WO2013175866A1 - 油圧閉回路システム - Google Patents

油圧閉回路システム Download PDF

Info

Publication number
WO2013175866A1
WO2013175866A1 PCT/JP2013/059687 JP2013059687W WO2013175866A1 WO 2013175866 A1 WO2013175866 A1 WO 2013175866A1 JP 2013059687 W JP2013059687 W JP 2013059687W WO 2013175866 A1 WO2013175866 A1 WO 2013175866A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
cylinder device
hydraulic cylinder
pressure
pump
Prior art date
Application number
PCT/JP2013/059687
Other languages
English (en)
French (fr)
Inventor
宇田川 勉
田中 宏明
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to KR1020147032365A priority Critical patent/KR102024644B1/ko
Priority to CN201380026704.XA priority patent/CN104334891B/zh
Priority to EP13794458.3A priority patent/EP2857696B1/en
Priority to US14/398,476 priority patent/US9695841B2/en
Publication of WO2013175866A1 publication Critical patent/WO2013175866A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2289Closed circuit
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B9/00Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member
    • F15B9/02Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type
    • F15B9/04Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type controlled by varying the output of a pump with variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • F15B2211/253Pressure margin control, e.g. pump pressure in relation to load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/27Directional control by means of the pressure source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to a hydraulic closed circuit system.
  • Conventional hydraulic closed circuit systems generally realize a closed circuit by providing a low pressure selection valve (flushing valve) and a charge circuit when the hydraulic actuator is a single rod type hydraulic cylinder device.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-54602
  • two bidirectional discharge hydraulic pumps are provided as hydraulic sources
  • a pair of discharge ports are connected to the bottom port and rod side port of the hydraulic cylinder device to form a closed hydraulic circuit
  • one of the discharge ports of the other hydraulic pump pair is connected to the bottom port of the hydraulic cylinder device.
  • the conventional general hydraulic closed circuit system has a problem that it is difficult to smoothly operate the hydraulic cylinder device due to the hunting phenomenon of the low pressure selection valve (flushing valve).
  • the hydraulic closed circuit system described in Patent Document 1 one of two hydraulic pumps is connected to the bottom port of the hydraulic cylinder device to absorb the flow rate difference between the bottom side and the rod side of the hydraulic cylinder device, and the low pressure selection valve. (Flushing valve) is unnecessary. Therefore, in the hydraulic closed circuit system described in Patent Document 1, there is no problem that it is difficult to smoothly operate the hydraulic cylinder device due to the hunting phenomenon of the low pressure selection valve (flushing valve).
  • the discharge flow rate (pump capacity) of the hydraulic pump per rotation is set based on the area difference between the bottom side and the rod side of the hydraulic cylinder device.
  • the flow rate balance during expansion and contraction of the hydraulic cylinder device cannot be ideally balanced due to a setting error of the pump capacity, a capacity error due to aging, etc., and an error in flow rate due to leakage to the outside. If the flow balance during expansion and contraction of the hydraulic cylinder device cannot be balanced, excess or deficiency of the inflow or outflow flow into the hydraulic cylinder device will occur, causing problems such as cavitation due to insufficient flow or pressure rise due to overfill due to excessive flow Occurs.
  • the present invention has been made in view of the above problems, and its purpose is in a hydraulic closed circuit system using a plurality of hydraulic pumps when the flow rate balance during expansion and contraction of the hydraulic cylinder device is not balanced due to an error in pump capacity, etc.
  • it is to provide a hydraulic closed circuit system capable of automatically adjusting the flow rate and always maintaining a good balance of the flow rate balance.
  • the present invention provides a hydraulic cylinder device, a bi-directional discharge type first hydraulic pump connected to the hydraulic cylinder device so as to form a hydraulic closed circuit, and a pair of discharge ports.
  • One side of which is connected to the bottom side of the hydraulic cylinder device and the other side is connected to the tank, which is a bi-directional discharge type bi-directional variable capacity type second hydraulic pump, drives the first and second hydraulic pumps, and the first A prime mover that recovers the power of the first and second hydraulic pumps, an operation direction of the hydraulic cylinder device and a pressure on a low thrust side of the hydraulic cylinder device, and the first and second hydraulic pumps and the hydraulic cylinder device;
  • a pump capacity control device for controlling the capacity of the second hydraulic pump so as to balance the flow rate balance when the hydraulic cylinder device expands and contracts.
  • the pump displacement control device is configured such that the hydraulic cylinder device is in an extending operation and the pressure on the low thrust side of the hydraulic cylinder device is a reference pressure value.
  • the pressure on the low thrust side of the hydraulic cylinder device is a reference pressure value.
  • the pump displacement control device includes an operation detection device that detects an operation direction of the hydraulic cylinder device, a pressure and a rod on a bottom side of the hydraulic cylinder device.
  • First and second pressure detection devices that respectively detect the pressure on the side, whether the hydraulic cylinder device is a power running operation or a regenerative operation based on detection values of the operation detection device and the first and second pressure detection devices, Determining whether the hydraulic cylinder device is extending or contracting, and calculating a correction amount of the capacity of the second hydraulic pump based on the determination result to control the capacity of the second hydraulic pump;
  • the pump displacement correcting device has the reference pressure value Pref, the hydraulic cylinder device bottom side pressure Pb, and the rod side pressure Pr.
  • the pump displacement control device includes an operation detection device that detects an operation direction of the hydraulic cylinder device, a bottom hydraulic chamber and a rod of the hydraulic cylinder device.
  • a low thrust side pressure selection valve that selects a low thrust side pressure among the pressures in the side hydraulic chamber, a pressure detection device that detects a pressure selected by the low thrust side pressure selection valve, the operation detection device, and the pressure detection
  • a pump displacement correction device that calculates a displacement correction amount of the second hydraulic pump and controls the displacement of the second hydraulic pump 13 based on the detected value of the device, and in this case, the pump displacement The correction device includes a reference value setter for setting the reference pressure value, and a difference value between the pressure detected by the pressure detection device and the reference pressure value, when the hydraulic cylinder device is in an extension operation.
  • a first arithmetic unit that calculates a correction amount of the capacity of the two hydraulic pumps, and the second hydraulic pump when the hydraulic cylinder device is contracted based on a difference value between the pressure detected by the pressure detection device and the reference pressure value
  • a selection device that selects one of the first and second arithmetic devices based on the operation direction of the hydraulic cylinder device detected by the motion detection device.
  • the pump displacement correction device does not correct the displacement of the second hydraulic pump in a predetermined pressure range including the reference pressure value. Is preferably provided.
  • the prime mover may be either an electric motor or a hydraulic motor.
  • the prime mover is an electric motor
  • the first and second hydraulic pumps rotate the electric motor during the regenerative operation of the hydraulic cylinder device
  • the regenerative power is recovered as electric energy
  • the prime mover is the hydraulic motor.
  • the first and second hydraulic pumps rotate the hydraulic motor, whereby the regenerative power is recovered as hydraulic energy.
  • the first and second hydraulic pumps may be 1-pump 2-port flow rate distribution type pumps, In this case, the pump displacement control device controls the displacement of the second hydraulic pump by changing the flow rate ratio at the 2 ports of the 1 pump 2 port flow distribution type pump.
  • the flow rate is automatically adjusted and the flow rate is always adjusted.
  • the balance of the balance can be maintained in a good state, and cavitation due to pressure increase due to overfilling due to excessive flow rate and excessive flow rate can be effectively suppressed.
  • FIG. 3 is a diagram illustrating an example of a control method for the second hydraulic pump 13. It is a figure which shows another example of the control method of the 2nd hydraulic pump 13, Comprising: It is a thing at the time of providing a dead zone in the predetermined pressure range containing a reference pressure value. It is a figure which shows the processing flow of the pump control part which performs capacity
  • FIG. 1 is a diagram showing a configuration of a hydraulic closed circuit system according to a first embodiment of the present invention.
  • reference numeral 11 denotes a hydraulic cylinder device driven by the hydraulic closed circuit system according to the present embodiment.
  • the hydraulic cylinder device 11 is a construction machine such as a hydraulic excavator, a wheel loader, a crane, a forklift, or a dump truck. And a hydraulic actuator for driving various movable members of work machines such as industrial machines.
  • the hydraulic cylinder device 11 includes a cylinder body 11e, a piston 11c that slides in the cylinder body 11e, and a rod 11d that is connected to the piston 11c and extends outside the cylinder body 11e, and the rod 11d projects in one direction.
  • the cylinder body 11e is partitioned into a bottom side hydraulic chamber 11a and a rod side hydraulic chamber 11b by a piston 11c.
  • the hydraulic cylinder device 11 connects the end of the cylinder body 11e to the movable member of the work machine, and expands and contracts the hydraulic cylinder device 11 to drive the movable member indicated by the load W to perform a predetermined operation.
  • the hydraulic closed circuit system of the present embodiment includes a bidirectional hydraulic discharge type first hydraulic pump 12 connected to the hydraulic cylinder device 11 so as to form a hydraulic closed circuit, and one of the paired discharge ports of the hydraulic cylinder device 11.
  • a bi-directional discharge type bi-directional variable displacement type second hydraulic pump 13 connected to the bottom and connected to the tank 16 and the first and second hydraulic pumps 12 and 13 and the first and second hydraulic pumps.
  • At least one of the first and second hydraulic pumps 12 and 13 may be a plurality of hydraulic pumps.
  • the connection relationship between the hydraulic cylinder device 11 and the first and second hydraulic pumps 12 and 13 will be described in more detail.
  • One of the discharge ports forming a pair of the first hydraulic pump 12 is connected to the hydraulic cylinder device via the first pipeline 14.
  • 11 is connected to a port (bottom side port) Bp of the bottom side hydraulic chamber 11a, and the other discharge port as a pair of the first hydraulic pump 12 is connected to the rod side hydraulic chamber of the hydraulic cylinder device 11 via the second conduit 15.
  • the first hydraulic pump 12, the first pipeline 14, the second pipeline 15, and the hydraulic cylinder device 11 constitute a hydraulic closed circuit, which is connected to a port 11b (rod side port) Rp.
  • One of the discharge ports to be paired with the second hydraulic pump 13 is connected to the bottom side port Bp of the hydraulic cylinder device 11 via the third pipe 17 and the first pipe 14 connected to the first pipe 14.
  • the other discharge port that forms a pair of the second hydraulic pump 13 is connected to the tank 16 via the fourth pipe 18.
  • the first and second hydraulic pumps 12 and 13 are connected by a common drive shaft 21.
  • the drive shaft 21 is connected to the drive shaft 22 of the prime mover 20, and the prime mover 20 is rotated during the power running operation of the hydraulic cylinder device 11.
  • power is supplied from the prime mover 20 to the first and second hydraulic pumps 12 and 13, and the first and second hydraulic pumps 12 and 13 rotate the prime mover 20 during the regenerative operation of the hydraulic cylinder device 11. Power is recovered.
