そこで、例えば特許文献1には、液晶表示装置のゲートライン(走査線)を順次に選択して、ソースラインに印加される電圧(以下「ソースラインの電圧」という場合がある。)の画素電極への書き込みを行う書き込み期間の後に、全てのゲートラインを非走査状態にする休止期間を設ける表示装置の駆動方法が開示されている。休止期間は書き込み期間よりも長く設定され、書き込み期間と休止期間との和は1フレーム期間(1垂直期間ともいう。)に設定される。休止期間では、例えば、ゲートドライバおよび/またはソースドライバに制御用の信号などを与えないようにすることができる。これにより、ゲートドライバおよび/またはソースドライバの動作を休止させることができるので低消費電力化を図ることができる。特許文献1に記載の駆動方法のように、書き込み期間の後に休止期間を設けることにより行う駆動は、例えば「低周波駆動」と呼ばれる。
日本国公開特許公報「特開2003-131632号公報」
 ところで、画素電極とソースラインとの間には寄生容量が形成されることが知られている。ソースラインで電位変動が生じると、寄生容量を介して、非選択状態のゲートラインに対応した画素電極にその電位変動が伝達する。このため、画素電極の電位(以下「画素電位」という。)が変動する。上述の特許文献1に記載の表示装置では、休止期間中にソースラインの電圧をどのような値に設定するが言及されていない。したがって、休止期間中のソースラインの電圧値の設定によっては、書き込み期間から休止期間への切り替わり時にソースラインの電圧が大きく変化して画素電位が大きく変動する。これにより、休止期間における表示輝度と次フレーム期間の書き込み期間における表示輝度との差が大きくなる。それゆえに、休止期間から書き込み期間への切り替わり時(フレーム期間の切り替わり時)に大きなフリッカが生じ、結果として表示品位が低下する。
 そこで、本発明は、低周波駆動を行う際の表示品位の低下を従来よりも抑制する液晶表示装置、その液晶表示装置で使用されるデータ線駆動回路、およびその液晶表示装置の駆動方法を提供することを目的とする。
 本発明の第1の局面は、複数の走査線が順次選択される書き込み期間と、前記書き込み期間以上の長さであり且つ前記複数の走査線のいずれもが非選択状態となる休止期間とが、前記書き込み期間と前記休止期間とからなる第1駆動フレーム期間を周期として交互に現れる第1駆動モードで液晶表示部を駆動可能な液晶表示装置であって、
 複数のデータ線と、前記複数の走査線と、前記複数のデータ線と前記複数の走査線とに対応してマトリクス状に配置された複数の画素電極と、前記複数の画素電極に対応して設けられた共通電極とを含む前記液晶表示部と、
 前記複数のデータ線を介して前記複数の画素電極にデータ信号を与え、前記書き込み期間毎に前記データ信号の極性を反転させるデータ線駆動回路と、
 前記複数の走査線を駆動する走査線駆動回路とを備え、
 前記データ線駆動回路は、
  前記書き込み期間において、複数の正極性の階調電圧のいずれかまたは複数の負極性の階調電圧のいずれかを前記データ信号の電圧とし、
  前記休止期間において、前記複数の正極性の階調電圧の中の最大電圧を上限とし、前記複数の負極性の階調電圧の中の最小電圧を下限とする範囲内の値の電圧を前記データ信号の電圧とすることを特徴とする、液晶表示装置。
 本発明の第2の局面は、本発明の第1の局面において、
 前記データ線駆動回路は、前記休止期間において、前記データ信号の電圧を、前記複数の正極性の階調電圧の中の最大階調を示す階調電圧と、前記複数の負極性の階調電圧の中の最大階調を示す階調電圧と、前記複数の正極性の階調電圧の中の最小階調を示す階調電圧と、前記複数の負極性の階調電圧の中の最小階調を示す階調電圧との平均値とすることを特徴とする。
 本発明の第3の局面は、本発明の第1の局面において、
 前記データ線駆動回路は、前記休止期間において、前記データ信号の電圧を、前記複数の正極性の階調電圧の中の最大階調を示す階調電圧と前記複数の負極性の階調電圧の中の最大階調を示す階調電圧との間の値とすることを特徴とする。
 本発明の第4の局面は、本発明の第3の局面において、
 前記データ線駆動回路は、前記休止期間において、前記データ信号の電圧を、前記複数の正極性の階調電圧の中の最大階調を示す階調電圧と前記複数の負極性の階調電圧の中の最大階調を示す階調電圧との平均値とすることを特徴とする。
 本発明の第5の局面は、本発明の第1の局面において、
 前記データ線駆動回路は、前記休止期間において、前記データ信号の電圧を、前記複数の正極性の階調電圧の中の最小階調を示す階調電圧と前記複数の負極性の階調電圧の中の最小階調を示す階調電圧との間の値とすることを特徴とする。
 本発明の第6の局面は、本発明の第5の局面において、
 前記データ線駆動回路は、前記休止期間において、前記データ信号の電圧を、前記複数の正極性の階調電圧の中の最小階調を示す階調電圧と前記複数の負極性の階調電圧の中の最小階調を示す階調電圧との平均値とすることを特徴とする。
 本発明の第7の局面は、本発明の第1の局面から第6の局面までのいずれかにおいて、
 前記データ線駆動回路および前記走査線駆動回路を制御し、前記書き込み期間からなる第2駆動フレーム期間を周期とする第2駆動モードと前記第1駆動モードとを切り替える表示制御回路をさらに備えることを特徴とする。
 本発明の第8の局面は、本発明の第7の局面において、
 前記共通電極に共通電位を与える共通電位供給回路をさらに備え、
 前記共通電位供給回路は、前記第1駆動モードと前記第2駆動モードとで前記共通電位を互いに同じ値にすることを特徴とする。
 本発明の第9の局面は、本発明の第1の局面から第6の局面までのいずれかにおいて、
 前記データ線駆動回路は、前記休止期間におけるデータ信号の電圧を示す休止期間用電圧信号を受け取るための第1端子と、前記書き込み期間と前記休止期間との切り替えを示す切り替え信号を受け取るための第2端子とを含むことを特徴とする。
 本発明の第10の局面は、本発明の第9の局面において、
 前記表示制御回路は、前記第1端子および前記第2端子にそれぞれ前記休止期間用電圧信号および前記切り替え信号を与えることを特徴とする。
 本発明の第11の局面は、本発明の第1の局面から第10の局面までのいずれかにおいて、
 前記液晶表示部は、各画素電極と当該画素電極に対応するデータ線とを互いに接続し且つチャネル層が酸化物半導体により形成された薄膜トランジスタをさらに含むことを特徴とする。
 本発明の第12の局面は、複数のデータ線と、前記複数の走査線と、前記複数のデータ線と前記複数の走査線とに対応してマトリクス状に配置された複数の画素電極と、前記複数の画素電極に対応して設けられた共通電極とを含む液晶表示部を備え、前記複数の走査線が順次選択される書き込み期間と、前記走査期間以上の長さであり且つ前記複数の走査線のいずれもが非選択状態となる休止期間とが、前記走査期間と前記休止期間とからなる第1駆動フレーム期間を周期として交互に現れる第1駆動モードで液晶表示部を駆動可能な液晶表示装置で使用され、前記複数のデータ線を介して前記複数の画素電極にデータ信号を与え、前記書き込み期間毎に前記データ信号の極性を反転させるデータ線駆動回路であって、
 前記休止期間におけるデータ信号の電圧を示す休止期間用電圧信号を受け取るための第1端子と、
 前記前記書き込み期間と前記休止期間との切り替えを示す切り替え信号を受け取るための第2端子と、
 前記切り替え信号に基づき、前記書き込み期間において、複数の正極性の階調電圧のいずれかまたは複数の負極性の階調電圧のいずれかを前記データ信号の電圧とし、前記休止期間において、前記休止期間用電圧信号が示す電圧を前記データ信号の電圧とする電圧切り替え回路とを備え、
 前記休止期間用電圧信号が示す電圧は、前記複数の正極性の階調電圧の中の最大電圧を上限とし、前記複数の負極性の階調電圧の中の最小電圧を下限とする範囲内の値であることを特徴とする。
 本発明の第13の局面は、複数のデータ線と、複数の走査線と、前記複数のデータ線と前記複数の走査線とに対応してマトリクス状に配置された複数の画素電極と、前記複数の画素電極に対応して設けられた共通電極とを含む液晶表示部を備え、前記複数の走査線が順次選択される書き込み期間と、前記走査期間以上の長さであり且つ前記複数の走査線のいずれもが非選択状態となる休止期間とが、前記走査期間と前記休止期間とからなる第1駆動フレーム期間を周期として交互に現れる第1駆動モードで液晶表示部を駆動可能な液晶表示装置の駆動方法であって、
 前記複数のデータ線を介して前記複数の画素電極にデータ信号を与え、前記書き込み期間毎に前記データ信号の極性を反転させるデータ線駆動ステップを備え、
 前記データ線駆動ステップは、
  前記書き込み期間において、複数の正極性の階調電圧のいずれかまたは複数の負極性の階調電圧のいずれかを前記データ信号の電圧とするステップと、
  前記休止期間において、前記複数の正極性の階調電圧の中の最大電圧を上限とし、前記複数の負極性の階調電圧の中の最小電圧を下限とする範囲内の値の電圧を前記データ信号の電圧とするステップとを含むことを特徴とする。
 本発明の第1の局面によれば、第1駆動モード(低周波駆動モードに相当する。)の休止期間において、複数の正極性の階調電圧の中の最大電圧を上限とし、複数の負極性の階調電圧の中の最小電圧を下限とする範囲内の値の電圧が各データ線に供給される。このため、各画素電極に対応するデータ線と当該画素電極との間に形成される寄生容量と、各画素電極に対応するデータ線に当該画素電極を挟んで隣接するデータ線と当該画素電極との間に形成される寄生容量との存在により、書き込み期間から休止期間への切り替わり時に生じる画素電位の変動は次のようになる。なお、以下の発明の効果についての説明では、低周波駆動を行う従来の液晶表示装置は休止期間中のデータ電圧を階調電圧範囲外の電圧に設定するものとする。本発明の第1の局面によれば、休止期間におけるデータ信号の電圧が上記範囲内の値になることにより、書き込み期間から休止期間への切り替わり時のデータ線の電位変動が従来よりも小さくなる。このため、書き込み期間から休止期間への切り替わり時に生じる画素電位の変動が従来よりも小さくなる。これにより、休止期間における表示輝度と次フレーム期間の書き込み期間における表示輝度との差が従来よりも小さくなる。したがって、休止期間から書き込み期間への切り替わり時(フレーム期間の切り替わり時)に生じるフリッカが従来よりも抑制される。その結果、表示品位の低下を従来よりも抑制できる。
 本発明の第2の局面によれば、休止期間におけるデータ信号の電圧が、複数の正極性の階調電圧の中の最大階調を示す階調電圧(最大階調正極性電圧)、複数の負極性の階調電圧の中の最大階調を示す階調電圧(最大階調負極性電圧)、正極性階調電圧の中の最小階調を示す階調電圧(最小階調正極性電圧)、および前記複数の負極性の階調電圧の中の最小階調を示す階調電圧(最小階調負極性電圧)の平均値になる。このため、正極性と負極性とで、休止期間から書き込み期間への切り替わり時の画素電位の変動が略均一化される。これにより、表示品位低下の抑制効果をさらに高めることができる。
 本発明の第3の局面によれば、休止期間におけるデータ信号の電圧を、最大階調正極性電圧と最大階調負極性電圧との間の値にすることにより、本発明の第1の局面と同様の効果を奏することができる。特に、休止期間におけるデータ信号の電圧として、最大階調正極性電圧と最大階調負極性電圧との平均値に近い値を採用する場合には、正極性と負極性とで、休止期間から書き込み期間への切り替わり時の画素電位の変動が略均一化される。これにより、表示品位低下の抑制効果をさらに高めることができる。
 本発明の第4の局面によれば、休止期間におけるデータ信号の電圧が、最大階調正極性電圧および最大階調負極性電圧の平均値になる。このため、正極性と負極性とで、休止期間から書き込み期間への切り替わり時の画素電位の変動が略均一化される。これにより、表示品位低下の抑制効果をさらに高めることができる。
 本発明の第5の局面によれば、休止期間におけるデータ信号の電圧を、最小階調正極性電圧と最大階調負極性電圧との間の値にすることにより、本発明の第1の局面と同様の効果を奏することができる。特に、休止期間におけるデータ信号の電圧として、最小階調正極性電圧と最大階調負極性電圧との平均値に近い値を採用する場合には、正極性と負極性とで、休止期間から書き込み期間への切り替わり時の画素電位の変動が略均一化される。これにより、表示品位低下の抑制効果をさらに高めることができる。
 本発明の第6の局面によれば、休止期間におけるデータ信号の電圧が、最小階調正極性電圧および最大階調負極性電圧の平均値になる。このため、正極性と負極性とで、休止期間から書き込み期間への切り替わり時の画素電位の変動が略均一化される。これにより、表示品位低下の抑制効果をさらに高めることができる。
 本発明の第7の局面によれば、第1駆動モードと第2駆動モードとを切り替え可能になるので、用途に応じた表示を行うことができる。