  • the power running operation of the hydraulic cylinder device 11 refers to a case where the hydraulic cylinder device 11 is driven by hydraulic oil supplied from the first and second hydraulic pumps 12 and 13 to the hydraulic cylinder device 11.
  • 11 is a case where the hydraulic cylinder device 11 is driven by a load W acting on the hydraulic cylinder device 11.
  • the rotational speed of the prime mover 20 the flow rate of hydraulic oil discharged from the first and second hydraulic pumps 12 and 13 (hereinafter referred to as discharge flow rate) is controlled, and the operating speed of the hydraulic cylinder device 11 is controlled.
  • discharge flow rate the flow rate of hydraulic oil discharged from the first and second hydraulic pumps 12 and 13
  • the operating speed of the hydraulic cylinder device 11 is controlled.
  • the second hydraulic pump 13 has a regulator 23, and the capacity of the second hydraulic pump 13 is adjusted by the regulator 23.
  • the prime mover 20 is an electric motor in the present embodiment, and the hydraulic closed circuit system includes a battery 25 for driving the electric motor 20, an inverter 26, an operating device 31, and a controller 35.
  • the controller 35 includes an electric motor control unit 41.
  • the electric motor control unit 41 inputs an operation signal of the operation device 31 and generates a control signal according to the operation direction and the operation amount of the operation lever of the operation device 31, The control signal is output to the inverter 26.
  • the inverter 26 controls the rotation direction and rotation speed of the electric motor 20 to be the rotation direction and rotation speed corresponding to the operation direction and operation amount of the operation lever of the operation device 31.
  • the discharge direction and discharge flow rate of the first and second hydraulic pumps 12 and 13 are controlled, and the drive direction and drive speed of the hydraulic cylinder device 11 are controlled.
  • the electric motor 20 functions as a generator, and the generated electric power is stored in the battery 25 as electric energy.
  • the hydraulic closed circuit system includes a pressure sensor (first pressure detection device) 32 that detects a pressure on the bottom side of the hydraulic cylinder device 11 and a pressure sensor (second pressure) that detects a pressure on the rod side of the hydraulic cylinder device 11. (Detection device) 33 and a position sensor (motion detection device) 34 for detecting the operation direction of the hydraulic cylinder device 11, and the controller 35 has a pump control unit 42.
  • the pump control unit 42 receives detection signals from the pressure sensors 32 and 33 and the position sensor 34, and based on these detection values, whether the hydraulic cylinder device 11 is in a power running operation or a regenerative operation, and whether the hydraulic cylinder device 11 is in an expansion operation or contraction. Based on the determination result, the correction amount of the capacity of the second hydraulic pump 13 is calculated, and a control signal is output to the regulator 23 of the second hydraulic pump 13.
  • the regulator 23 operates according to the control signal, and adjusts the capacity of the second hydraulic pump 13 by finely adjusting the capacity (inclination) of the second hydraulic pump 13. Accordingly, the capacity of the second hydraulic pump 13 is controlled so that the flow rate balance when the hydraulic cylinder device 11 is expanded and contracted is balanced between the first and second hydraulic pumps 12 and 13 and the hydraulic cylinder device 11.
  • the pressure receiving area (bottom side pressure receiving area) of the piston 11c in the bottom side hydraulic chamber 11a is A1
  • the pressure receiving area (rod side pressure receiving area) of the piston 11c in the rod side hydraulic chamber 11b is A2
  • the rod 11d is disconnected.
  • FIG. 2A and 2B are diagrams specifically showing the flow rate balance when the hydraulic cylinder device 11 described above is expanded and contracted. The same parts as those in FIG.
  • FIG. 2A is a case where the hydraulic cylinder device 11 is extended
  • FIG. 2B is a case where the hydraulic cylinder device 11 is contracted.
  • the ratio of the bottom side pressure receiving area A1 and the rod side pressure receiving area A2 is 2: 1
  • the discharge flow rates of the first hydraulic pump 12 and the second hydraulic pump 13 are 50
  • the hydraulic cylinder device respectively, so that the calculation is easy.
  • the flow rate into the bottom side hydraulic chamber 11a or the flow rate from the bottom side hydraulic chamber 11a (bottom side flow rate) is 100
  • the inflow flow rate (rod side flow rate) is shown as 50.
  • the discharge flow rates of the first hydraulic pump 12 and the second hydraulic pump 13 are 50 respectively when the hydraulic cylinder device 11 of FIG. 2A extends and when the hydraulic cylinder device 11 of FIG. 2B contracts, the hydraulic cylinder device 11 The flow rate balance at the time of expansion and contraction is balanced, and excess or deficiency of the inflow rate or outflow rate to the hydraulic cylinder device 11 does not occur.
  • the rod side of the hydraulic cylinder device 11 has an excessive flow rate, and a pressure increase due to overfilling occurs in the rod-side hydraulic chamber 11b and the pipe line 15 on the low thrust side of the hydraulic cylinder device 11.
  • AN flow rate shown in the figure The discharge flow rate of the second hydraulic pump 13 is increased to 54, and as a result, the flow rate supplied from the first and second hydraulic pumps 12 and 13 to the bottom side of the hydraulic cylinder device 11 is increased to 104.
  • the discharge flow rate of the first hydraulic pump 12 is 50, the suction flow rate of the first hydraulic pump 12 is also 50.
  • the hydraulic cylinder device 11 when the hydraulic cylinder device 11 performs a regenerative operation, the hydraulic cylinder device 11 is driven by the load W so that the flow rate on the rod side becomes 50. Therefore, the flow rate on the bottom side of the hydraulic cylinder device 11 is 100. Become. As a result, the bottom side of the hydraulic cylinder device 11 has an excessive flow rate, and a pressure increase due to overfilling occurs in the bottom side hydraulic chamber 11a and the pipe line 14 on the low thrust side of the hydraulic cylinder device 11.
  • the hydraulic cylinder device 11 when the hydraulic cylinder device 11 performs a regenerative operation, the hydraulic cylinder device 11 is driven by the load W so that the flow rate on the rod side becomes 50. Therefore, the flow rate on the bottom side of the hydraulic cylinder device 11 is 100. Become. As a result, the flow rate of the bottom side of the hydraulic cylinder device 11 becomes excessive, and cavitation occurs in the bottom side hydraulic chamber 11a and the pipe line 14 on the low thrust side of the hydraulic cylinder device 11.
  • the discharge flow rate of the first hydraulic pump 12 is 50, so the flow rate on the bottom side of the hydraulic cylinder device 11 is 100.
  • the flow rate of the bottom side of the hydraulic cylinder device 11 becomes excessive, and cavitation occurs in the bottom side hydraulic chamber 11a and the pipe line 14 on the low thrust side of the hydraulic cylinder device 11.
  • ⁇ Regenerative operation> (AN flow rate shown in the figure) Since the discharge flow rate of the second hydraulic pump 13 has increased to 54, the suction flow rate of the second hydraulic pump 13 has also increased to 54. Further, since the discharge flow rate of the first hydraulic pump 12 is 50, the suction flow rate of the first hydraulic pump 12 is also 50.
  • the suction flow rate from the bottom side of the hydraulic cylinder device 11 by the first and second hydraulic pumps 12 and 13 increases to 104. Accordingly, when the hydraulic cylinder device 11 performs a regenerative operation, the hydraulic cylinder device 11 is driven by the load W so that the flow rate on the bottom side becomes 104. Therefore, the flow rate on the rod side of the hydraulic cylinder device 11 is 52. And increase. As a result, the rod side of the hydraulic cylinder device 11 has an excessive flow rate, and the rod side hydraulic chamber 11b and the pipe line 15 cavitation, which are the low thrust side of the hydraulic cylinder device 11, are generated.
  • the discharge flow rate of the first hydraulic pump 12 is 50, so the flow rate on the bottom side of the hydraulic cylinder device 11 is 100.
  • the bottom side of the hydraulic cylinder device 11 has an excessive flow rate, and a pressure increase due to overfilling occurs in the bottom side hydraulic chamber 11a and the pipe line 14 on the low thrust side of the hydraulic cylinder device 11.
  • ⁇ Regenerative operation> (AN flow rate shown in the figure) Since the discharge flow rate of the second hydraulic pump 13 is reduced to 46, the suction flow rate of the second hydraulic pump 13 is also reduced to 46. Further, since the discharge flow rate of the first hydraulic pump 12 is 50, the suction flow rate of the first hydraulic pump 12 is also 50.
  • the suction flow rate from the bottom side of the hydraulic cylinder device 11 by the first and second hydraulic pumps 12 and 13 is reduced to 96. Accordingly, when the hydraulic cylinder device 11 performs a regenerative operation, the hydraulic cylinder device 11 is driven by the load W so that the flow rate on the bottom side becomes 96, so the flow rate on the rod side of the hydraulic cylinder device 11 is 48. Reduce to. As a result, the rod side of the hydraulic cylinder device 11 has an excessive flow rate, and a pressure increase due to overfilling occurs in the rod-side hydraulic chamber 11b and the pipe line 15 on the low thrust side of the hydraulic cylinder device 11.
  • the present invention automatically controls the displacement volume (capacity) of the second hydraulic pump 13 so as not to cause the above-described problems.
  • FIG. 3A is a diagram illustrating an example of a control method of the second hydraulic pump 13.
  • the control method of the second hydraulic pump 13 is different depending on whether the hydraulic cylinder device 11 is in an expansion / contraction operation state or a power running / regeneration operation state.
  • the correction amount is calculated with respect to the preset pump capacity of the second hydraulic pump 13. That is, when the reference pressure value for determining whether the flow rate on the low thrust side of the hydraulic cylinder device 11 is excessive or excessive is Pref, the bottom side pressure is Pb, and the rod side pressure is Pr, A correction amount is calculated with respect to a preset pump capacity of the hydraulic pump 13 to correct the capacity of the second hydraulic pump 13.
  • the reference pressure value Pref for determining whether the flow rate on the low thrust side of the hydraulic cylinder device 11 is excessive or excessive is a pressure that does not cause problems due to cavitation or pressure rise, and is preferably slightly higher than the tank pressure. Is set. This pressure can be set to a value of about 0.2 MPa, for example, when the tank pressure is 0.1 MPa.
  • FIG. 3B is a diagram illustrating another example of the control method of the second hydraulic pump 13.
  • the dead zone is in a predetermined pressure range including the reference pressure value Pref in each of the correction calculation tables to be used depending on whether the hydraulic cylinder device 11 is in the extended / contracted operating state or the powering / regenerative operating state.
  • the capacity of the second hydraulic pump is not corrected.
  • the correction amount of the pump displacement is calculated only when the pressure exceeds the dead zone, and the control can be performed only when necessary.
  • FIG. 4 is a diagram showing a processing flow of the pump control unit 42 that corrects the capacity of the second hydraulic pump 13 by the control method shown in FIGS. 3A and 3B.
  • the pump control unit 42 stores a cylinder extension / power running correction calculation table, a cylinder extension / regeneration correction calculation table, a cylinder contraction / power running correction calculation table, and a cylinder contraction / regeneration correction calculation table as shown in FIG.
  • the pump control unit 42 inputs the detection signals of the pressure sensors 32 and 33 and the position sensor 34 to calculate the bottom side pressure Pb, the rod side pressure Pr, and the cylinder speed V of the hydraulic cylinder device 11, and A capacity correction amount of the second hydraulic pump 13 is calculated and controlled using a table. Details of the control are as follows.
  • Step S1 The detection signals from the pressure sensors 32 and 33 and the position sensor 34 are input to calculate the bottom side pressure Pb, the rod side pressure Pr, and the cylinder speed V of the hydraulic cylinder device 11.
  • Step S2 It is determined whether the hydraulic cylinder device 11 is a power running operation or a regenerative operation.
  • the determination method of the power running / regenerative operation can be determined by the sign of the calculated value of cylinder thrust x speed, + represents a power running operation, and-represents a regenerative operation. Specifically, if the cylinder extension direction is defined as the + direction, (A1, Pb-A2, Pr) x V +: Power running-: Regenerative If it is a power running operation, the process proceeds to step S3. If it is a regenerative operation, the process proceeds to step S4.
  • Steps S3 and S4 Based on the cylinder speed V, it is determined whether or not the hydraulic cylinder device 11 is cylinder extended. If the cylinder is extended, the process proceeds to steps S5 and S7 and steps S9 and S11. If the cylinder is contracted, steps S6 and S10 are performed. Proceed to
  • Step S5 and Step S9 The value of Pr ⁇ Pref, which is the deviation between the rod side pressure Pr and the reference pressure value Pref, is calculated, and this value is referred to the cylinder expansion and power running correction calculation table shown in FIG. 3A or FIG. The amount of correction of the capacity is calculated.
  • Step S7 and Step S11 A value of Pb ⁇ Pref which is a deviation between the bottom pressure Pb and the reference pressure value Pref is calculated, and this value is referred to the cylinder expansion and regeneration correction calculation table shown in FIG. 3A or FIG. The amount of correction of the capacity is calculated.
  • Step S6 and Step S10 A value of Pb ⁇ Pref which is a deviation between the bottom pressure Pb and the reference pressure value Pref is calculated, and this value is referred to the cylinder shrinkage and power running correction calculation table shown in FIG. 3A or FIG. The amount of correction of the capacity is calculated.
  • Step S8 and Step S12 A value of Pr ⁇ Pref which is a deviation between the rod side pressure Pr and the reference pressure value Pref is calculated, and this value is referred to the cylinder shrinkage and regeneration correction calculation table shown in FIG. 3A or FIG. The amount of correction of the capacity is calculated.
  • Step S13 The correction amount of the capacity obtained in steps S9 to S12 is added to the reference target capacity Qref, and the correction capacity QCOR of the second hydraulic pump 13 is calculated.
  • the target capacity Qref is the flow rate Q2 shown in the above-described equation (1), and is a flow rate obtained with a capacity set in advance in the second hydraulic pump 13.
  • Step S14 The correction capacitor QCOR is converted into a control amount of the regulator 23 and output as a control signal.
  • the capacity of the second hydraulic pump 13 is set to a capacity that can obtain Q2 of the above-described equation (1). Theoretically, with such setting, in any operation of expansion / contraction and power running / regeneration of the hydraulic cylinder device 11, an excess or deficiency of the inflow rate or the outflow rate to the hydraulic cylinder device 11 does not occur.
  • the hydraulic cylinder device 11 can be controlled by an error in the pump capacity of the first hydraulic pump 12 or the second hydraulic pump 13. Even when the flow balance during expansion and contraction is not balanced, the flow rate is automatically adjusted to always maintain a good balance of flow balance, effectively suppressing pressure rise due to overfilling due to excessive flow rate and cavitation due to excessive flow rate. be able to.
  • FIG. 5 is a diagram showing a configuration of a hydraulic closed circuit system according to the second embodiment of the present invention.
  • the hydraulic closed circuit system replaces the pressure sensors 32 and 33 in the hydraulic circuit system of the first embodiment shown in FIG. 1 with the bottom side hydraulic pressure of the hydraulic cylinder device 11.
  • a low thrust side pressure selection valve 51 that selects and outputs a low thrust side pressure of the hydraulic cylinder device 11, and a low thrust side pressure selection valve 51.
  • the controller 35 includes a pump control device 42A instead of the pump control device 42.
  • the pump control device 42A calculates a correction amount of the capacity of the second hydraulic pump 13 based on the detection values of the position sensor 34 (motion detection apparatus) and the pressure sensor (pressure detection apparatus) 52, and the capacity of the second hydraulic pump 13 To control.
  • the pressures of the bottom side hydraulic chamber 11a and the rod side hydraulic chamber 11b of the hydraulic cylinder device 11 are guided to both ends of the spool 51a at three positions, and both ends of the spool 51a are supported by springs 51b and 51c.
  • the structure is neutral.
  • the ratio of the pressure receiving area A1 in the bottom side hydraulic chamber 11a to the pressure receiving area A2 in the rod side hydraulic chamber 11b is 2: 1 as described above
  • the spring load (spring constant) of the springs 51b and 51c is as follows.
  • the spring load ratio is 1: 2.
  • the pump control device 42A calculates a reference value setting unit 53 for setting the reference pressure value Pref, a difference unit 54 for calculating the difference between the pressure detected by the pressure sensor 52 and the reference pressure value Pref, and the difference unit 54.
  • a first arithmetic unit 55A that calculates a correction amount of the capacity of the second hydraulic pump 13 when the hydraulic cylinder device 11 is extended from the difference value, and the hydraulic cylinder device 11 performs a contraction operation from the difference value calculated by the differentiator 54.
  • the operation direction of the hydraulic cylinder device 11 based on the operation speed V of the hydraulic cylinder device 11 detected by the second arithmetic device 55B that calculates the displacement correction amount of the second hydraulic pump 13 and the position sensor 34 is the extension operation.
  • 1st arithmetic unit 55A is selected at the time, and when the operation direction of the hydraulic cylinder device 11 is a contraction operation, the selection unit selects the second arithmetic unit 55B. 6, a target capacity setting unit 57 for setting a target capacity Qref as a reference, and a pump capacity correction amount calculated by the first arithmetic device 55 ⁇ / b> A or the second arithmetic device 55 ⁇ / b> B selected by the selection device 56 as a reference target.
  • a corrector (adder) 58 that calculates the correction capacity QCOR of the hydraulic pump 13 by adding to the capacity Qref, and an output unit 59 that converts the correction capacity QCOR into a control amount of the regulator 23 and outputs it as a control signal are provided. is doing.
  • the first arithmetic unit 55A performs the arithmetic processing of steps S9 and S11 of FIG. 4 in the first embodiment with a single cylinder expansion correction calculation table, and the difference value calculated by the subtractor 54 is used as the cylinder expansion.
  • the correction amount of the capacity of the second hydraulic pump 13 is calculated with reference to the correction calculation table.
  • the second arithmetic unit 55B performs the arithmetic processing in steps S10 and S12 of FIG. 4 in the first embodiment with a single cylinder contraction correction arithmetic table, and the difference value calculated by the subtractor 54 is cylinder contracted.
  • the correction amount of the capacity of the second hydraulic pump 13 is calculated with reference to the correction calculation table.
  • FIG. 6 is a diagram showing a configuration of a hydraulic closed circuit system according to the third embodiment of the present invention.
  • the prime mover that drives the first and second hydraulic pumps may be anything that can input / output power, and may be, for example, a hydraulic motor other than the electric motor.
  • the prime mover is a hydraulic motor.
  • the hydraulic closed circuit system includes a bidirectional variable displacement type hydraulic motor 61 instead of the electric motor 20 as the prime mover shown in FIG. 1.
  • the hydraulic motor 61 is connected to a low pressure source system 64 that includes an accumulator 62 and a safety relief valve 63.
  • the low pressure source system 64 is driven by the hydraulic energy stored in the accumulator 62 when the hydraulic motor 61 drives the first and second hydraulic pumps 12 and 13 (during a power running operation).
  • the rotational energy is stored in the accumulator 62 as hydraulic energy.
  • the low pressure source system 64 may be connected to a hydraulic pump (not shown) driven by an engine or the like because the hydraulic energy stored in the accumulator 62 is insufficient.
  • the hydraulic motor 61 has a regulator 65, and the controller 35 has a hydraulic motor control unit 41B instead of the electric motor control unit 41.
  • the hydraulic motor control unit 41 ⁇ / b> B receives an operation signal from the operation device 31, generates a control signal corresponding to the operation direction and operation amount of the operation lever of the operation device 31, and outputs the control signal to the regulator 65. Based on the control signal, the regulator 65 tilts the hydraulic motor 61 so that the rotation direction and the number of rotations of the hydraulic motor 61 become the rotation direction and the number of rotations according to the operation direction and the operation amount of the operation lever of the operation device 31. Control the direction and amount of tilting.
  • the rotation direction and rotation speed of the hydraulic motor 61 By controlling the rotation direction and rotation speed of the hydraulic motor 61, the discharge direction and discharge flow rate of the first and second hydraulic pumps 12 and 13 are controlled, and the drive direction and drive speed of the hydraulic cylinder device 11 are controlled. .
  • FIG. 7 is a diagram showing a configuration of a hydraulic closed circuit system according to the fourth embodiment of the present invention.
  • the present invention is a case where the first and second hydraulic pumps are constituted by a 1-pump 2-port flow rate distribution type pump.
  • the hydraulic closed circuit system replaces the first and second hydraulic pumps 12 and 13 separately connected by the common drive shaft 21 shown in FIG.
  • a split flow pump 71 known as a flow distribution type pump is provided.
  • the split flow pump 71 has one discharge / suction port 71a and two suction / discharge ports 71b and 71c, and the discharge / suction port 71a is connected to the bottom side of the hydraulic cylinder device 11 via the pipe line 14.
  • One port 71b of the two suction / discharge ports 71b and 71c is connected to the rod side of the hydraulic cylinder device 11 through the pipe line 15, and the other port 71c is connected to the tank.
  • One discharge / suction port 71a of the split flow pump 71 and one port 71b of the two suction / discharge ports 71b, 71c function as a first hydraulic pump, and one discharge / suction port 71a and two suction / discharge ports
  • the other port 71c of 71b, 71c functions as a second hydraulic pump.
  • the split flow pump 71 has a regulator 72 that changes the flow rate ratio in the two suction / discharge ports 71b and 71c
  • the controller 35 has a pump control unit 42C instead of the pump control unit 42.
  • the correction amount of the flow rate ratio in the two suction / discharge ports 71b, 71c of the split flow pump 71 is calculated,
  • the control signal is output to the regulator 72.
  • the regulator 72 controls the flow rate ratio in the two suction / discharge ports 71b and 71c based on the control signal.
  • a 1-pump 2-port flow distribution type pump is used as the first and second hydraulic pumps, but a single pump has two discharge / suction ports and two suction / discharge ports.