 本発明の第8の局面によれば、第1駆動モードと第2駆動モードとを切り替え可能な液晶表示装置において、第1駆動モードと第2駆動モードとで共通電位が同じ値になるので、駆動モードの切り替えに応じて共通電位を切り替える必要がない。このため、表示品位の低下を簡易な構成で抑制できる。
 本発明の第9の局面によれば、第1端子および第2端子を含むデータ線駆動回路を用いて、低周波駆動を行う際の表示品位の低下を抑制可能な液晶表示装置を実現できる。
 本発明の第10の局面によれば、休止期間電圧信号および前記切り替え信号を表示制御回路がデータ線駆動回路に与えることにより、本発明の第1の局面と同様の効果を奏することができる。
 本発明の第11の局面によれば、チャネル層が酸化物半導体により形成された薄膜トランジスタが用いられる。このため、画素電位を十分に保持できる。これにより、書き込み期間以上の長さの休止期間を設けても、表示品位の低下が生じにくくなる。
 本発明の第12の局面によれば、当該第12の局面に係るデータ線駆動回路を、第1駆動モードで液晶表示部を駆動可能な液晶表示装置で使用することにより、本発明の第1の局面と同様の効果を奏することができる。
 本発明の第13の局面によれば、液晶表示装置の駆動方法において、本発明の第1の局面と同様の効果を奏することができる。
本発明の第1の実施形態に係る液晶表示装置の全体構成を示すブロック図である。 図1に示す液晶表示装置における画素形成部に形成される寄生容量について説明するための回路図である。 フリッカパターンについて説明するための図である。(A)は、フリッカパターンを示す図である。(B)は、第Nフレームでの極性を示す図である。(C)は、第N+1フレームでの極性を示す図である。 従来例に係る液晶表示装置により得られる表示輝度について説明するための図である。(A)は、ソースラインSLjの電圧を示す波形図である。(B)は、ソースラインSLjに対応するi行j列目の画素形成部110における画素電位を示す波形図である。(C)は、i行j列目の画素形成部110における表示輝度を示す波形図である。 図4(C)に示す表示輝度のシミュレーション結果を示す図である。 上記第1の実施形態に係る液晶表示装置により得られる表示輝度について説明するための図である。(A)は、ソースラインSLjの電圧を示す波形図である。(B)は、ソースラインSLjに対応するi行j列目の画素形成部110における画素電位を示す波形図である。(C)は、i行j列目の画素形成部110における表示輝度を示す波形図である。 従来例に係る液晶表示装置により得られる表示輝度と上記第1の実施形態に係る液晶表示装置により得られる表示輝度を比較した図である。(A)は、従来例に係る液晶表示装置により得られる表示輝度を示す図である。(B)は、上記第1の実施形態に係る液晶表示装置により得られる表示輝度を示す図である。 従来例に係る液晶表示装置の通常駆動モードでの動作について説明するための図である。(A)は、ソースラインSLjの電圧を示す波形図である。(B)は、ソースラインSLjに対応するi行j列目の画素形成部110における画素電位を示す波形図である。 本発明の第2の実施形態に係る液晶表示装置の通常駆動モードでの動作について説明するための図である。(A)は、ソースラインSLjの電圧を示す波形図である。(B)は、ソースラインSLjに対応するi行j列目の画素形成部110における画素電位を示す波形図である。 本発明の第3の実施形態におけるソースドライバの構成について説明するためのブロック図である。
 以下、添付図面を参照しながら、本発明の第1~第3の実施形態について説明する。以下では、電圧,電位,容量に関する符号それ自体で当該電圧,電位,容量の大きさを表すことがある。また、以下では、m,nのそれぞれは2以上の整数を表す。
 <1.第1の実施形態>
 <1.1 全体構成および動作概要>
 図1は、本発明の第1の実施形態に係るアクティブマトリクス型の液晶表示装置10の構成を示すブロック図である。図1に示すように、液晶表示装置10は、液晶表示部100、表示制御回路200、ソースドライバ(データ線駆動回路)300、ゲートドライバ(走査線駆動回路)400、共通電位供給回路500、および基準電圧生成回路600を備えている。ソースドライバ300、ゲートドライバ400、共通電位供給回路500、および基準電圧生成回路600のそれぞれには、図示しない電源回路から電源が供給されている。本実施形態に係る液晶表示装置10は、低周波駆動で動作可能な液晶表示装置である。以下では、低周波駆動(1フレーム期間が書き込み期間および休止期間からなる駆動)が行われるモードのことを「低周波駆動モード」といい、通常駆動(1フレーム期間が書き込み期間からなる駆動)が行われるモードのことを「通常駆動モード」という。低周波駆動モードおよび通常駆動モードはそれぞれ第1駆動モードおよび第2駆動モードに相当する。また、低周波駆動モードにおける各フレーム期間および通常駆動モードにおける各フレーム期間はそれぞれ第1駆動フレーム期間および第2駆動フレーム期間に相当する。本実施形態に係る液晶表示装置10は、例えば低周波駆動モードと通常駆動モードとを切り替え可能となっているが、少なくとも低周波駆動モードで動作可能となっていれば良い。また、本実施形態および後述の各実施形態に係る液晶表示装置では、液晶の劣化防止のために極性反転駆動が行われる。
 液晶表示部100には、n本のソースライン(データ線)SL1~SLn、m本のゲートライン(走査線)GL1~GLm、これらのn本のソースラインSL1~SLnとm本のゲートラインGL1~GLmとの交差点に対応して設けられた複数個(m×n個)の画素形成部110とが設けられている。1つの画素形成部110により1つの画素(カラー表示の場合には1つのサブ画素)が形成される。図1では、ソースラインSLjとゲートラインGLiとの交差点に対応して設けられたi行j列目の画素形成部110を示している(i=1~m、j=1~n)。1つの画素形成部110は、対応する交差点を通過するゲートラインGLiにゲート端子が接続されると共に、当該交差点を通過するソースラインSLjにソース端子が接続されたTFT(Thin Film Transistor)111と、当該TFT111のドレイン端子に接続された画素電極112と、m×n個の画素形成部110に対応して共通的に設けられた共通電極(対向電極とも言う。)113と、補助電極114と、画素電極112と共通電極113との間に挟持された液晶層とにより構成されている。補助電極114は、例えば各ゲートラインに沿って設けられている。そして、画素電極112および共通電極113により液晶容量Clcが形成され、画素電極112および補助電極114により補助容量Cstが形成されている。本実施形態では、共通電極113および補助電極114には互いに同じ電位が与えられるものとする。ただし、例えば、補助電極114が行毎に駆動されても良い。また、本実施形態における液晶表示部100はノーマリブラック方式であるとする。なお、本実施形態における液晶表示部100は、縦電界方式および横電界方式のいずれであっても良い。
 本実施形態では、TFT111として酸化物TFTが用いられる。より詳細には、TFT111のチャネル層は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、および酸素(O)を主成分とするIGZO(InGaZnOx)により形成されている。以下では、IGZOをチャネル層に用いたTFTのことを「IGZO-TFT」という。シリコン系のTFT(アモルファスシリコンなどをチャネル層に用いたTFTをいう。)はオフリーク電流が比較的大きいので、シリコン系のTFTをTFT111として用いた場合には、画素容量に保持された電荷が当該TFT111を介して漏れ出し、結果としてオフ状態時に保持すべき電圧が変動してしまう。しかし、IGZO-TFTは、シリコン系のTFTに比べてオフリーク電流が遙かに小さい。このため、画素容量に書き込んだ電圧をより長い期間保持することができる。なお、IGZO以外の酸化物半導体として、例えばインジウム、ガリウム、亜鉛、銅(Cu)、シリコン(Si)、錫(Sn)、アルミニウム(Al)、カルシウム(Ca)、ゲルマニウム(Ge)、および鉛(Pb)のうち少なくとも1つを含んだ酸化物半導体をチャネル層に用いた場合でも同様の効果が得られる。
 表示制御回路200は、外部から送られる画像信号DATと水平同期信号や垂直同期信号などのタイミング信号群TGとを受け取り、書き込み期間では、デジタル映像信号DV、液晶表示部100における画像表示を制御するためのソーススタートパルスSSP、ソースクロックSCK、ラッチストローブ信号LS、極性信号POL、切り換え信号SW、ゲートスタートパルスGSP、およびゲートクロックGCKを出力する。切り替え信号SWは、低周波駆動モードにおける書き込み期間と休止期間との切り替えを示す。また、表示制御回路200は、休止期間では、例えば、デジタル映像信号DV、ソーススタートパルスSSP、ソースクロックSCK、ラッチストローブ信号LS、極性信号POL、ゲートスタートパルスGSP、およびゲートクロックGCKの出力を停止するか、あるいはそれらを固定電位とする。
 ソースドライバ300は、表示制御回路200から出力されるデジタル映像信号DV、ソーススタートパルスSSP、ソースクロックSCK、ラッチストローブ信号LS、極性信号POL、および切り替え信号SWを受け取り、各ソースラインにデータ信号を供給する。ソースドライバ300は、切り替え信号SWに基づいて、書き込み期間または休止期間に応じた動作が可能になっている。書き込み期間では、ソースドライバ300は、ソースクロックSCKのパルスが発生するタイミングで、各ソースラインに印加すべきデータ電圧に対応する階調値を示すデジタル映像信号DVを順次に保持する。そして、ソースドライバ300は、ラッチストローブ信号LSのパルスが発生するタイミングで、上記極性信号POLに応じて、上記保持されたデジタル映像信号DVをアナログ電圧である階調電圧に変換し、変換後の階調電圧(データ電圧)を示すデータ信号を全ソースラインに供給する。各ソースラインの電圧の極性が極性信号POLに応じて反転することにより、極性反転駆動が行われる。一方、休止期間では、ソースドライバ300は全ソースラインに休止期間用電圧V_mを印加する。このように、ソースドライバ300は、書き込み期間においては、データ信号の極性を正極性または負極性とすべきときに複数の正極性の階調電圧のいずれかまたは複数の負極性の階調電圧のいずれかをデータ電圧とし、休止期間においては、休止期間用電圧V_mをデータ電圧とするように構成されている。本実施形態では、休止期間用電圧V_mはソースドライバ300内で生成されても良く、ソースドライバ300外部(例えば表示制御回路200)から与えられても良い。休止期間用電圧V_mについての詳しい説明は後述する。ソースドライバ300は、低周波駆動モードにおいて、以上のような書き込み期間での動作と休止期間での動作とを1フレーム期間を周期として繰り返す。
 基準電圧生成回路600は、ソースドライバ300において、液晶表示部100に所定
の階調を表示するデータ信号が生成されるときの基準となる複数の基準電圧信号VRを生成し、生成された複数の基準電圧信号VRをソースドライバ300に与える。
 ゲートドライバ400は、書き込み期間において、表示制御回路200から出力されるゲートスタートパルスGSPおよびゲートクロックGCKに基づいて、アクティブな走査信号のゲートラインGL1~GLmそれぞれへの印加を行うことにより、当該ゲートラインGL1~GLmの走査を行う。また、ゲートドライバ400は、休止期間において、ゲートラインGL1~GLmの走査を行わない。ゲートドライバ400は、低周波駆動モードにおいて、以上のような書き込み期間での動作と休止期間での動作とを1フレーム期間を周期として繰り返す。
 共通電位供給回路500は、共通電極113および補助電極114のそれぞれに所定の共通電位Vcomを与える。上記画素容量には、上記画素電位と共通電位Vcomとの電位差に相当する電圧が保持される。なお、上述のように各補助電極114が個別に駆動される場合には、共通電位供給回路500は共通電極113にのみ共通電位Vcomを与え、各補助電極114には例えば補助電極駆動回路から所定の電位が与えられる。
 以上のようにして、液晶表示装置10の外部から送信された画像信号DATに基づく画像が液晶表示部100に表示される。
 <1.2 従来例の検討>
 本実施形態に係る液晶表示装置10の動作について説明する前に、低周波駆動を行う従来の液晶表示装置(以下「従来例」という場合がある。)の動作について検討する。なお、休止期間でのソースドライバ300の動作を除き、従来例の基本的な構成および動作は、本実施形態におけるものと同様であるとする。
 図2は、図1に示す液晶表示装置10における画素形成部110に形成される寄生容量について説明するための回路図である。i行j列目の画素形成部110では、図2に示すように、画素電極112とi行目のゲートラインGLiとの間に寄生容量Cgd(以下「第1寄生容量」という。)が形成され、画素電極112とj列目のソースラインSLjとの間に寄生容量Csa(以下「第2寄生容量」という。)が形成され、画素電極112とj+1列目ソースラインSLj+1との間に寄生容量Csb(以下「第3寄生容量」という。)が形成される。