  • a body-type pump may be used, and the same effect can be obtained by this.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 複数の油圧ポンプを用いた油圧閉回路システムにおいて、ポンプ容量の誤差等により油圧シリンダ装置の伸縮時の流量収支がバランスしない場合でも、自動的に流量を調整し流量収支のバランスを良好な状態に保ち得るようにする。第1油圧ポンプ12を油圧シリンダ装置11に油圧閉回路を構成するよう接続し、第2油圧ポンプ12の対となる吐出ポートの一方を油圧シリンダ装置11のボトム側に接続し、他方をタンク16に接続し、第1及び第2油圧ポンプ12,13を原動機20で駆動しかつ動力を回収るする。ポンプ容量制御装置100は油圧シリンダ装置11の動作方向と低推力側の圧力を検出し、第1及び第2油圧ポンプと油圧シリンダ装置との間で油圧シリンダ装置の伸縮時の流量収支がバランスするよう第2油圧ポンプ13の容量を制御する。

Description

油圧閉回路システム
 本発明は油圧閉回路システムに関する。
 従来の油圧閉回路システムは、油圧アクチュエータが片ロッド型の油圧シリンダ装置である場合、一般的に、低圧選択弁(フラッシング弁)とチャージ回路を設けて閉回路を実現している。
 このような従来の油圧閉回路システムに対して、特許文献1(特開2002-54602号公報)記載の従来技術では、油圧源として2つの両方向吐出型の油圧ポンプを設け、一方の油圧ポンプの対となる吐出ポートをそれぞれ油圧シリンダ装置のボトム側ポートとロッド側ポートに接続して油圧閉回路を構成し、もう一方の油圧ポンプの対となる吐出ポートの一方を油圧シリンダ装置のボトム側ポートに接続し、他方をタンクに接続することで、油圧シリンダ装置のボトム側とロッド側の流量差を吸収し、低圧選択弁(フラッシング弁)を不要としている。
特開2002-54602号公報
 従来の一般的な油圧閉回路システムは、低圧選択弁(フラッシング弁)のハンチング現象により油圧シリンダ装置の円滑な作動を行いがたいという問題があった。特許文献1記載の油圧閉回路システムでは、2つの油圧ポンプの一方を油圧シリンダ装置のボトム側ポートに接続することで、油圧シリンダ装置のボトム側とロッド側の流量差を吸収し、低圧選択弁(フラッシング弁)を不要としている。したがって、特許文献1記載の油圧閉回路システムでは、低圧選択弁(フラッシング弁)のハンチング現象により油圧シリンダ装置の円滑な作動を行いがたいという問題は生じない。
 しかし、特許文献1記載の油圧閉回路システムには次のような問題がある。
 特許文献1記載の油圧閉回路システムでは、油圧シリンダ装置のボトム側とロッド側の面積差を基に1回転当たりの油圧ポンプの吐出流量(ポンプ容量)を設定する。しかし、ポンプ容量の設定誤差や経年変化等による容量誤差、外部へのリーク等による流量の誤差などがあり、油圧シリンダ装置の伸縮時の流量収支が理想的にバランスできない場合も少なくない。油圧シリンダ装置の伸縮時の流量収支がバランスできない場合は、油圧シリンダ装置への流入流量或いは流出流量の過不足が生じてしまい、流量過少によるキャビテーションや、流量過多による圧こもりによる圧力上昇などの不具合が発生する。
 本発明は上記課題に鑑みてなされたものであり、その目的は、複数の油圧ポンプを用いた油圧閉回路システムにおいて、ポンプ容量の誤差等により油圧シリンダ装置の伸縮時の流量収支がバランスしない場合でも、自動的に流量を調整し、常に流量収支のバランスを良好な状態に保ち得る油圧閉回路システムを提供することである。
 (1)上記目的を達成するために、本発明は、油圧シリンダ装置と、この油圧シリンダ装置に油圧閉回路を構成するよう接続された両方向吐出型の第1油圧ポンプと、対となる吐出ポートの一方が前記油圧シリンダ装置のボトム側に接続され、他方がタンクに接続された両方向吐出型で両方向可変容量型の第2油圧ポンプと、前記第1及び第2油圧ポンプを駆動しかつ前記第1及び第2油圧ポンプの動力を回収する原動機と、前記油圧シリンダ装置の動作方向と前記油圧シリンダ装置の低推力側の圧力を検出し、前記第1及び第2油圧ポンプと前記油圧シリンダ装置との間で前記油圧シリンダ装置の伸縮時の流量収支がバランスするよう前記第2油圧ポンプの容量を制御するポンプ容量制御装置とを備えるものとする。
 これにより複数の油圧ポンプを用いた油圧閉回路システムにおいて、第1油圧ポンプ或いは第2油圧ポンプのポンプ容量の誤差等により油圧シリンダ装置の伸縮時の流量収支がバランスしない場合でも、自動的に流量を調整し、常に流量収支のバランスを良好な状態に保つようになり、その結果、流量過多による圧こもりによる圧力上昇や流量過少によるキャビテーションを効果的に抑制することができる。
 (2)上記(1)記載の油圧閉回路システムにおいて、より詳しくは、前記ポンプ容量制御装置は、前記油圧シリンダ装置が伸び動作にありかつ前記油圧シリンダ装置の低推力側の圧力が基準圧力値より低いときは、前記第2油圧ポンプの容量を増やし、前記低推力側の圧力が前記基準圧力値より高いときは、前記第2油圧ポンプの容量を減らすよう制御し、かつ前記油圧シリンダ装置が縮み動作にありかつ前記油圧シリンダ装置の低推力側の圧力が基準圧力値より高いときは、前記第2油圧ポンプの容量を増やし、前記低推力側の圧力が前記基準圧力値より低いときは、前記第2油圧ポンプの容量を減らすよう制御する。
 これにより複数の油圧ポンプを用いた油圧閉回路システムにおいて、第1油圧ポンプ或いは第2油圧ポンプのポンプ容量の誤差等により油圧シリンダ装置の伸縮時の流量収支がバランスしない場合でも、自動的に流量を調整し、常に流量収支のバランスを良好な状態に保つようになり、その結果、流量過多による圧こもりによる圧力上昇や流量過少によるキャビテーションを効果的に抑制することができる。
 (3)上記(2)記載の油圧閉回路システムにおいて、例えば、前記ポンプ容量制御装置は、前記油圧シリンダ装置の動作方向を検出する動作検出装置と、前記油圧シリンダ装置のボトム側の圧力とロッド側の圧力をそれぞれ検出する第1及び第2圧力検出装置と、前記動作検出装置と前記第1及び第2圧力検出装置の検出値に基づいて、前記油圧シリンダ装置が力行動作か回生動作かと、前記油圧シリンダ装置が伸び動作か縮み動作かを判定し、その判定結果に基づいて、前記第2油圧ポンプの容量の補正量を演算し第2油圧ポンプの容量を制御するポンプ容量補正装置とを有し、前記ポンプ容量補正装置は、前記基準圧力値をPref、前記油圧シリンダ装置のボトム側圧力をPb、ロッド側圧力をPrとすると、
 (a)前記油圧シリンダ装置が伸びで力行動作のときは、基準圧力値Prefに対してロッド側圧力Prが小さいほど補正量を大きく、ロッド側圧力Prが大きいほど補正量小さくし、
 (b)前記油圧シリンダ装置が伸びで回生動作のときは、基準圧力値Prefに対してボトム側圧力Pbが小さいほど補正量を大きく、ボトム側圧力Pbが大きいほど補正量小さくし、
 (c)前記油圧シリンダ装置が縮みで力行動作のときは、基準圧力値Prefに対してボトム側圧力Pbが小さいほど補正量を小さく、ボトム側圧力Pbが大きいほど補正量大きくし、
 (d)前記油圧シリンダ装置が縮みで回生動作のときは、基準圧力値Prefに対してロッド側圧力Prが小さいほど補正量を小さく、ロッド側圧力Prが大きいほど補正量大きくする。
 これにより複数の油圧ポンプを用いた油圧閉回路システムにおいて、第1油圧ポンプ或いは第2油圧ポンプのポンプ容量の誤差等により油圧シリンダ装置の伸縮時の流量収支がバランスしない場合でも、自動的に流量を調整し、常に流量収支のバランスを良好な状態に保つようになり、その結果、流量過多による圧こもりによる圧力上昇や流量過少によるキャビテーションを効果的に抑制することができる。
 (4)また,上記(2)記載の油圧閉回路システムにおいて、前記ポンプ容量制御装置は、前記油圧シリンダ装置の動作方向を検出する動作検出装置と、前記油圧シリンダ装置のボトム側油圧室とロッド側油圧室の圧力のうち低推力側の圧力を選択する低推力側圧力選択弁と、前記低推力側圧力選択弁が選択した圧力を検出する圧力検出装置と、前記動作検出装置及び前記圧力検出装置の検出値に基づいて、前記第2油圧ポンプの容量の補正量を演算し第2油圧ポンプ13の容量を制御するポンプ容量補正装置とを有していてもよく、この場合、前記ポンプ容量補正装置は、前記基準圧力値を設定する基準値設定器と、前記圧力検出装置によって検出した圧力と前記基準圧力値との差分値から前記油圧シリンダ装置が伸び動作のときの前記第2油圧ポンプの容量の補正量を算出する第1演算装置と、前記圧力検出装置によって検出した圧力と前記基準圧力値との差分値から前記油圧シリンダ装置が縮み動作のときの前記第2油圧ポンプの容量の補正量を算出する第2演算装置と、前記動作検出装置によって検出した前記油圧シリンダ装置の動作方向に基づいて前記第1及び第2演算装置の一方を選択する選択装置とを有する。
 これによりポンプ容量制御装置での推力演算及び低推力側の判断処理を省略できるため、ポンプ容量制御装置の演算処理を単純化することができる。また、圧力検出装置の数を削減することができるため、コスト面でより好適となる。
 (5)上記(3)又は(4)記載の油圧閉回路システムにおいて、前記ポンプ容量補正装置は、前記基準圧力値を含む所定の圧力範囲において前記第2油圧ポンプの容量の補正を行わない不感帯を設けることが好ましい。
 これにより圧力が不感帯を超えた場合のみポンプ容量の補正量が算出され、必要なときにのみ制御を行うようにすることができる。
 (6)また、上記(1)~(5)のいずれかに記載の油圧閉回路システムにおいて、前記原動機は電動モータと油圧モータのいずれかであってもよい。
 これにより原動機が電動モータである場合は、油圧シリンダ装置の回生動作時に第1及び第2油圧ポンプが電動モータを回転することで、回生動力が電気エネルギーとして回収され、原動機が油圧モータである場合は、油圧シリンダ装置の回生動作時に第1及び第2油圧ポンプが油圧モータを回転することで、回生動力が油圧エネルギーとして回収される。
(7)また、上記(1)~(5)のいずれかに記載の油圧閉回路システムにおいて、前記第1及び第2油圧ポンプは、1ポンプ2ポート流量分配型のポンプであってもよく、この場合、前記ポンプ容量制御装置は、前記1ポンプ2ポート流量分配型のポンプの2ポートにおける流量割合を変更することで前記第2油圧ポンプの容量を制御する。