 ここで、図2に示すような寄生容量が形成された状態において、フリッカパターンを表示させる場合を考える。フリッカパターンとは、モノクロ表示の場合には、図3(A)に示すように、白階調または中間階調(以下、単に「白階調」という。)の表示と黒階調の表示とが画素20毎に交互に行われるパターンをいう。なお、カラー表示のようにR(赤)、G(緑)、およびB(青)のサブ画素が存在する場合には、サブ画素毎に白階調の表示と黒階調の表示とが交互に行われるが、ここでは説明の便宜上モノクロ表示であるものとする。
 図3(B)および図3(C)はそれぞれ、ドット反転駆動を行ってフリッカパターンを表示させた場合の第Nフレーム期間(Nは自然数)における各画素の極性とおよび第N+1フレーム期間における各画素20の極性を示す図である。図3(B)および図3(C)に示すように、水平方向および垂直方向のそれぞれで1つの画素20毎に極性が反転すると共に、1フレーム期間毎に各画素20の極性が反転する。図3(A)~図3(C)に示すフリッカパターンでは、白階調の画素20については、各フレームですべて同一極性となり且つ1フレーム期間毎に極性が反転する。このようなフリッカパターンは、極性間での輝度差を調べる用途に好適である。
 図4は、従来例に係る液晶表示装置により得られる表示輝度について説明するための図である。より詳細には、図4(A)はソースラインSLjの電圧(データ電圧)を示す波形図であり、図4(B)はソースラインSLjに対応するi行j列目の画素形成部110における画素電位を示す波形図であり、図4(C)はi行j列目の画素形成部110における表示輝度を示す波形図である。図4(A)~図4(C)では、図3(A)~図3(C)に示すフリッカパターンを表示させるものとしている。図4(C)に示す表示輝度は、図4(B)に示す画素電位と共通電位Vcomとの電位差に応じて変化する。なお、図4(B)に示す共通電位Vcomの値は単なる例示であり、当該値に限定されるものではない。また、図4(A)~図4(C)における波形鈍りおよび各期間の長さなどは模式的に示したものである点に留意されたい(後述の図6(A)~図6(C)、図8(A),図8(B)、および図9(A),図9(B)でも同様)。
 図4(A)~図4(C)では、第N~第N+2フレーム期間をそれぞれ「F(N)~F(N+2)」で表し、i行j列目の画素形成部110に正極性のデータ電圧を書き込むべき期間(以下「正極性書き込み期間」という。)を「HWP」で表し、i行j列目の画素形成部110に負極性のデータ電圧を書き込むべき期間(以下「負極性書き込み期間」という。)を「LWP」で表し、休止期間を「SP」で表している。正極性書き込み期間HWPは、言い換えると、上記フリッカパターンにおいて正極性の白階調表示および負極性の黒階調表示を行うための書き込み期間である。負極性書き込み期間LWPは、言い換えると、上記フリッカパターンにおいて負極性の白階調表示および正極性の黒階調表示を行うための書き込み期間である。各フレーム期間は、書き込み期間および休止期間からなっている。また、各フレーム期間の長さは200msであり、各書き込み期間の長さは16.7ms、休止期間SPの長さは183.3msである。すなわち、リフレッシュレートは5Hzである。なお、休止期間SPが各書き込み期間以上の長さであれば良く、各期間の長さおよびリフレッシュレートはここで示す例に限定されるものではない。
 図4(A)では、複数の正極性の階調電圧の中の最大階調を示す階調電圧(以下「最大階調正極性電圧」という。)を「V_hmax」で表し、複数の負極性の階調電圧の中の最大階調を示す階調電圧(以下「最大階調負極性電圧」という。)を「V_lmax」で表し、複数の正極性の階調電圧の中の最小階調を示す階調電圧(以下「最小階調正極性電圧」という。)を「V_hmin」で表し、複数の負極性の階調電圧の中の最小階調を示す階調電圧(以下「最小階調負極性電圧」という。)を「V_lmin」で表している。ノーマリブラック方式を採用する本実施形態において、最大階調正極性電圧V_hmaxは複数の正極性の階調電圧の中の最大電圧であり、最大階調負極性電圧V_lmaxは複数の負極性の階調電圧の中の最小電圧であり、最小階調正極性電圧V_hminは複数の正極性の階調電圧の中の最小電圧であり、最小階調負極性電圧V_lminは複数の負極性の階調電圧の中の最大電圧である。最大階調正極性電圧V_hmax、最大階調負極性電圧V_lmax、最小階調正極性電圧V_hmin、および最小階調負極性電圧V_lminの大小関係は次式(1)で与えられる。
 V_hmax > V_hmin > V_lmin > V_lmax …(1)
 まず、第Nフレーム期間F(N)での動作について説明する。上述のように垂直方向で1つの画素20毎に極性および白黒階調が反転するので、正極性書き込み期間HWPでは、j列目のソースラインSLjの電圧は最大階調正極性電圧V_hmaxと最小階調負極性電圧V_lminとを1水平期間毎に繰り返す。また、水平方向でも1つの画素20毎に極性および白黒階調が反転するので、j+1列目のソースラインSLj+1の電圧は最大階調正極性電圧V_hmaxと最小階調負極性電圧V_lminとを1水平期間毎に、j列目のソースラインSLjの電圧と逆の順序で繰り返す。正極性書き込み期間HWPでは、ゲートスタートパルスGSPおよびゲートクロックGCKに基づいてゲートラインGL1~GLmが走査される(順次選択される。)。なお、正極性書き込み期間HWPにおいてi行j列目の画素形成部110に実際にデータ電圧の書き込みが行われる前の動作については、第Nフレーム期間F(N+2)での動作説明で後述する。
 i行目のゲートラインGLiが選択されると、i行j列目の画素形成部110内のTFT111がターンオンし、j列目のソースラインSLjを介して最大階調正極性電圧V_maxが画素電極112に印加される。i行目のゲートラインGLiの選択が終了し、TFT111がターンオフするときに、第1寄生容量Cgdを介してゲートラインGLiの電位変動が画素電極112に伝達する。このようにして画素電極112で生じるフィールドスルー電圧ΔVgdは、次式(2)で与えられる。
 ΔVgd = (Cgd / ΣC)(Vgh - Vgl) …(2)
ここで、ΣCは画素電極112に寄与する全容量の総計を表し、VghはゲートラインGLiのハイレベル(選択時のレベル)、VglはゲートラインGLiのローレベル(非選択時のレベル)を表す。
 また、上記フリッカパターンを表示させる際には、j列目のソースラインSLjとj+1列目のソースラインSLj+1とは互いに逆極性で1水平期間毎に変化している。i行目のゲートラインGLiの非選択時には、j列目のソースラインSLjおよびj+1列目のソースラインSLj+1の電位変動がそれぞれ第2寄生容量Csaおよび第3寄生容量Csbを介して画素電極112に伝達する。このようにして生じる画素電位の変動ΔVg_s(以下「書き込み期間での書き込み後におけるソースラインに関する画素電位の変動」という。)は、次式(3)で与えられる。
 ΔVg_s = (Csa / ΣC)ΔVsa + (Csb / ΣC)ΔVsb …(3)
ここで、ΔVsaはj列目のソースラインSLjの電位変動を表し、ΔVsbはj+1列目のソースラインSLj+1の電位変動を表す。なお、上記フリッカパターンを表示させる際には、ΔVsa,ΔVsbは互いに正負逆になる。
 以上より、正極性書き込み期間HWPにおける書き込み終了後の平均的な画素電位VGhwa(以下「正極性書き込み後の平均画素電位」という。)は、次式(4)で与えられる。
 VGhwa = Vs - ΔVgd + ΔVg_s …(4)
ここで、Vsはi行j列目の画素形成部110に書き込まれるデータ電圧を表し、上記フリッカパターンの例ではVs=V_hmaxである。また、式(4)におけるΔVg_sは実際には平均値である。
 第Nフレーム期間F(N)の休止期間SPでは、ゲートラインGL1~GLmの走査が停止する。従来例では、図4(A)に示すように、ソースラインSLjの電圧は例えば0Vに設定されるものとする。このような休止期間SPを書き込み期間以上の長さに設定することにより、リフレッシュレートを十分に下げることができる。このため、消費電力が低減される。
 ところで、正極性書き込み期間HWPから休止期間SPへの切り替わり時に、図4(A)に示すように、j列目のソースラインSLjおよびj+1列目のソースラインSLj+1の電圧のそれぞれは0Vに変化する。このため、j列目のソースラインSLjおよびj+1列目のソースラインSLj+1の電位変動がそれぞれ第2寄生容量Csaおよび第3寄生容量Csbを介して画素電極112に伝達する。このようにして生じる、正極性書き込み期間HWPから休止期間SPへの切り替わり時の画素電位の変動ΔV_hsは、近似的に次式(5)で与えられる。
 ΔV_hs = [(Csa / ΣC)(V_hmax + V_lmin) / 2
  + (Csb / ΣC)(V_hmax + V_lmin) / 2] / 2
   …(5)
ここで、「(V_hmax+V_lmin)/2」は正極性書き込み期間HWP終了時のj列目のソースラインSLjの電圧およびj+1列目のソースラインSLj+1の電圧を近似的に表したものであり、実際には表示すべき画像によって値が変化する点に留意されたい。
 正極性書き込み期間HWP後の休止期間SP(以下「正極性休止期間」という場合がある。)の画素電位VGhsは、次式(6)で与えられる。
 VGhs = VGhwa - ΔV_hs …(6)
図4(C)に示すように、正極性書き込み期間HWPから休止期間SPへの切り替わり時の電位変動ΔV_hsにより、画素電位と共通電位Vcomとの電位差(画素容量に保持される電圧)が小さくなる。このため、正極性書き込み期間HWP後の休止期間SPでは、正極性書き込み期間HWPの終了時よりも表示輝度が低下する。なお、TFT111として酸化物TFTを用いた場合にはオフリーク電流が極めて小さいので、本実施形態の説明については、正極性休止期間では画素電位VGhsの値は変化しないものとする。
 休止期間SPから負極性書き込み期間LWPへの切り替わり時(第Nフレーム期間F(N)から第N+1フレーム期間F(N+1)への切り替わり時)に、図4(A)に示すように、j列目のソースラインSLjの電圧は0Vから最大階調負極性電圧V_lmaxに変化する。また、j+1列目のソースラインSLj+1は0Vから最小階調正極性電圧V_hminに変化する(不図示)。このため、j列目のソースラインSLjおよびj+1列目のソースラインSLj+1の電位変動がそれぞれ第2寄生容量Csaおよび第3寄生容量Csbを介して画素電極112に伝達する。このようにして、休止期間SPから負極性書き込み期間LWPへの切り替わり時に画素電位の変動が生じる。以下では、休止期間SPから負極性書き込み期間LWPへの切り替わり時に生じる画素電位の変動のことを「負極性書き込み期間遷移時の画素電位の変動」という。
 第N+1フレーム期間F(N+1)の負極性書き込み期間LWPでは、j列目のソースラインSLjの電圧は最大階調負極性電圧V_lmaxと最小階調正極性電圧V_hminとを1水平期間毎に繰り返す。また、j+1列目のソースラインSLj+1の電圧は最大階調負極性電圧V_lmaxと最小階調正極性電圧V_hminとを1水平期間毎に、j列目のソースラインSLjの電圧と逆の順序で繰り返す。i行目のゲートラインGLiが選択されるまで、j列目のソースラインSLjおよびj+1列目のソースラインSLj+1の電位変動がそれぞれ第2寄生容量Csaおよび第3寄生容量Csbを介して画素電極112に伝達する。このようにして生じる、負極性書き込み期間LWPにおいてi行j列目の画素形成部110に実際にデータ電圧の書き込みが行われる前の画素電位の変動(以下「負極性書き込み前の画素電位の変動」という。)と負極性書き込み期間遷移時の画素電位の変動とによって、負極性書き込み期間LWPにおいてi行j列目の画素形成部110に実際にデータ電圧の書き込みが行われる前の平均的な画素電位VGlwb(以下「負極性書き込み前の平均画素電位」という。)が決定される。このような負極性書き込み前の平均画素電位VGlwbは、図4(B)に示すように、正極性休止期間の画素電位VGhsよりも高くなる。このため、負極性書き込み前の平均画素電位VGlwbと共通電位Vcomとの電位差は、正極性休止期間の画素電位VGhsと共通電位Vcomとの電位差よりも大きくなる。これにより、図4(C)に示すように、第Nフレーム期間F(N)から第N+1フレーム期間F(N+1)への切り替わり時に、急峻な輝度変化(輝度上昇)が生じる。その結果、フリッカが生じる。
 その後、i行目のゲートラインGLiが選択されると、上記正極性書き込み期間HWPと同様の動作により、i行j列目の画素形成部110内の画素電極112にj列目のソースラインSLjを介して負極性最大階調電圧V_lmaxが印加される。負極性書き込み期間LWPにおいても、正極性書き込み期間HWPと同様に、i行目のゲートラインGLiの選択が終了し、TFT111がターンオフするときにフィールドスルー電圧ΔVgdが生じ、且つ、書き込み期間での書き込み後におけるソースラインに関する画素電位の変動ΔVg_sが生じる。なお、負極性書き込み期間LWPにおける書き込み終了後の平均的な画素電位VGhwa(以下「負極性書き込み後の平均画素電位」という。)は、正極性書き込み期間HWPにおけるものと同様に上記式(4)で与えられる。ここで、負極性書き込み後の平均画素電位VGhwaと共通電位Vcomとの電位差は、負極性書き込み前の平均画素電位VGlwbと共通電位Vcomとの電位差よりも比較的大きくなる。このため、上述の第Nフレーム期間F(N)から第N+1フレーム期間F(N+1)への切り替わり時の輝度変化のみならず、負極性書き込み期間LWPでの書き込み前後の輝度変化(輝度低下)も比較的大きくなっている。これにより、フリッカの程度がさらに悪化する。
 負極性書き込み期間LWPから休止期間SPへの切り替わり時には、図4(A)に示すように、j列目のソースラインSLjおよびj+1列目のソースラインSLj+1の電圧のそれぞれが0Vに変化する。このため、j列目のソースラインSLjおよびj+1列目のソースラインSLj+1の電位変動がそれぞれ第2寄生容量Csaおよび第3寄生容量Csbを介して画素電極112に伝達する。このようにして生じる、負極性書き込み期間LWPから休止期間SPへの切り替わり時の画素電位の変動ΔV_lsは、近似的に次式(7)で与えられる。
 ΔV_ls = [(Csa / ΣC)(V_lmax + V_hmin) / 2
  + (Csb / ΣC)(V_lmax + V_hmin) / 2] / 2
   …(7)
ここで、「(V_lmax+V_hmin)/2」は負極性書き込み期間LWP終了時のj列目のソースラインSLjの電圧およびj+1列目のソースラインSLj+1の電圧を近似的に表したものであり、実際には表示すべき画像によって値が変化する点に留意されたい。
 負極性書き込み期間LWP後の休止期間SP(以下「負極性休止期間」という場合がある。)の画素電位VGlsは、次式(8)で与えられる。
 VGls = VGlwa - ΔV_ls …(8)
図4(C)に示すように、負極性書き込み期間LWPから休止期間SPへの切り替わり時の画素電位の変動ΔV_lsにより、画素電位と共通電位Vcomとの電位差が大きくなる。このため、負極性書き込み期間LWP後の休止期間SPでは、負極性書き込み期間LWPの終了時よりも表示輝度が上昇する。なお、TFT111として酸化物TFTを用いた場合にはオフリーク電流が極めて小さいので、本実施形態の説明については、負極性休止期間では画素電位VGlsの値は変化しないものとする。
 休止期間SPから正極性書き込み期間HWPへの切り替わり時(第N+1フレーム期間F(N+1)から第N+2フレーム期間F(N+2)への切り替わり時)に、図4(A)に示すように、j列目のソースラインSLjの電圧は0Vから最大階調正極性電圧V_hmaxに変化する。また、j+1列目のソースラインSLj+1は0Vから最小階調負極性電圧V_lminに変化する(不図示)。このため、j列目のソースラインSLjおよびj+1列目のソースラインSLj+1の電位変動がそれぞれ第2寄生容量Csaおよび第3寄生容量Csbを介して画素電極112に伝達する。このようにして、休止期間SPか正極性書き込み期間HWPへの切り替わり時に画素電位の変動が生じる。以下では、休止期間SPから正極性書き込み期間HWPへの切り替わり時に生じる画素電位の変動のことを「正極性書き込み期間遷移時の画素電位の変動」という。
 第N+2フレーム期間F(N+2)の正極性書き込み期間HWPでは、j列目のソースラインSLjの電圧は最大階調正極性電圧V_hmaxと最小階調負極性電圧V_lminとを1水平期間毎に繰り返す。また、j+1列目のソースラインSLj+1の電圧は最大階調正極性電圧V_hmaxと最小階調負極性電圧V_lminとを1水平期間毎に、j列目のソースラインSLjの電圧と逆の順序で繰り返す。i行目のゲートラインGLiが選択されるまで、j列目のソースラインSLjおよびj+1列目のソースラインSLj+1の電位変動がそれぞれ第2寄生容量Csaおよび第3寄生容量Csbを介して画素電極112に伝達する。このようにして生じる、正極性書き込み期間HWPにおいてi行j列目の画素形成部110に実際にデータ電圧の書き込みが行われる前の画素電位の変動(以下「正極性書き込み前の画素電極の変動」という。)と正極性書き込み期間遷移時の画素電極の変動とによって、正極性書き込み期間HWPにおいてi行j列目の画素形成部110に実際にデータ電圧の書き込みが行われる前の平均的な画素電位VGhwb(以下「正極性書き込み前の平均画素電位」という。)が決定される。このような正極性書き込み前の平均画素電位VGhwbは、図4(B)に示すように、負極性休止期間の画素電位VGlsよりも高くなる。このため、正極性書き込み前の平均画素電位VGhwbと共通電位Vcomとの電位差は、負極性休止期間の画素電位VGlsと共通電位Vcomとの電位差よりも大きくなる。これにより、図4(C)に示すように、第N+1フレーム期間F(N+1)から第N+2フレーム期間F(N+2)への切り替わり時に、急峻な輝度変化(輝度低下)が生じる。その結果、フリッカが生じる。
 また、正極性書き込み期間HWPにおける上述の動作により、正極性書き込み後の平均画素電位VGhwaと共通電位との電位差は、正極性書き込み前の平均画素電位VGhwbと共通電位Vcomとの電位差よりも比較的大きくなる。このため、上述の第N+1フレーム期間F(N+1)から第N+2フレーム期間F(N+2)への切り替わり時の輝度変化のみならず、正極性書き込み期間HWPでの書き込み前後の輝度変化(輝度上昇)も比較的大きくなっている。これにより、フリッカの程度がさらに悪化する。
 図5は、図4(C)に示す表示輝度のシミュレーション結果を示す図である。図5において、横軸は時間t[ms」、縦軸は表示輝度L[cd/m2]である。図5に示すように、フレーム期間の切り替わり時に特に大きなフリッカが生じることがわかる。このようなフリッカは、表示品位の低下の要因となる。
 以上のように、従来例では、フレーム期間の切り替わり時に画素電位が大きく変動することにより、大きなフリッカが生じることがわかる。この原因は、次のように考えられる。各書き込み期間から休止期間への切り替わり時に画素電位が大きく変動すると、休止期間における画素電位と次の書き込み期間での書き込み前の平均画素電位(寄生容量の影響により変動した画素電位の平均値)との差が大きくなる。このため、フレーム期間の切り替わり時に画素電位が大きく変動し、休止期間における表示輝度と次フレーム期間の書き込み期間における表示輝度との差が大きくなる。これにより、休止期間から書き込み期間への切り替わり時(フレーム期間の切り替わり時)に大きなフリッカが生じる。そこで、本実施形態では、各書き込み期間から休止期間への切り替わり時の画素電位の変動を抑制するために、休止期間SPにおける各ソースラインの電圧(データ電圧)を上記休止期間用電圧V_mに設定する。
 なお、従来例では、図4(C)に示すように、正極性書き込み期間HWPと負極性書き込み期間LWPとでも互いに輝度差が生じている。この原因、次のように考えられる。従来例では、休止期間SPでのデータ電圧が階調電圧範囲外の電圧である0Vとなっている。このため、正極性書き込み期間HWPでのデータ電圧と休止期間SPでのデータ電圧との差が、負極性書き込み期間LWPでのデータ電圧と休止期間SPでのデータ電圧との差と大幅に異なる大きさになる。これにより、休止期間SPから正極性書き込み期間HWPへの切り替わり時と休止期間SPから負極性書き込み期間LWPへの切り替わり時とで画素電位の変動の大きさが互いに異なる。したがって、正極性書き込み期間HWPと負極性書き込み期間LWPとでも互いに輝度差が生じる。上記休止期間用電圧V_mの設定は、この輝度差をも抑制するものである。
 <1.3 動作>
 図6は、本実施形態に係る液晶表示装置10により得られる表示輝度について説明するための図である。より詳細には、図6(A)はソースラインSLjの電圧(データ電圧)を示す波形図であり、図6(B)はソースラインSLjに対応するi行j列目の画素形成部110における画素電位を示す波形図であり、図6(C)はi行j列目の画素形成部110における表示輝度を示す波形図である。図6(A)~図6(C)では、図4(A)~図4(C)と同様に、図3(A)~図3(C)に示すフリッカパターンを表示させるものとしている。図6(C)に示す表示輝度は、図6(B)に示す画素電位と共通電位Vcomとの電位差に応じて変化する。なお、図6(B)に示す共通電位Vcomの値は単なる例示であり、当該値に限定されるものではない。なお、上記従来の液晶表示装置の動作と共通する部分(特に各書き込み期間での動作)については、適宜説明を省略する。上述のように、各フレーム期間の長さは200msであり、書き込み期間の長さは16.7ms、休止期間の長さは183.3msである。すなわち、リフレッシュレートは5Hzである。なお、休止期間SPが各書き込み期間以上の長さであれば良く、各期間の長さおよびリフレッシュレートはここで示す例に限定されるものではない。
 第Nフレーム期間F(N)の正極性書き込み期間HWPでの動作は上述のとおりであり、正極性書き込み後の平均画素電位VGhwaは、上記式(4)で与えられる。
 本実施形態では、休止期間SPにおける各ソースラインの電圧は、休止期間用電圧V_mになる。このため、正極性書き込み期間HWPから休止期間SPへの切り替わり時に、図6(A)に示すように、j列目のソースラインSLjおよびj+1列目のソースラインSLj+1の電圧のそれぞれは休止期間用電圧V_mに変化する。ここで、休止期間用電圧V_mの値は、最大階調正極性電圧V_hmaxを上限とし、最大階調負極性電圧V_lmaxを下限とする範囲内の値である。好ましくは、休止期間用電圧V_mは、次の第1~第4休止期間用電圧のいずれかの値をとる。
 第1休止期間用電圧は、次式(9)で与えられる。
 V_m = (V_hmax + V_lmax + V_hmin + V_lmin) / 4 …(9)
 第2休止期間用電圧は、次式(10)で与えられる。
 V_m = (V_hmax + V_lmax) / 2 …(10)
 第3休止期間用電圧は、次式(11)で与えられる。
 V_m = (V_hmin + V_lmin) / 2 …(11)
 第4休止期間用電圧は、最小階調正極性電圧V_hminを上限とし、最小階調負極性電圧V_lminを下限とする範囲内の値である。
 休止期間SPにおける各ソースラインの電圧を休止期間用電圧V_mとすることにより、休止期間SPにおける各ソースラインの電圧を0Vとする従来例と比べて、正極性書き込み期間HWPから休止期間SPへの切り替わり時のj列目のソースラインSLjおよびj+1列目のソースラインSLj+1のそれぞれの電位変動が小さくなる。このため、本実施形態では、正極性書き込み期間HWPから休止期間SPへの切り替わり時の画素電位の変動ΔV_hsが従来例に比べて小さくなる。具体的には、本実施形態における正極性書き込み期間HWPから休止期間SPへの切り替わり時の画素電位の変動ΔV_hsは次式(12)で与えられる。
 ΔV_hs = [(Csa / ΣC)[(V_hmax + V_lmin) / 2 - V_m]
  + (Csb / ΣC)[(V_hmax + V_lmin) / 2 - V_m]] / 2 
   …(12)
これにより、本実施形態における正極性休止期間の画素電位VGhsは、従来例に比べて正極性書き込み後の平均画素電位VGhwaに近い値になる。
 休止期間SPから負極性書き込み期間LWPへの切り替わり時(第Nフレーム期間F(N)から第N+1フレーム期間F(N+1)への切り替わり時)に、図6(A)に示すように、j列目のソースラインSLjの電圧は休止期間用電圧V_mから最大階調負極性電圧V_lmaxに変化する。また、j+1列目のソースラインSLj+1は休止期間用電圧V_mから最小階調正極性電圧V_hminに変化する(不図示)。このため、休止期間SPにおける各ソースラインの電圧を0Vとする従来例と比べて、休止期間SPから負極性書き込み期間LWPへの切り替わり時のj列目のソースラインSLjおよびj+1列目のソースラインSLj+1のそれぞれの電位変動が小さくなる。これにより、本実施形態における負極性書き込み期間遷移時の画素電位の変動は、従来例に比べて小さくなる。