 これによりシステムがより単純でコンパクトになり、コスト面で更に有利となる。
 本発明によれば、複数の油圧ポンプを用いた油圧閉回路システムにおいて、ポンプ容量の誤差等により油圧シリンダ装置の伸縮時の流量収支がバランスしない場合でも、自動的に流量を調整し、常に流量収支のバランスを良好な状態に保ち、流量過多による圧こもりによる圧力上昇や流量過少によるキャビテーションを効果的に抑制することができる。
本発明の第1の実施の形態における油圧閉回路システムの構成を示す図である。 油圧シリンダ装置が伸びる場合の流量収支を具体的に示す図である。 油圧シリンダ装置が縮む場合の流量収支を具体的に示す図である。 第2油圧ポンプ13の制御方法の一例を示す図である。 第2油圧ポンプ13の制御方法の他の一例を示す図であって、基準圧力値を含む所定の圧力範囲に不感帯を設けた場合のものである。 図3A及び図3Bに示した制御方法により第2油圧ポンプの容量補正を行うポンプ制御部の処理フローを示す図である。 本発明の第2の実施の形態における油圧閉回路システムの構成を示す図である。 本発明の第3の実施の形態における油圧閉回路システムの構成を示す図である。 本発明の第4の実施の形態における油圧閉回路システムの構成を示す図である。
 本発明の実施の形態を図を用いて説明する。
<第1の実施の形態>
 図1は本発明の第1の実施の形態における油圧閉回路システムの構成を示す図である。
 図1において、符号11は、本実施の形態にの油圧閉回路システムにより駆動される油圧シリンダ装置であり、油圧シリンダ装置11は、油圧ショベル、ホイールローダ、クレーン、フォークリフト、ダンプトラック等、建設機械や産業機械などの作業機械の各種可動部材を駆動するための油圧アクチュエータである。
 油圧シリンダ装置11は、シリンダ本体11eと、シリンダ本体11e内を滑動するピストン11cと、このピストン11cに連結され、シリンダ本体11eの外部に伸びるロッド11dとを有し、ロッド11dが一方向に突出する片ロッド型であり、シリンダ本体11eの内部をピストン11cによりボトム側油圧室11aとロッド側油圧室11bに区画している。油圧シリンダ装置11は、シリンダ本体11eの端部を作業機械の可動部材に連結し、油圧シリンダ装置11を伸縮させることにより、負荷Wで示される可動部材を駆動し、所定の作業を行う。
 本実施の形態の油圧閉回路システムは、油圧シリンダ装置11に油圧閉回路を構成するよう接続された両方向吐出型の第1油圧ポンプ12と、対となる吐出ポートの一方が油圧シリンダ装置11のボトムに接続され、他方がタンク16に接続された両方向吐出型で両方向可変容量型の第2油圧ポンプ13と、第1及び第2油圧ポンプ12,13を駆動しかつ第1及び第2油圧ポンプ12,13の動力を回収する原動機20と、油圧シリンダ装置11の動作方向と油圧シリンダ装置11の低推力側の圧力を検出し、第1及び第2油圧ポンプ12,13と油圧シリンダ装置11との間で油圧シリンダ装置11の伸縮時の流量収支がバランスするよう第2油圧ポンプ13の容量を制御するポンプ容量制御装置100とを備えている。
 油圧シリンダ装置11の容量が大きい場合は、第1及び第2油圧ポンプ12,13の少なくとも一方は複数の油圧ポンプであってもよい。
 油圧シリンダ装置11と第1及び第2油圧ポンプ12,13の接続関係をより詳細に説明すると、第1油圧ポンプ12の対となる吐出ポートの一方は第1管路14を介して油圧シリンダ装置11のボトム側油圧室11aのポート(ボトム側ポート)Bpに接続され、第1油圧ポンプ12の対となる吐出ポートの他方は第2管路15を介して油圧シリンダ装置11のロッド側油圧室11bのポート(ロッド側ポート)Rpに接続され、第1油圧ポンプ12と第1管路14と第2管路15と油圧シリンダ装置11とで油圧閉回路を構成している。第2油圧ポンプ13の対となる吐出ポートの一方は、第1管路14に接続された第3管路17と第1管路14を介して油圧シリンダ装置11のボトム側ポートBpに接続され、第2油圧ポンプ13の対となる吐出ポートの他方は第4管路18を介してタンク16に接続されている。
 第1及び第2油圧ポンプ12,13は共通の駆動軸21により連結されており、駆動軸21は原動機20の駆動軸22に連結され、油圧シリンダ装置11の力行動作時は、原動機20を回転することで原動機20から第1及び第2油圧ポンプ12,13に動力が供給され、油圧シリンダ装置11の回生動作時は、第1及び第2油圧ポンプ12,13が原動機20を回転することで動力が回収される。ここで、油圧シリンダ装置11の力行動作とは、第1及び第2油圧ポンプ12,13から油圧シリンダ装置11に供給される作動油によって油圧シリンダ装置11が駆動される場合をいい、油圧シリンダ装置11の回生動作とは、油圧シリンダ装置11に作用する負荷Wによって油圧シリンダ装置11が駆動される場合をいう。
 また、原動機20の回転数を制御することで第1及び第2油圧ポンプ12,13が吐出する作動油の流量(以下吐出流量という)が制御され、油圧シリンダ装置11の動作速度が制御される。原動機20の回転方向を切り換えることで第1及び第2油圧ポンプ12,13の吐出方向が切り換わり、油圧シリンダ装置11の動作方向(伸び動作か縮み動作か)が切り換わる。第2油圧ポンプ13はレギュレータ23を有し、レギュレータ23により第2油圧ポンプ13の容量が調整される。
 原動機20は本実施の形態では電動モータであり、油圧閉回路システムは電動モータ20を駆動するためのバッテリ25と、インバータ26と、操作装置31と、コントローラ35とを備えている。コントローラ35は電動モータ制御部41を有し、電動モータ制御部41は、操作装置31の操作信号を入力して操作装置31の操作レバーの操作方向と操作量に応じた制御信号を生成し、インバータ26にその制御信号を出力する。インバータ26は、その制御信号に基づいて、電動モータ20の回転方向と回転数が操作装置31の操作レバーの操作方向と操作量に応じた回転方向と回転数となるよう制御する。電動モータ20の回転方向と回転数が制御されることにより、第1及び第2油圧ポンプ12,13の吐出方向と吐出流量が制御され、油圧シリンダ装置11の駆動方向と駆動速度が制御される。また、油圧シリンダ装置11の回生動作時は電動モータ20は発電機として機能し、生成された電力が電気エネルギーとしてバッテリ25に蓄えられる。
 また、油圧閉回路システムは、油圧シリンダ装置11のボトム側の圧力を検出する圧力センサ(第1圧力検出装置)32と、油圧シリンダ装置11のロッド側の圧力を検出する圧力センサ(第2圧力検出装置)33と、油圧シリンダ装置11の動作方向を検出する位置センサ(動作検出装置)34とを備え、コントローラ35はポンプ制御部42を有している。
 ポンプ制御部42は、圧力センサ32,33及び位置センサ34の検出信号を入力し、それらの検出値に基づいて油圧シリンダ装置11が力行動作か回生動作かと、油圧シリンダ装置11が伸び動作か縮み動作かを判定し、その判定結果に基づいて、第2油圧ポンプ13の容量の補正量を演算し、第2油圧ポンプ13のレギュレータ23に制御信号を出力する。レギュレータ23はその制御信号により動作し、第2油圧ポンプ13の容量(傾転)を微調整することで第2油圧ポンプ13の容量を調整する。これにより第1及び第2油圧ポンプ12,13と油圧シリンダ装置11との間で油圧シリンダ装置11の伸縮時の流量収支がバランスするよう第2油圧ポンプ13の容量が制御される。
 ポンプ制御部42の制御内容の詳細を説明する。
 まず、背景を説明する。
 図1において、ボトム側油圧室11a内のピストン11cの受圧面積(ボトム側受圧面積)をA1、ロッド側油圧室11b内のピストン11cの受圧面積(ロッド側受圧面積)をA2、ロッド11dの断面積をA3とした場合、第1油圧ポンプ12の容量と第2油圧ポンプ13の容量は、第1油圧ポンプ12の吐出流量Q1と第2油圧ポンプ13の吐出流量Q2が、

  Q2=(A3/A2)×Q1 ・・・(1)

となるように設定される。理論的には、このようなポンプ容量の設定により第1及び第2油圧ポンプ12,13と油圧シリンダ装置11との間で油圧シリンダ装置11の伸縮時の流量収支がバランスし、油圧シリンダ装置11への流入流量或いは流出流量の過不足は生じない。しかし、現実には第1及び第2油圧ポンプ12,13の容量の設定誤差や経年変化等による容量誤差、外部へのリーク等による流量の誤差、温度影響などがあり、油圧シリンダ装置11の伸縮時の流量収支が理想的にバランスできない場合も少なくない。油圧シリンダ装置11の伸縮時の流量収支がバランスできない場合は、油圧シリンダ装置11への流入流量或いは流出流量の過不足が生じ、流量過少によるキャビテーションや、流量過多による圧こもりによる圧力上昇などの不具合が発生する。
 図2A及び図2Bは上述した油圧シリンダ装置11の伸縮時の流量収支を具体的に示す図である。図1と同一部分には同一符号を付し説明を省略する。
 図2Aは油圧シリンダ装置11が伸びる場合であり、図2Bは油圧シリンダ装置11が縮む場合である。いずれも計算が容易なように、ボトム側受圧面積A1とロッド側受圧面積A2との比を2:1とし、第1油圧ポンプ12及び第2油圧ポンプ13の吐出流量をそれぞれ50、油圧シリンダ装置11のボトム側油圧室11aへの流入流量或いはボトム側油圧室11aからの流出流量(ボトム側流量)を100、油圧シリンダ装置11のロッド側油圧室11bからの流出流量或いはロッド側油圧室11bへの流入流量(ロッド側流量)を50として示してある。
 図2Aの油圧シリンダ装置11が伸びる場合及び図2Bの油圧シリンダ装置11が縮む場合のいずれも、第1油圧ポンプ12及び第2油圧ポンプ13の吐出流量がそれぞれ50であれば、油圧シリンダ装置11の伸縮時の流量収支がバランスし、油圧シリンダ装置11への流入流量或いは流出流量の過不足は生じない。
 次に、何らかの影響にて第2油圧ポンプ13の吐出流量が増えてしまう状況(図示Aの流量)と第2油圧ポンプ13の吐出流量が減ってしまう状況(図示Bの流量)を想定する。この場合、図2Aの油圧シリンダ装置11が伸びる場合と図2Bの油圧シリンダ装置11が縮む場合のそれぞれにおいて、油圧シリンダ装置11の力行動作と回生動作おける流量収支はそれぞれ次のようになる。
 1.油圧シリンダ装置11が伸びる図2Aの場合
 1-1.何らかの影響にて第2油圧ポンプ13の吐出流量が増えてしまう状況(図示Aの流量)