 第N+1フレーム期間F(N+1)の負極性書き込み期間LWPでの動作は上述のとおりであり、負極性書き込み期間遷移時の画素電位の変動と負極性書き込み前の画素電位の変動とによって負極性書き込み前の平均画素電位VGlwbが決定される。本実施形態における負極性書き込み期間遷移時の画素電位の変動は上述のとおり従来例に比べて小さくなるので、本実施形態における負極性書き込み前の平均画素電位VGlwbは、従来例に比べて正極性休止期間の画素電位VGhsに近い値になる。このため、本実施形態における負極性書き込み前の平均画素電位VGlwbと共通電位Vcomとの電位差と、正極性休止期間の画素電位VGhsと共通電位Vcomとの電位差とは、従来例に比べて互いに近い大きさになる。これにより、図6(C)に示すように、本実施形態における第Nフレーム期間F(N)から第N+1フレーム期間F(N+1)への切り替わり時の輝度変化は、従来例に比べて小さくなる。その結果、従来例に比べてフリッカが抑制される。なお、従来例と異なり、本実施形態では第Nフレーム期間F(N)から第N+1フレーム期間F(N+1)への切り替わり時の表示輝度は低下する方向に変化する。
 負極性書き込み後の平均画素電位VGlwaは、従来例と同様に上記式(4)で与えられる。本実施形態では、上述のように負極性書き込み期間遷移時の画素電位の変動が従来例に比べて小さくなっているので、負極性書き込み前の平均画素電位VGlwbと共通電位Vcomとの電位差と、負極性書き込み後の平均画素電位VGlwaと共通電位Vcomとの電位差とが従来例に比べて互いに近い大きさになる。このため、本実施形態では、上述の第Nフレーム期間F(N)から第N+1フレーム期間F(N+1)への切り替わり時の輝度変化のみならず、負極性書き込み期間LWPでの書き込み前後の輝度変化も従来例に比べて小さくなる。これにより、負極性書き込み期間LWPでのフリッカが十分に抑制される。
 負極性書き込み期間LWPから休止期間SPへの切り替わり時には、図6(A)に示すように、j列目のソースラインSLjおよびj+1列目のソースラインSLj+1の電圧のそれぞれは休止期間用電圧V_mに変化する。このため、休止期間SPにおける各ソースラインの電圧を0Vとする従来例と比べて、負極性書き込み期間LWPから休止期間SPへの切り替わり時のj列目のソースラインSLjおよびj+1列目のソースラインSLj+1のそれぞれの電位変動が小さくなる。これにより、本実施形態では、負極性書き込み期間LWPから休止期間SPへの切り替わり時の画素電位の変動ΔV_lsが従来例に比べて小さくなる。具体的には、本実施形態における、負極性書き込み期間LWPから休止期間SPへの切り替わり時の画素電位の変動ΔV_lsは次式(13)で与えられる。
 ΔV_ls = [(Csa / ΣC)[(V_lmax + V_hmin) / 2 - V_m]
  + (Csb / ΣC)[(V_lmax + V_hmin) / 2 - V_m] ] / 2
   …(13)
これにより、本実施形態における負極性休止期間の画素電位VGlsは、従来例に比べて負極性書き込み後の平均画素電位VGlwaに近い値になる。なお、上記第1~第4休止期間用電圧のいずれかを用いた場合、ΔV_hsとΔV_lsとは典型的には互いに異符号になる。ただし、最大階調正極性電圧V_hmax、最大階調負極性電圧V_lmax、最小階調正極性電圧V_hmin、および最小階調負極性電圧V_lminの設定などによってはΔV_hsとΔV_lsとが互いに同符号となる場合もある点に留意されたい。
 休止期間SPから正極性書き込み期間HWPへの切り替わり時(第N+1フレーム期間F(N+1)から第N+2フレーム期間F(N+2)への切り替わり時)に、図6(A)に示すように、j列目のソースラインSLjの電圧は休止期間用電圧V_mから最大階調正極性電圧V_hmaxに変化する。また、j+1列目のソースラインSLj+1は休止期間用電圧V_mから最小階調負極性電圧V_lminに変化する(不図示)。このため、休止期間SPにおける各ソースラインの電圧を0Vとする従来例と比べて、休止期間SPから正極性書き込み期間HWPへの切り替わり時のj列目のソースラインSLjおよびj+1列目のソースラインSLj+1のそれぞれの電位変動が小さくなる。これにより、本実施形態における正極性書き込み期間遷移時の画素電位の変動は、従来例に比べて小さくなる。
 第N+2フレーム期間F(N+2)の正極性書き込み期間HWPでの動作は上述のとおりであり、正極性書き込み期間遷移時の画素電位の変動と正極性書き込み前の画素電位の変動とによって正極性書き込み前の平均画素電位VGhwbが決定される。本実施形態における正極性書き込み期間遷移時の画素電位の変動は上述のとおり従来例に比べて小さくなるので、本実施形態における正極性書き込み前の平均画素電位VGhwbは、従来例に比べて負極性休止期間の画素電位VGlsに近い値になる。このため、本実施形態における正極性書き込み前の平均画素電位VGhwbと共通電位Vcomとの電位差と、負極性休止期間の画素電位VGlsと共通電位Vcomとの電位差とは、従来例に比べて互いに近い大きさになる。これにより、図6(C)に示すように、本実施形態における第N+1フレーム期間F(N+1)から第N+2フレーム期間F(N+2)への切り替わり時の輝度変化は、従来例に比べて小さくなる。その結果、従来例に比べてフリッカが抑制される。なお、本実施形態では、本実施形態における第N+1フレーム期間F(N+1)から第N+2フレーム期間F(N+2)への切り替わり時の表示輝度と第Nフレーム期間F(N)から第N+1フレーム期間F(N+1)への切り替わり時の表示輝度とは互いに同じ方向(低下する方向)に変化する。
 正極性書き込み後の平均画素電位VGlwaは、上述のように上記式(4)で与えられる。本実施形態では、上述のように正極性書き込み期間遷移時の画素電位の変動が従来例に比べて小さくなっているので、正極性書き込み前の平均画素電位VGhwbと共通電位Vcomとの電位差と、正極性書き込み後の平均画素電位VGhwaと共通電位Vcomとの電位差とが従来例に比べて互いに近い大きさになる。このため、本実施形態では、上述の第N+1フレーム期間F(N+1)から第N+2フレーム期間F(N+2)への切り替わり時の輝度変化のみならず、正極性書き込み期間HWPでの書き込み前後の輝度変化も従来例に比べて小さくなる。これにより、正極性書き込み期間HWPでのフリッカが十分に抑制される。
 図7は、従来例に係る液晶表示装置により得られる表示輝度と本実施形態に係る液晶表示装置10により得られる表示輝度を比較した図である。より詳細には、図7(A)は、従来例に係る液晶表示装置により得られる表示輝度を示す図である。図7(B)は、本実施形態に係る液晶表示装置10により得られる表示輝度を示す図である。なお、図7(A)および図7(B)はそれぞれ図4(C)および図6(C)に相当する。図7(A)および図7(B)に示すように、従来例ではおおよそ±5cd/m2のフリッカが存在するのに対し、本実施形態ではフリッカはおおよそ±1cd/m2に抑制される。
 <1.4 効果>
 本実施形態によれば、低周波駆動モードの休止期間SPにおいて、休止期間用電圧V_mが各ソースラインに供給される。このため、主として第2,第3寄生容量Csa,Csbの存在により、各書き込み期間から休止期間SPへの切り替わり時に生じる画素電位の変動は次のようになる。休止期間SPにおけるソースラインの電圧が休止期間用電圧V_mになることにより、正極性書き込み期間HWPから休止期間SPへの切り替わり時のj列目のソースラインSLjおよびj+1列目のソースラインSLj+1のそれぞれの電位変動が従来例に比べて小さくなる。このため、正極性書き込み期間HWPから休止期間SPへの切り替わり時の画素電位の変動ΔV_hsが従来例に比べて小さくなる。これにより、休止期間SPにおける表示輝度と次フレーム期間の負極性書き込み期間LWPにおける表示輝度との差が従来よりも小さくなる。したがって、正極性書き込み期間HWPを含むフレーム期間から負極性書き込み期間LWPを含むフレーム期間への切り替わり時に生じるフリッカが従来例に比べて抑制される。また、休止期間SPにおけるソースラインの電圧が休止期間用電圧V_mになることにより、負極性書き込み期間LWPから休止期間SPへの切り替わり時のj列目のソースラインSLjおよびj+1列目のソースラインSLj+1のそれぞれが従来例に比べて小さくなる。このため、負極性書き込み期間LWPから休止期間SPへの切り替わり時の画素電位の変動ΔV_lsが従来例に比べて小さくなる。これにより、休止期間SPにおける表示輝度と次フレーム期間の正極性書き込み期間HWPにおける表示輝度との差が従来よりも小さくなる。したがって、負極性書き込み期間LWPを含むフレーム期間から正極性書き込み期間HWPを含むフレーム期間への切り替わり時に生じるフリッカも従来例に比べて抑制される。以上のようにして、表示品位の低下を従来例に比べて抑制できる。
 また、本実施形態によれば、正極性書き込み期間HWPでのデータ電圧と休止期間SPでのデータ電圧との差と、負極性書き込み期間LWPでのデータ電圧と休止期間SPでのデータ電圧との差とが従来例に比べて互いに近い大きさになる。このため、休止期間SPから正極性書き込み期間HWPへの切り替わり時の画素電位の変動と休止期間SPから負極性書き込み期間LWPへの切り替わり時の画素電位の変動との差が従来例に比べて小さくなり、表示品位低下の抑制効果を高めることができる。なお、このような効果は、上記第1~第4休止期間用電圧を採用することにより、十分に高めることができる。すなわち、最小階調負極性電圧V_lminと休止期間SPでのデータ電圧との差が最小階調正極性電圧V_hminと休止期間SPでのデータ電圧との差と略同じ大きさになり、最小階調負極性電圧V_lminと休止期間SPでのデータ電圧との差が最小階調正極性電圧V_hminと休止期間SPでのデータ電圧との差と略同じ大きさになる。これにより、休止期間SPから正極性書き込み期間HWPへの切り替わり時の画素電位の変動と休止期間SPから負極性書き込み期間LWPへの切り替わり時の画素電位の変動とが略均一化される。このようにして、表示品位低下の抑制効果を高めることができる。
 <2.第2の実施形態>
 <2.1 動作概要>
 本発明の第2の実施形態に係る液晶表示装置10は、低周波駆動モードと通常駆動モードとを切り替え可能に構成されている。なお、本実施形態に係る液晶表示装置10の基本的な構成は上記第1の実施形態におけるものと同様であり、本実施形態の構成要素のうち上記第1の実施形態と同一の要素については、同一の参照符号を付して適宜説明を省略する。低周波駆動モードと通常駆動モードとの切り替えは、表示制御回路200が制御する。低周波駆動モードにおいて、表示制御回路200は、上述の書き込み期間での動作と休止期間での動作とを1フレーム期間を周期として繰り返す。一方、通常駆動モードにおいて、表示制御回路200は、上述の書き込み期間での動作を1フレーム期間を周期として繰り返す。なお、通常駆動モードでは、表示制御回路200は切り替え信号SWを出力しなくても良い。
 <2.2 従来例における共通電位の設定>
 ところで、従来例で低周波駆動を行う場合、上述のように、書き込み期間から休止期間SPへの切り替わり時に比較的大きな電位変動(ΔV_hs,ΔV_ls)が存在するために、休止期間SPでの画素電位は書き込み期間におけるものと大きく異なる値になる。一方、通常駆動を行う場合には、上述のような書き込み期間から休止期間SPへの切り替わり時の電位変動は存在しない。このため、従来例が低周波駆動モードと通常駆動モードとを切り替え可能となっている場合、低周波駆動モードに適した共通電位および通常駆動モードに適した共通電位は互いに異なる値になる。仮に、低周波駆動モードと通常駆動モードとで同じ値の共通電位を用いるとすると、表示品位の低下を招くことになる。なお、共通電位の切り替えは、例えば表示制御回路200により制御される。
 図8は、従来例に係る液晶表示装置の通常駆動モードでの動作について説明するための図である。より詳細には、図8(A)はソースラインSLjの電圧(データ電圧)を示す波形図であり、図8(B)はソースラインSLjに対応するi行j列目の画素形成部110における画素電位を示す波形図である。図8(B)では、通常駆動モードにおける共通電位(以下「通常共通電位」という。)を「Vcomn」で表し、低周波駆動モードにおける共通電位(以下「低周波共通電位」という。)を「Vcoml」で表す。なお、図8(B)に示す低周波共通電位Vcomlは、図4(B)に示す共通電位Vcomと同じ値である。
 図8(A)および図8(B)に示すように、各フレーム期間は書き込み期間からなっており、1フレーム期間毎に正極性書き込み期間HWPおよび負極性書き込み期間LWPが順に繰り返されている。通常駆動モードでは、各フレーム期間に休止期間SPが含まれないので、上述のような書き込み期間から休止期間SPへの切り替わり時の電位変動は存在しない。このような通常駆動モードにおいて、通常共通電位Vcomnは例えば次式(14)のように設定される。
 Vcomn = [(V_hmax - ΔVgd) + (V_lmax - ΔVgd)] / 2
  = (V_hmax + V_lmax) / 2 - ΔVgd 
   …(14)
 ところで、低周波駆動モードにおける低周波共通電位Vcomlの設定の際しては、上述の正極性書き込み期間HWPから休止期間SPへの切り替わり時の画素電位の変動ΔV_hsと負極性書き込み期間LWPから休止期間SPへの切り替わり時の画素電位の変動ΔV_lsの他、休止期間SPの長さ(以下では、符号SPそれ自体で休止期間SPの長さをも表すことがある。)をも考慮することが望ましい。これは、TFT111として酸化物TFTを用いた場合であっても僅かにオフリーク電流が流れ、休止期間SPの長さに応じて画素電位の変動が異なるためである。このため、通常共通電位Vcomnと低周波共通電位Vcomlとの差ΔVmodは、次式(15)で与えられる。
 ΔVmod = (Vcomn - Vcomlw)(WP / F) + (Vcomn - Vcomls)(SP / F)
   …(15)
ここで、Vcomlw,Vcomlsはそれぞれ書き込み期間および休止期間SPにおける低周波共通電位を表し、WPは書き込み期間の長さを表し、Fは1フレーム期間の長さを表す。なお、通常駆動モードにおける書き込み期間と低周波駆動モードにおける書き込み期間とでは、駆動周波数のみが互いに異なり、フィールドスルー電圧ΔVgdは互いに同じ値になる。このため、式(15)は次式(16)に書き換えられる。
 ΔVmod = (Vcomn - Vcomls)(SP / F) …(16)
 式(16)における「Vcomn-Vcomls」は次式(17)で与えられる。
 Vcomn - Vcomls = (ΔV_hs + ΔV_ls) / 2 …(17)
ここで、ΔV_hsは上記式(5)で与えられ、ΔV_lsは上記式(7)で与えられるので、式(17)は次式(18)に書き換えられる。
 Vcomn - Vcomls
  = [(Csa / 2ΣC)(V_hmax + V_lmax + V_hmin + V_lmin)
  + (Csb / 2ΣC)(V_hmax + V_lmax + V_hmin + V_lmin)] / 2
  = (V_hmax + V_lmax + V_hmin + V_lmin)(Csa + Csb) / 4ΣC
   …(18)
 式(16)および式(18)により、通常共通電位Vcomnと低周波共通電位Vcomlとの差ΔVmodは次式(19)で与えられる。
 ΔVmod = (V_hmax + V_lmax + V_hmin + V_lmin)(Csa + Csb)(SP / F) / 4ΣC 
   …(19)
式(19)に示す通りΔVmodは0でないので、従来例では、通常共通電位Vcomnと低周波共通電位Vcomlとを互いに別の値に設定する必要がある。この場合、単一の共通電位を用いる場合に比べて回路構成が複雑になる。
 <2.3 第2の実施形態における共通電位の設定>
 図9は、本実施形態に係る液晶表示装置10の通常駆動モードでの動作について説明するための図である。より詳細には、図9(A)はソースラインSLjの電圧(データ電圧)を示す波形図であり、図9(B)はソースラインSLjに対応するi行j列目の画素形成部110における画素電位を示す波形図である。図9(A)および図9(B)に示すように、本実施形態におけるソースラインSLjの電圧を示す波形およびソースラインSLjに対応するi行j列目の画素形成部110における画素電位を示す波形のそれぞれは従来例におけるものと同様である。しかしながら、図9(B)に示すように、本実施形態では低周波駆動モードおよび通常駆動モードの双方で互いに同じ値の共通電位Vcomが用いられる。なお、本実施形態における低周波駆動モードでの動作は上記第1の実施形態におけるものと同様である。
 本実施形態では、休止期間用電圧V_mとして第1休止期間用電圧が用いられるものとする。本実施形態におけるΔV_hsは上記式(12)で与えられ、ΔV_lsは上記式(13)で与えられるので、上記式(17)は次式(20)に書き換えられる。
 Vcomn - Vcomls
 = [(Csa / 2ΣC)[(V_hmax + V_lmax + V_hmin + V_lmin) - 4V_m]
  + (Csb / 2ΣC)[(V_hmax + V_lmax + V_hmin + V_lmin) - 4V_m] / 2
 = (V_hmax + V_lmax + V_hmin + V_lmin - 4V_m)(Csa + Csb) / 4ΣC
   …(20)
 上述のように、休止期間用電圧V_mは第1休止期間用電圧であるので、上記式(9)で与えられるV_mを式(20)に代入すると「Vcomn-Vcomls」は0になる。その結果、ΔVmodも0になる。すなわち、低周波駆動モードと通常駆動モードとで共通電位を同じ値(図9(B)に示すVcom)にすることができる。
 <2.4 効果>
 本実施形態によれば、低周波駆動モードと通常駆動モードとを切り替え可能な液晶表示装置10において、低周波駆動モードと通常駆動モードとで共通電位が同じ値になるので、駆動モードの切り替えに応じて共通電位を切り替える必要がない。このため、表示品位の低下を簡易な構成で抑制できる。
 なお、上述の説明では休止期間用電圧V_mとして第1休止期間用電圧を用いるものとしたが、本発明はこれに限定されるものではない。なお、第1休止期間用電圧以外の休止期間用電圧V_mでも、従来例に比べるとΔVmodが小さくなるので(上記(16)および式(20)を参照)。このため、低周波駆動モードと通常駆動モードとで共通電位を同じ値にしたとしても、従来例において低周波駆動モードと通常駆動モードとで共通電位を同じ値する表示品位の低下が抑制される。
 <3.第3の実施形態>
 <3.1 ソースドライバの構成>
 図10は、本発明の第3の実施形態におけるソースドライバ300の構成について説明するためのブロック図である。本実施形態に係る液晶表示装置10は、表示制御回路200からソースドライバ300に、休止期間用電圧V_mを示す休止期間用電圧信号VMを供給するように構成されている。なお、他の構成については、上記第1の実施形態におけるものと同様であるので説明を省略する。本実施形態は、上記第1の実施形態および第2の実施形態のいずれとも組み合わせて用いることができる。
 表示制御回路200は、デジタル映像信号DV、ソーススタートパルスSSP、ソースクロックSCK、ラッチストローブ信号LS、極性信号POL、切り換え信号SW、ゲートスタートパルスGSP、ゲートクロックGCK、および休止期間用電圧信号VMをソースドライバ300に対して出力する。基準電圧生成回路600は、複数の基準電圧信号VRをソースドライバ300に対して出力する。
 ソースドライバ300は、第1~第8入力端子IT1~IT8、第1~第m出力端子OT1~OTn、シフトレジスタ310、サンプリング回路320、ラッチ回路330、階調電圧生成回路340、D/A変換回路350、電圧切り替え回路360、および出力回路370を備えている。本実施形態では、第7入力端子IT7により第1端子が実現され、第6入力端子IT6により第2端子が実現されている。
 第1入力端子IT1は、ソーススタートパルスSSPを受け取るための端子である。第2入力端子IT2は、ソースクロックSCKを受け取るための端子である。第3入力端子IT3は、デジタル映像信号DVを受け取るための端子である。第4入力端子IT4は、ラッチストローブ信号LSを受け取るための端子である。第5入力端子IT5は、極性信号POLを受け取るための端子である。第6入力端子IT6は、切り換え信号SWを受け取るための端子である。第7入力端子は、休止期間用電圧信号VMを受け取るための端子である。第8入力端子IT8は、基準電圧信号VRを受け取るための端子である。なお、デジタル映像信号DVがパラレルに伝送される場合には、第3入力端子IT3は複数設けられる。また、第8入力端子IT8は実際には基準電圧信号VRの数と同じ数だけ設けられるが、便宜上1つであるものとして図示している。第1~第m出力端子OT1~OTnは、ソースラインSL1~SLnに対してそれぞれデータ電圧を出力するための端子である。
 シフトレジスタ310は、表示制御回路200から出力されるソーススタートパルスSSPに同期して、当該表示制御回路200から出力されるソーススタートパルスSSPを順次転送することにより所定のサンプリングパルスを順次出力する。
 サンプリング回路320は、表示制御回路200から出力されるデジタル映像信号DVが示す1行分の階調値を、上記サンプリングパルスのタイミングで順次記憶する。
 ラッチ回路330は、サンプリング回路320に記憶された1行分の階調値を、表示制御回路200から出力されるラッチストローブ信号LSに応じて取り込み保持すると共に、その保持している1行分の階調値を1列毎(すなわち1画素毎)に階調信号としてD/A変換回路350に出力する。なお、ラッチ回路330から出力される階調信号は実際には所定のレベルシフタにより昇圧された後にD/A変換回路350に与えられるが、ここでは便宜上その説明を省略する。
 階調電圧生成回路340は、基準電圧生成回路600から出力される複数の基準電圧VRと、表示制御回路200から出力される極性信号POLに基づいて、極性に応じた複数の階調電圧を生成すると共に、当該複数の階調電圧をD/A変換回路350に出力する。なお、上述のドット反転駆動などを行う場合には、極性信号POLは1列毎に異なる極性を示す。
 D/A変換回路350は、階調電圧生成回路340から出力された複数の階調電圧の中から1列毎に階調値に応じた階調電圧を選択すると共に、選択した階調電圧を電圧切り替え回路360に出力する。
 電圧切り替え回路360は、表示制御回路200から出力された切り替え信号SWに基づき、出力回路370に出力すべき電圧を切り替える。具体的には、電圧切り替え回路360は、書き込み信号において、D/A変換回路350から出力された1列毎の階調電圧(データ電圧)を出力回路370に対して出力する。また、電圧切り替え回路360は、休止期間において、表示制御回路200から出力された休止期間用電圧信号VMが示す休止期間用電圧V_m(データ電圧)を1列毎に出力回路370に対して出力する。このように、電圧切り替え回路360は、切り替え信号SWに基づき、書き込み期間においては、データ信号の極性を正極性または負極性とすべきときに複数の正極性の階調電圧のいずれかまたは複数の負極性の階調電圧のいずれかをデータ電圧とし、休止期間においては、休止期間用電圧信号VMが示す休止期間用電圧V_mをデータ電圧とするように構成されている。なお、休止期間用電圧信号VMの電圧そのものが休止期間用電圧V_mである必要はなく、電圧切り替え回路360が休止期間用電圧信号VMに対して所定の変換処理を施すことにより休止期間用電圧V_mを取得可能となっていても良い。
 出力回路370は、電圧切り替え回路360から出力された1列毎の階調電圧または休止期間用電圧V_mを対応するソースラインSL1~SLnのそれぞれに印加する。出力回路370は、例えば、n個のボルテージフォロワ回路により構成されている。
 ここで示したソースドライバ300の構成は単なる一例である。ソースドライバ300は、少なくとも第6端子IT6および第7入力端子IT7を備え、第6入力端子IT6を介して受け取った切り替え信号SWに基づいて書き込み期間と休止期間とで各ソースラインに印加すべきデータ電圧を切り替え可能であり、且つ、休止期間において第7端子IT7から受け取った休止期間用電圧信号VMが示す休止期間用電圧V_mを各ソースラインに印加可能となっていれば、他のいかなる構成であっても良い。
 <3.2 効果>
 本実施形態によれば、第6,第7端子IT6,IT7および電圧切り替え回路360を備えるソースドライバ300を用いて、上記第1の実施形態または第2の実施形態と同様の効果を奏することができる。
 <4.その他>
 上記各実施形態では、ノーマリブラック方式を採用するものとして説明したが、ノーマリホワイト方式を採用しても良い。この場合、上記説明において、最大階調正極性電圧V_hmaxと最小階調正極性電圧V_hminとを入れ替え、且つ最大階調負極性電圧V_lmaxと最小階調負極性電圧V_lminとを入れ替えることより、同様の議論が成り立つ。また、上記各実施形態ではフリッカパターンを表示させる例を挙げて説明したが、その他の表示を行う場合であっても上述の効果が得られる。その他、本発明の趣旨を逸脱しない範囲で上記各実施形態を種々変形して実施することができる。
10…液晶表示装置
100…液晶表示部
110…画素形成部
111…TFT(薄膜トランジスタ)
112…画素電極
113…共通電極
200…表示制御回路
300…ソースドライバ(データ線駆動回路)
360…電圧切り替え回路
400…ゲートドライバ(走査線駆動回路)
500…共通電位供給回路
600…基準電圧生成回路
SLj(j=1~n)…ソースライン(データ線)
GLi(i=1~m)…ゲートライン(走査線)
Clc…液晶容量
Cst…補助容量
Cgd…第1寄生容量
Csa…第2寄生容量
Csb…第3寄生容量
IT1~IT8…第1~第8入力端子
OT1~OTn…第1~第n出力端子
POL…極性信号
SW…切り替え信号
V_hmax…最大階調正極性電圧
V_hmin…最小階調正極性電圧
V_lmax…最大階調負極性電圧
V_lmin…最小階調負極性電圧
V_m…休止期間用電圧
VM…休止期間用電圧信号
F…フレーム期間
HWP…正極性書き込み期間
LWP…負極性書き込み期間
SP…休止期間