<力行動作>(図示APの流量)
 第2油圧ポンプ13の吐出流量が54に増えており、その結果、第1及び第2油圧ポンプ12,13から油圧シリンダ装置11のボトム側に供給される流量は104に増える。これに伴って、油圧シリンダ装置11が力行動作をするとき、油圧シリンダ装置11のロッド側の流量が52と増える。一方、第1油圧ポンプ12の吐出流量は50であるため、第1油圧ポンプ12の吸い込み流量も50である。その結果、油圧シリンダ装置11のロッド側が流量過多となり、油圧シリンダ装置11の低推力側であるロッド側油圧室11b及び管路15に圧こもりによる圧力上昇が生じる。
<回生動作>(図示ANの流量)
 第2油圧ポンプ13の吐出流量が54に増えており、その結果、第1及び第2油圧ポンプ12,13から油圧シリンダ装置11のボトム側に供給される流量は104に増える。一方、第1油圧ポンプ12の吐出流量は50であるため、第1油圧ポンプ12の吸い込み流量も50である。これに伴って、油圧シリンダ装置11が回生動作をするとき、油圧シリンダ装置11は負荷Wによってロッド側の流量が50となるよう駆動されるため、油圧シリンダ装置11のボトム側の流量は100となる。その結果、油圧シリンダ装置11のボトム側が流量過多となり、油圧シリンダ装置11の低推力側であるボトム側油圧室11a及び管路14に圧こもりによる圧力上昇が生じる。
 1-2.何らかの影響にて第2油圧ポンプ13の吐出流量が減ってしまう状況(図示Bの流量)
<力行動作>(図示APの流量)
 第2油圧ポンプ13の吐出流量が46に減っており、その結果、第1及び第2油圧ポンプ12,13から油圧シリンダ装置11のボトム側に供給される流量は96に減る。これに伴って、油圧シリンダ装置11が力行動作をするとき、油圧シリンダ装置11のロッド側の流量が48と減る。一方、第1油圧ポンプ12の吐出流量は50であるため、油圧シリンダ装置11の吸い込み流量も50である。その結果、油圧シリンダ装置11のロッド側が流量過少となり、油圧シリンダ装置11の低推力側であるロッド側油圧室11b及び管路15にキャビテーションが生じる。
<回生動作>(図示ANの流量)
 第2油圧ポンプ13の吐出流量が46に減っており、その結果、第1及び第2油圧ポンプ12,13から油圧シリンダ装置11のボトム側に供給される流量は96に減る。一方、第1油圧ポンプ12の吐出流量は50であるため、第1油圧ポンプ12の吸い込み流量も50である。これに伴って、油圧シリンダ装置11が回生動作をするとき、油圧シリンダ装置11は負荷Wによってロッド側の流量が50となるよう駆動されるため、油圧シリンダ装置11のボトム側の流量は100となる。その結果、油圧シリンダ装置11のボトム側が流量過少となり、油圧シリンダ装置11の低推力側であるボトム側油圧室11a及び管路14にキャビテーションが生じる。
 2.油圧シリンダ装置11が縮む図2Bの場合
 2-1.何らかの影響にて第2油圧ポンプ13の吐出流量が増えてしまう状況(図示Aの流量)
<力行動作>(図示APの流量)
 第2油圧ポンプ13の吐出流量が54に増えているため、第2油圧ポンプ13の吸い込み流量も54に増えている。また、第1油圧ポンプ12の吐出流量は50であるため、第1油圧ポンプ12の吸い込み流量も50である。その結果、第1及び第2油圧ポンプ12,13による油圧シリンダ装置11のボトム側からの吸い込み流量は104に増える。また、油圧シリンダ装置11が力行動作をするとき、第1油圧ポンプ12の吐出流量は50であるため、油圧シリンダ装置11のボトム側の流量は100となる。その結果、油圧シリンダ装置11のボトム側が流量過少となり、油圧シリンダ装置11の低推力側であるボトム側油圧室11a及び管路14にキャビテーションが生じる。
<回生動作>(図示ANの流量)
 第2油圧ポンプ13の吐出流量が54に増えているため、第2油圧ポンプ13の吸い込み流量も54に増えている。また、第1油圧ポンプ12の吐出流量は50であるため、第1油圧ポンプ12の吸い込み流量も50である。その結果、第1及び第2油圧ポンプ12,13による油圧シリンダ装置11のボトム側からの吸い込み流量は104に増える。これに伴って、油圧シリンダ装置11が回生動作をするとき、油圧シリンダ装置11は負荷Wによってボトム側の流量が104となるように駆動されるため、油圧シリンダ装置11のロッド側の流量は52と増える。その結果、油圧シリンダ装置11のロッド側が流量過少となり、油圧シリンダ装置11の低推力側であるロッド側油圧室11b及び管路15キャビテーションが生じる。
 2-2.何らかの影響にて第2油圧ポンプ13の吐出流量が減ってしまう状況(図示Bの流量)
<力行動作>(図示APの流量)
 第2油圧ポンプ13の吐出流量が46に減っているため、第2油圧ポンプ13の吸い込み流量も46に減っている。また、第1油圧ポンプ12の吐出流量は50であるため、第1油圧ポンプ12の吸い込み流量も50である。その結果、第1及び第2油圧ポンプ12,13による油圧シリンダ装置11のボトム側からの吸い込み流量は96に減る。また、油圧シリンダ装置11が力行動作をするとき、第1油圧ポンプ12の吐出流量は50であるため、油圧シリンダ装置11のボトム側の流量は100となる。その結果、油圧シリンダ装置11のボトム側が流量過多となり、油圧シリンダ装置11の低推力側であるボトム側油圧室11a及び管路14に圧こもりによる圧力上昇が生じる。
<回生動作>(図示ANの流量)
 第2油圧ポンプ13の吐出流量が46に減っているため、第2油圧ポンプ13の吸い込み流量も46に減っている。また、第1油圧ポンプ12の吐出流量は50であるため、第1油圧ポンプ12の吸い込み流量も50である。その結果、第1及び第2油圧ポンプ12,13による油圧シリンダ装置11のボトム側からの吸い込み流量は96に減る。これに伴って、油圧シリンダ装置11が回生動作をするとき、油圧シリンダ装置11は負荷Wによってボトム側の流量が96となるように駆動されるため、油圧シリンダ装置11のロッド側の流量は48に減る。その結果、油圧シリンダ装置11のロッド側が流量過多となり、油圧シリンダ装置11の低推力側であるロッド側油圧室11b及び管路15に圧こもりによる圧力上昇が生じる。
 このように第1油圧ポンプ12及び第2油圧ポンプ13の吐出流量がそれぞれ50であれば、油圧シリンダ装置11への流入流量或いは流出流量の過不足は生じないが、実際には、ポンプ容量の設定誤差や経年変化等による容量誤差、外部へのリーク等による流量の誤差、温度影響などから流量収支がバランスできない場合は、油圧シリンダ装置11への流入流量或いは流出流量の過不足が生じ、油圧シリンダ装置11の低推力側であるボトム側及びロッド側のいずれかに流量過少によるキャビテーションや、流量過多による圧こもりによる圧力上昇などの不具合が発生することになる。
 このような課題のもと、本発明は、第2油圧ポンプ13の押し除け容積(容量)を自動的に制御し、上記不具合を生じさせない構成とするものである。
 図3Aは、第2油圧ポンプ13の制御方法の一例を示す図である。第2油圧ポンプ13の制御方法は、図3Aに示すように、油圧シリンダ装置11が伸び/縮みの動作状態と、力行/回生の動作状態のいずれにあるかによって制御(補正演算テーブル)を使い分け、第2油圧ポンプ13の予め設定されたポンプ容量に対して補正量を演算する。すなわち、油圧シリンダ装置11の低推力側の流量の過少・過多を判定するための基準圧力値をPref、ボトム側圧力をPb、ロッド側圧力をPrとすると、本発明は次のように第2油圧ポンプ13の予め設定されたポンプ容量に対して補正量を演算し、第2油圧ポンプ13の容量を補正する。
 (a)油圧シリンダ装置11が伸びで力行動作のとき
 基準圧力値Prefに対してロッド側圧力Prが小さいほど(Pr-Prefの値が小さくなるほど)補正量を大きく、ロッド側圧力Prが大きいほど(Pr-Prefの値が大きくなるほど)補正量小さくする(負の傾き)。
 (b)油圧シリンダ装置11が伸びで回生動作のとき
 基準圧力値Prefに対してボトム側圧力Pbが小さいほど(Pb-Prefの値が小さくなるほど)補正量を大きく、ボトム側圧力Pbが大きいほど(Pb-Prefの値が大きくなるほど)補正量小さくする(負の傾き)。
 (c)油圧シリンダ装置11が縮みで力行動作のとき
 基準圧力値Prefに対してボトム側圧力Pbが小さいほど(Pb-Prefの値が小さくなるほど)補正量を小さく、ボトム側圧力Pbが大きいほど(Pb-Prefの値が大きくなるほど)補正量大きくする(正の傾き)。
 (d)油圧シリンダ装置11が縮みで回生動作のとき
 基準圧力値Prefに対してロッド側圧力Prが小さいほど(Pr-Prefの値が小さくなるほど)補正量を小さく、ロッド側圧力Prが大きいほど(Pr-Prefの値が大きくなるほど)補正量大きくする(正の傾き)。
 ここで、油圧シリンダ装置11の低推力側の流量の過少・過多を判定するための基準圧力値Prefはキャビテーションや圧力上昇による不具合を起こさない圧力であり、好ましくはタンク圧よりやや高めの圧力に設定される。この圧力は、例えばタンク圧を0.1MPaとすると、0.2MPa程度の値とすることができる。
 図3Bは第2油圧ポンプ13の制御方法の他の一例を示す図である。この制御方法では、油圧シリンダ装置11が伸び/縮みの動作状態と、力行/回生の動作状態のいずれにあるかによって使い分ける補正演算テーブルのそれぞれにおいて、基準圧力値Prefを含む所定の圧力範囲に不感帯を設け、その所定の圧力範囲では第2油圧ポンプの容量の補正を行わないようにしたものである。これにより圧力が不感帯を超えた場合のみポンプ容量の補正量が算出され、必要なときにのみ制御を行うようにすることができる。
 図4は、図3A及び図3Bに示した制御方法により第2油圧ポンプ13の容量補正を行うポンプ制御部42の処理フローを示す図である。ポンプ制御部42には、図3に示すようなシリンダ伸びと力行の補正演算テーブル、シリンダ伸びと回生の補正演算テーブル、シリンダ縮みと力行の補正演算テーブル、シリンダ縮みと回生の補正演算テーブルが記憶してあり、ポンプ制御部42は、圧力センサ32,33及び位置センサ34の検出信号を入力して油圧シリンダ装置11のボトム側圧力Pb、ロッド側圧力Pr、シリンダ速度Vを算出し、それらのテーブルを用いて第2油圧ポンプ13の容量補正量を算出し制御する。制御の詳細は以下のようである。
 ステップS1