Claims (13)

  1.  複数の走査線が順次選択される書き込み期間と、前記書き込み期間以上の長さであり且つ前記複数の走査線のいずれもが非選択状態となる休止期間とが、前記書き込み期間と前記休止期間とからなる第1駆動フレーム期間を周期として交互に現れる第1駆動モードで液晶表示部を駆動可能な液晶表示装置であって、
     複数のデータ線と、前記複数の走査線と、前記複数のデータ線と前記複数の走査線とに対応してマトリクス状に配置された複数の画素電極と、前記複数の画素電極に対応して設けられた共通電極とを含む前記液晶表示部と、
     前記複数のデータ線を介して前記複数の画素電極にデータ信号を与え、前記書き込み期間毎に前記データ信号の極性を反転させるデータ線駆動回路と、
     前記複数の走査線を駆動する走査線駆動回路とを備え、
     前記データ線駆動回路は、
      前記書き込み期間において、複数の正極性の階調電圧のいずれかまたは複数の負極性の階調電圧のいずれかを前記データ信号の電圧とし、
      前記休止期間において、前記複数の正極性の階調電圧の中の最大電圧を上限とし、前記複数の負極性の階調電圧の中の最小電圧を下限とする範囲内の値の電圧を前記データ信号の電圧とすることを特徴とする、液晶表示装置。
  2.  前記データ線駆動回路は、前記休止期間において、前記データ信号の電圧を、前記複数の正極性の階調電圧の中の最大階調を示す階調電圧と、前記複数の負極性の階調電圧の中の最大階調を示す階調電圧と、前記複数の正極性の階調電圧の中の最小階調を示す階調電圧と、前記複数の負極性の階調電圧の中の最小階調を示す階調電圧との平均値とすることを特徴とする、請求項1に記載の液晶表示装置。
  3.  前記データ線駆動回路は、前記休止期間において、前記データ信号の電圧を、前記複数の正極性の階調電圧の中の最大階調を示す階調電圧と前記複数の負極性の階調電圧の中の最大階調を示す階調電圧との間の値とすることを特徴とする、請求項1に記載の液晶表示装置。
  4.  前記データ線駆動回路は、前記休止期間において、前記データ信号の電圧を、前記複数の正極性の階調電圧の中の最大階調を示す階調電圧と前記複数の負極性の階調電圧の中の最大階調を示す階調電圧との平均値とすることを特徴とする、請求項3に記載の液晶表示装置。
  5.  前記データ線駆動回路は、前記休止期間において、前記データ信号の電圧を、前記複数の正極性の階調電圧の中の最小階調を示す階調電圧と前記複数の負極性の階調電圧の中の最小階調を示す階調電圧との間の値とすることを特徴とする、請求項1に記載の液晶表示装置。
  6.  前記データ線駆動回路は、前記休止期間において、前記データ信号の電圧を、前記複数の正極性の階調電圧の中の最小階調を示す階調電圧と前記複数の負極性の階調電圧の中の最小階調を示す階調電圧との平均値とすることを特徴とする、請求項5に記載の液晶表示装置。
  7.  前記データ線駆動回路および前記走査線駆動回路を制御し、前記書き込み期間からなる第2駆動フレーム期間を周期とする第2駆動モードと前記第1駆動モードとを切り替える表示制御回路をさらに備えることを特徴とする、請求項1から6までのいずれか1項に記載の液晶表示装置。
  8.  前記共通電極に共通電位を与える共通電位供給回路をさらに備え、
     前記共通電位供給回路は、前記第1駆動モードと前記第2駆動モードとで前記共通電位を互いに同じ値にすることを特徴とする、請求項7に記載の液晶表示装置。
  9.  前記データ線駆動回路は、前記休止期間におけるデータ信号の電圧を示す休止期間用電圧信号を受け取るための第1端子と、前記書き込み期間と前記休止期間との切り替えを示す切り替え信号を受け取るための第2端子とを含むことを特徴とする、請求項1から6までのいずれか1項に記載の液晶表示装置。
  10.  前記表示制御回路は、前記第1端子および前記第2端子にそれぞれ前記休止期間用電圧信号および前記切り替え信号を与えることを特徴とする、請求項9に記載の液晶表示装置。
  11.  前記液晶表示部は、各画素電極と当該画素電極に対応するデータ線とを互いに接続し且つチャネル層が酸化物半導体により形成された薄膜トランジスタをさらに含むことを特徴とする、請求項1から10までのいずれか1項に記載の液晶表示装置。
  12.  複数のデータ線と、前記複数の走査線と、前記複数のデータ線と前記複数の走査線とに対応してマトリクス状に配置された複数の画素電極と、前記複数の画素電極に対応して設けられた共通電極とを含む液晶表示部を備え、前記複数の走査線が順次選択される書き込み期間と、前記走査期間以上の長さであり且つ前記複数の走査線のいずれもが非選択状態となる休止期間とが、前記走査期間と前記休止期間とからなる第1駆動フレーム期間を周期として交互に現れる第1駆動モードで液晶表示部を駆動可能な液晶表示装置で使用され、前記複数のデータ線を介して前記複数の画素電極にデータ信号を与え、前記書き込み期間毎に前記データ信号の極性を反転させるデータ線駆動回路であって、
     前記休止期間におけるデータ信号の電圧を示す休止期間用電圧信号を受け取るための第1端子と、
     前記前記書き込み期間と前記休止期間との切り替えを示す切り替え信号を受け取るための第2端子と、
     前記切り替え信号に基づき、前記書き込み期間において、複数の正極性の階調電圧のいずれかまたは複数の負極性の階調電圧のいずれかを前記データ信号の電圧とし、前記休止期間において、前記休止期間用電圧信号が示す電圧を前記データ信号の電圧とする電圧切り替え回路とを備え、
     前記休止期間用電圧信号が示す電圧は、前記複数の正極性の階調電圧の中の最大電圧を上限とし、前記複数の負極性の階調電圧の中の最小電圧を下限とする範囲内の値であることを特徴とする、データ線駆動回路。
  13.  複数のデータ線と、複数の走査線と、前記複数のデータ線と前記複数の走査線とに対応してマトリクス状に配置された複数の画素電極と、前記複数の画素電極に対応して設けられた共通電極とを含む液晶表示部を備え、前記複数の走査線が順次選択される書き込み期間と、前記走査期間以上の長さであり且つ前記複数の走査線のいずれもが非選択状態となる休止期間とが、前記走査期間と前記休止期間とからなる第1駆動フレーム期間を周期として交互に現れる第1駆動モードで液晶表示部を駆動可能な液晶表示装置の駆動方法であって、
     前記複数のデータ線を介して前記複数の画素電極にデータ信号を与え、前記書き込み期間毎に前記データ信号の極性を反転させるデータ線駆動ステップを備え、
     前記データ線駆動ステップは、
      前記書き込み期間において、複数の正極性の階調電圧のいずれかまたは複数の負極性の階調電圧のいずれかを前記データ信号の電圧とするステップと、
      前記休止期間において、前記複数の正極性の階調電圧の中の最大電圧を上限とし、前記複数の負極性の階調電圧の中の最小電圧を下限とする範囲内の値の電圧を前記データ信号の電圧とするステップとを含むことを特徴とする、駆動方法。
PCT/JP2013/064075 2012-05-24 2013-05-21 液晶表示装置、データ線駆動回路、および液晶表示装置の駆動方法 WO2013176126A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/399,073 US9653013B2 (en) 2012-05-24 2013-05-21 Liquid crystal display device, data line drive circuit, and drive method for liquid crystal display device
US15/416,332 US20170140722A1 (en) 2012-05-24 2017-01-26 Liquid crystal display device, data line drive circuit, and drive method for liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012118367A JP5955098B2 (ja) 2012-05-24 2012-05-24 液晶表示装置、データ線駆動回路、および液晶表示装置の駆動方法
JP2012-118367 2012-05-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/399,073 A-371-Of-International US9653013B2 (en) 2012-05-24 2013-05-21 Liquid crystal display device, data line drive circuit, and drive method for liquid crystal display device
US15/416,332 Division US20170140722A1 (en) 2012-05-24 2017-01-26 Liquid crystal display device, data line drive circuit, and drive method for liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2013176126A1 true WO2013176126A1 (ja) 2013-11-28