 圧力センサ32,33及び位置センサ34の検出信号を入力して油圧シリンダ装置11のボトム側圧力Pb、ロッド側圧力Pr、シリンダ速度Vを算出する。
 ステップS2
 油圧シリンダ装置11が力行動作か回生動作かを判定する。力行/回生の動作の判定方法は、シリンダ推力×速度の計算値の符号にて判定でき、+は力行動作、-は回生動作を表す。具体的にはシリンダ伸び方向を+方向と定義すると、
 (A1・Pb-A2・Pr)×V
   +:力行
   -:回生
 力行動作であればステップS3へ進み、回生動作であればステップS4へ進む。
 ステップS3,S4
 シリンダ速度Vに基づいて油圧シリンダ装置11がシリンダ伸びであるかをどうかをそれぞれ判定し、シリンダ伸びであればステップS5,S7及びステップS9,S11に進み、シリンダ縮みであればステップS6及びステップS10に進む。
 ステップS5及びステップS9
 ロッド側圧力Prと基準圧力値Prefから両者の偏差であるPr-Prefの値を計算し、この値を図3A又は図3Bに示すシリンダ伸びと力行の補正演算テーブル参照し、第2油圧ポンプ13の容量の補正量を算出する。
 ステップS7及びステップS11
 ボトム側圧力Pbと基準圧力値Prefから両者の偏差であるPb-Prefの値を計算し、この値を図3A又は図3Bに示すシリンダ伸びと回生の補正演算テーブル参照し、第2油圧ポンプ13の容量の補正量を算出する。
 ステップS6及びステップS10
 ボトム側圧力Pbと基準圧力値Prefから両者の偏差であるPb-Prefの値を計算し、この値を図3A又は図3Bに示すシリンダ縮みと力行の補正演算テーブル参照し、第2油圧ポンプ13の容量の補正量を算出する。
 ステップS8及びステップS12
 ロッド側圧力Prと基準圧力値Prefから両者の偏差であるPr-Prefの値を計算し、この値を図3A又は図3Bに示すシリンダ縮みと回生の補正演算テーブル参照し、第2油圧ポンプ13の容量の補正量を算出する。
 ステップS13
 ステップS9~S12で求めた容量の補正量を基準となる目標容量Qrefに加算し、第2油圧ポンプ13の補正容量QCORを算出する。目標容量Qrefは前述した(1)式に示す流量Q2であり、第2油圧ポンプ13に予め設定した容量で得られる流量である。
 ステップS14
 補正容量QCORをレギュレータの23の制御量に変換し、制御信号として出力する。
 次に、本実施の形態の動作を説明する。
 本実施の形態においては、第2油圧ポンプ13の容量を前述した(1)式のQ2が得られる容量に設定する。理論的には、このような設定により油圧シリンダ装置11の伸び/縮み、力行/回生のどの動作においても、油圧シリンダ装置11への流入流量或いは流出流量の過不足は生じず良好である。
 次に、何らかの影響にて第2油圧ポンプ13の容量が変わり、流量過多による圧こもりの動作状況になった場合について考える。
 本実施の形態では、そのような場合、次のように動作する。
 <流量過多による圧こもり時>
 図4を参照して説明する。
 (a)油圧シリンダ装置11の伸びで力行動作のとき
 ステップS2→S3→S5の順序で処理が進み、Pr-Prefの値が大きくなるほど補正量を減らす。その結果、第2油圧ポンプ13の容量(傾転量)が減り、油圧シリンダ装置11のロッド側(ロッド側油圧室11b及び管路15)での流量過多による圧こもりが低減する。
 (b)油圧シリンダ装置11の縮みで力行動作のとき
 ステップS2→S3→S6の順序で処理が進み、Pb-Prefの値が大きくなるほど補正量を増やす。その結果、第2油圧ポンプ13の容量(傾転量)が増え、油圧シリンダ装置11のボトム側(ボトム側油圧室11a及び管路14)での流量過多による圧こもりが低減する。
 (c)油圧シリンダ装置11の伸びで回生動作のとき
 ステップS2→S4→S7の順序で処理が進み、Pb-Prefの値が大きくなるほど補正量を減らす。その結果、第2油圧ポンプ13の容量(傾転量)が減り、油圧シリンダ装置11のボトム側(ボトム側油圧室11a及び管路14)での流量過多による圧こもりが低減する。
 (d)油圧シリンダ装置11の縮みで回生動作のとき
 ステップS2→S4→S8の順序で処理が進み、Pr-Prefの値が大きくなるほど補正量を増やす。その結果、第2油圧ポンプ13の容量(傾転量)が増え、油圧シリンダ装置11のロッド側(ロッド側油圧室11b及び管路15)での流量過多による圧こもりが低減する。
 以上のように全ての動作状況において、流量過多による圧こもりによる圧力上昇が抑制される。
 次に、何らかの影響にて第2油圧ポンプ13の容量が変わり、流量過少によるキャビテーションが生じる動作状況になった場合について考える。
 本実施の形態では、そのような場合、次のように動作する。
 <流量過少によるキャビテーション時>
 図4を参照して説明する。
 (a)油圧シリンダ装置11の伸びで力行動作のとき
 ステップS2→S3→S5の順序で処理が進み、圧Pr-Prefの値が小さくなるほど補正量を増やす。その結果、第2油圧ポンプ13の容量(傾転量)が増え、油圧シリンダ装置11のロッド側(ロッド側油圧室11b及び管路15)での流量過少によるキャビテーションが低減する。
 (b)油圧シリンダ装置11の縮みで力行動作のとき
 ステップS2→S3→S6の順序で処理が進み、Pb-Prefの値が小さくなるほど補正量を減らす。その結果、第2油圧ポンプ13の容量(傾転量)が減り、油圧シリンダ装置11のボトム側(ボトム側油圧室11a及び管路14)での流量過少によるキャビテーションが低減する。
 (c)油圧シリンダ装置11の伸びで回生動作のとき
 ステップS2→S4→S7の順序で処理が進み、Pb-Prefの値が小さくなるほど補正量を増やす。その結果、第2油圧ポンプ13の容量(傾転量)が増え、油圧シリンダ装置11のボトム側(ボトム側油圧室11a及び管路14)での流量過少によるキャビテーションが低減する。
 (d)油圧シリンダ装置11の縮みで回生動作のとき
 ステップS2→S4→S8の順序で処理が進み、Pr‐Prefの値が小さくなるほど補正量を減らす。その結果、第2油圧ポンプ13の容量(傾転量)が減り、油圧シリンダ装置11のロッド側(ロッド側油圧室11b及び管路15)での流量過少によるキャビテーションが低減する。
 以上のように全ての動作状況において、流量過少によるキャビテーションが抑制される。
 第1油圧ポンプ12の容量が(1)式のQ1が得られる容量から何らかの影響にて変わった場合についても同様の制御が行われ、流量過多による圧こもりによる圧力上昇や流量過少によるキャビテーションが抑制される。
 以上説明したように、本実施の形態によれば、複数の油圧ポンプを用いた油圧閉回路システムにおいて、第1油圧ポンプ12或いは第2油圧ポンプ13のポンプ容量の誤差等により油圧シリンダ装置11の伸縮時の流量収支がバランスしない場合でも、自動的に流量を調整し、常に流量収支のバランスを良好な状態に保ち、流量過多による圧こもりによる圧力上昇や流量過少によるキャビテーションを効果的に抑制することができる。
 また、油圧閉回路システムに従来一般的に設けられていた作動油循環のための低圧選択弁(フラッシング弁)を必要とせず、システムが単純でコンパクトになる。更に、キャビテーション防止のためのチャージ回路を必要とせず、この点でもシステムが単純でコンパクトになる。その結果、性能のみならずコスト面においても好適である。
<第2の実施の形態>
 図5は本発明の第2の実施の形態における油圧閉回路システムの構成を示す図である。
 図5において、本実施の形態に係わる油圧閉回路システムは、図1に示す第1の実施の形態の油圧回路システムにあった圧力センサ32,33に代えて、油圧シリンダ装置11のボトム側油圧室11a及びロッド側油圧室11bの圧力(油圧力)のうち、油圧シリンダ装置11の推力の低い側の圧力を選択して出力する低推力側圧力選択弁51と、低推力側圧力選択弁51が選択した圧力を検出する圧力センサ(圧力検出装置)52を備えている。また、コントローラ35はポンプ制御装置42に代えポンプ制御装置42Aを備えている。ポンプ制御装置42Aは、位置センサ34(動作検出装置)及び圧力センサ(圧力検出装置)52の検出値に基づいて、第2油圧ポンプ13の容量の補正量を演算し第2油圧ポンプ13の容量を制御する。
 低推力側圧力選択弁51は3位置のスプール51aの両端に油圧シリンダ装置11のボトム側油圧室11a及びロッド側油圧室11bの圧力が導かれるとともに、スプール51aの両端をバネ51b,51cにて中立保持する構成となっている。バネ51b,51cのバネ荷重(バネ常数)は、前述したようなボトム側油圧室11aにおける受圧面積A1とロッド側油圧室11bにおける受圧面積A2との比が2:1の場合、バネ51b,51cのバネ荷重の比は1:2となっている。これは、油圧シリンダ装置11のボトム側油圧室11a及びロッド側油圧室11bの圧力のうち、ピストン11cの推力(シリンダ推力)の低い側の圧力を選択するためである。なお、油圧アクチュエータが油圧モータ等の両ポートにおける受圧面積が同一である場合においては、バネ51b,51cのバネ荷重の比は1:1となり、単純に低圧側を選択する低圧選択弁であればよい。油圧アクチュエータが油圧シリンダ装置11等、両ポートの受圧面積が異なる場合においては、このように受圧面積比に応じてバネ特性を設定しておくことで、低推力側の圧力を選択して検出することができる。
 ポンプ制御装置42Aは、基準圧力値Prefを設定する基準値設定器53と、圧力センサ52によって検出した圧力と基準圧力値Prefとの差分を演算する差分器54と、この差分器54で演算した差分値から油圧シリンダ装置11が伸び動作のときの第2油圧ポンプ13の容量の補正量を算出する第1演算装置55Aと、差分器54で演算した差分値から油圧シリンダ装置11が縮み動作のときの第2油圧ポンプ13の容量の補正量を算出する第2演算装置55Bと、位置センサ34によって検出した油圧シリンダ装置11の動作速度Vに基づく油圧シリンダ装置11の動作方向が伸び動作であるときは第1演算装置55Aを選択し、油圧シリンダ装置11の動作方向が縮み動作であるときは第2演算装置55Bを選択する選択装置56と、基準となる目標容量Qrefを設定する目標容量設定器57と、選択装置56で選択された第1演算装置55A又は第2演算装置55Bが演算したポンプ容量の補正量を基準となる目標容量Qrefに加算して油圧ポンプ13の補正容量QCORを算出する補正器(加算器)58と、補正容量QCORをレギュレータの23の制御量に変換し、制御信号として出力する出力器59とを有している。