Family

ID=49623815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064075 WO2013176126A1 (ja) 2012-05-24 2013-05-21 液晶表示装置、データ線駆動回路、および液晶表示装置の駆動方法

Country Status (3)

Country Link
US (2) US9653013B2 (ja)
JP (1) JP5955098B2 (ja)
WO (1) WO2013176126A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111402792A (zh) * 2019-11-21 2020-07-10 友达光电股份有限公司 发光二极管驱动电路及包含其的发光二极管显示面板

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031659A1 (ja) * 2014-08-26 2016-03-03 シャープ株式会社 表示装置およびその駆動方法
KR102280939B1 (ko) * 2015-01-29 2021-07-27 삼성디스플레이 주식회사 표시 장치 및 그것의 휘도 제어 방법
US9946101B2 (en) 2015-03-13 2018-04-17 Apple Inc. Gate driver control circuit
CN104851400B (zh) * 2015-05-21 2018-01-09 深圳市华星光电技术有限公司 显示装置及其驱动方法
CN105096878B (zh) * 2015-08-20 2018-04-06 深圳市华星光电技术有限公司 液晶显示驱动装置及液晶显示驱动方法
US10332460B2 (en) * 2016-07-04 2019-06-25 Innolux Corporation Display and driving method thereof
WO2018130954A1 (ja) * 2017-01-16 2018-07-19 株式会社半導体エネルギー研究所 半導体装置
KR20220022406A (ko) * 2020-08-18 2022-02-25 엘지디스플레이 주식회사 구동 회로와 이를 이용한 표시장치
CN113658565A (zh) * 2021-08-30 2021-11-16 深圳市华星光电半导体显示技术有限公司 显示面板和电子设备
CN115202087B (zh) * 2022-05-30 2023-08-25 长沙惠科光电有限公司 显示面板的驱动方法和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182619A (ja) * 2000-10-05 2002-06-26 Sharp Corp 表示装置の駆動方法およびそれを用いた表示装置
JP2003173175A (ja) * 2001-09-25 2003-06-20 Sharp Corp 画像表示装置および表示駆動方法
JP2004206075A (ja) * 2002-12-10 2004-07-22 Hitachi Ltd 液晶表示装置の駆動方法および液晶表示装置
JP2006139315A (ja) * 2006-02-09 2006-06-01 Sharp Corp アクティブマトリクス型表示装置およびその駆動方法
WO2012008216A1 (ja) * 2010-07-15 2012-01-19 シャープ株式会社 データ信号線駆動回路、表示装置及びデータ信号線駆動方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW564388B (en) * 1999-05-11 2003-12-01 Toshiba Corp Method of driving flat-panel display device
JP2001202066A (ja) 1999-11-09 2001-07-27 Sharp Corp 画像表示装置及びその駆動方法
CN1220098C (zh) 2000-04-28 2005-09-21 夏普株式会社 显示器件、显示器件驱动方法和装有显示器件的电子设备
KR100361466B1 (ko) * 2000-09-02 2002-11-20 엘지.필립스 엘시디 주식회사 액정표시장치 및 그의 구동방법
JP2002207462A (ja) 2001-01-11 2002-07-26 Toshiba Corp 液晶表示素子の駆動方法
JP3730159B2 (ja) 2001-01-12 2005-12-21 シャープ株式会社 表示装置の駆動方法および表示装置
JP3862994B2 (ja) 2001-10-26 2006-12-27 シャープ株式会社 表示装置の駆動方法およびそれを用いた表示装置
KR20060054811A (ko) * 2004-11-16 2006-05-23 삼성전자주식회사 표시장치용 구동칩과, 이를 갖는 표시장치
US20070057891A1 (en) * 2005-09-09 2007-03-15 Jung-Chieh Cheng Method for the transition of liquid crystal display
WO2011081041A1 (en) 2009-12-28 2011-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
JP5304684B2 (ja) * 2010-02-22 2013-10-02 セイコーエプソン株式会社 映像処理回路、その処理方法、液晶表示装置および電子機器
US20120262660A1 (en) * 2010-04-09 2012-10-18 Sharp Kabushiki Kaisha Display device
CN102456329B (zh) * 2010-10-28 2015-04-29 北京京东方光电科技有限公司 液晶面板的驱动方法及驱动电路
US9153186B2 (en) * 2011-09-30 2015-10-06 Apple Inc. Devices and methods for kickback-offset display turn-off

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182619A (ja) * 2000-10-05 2002-06-26 Sharp Corp 表示装置の駆動方法およびそれを用いた表示装置
JP2003173175A (ja) * 2001-09-25 2003-06-20 Sharp Corp 画像表示装置および表示駆動方法
JP2004206075A (ja) * 2002-12-10 2004-07-22 Hitachi Ltd 液晶表示装置の駆動方法および液晶表示装置
JP2006139315A (ja) * 2006-02-09 2006-06-01 Sharp Corp アクティブマトリクス型表示装置およびその駆動方法
WO2012008216A1 (ja) * 2010-07-15 2012-01-19 シャープ株式会社 データ信号線駆動回路、表示装置及びデータ信号線駆動方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111402792A (zh) * 2019-11-21 2020-07-10 友达光电股份有限公司 发光二极管驱动电路及包含其的发光二极管显示面板

Also Published As

Publication number Publication date
JP5955098B2 (ja) 2016-07-20
US20170140722A1 (en) 2017-05-18
US20150138249A1 (en) 2015-05-21
JP2013246230A (ja) 2013-12-09
US9653013B2 (en) 2017-05-16

Similar Documents

Publication Publication Date Title
JP5955098B2 (ja) 液晶表示装置、データ線駆動回路、および液晶表示装置の駆動方法
US10163392B2 (en) Active matrix display device and method for driving same
KR101245944B1 (ko) 액정패널, 이를 구비한 액정표시장치 및 그 구동 방법
KR100338012B1 (ko) 스윙 공통 전극을 이용한 액정 표시 장치 및 이의 구동 방법
US20050253829A1 (en) Display device and display device driving method
US8232946B2 (en) Liquid crystal display and driving method thereof
KR101252854B1 (ko) 액정 패널, 데이터 드라이버, 이를 구비한 액정표시장치 및그 구동 방법
KR20150078833A (ko) 저속 구동이 가능한 표시장치
US20170358268A1 (en) Data signal line drive circuit, display device provided with same, and method for driving same
US20090219237A1 (en) Electro-optical device, driving method thereof, and electronic apparatus
KR101255705B1 (ko) 게이트 구동 회로, 그를 이용한 액정 표시 장치 및 그의구동 방법
US8284146B2 (en) Display device, its driving circuit, and driving method
US10896650B2 (en) Video signal line drive circuit, display device including same, and drive method for video signal line
JP2001166741A (ja) 半導体集積回路装置および液晶表示装置
JP2019056740A (ja) 液晶表示装置
US9082356B2 (en) Liquid crystal display apparatus and method of driving the same
WO2013024776A1 (ja) 表示装置およびその駆動方法
KR20040049558A (ko) 액정 표시 장치 및 그 구동 방법
WO2013031552A1 (ja) 液晶表示装置およびその駆動方法
JP2016170443A (ja) 液晶表示装置、データ線駆動回路、および液晶表示装置の駆動方法
KR100869118B1 (ko) 액정 표시 장치 및 이의 구동 방법
KR102328982B1 (ko) 표시장치 구동 방법
KR101706233B1 (ko) 액정 표시장치 및 그의 구동방법
KR20050055159A (ko) 액정표시장치 및 그 구동방법
JP5713658B2 (ja) 電気光学装置の駆動回路及び駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794049

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14399073

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794049

Country of ref document: EP

Kind code of ref document: A1