 第1演算装置55Aは、第1の実施の形態における図4のステップS9,S11の演算処理を1つのシリンダ伸びの補正演算テーブルで行うものであり、差分器54で演算した差分値をシリンダ伸びの補正演算テーブルに参照し第2油圧ポンプ13の容量の補正量を算出する。第2演算装置55Bは、第1の実施の形態における図4のステップS10,12の演算処理を1つのシリンダ縮みの補正演算テーブルで行うものであり、差分器54で演算した差分値をシリンダ縮みの補正演算テーブルに参照し第2油圧ポンプ13の容量の補正量を算出する。
 以上のように構成した本実施の形態においても、第1の実施の形態と同様の効果が得られる。
 また、本実施の形態によれば、コントローラ35での推力演算及び低推力側の判断処理を省略できるため、コントローラ35の演算処理を単純化することができる。また、圧力センサの数を削減することができるため、コスト面でより好適となる。
<第3の実施の形態>
 図6は本発明の第3の実施の形態における油圧閉回路システムの構成を示す図である。
 本発明において、第1及び第2油圧ポンプを駆動する原動機は動力の入力/出力ができるものなら何でもよく、電動モータ以外の例えば油圧モータでもよい。本実施の形態は原動機を油圧モータとした場合のものである。
 図6において、本実施の形態の油圧閉回路システムは、図1に示す原動機としての電動モータ20に代え、両方向可変容量型の油圧モータ61を備えている。油圧モータ61は、アキュムレータ62と安全リリーフ弁63を備えた低圧力源システム64に接続されている。低圧力源システム64は、公知の如く、油圧モータ61が第1及び第2油圧ポンプ12,13を駆動するとき(力行動作時)はアキュムレータ62に畜圧された油圧エネルギーで駆動され、油圧モータ61が第1及び第2油圧ポンプ12,13により駆動されるとき(回生動作時)は、その回転エネルギーを油圧エネルギーとしてアキュムレータ62に畜圧する。低圧力源システム64は、アキュムレータ62の畜圧された油圧エネルギーの不足時のため、エンジン等で駆動される図示しない油圧ポンプが接続されていてもよい。
 また、油圧モータ61はレギュレータ65を有し、コントローラ35は、電動モータ制御部41に代え油圧モータ制御部41Bを有している。油圧モータ制御部41Bは、操作装置31の操作信号を入力して操作装置31の操作レバーの操作方向と操作量に応じた制御信号を生成し、レギュレータ65にその制御信号を出力する。レギュレータ65は、その制御信号に基づいて、油圧モータ61の回転方向と回転数が操作装置31の操作レバーの操作方向と操作量に応じた回転方向と回転数となるように油圧モータ61の傾転方向と傾転量を制御する。油圧モータ61の回転方向と回転数が制御されることにより、第1及び第2油圧ポンプ12,13の吐出方向と吐出流量が制御され、油圧シリンダ装置11の駆動方向と駆動速度が制御される。
 以上のように構成した本実施の形態においても、第1の実施の形態と同様の効果が得られる。
 また、本実施の形態においては、油圧シリンダ装置11の回生動作時に第1及び第2油圧ポンプ12,13が油圧モータ61を回転することで、回生動力を油圧エネルギーとしてアキュムレータ62に回収することができる。
<第4の実施の形態>
 図7は本発明の第4の実施の形態における油圧閉回路システムの構成を示す図である。
 本発明は、第1及び第2油圧ポンプを1ポンプ2ポート流量分配型のポンプで構成した場合のものである。
 図7において、本実施の形態に係わる油圧閉回路システムは、図1に示す共通の駆動軸21により連結された別体の第1及び第2の油圧ポンプ12,13に代え、1ポンプ2ポート流量分配型のポンプとして知られているスプリットフローポンプ71を備えている。スプリットフローポンプ71は、1つの吐出/吸い込みポート71aと、2つの吸い込み/吐出ポート71b,71cを有し、吐出/吸い込みポート71aは管路14を介して油圧シリンダ装置11のボトム側に接続され、2つの吸い込み/吐出ポート71b,71cの一方のポート71bが管路15を介して油圧シリンダ装置11のロッド側に接続され、他方のポート71cがタンクに接続されている。スプリットフローポンプ71の1つの吐出/吸い込みポート71aと2つの吸い込み/吐出ポート71b,71cの一方のポート71bで第1油圧ポンプとして機能し、1つの吐出/吸い込みポート71aと2つの吸い込み/吐出ポート71b,71cの他方のポート71cで第2油圧ポンプとして機能する。
 また、スプリットフローポンプ71は2つの吸い込み/吐出ポート71b,71cにおける流量割合を変更するレギュレータ72を有し、コントローラ35は、ポンプ制御部42に代え、ポンプ制御部42Cを有している。、ポンプ制御部42C圧力センサ32,33及び位置センサ34(動作検出装置)の検出値に基づいて、スプリットフローポンプ71の2つの吸い込み/吐出ポート71b,71cにおける流量割合の補正量を演算し、レギュレータ72にその制御信号を出力する。レギュレータ72は、その制御信号に基づいて2つの吸い込み/吐出ポート71b,71cにおける流量割合を制御する。
 以上のように構成した本実施の形態においても、第1の実施の形態と同様の効果が得られる。
 また、本実施の形態においては、1つのポンプに2つのポンプ機能を持たせたので、システムがより単純でコンパクトになり、コスト面で更に有利となる。
 なお、本実施の形態では第1及び第2油圧ポンプとして1ポンプ2ポート流量分配型のポンプを用いたが、1ポンプで2つの吐出/吸い込みポートと2つの吸い込み/吐出ポートを有するダブルポンプ一体型のポンプを用いてもよく、これによっても同様の効果を得ることができる。
11 油圧シリンダ装置
12 第1油圧ポンプ
13 第2油圧ポンプ
14,15,17,18 管路
16 タンク
20 電動モータ(原動機)
21 駆動軸
22 駆動軸
23 レギュレータ
25 バッテリ
26 インバータ
31 操作装置
32,33 圧力センサ(圧力検出装置)
34 位置センサ(動作検出装置)
35 コントローラ
41 電動モータ制御部
41B 油圧モータ制御部
42 ポンプ制御部
42A ポンプ制御部
42C ポンプ制御部
51 低推力側圧力選択弁
52 圧力センサ
53 基準値設定器
54 差分器
55A 第1演算装置
55B 第2演算装置
56 選択装置
57 目標容量設定器
58 補正器(加算器)
59 出力器
61 油圧モータ(原動機)
62 アキュムレータ
63 安全リリーフ弁
64 定圧力源システム
65 レギュレータ
71 スプリットフローポンプ
71a 1つの吐出/吸い込みポート
71b,71c 2つの吸い込み/吐出ポート71b,71c
72 レギュレータ

Claims (7)

  1.  油圧シリンダ装置と、
     この油圧シリンダ装置に油圧閉回路を構成するよう接続された両方向吐出型の第1油圧ポンプと、
     対となる吐出ポートの一方が前記油圧シリンダ装置のボトム側に接続され、他方がタンクに接続された両方向吐出型で両方向可変容量型の第2油圧ポンプと、
     前記第1及び第2油圧ポンプを駆動しかつ前記第1及び第2油圧ポンプの動力を回収する原動機と、
     前記油圧シリンダ装置の動作方向と前記油圧シリンダ装置の低推力側の圧力を検出し、前記第1及び第2油圧ポンプと前記油圧シリンダ装置との間で前記油圧シリンダ装置の伸縮時の流量収支がバランスするよう前記第2油圧ポンプの容量を制御するポンプ容量制御装置とを備えることを特徴とする油圧閉回路システム。
  2.  請求項1記載の油圧閉回路システムにおいて、
     前記ポンプ容量制御装置は、前記油圧シリンダ装置が伸び動作にありかつ前記油圧シリンダ装置の低推力側の圧力が基準圧力値より低いときは、前記第2油圧ポンプの容量を増やし、前記低推力側の圧力が前記基準圧力値より高いときは、前記第2油圧ポンプの容量を減らすよう制御し、かつ前記油圧シリンダ装置が縮み動作にありかつ前記油圧シリンダ装置の低推力側の圧力が基準圧力値より高いときは、前記第2油圧ポンプの容量を増やし、前記低推力側の圧力が前記基準圧力値より低いときは、前記第2油圧ポンプの容量を減らすよう制御することを特徴とする油圧閉回路システム。
  3.  請求項2記載の油圧閉回路システムにおいて、
     前記ポンプ容量制御装置は、
     前記油圧シリンダ装置の動作方向を検出する動作検出装置と、
     前記油圧シリンダ装置のボトム側の圧力とロッド側の圧力をそれぞれ検出する第1及び第2圧力検出装置と、
     前記動作検出装置と前記第1及び第2圧力検出装置の検出値に基づいて、前記油圧シリンダ装置が力行動作か回生動作かと、前記油圧シリンダ装置が伸び動作か縮み動作かを判定し、その判定結果に基づいて、前記第2油圧ポンプの容量の補正量を演算し第2油圧ポンプの容量を制御するポンプ容量補正装置とを有し、
     前記ポンプ容量補正装置は、前記基準圧力値をPref、前記油圧シリンダ装置のボトム側圧力をPb、ロッド側圧力をPrとすると、
     (a)前記油圧シリンダ装置が伸びで力行動作のときは、基準圧力値Prefに対してロッド側圧力Prが小さいほど補正量を大きく、ロッド側圧力Prが大きいほど補正量小さくし、
     (b)前記油圧シリンダ装置が伸びで回生動作のときは、基準圧力値Prefに対してボトム側圧力Pbが小さいほど補正量を大きく、ボトム側圧力Pbが大きいほど補正量小さくし、
     (c)前記油圧シリンダ装置が縮みで力行動作のときは、基準圧力値Prefに対してボトム側圧力Pbが小さいほど補正量を小さく、ボトム側圧力Pbが大きいほど補正量大きくし、
     (d)前記油圧シリンダ装置が縮みで回生動作のときは、基準圧力値Prefに対してロッド側圧力Prが小さいほど補正量を小さく、ロッド側圧力Prが大きいほど補正量大きくすることを特徴とする油圧閉回路システム。
  4.  請求項2記載の油圧閉回路システムにおいて、
     前記ポンプ容量制御装置は、
     前記油圧シリンダ装置の動作方向を検出する動作検出装置と、
     前記油圧シリンダ装置のボトム側油圧室とロッド側油圧室の圧力のうち低推力側の圧力を選択する低推力側圧力選択弁と、
     前記低推力側圧力選択弁が選択した圧力を検出する圧力検出装置と、
     前記動作検出装置及び前記圧力検出装置の検出値に基づいて、前記第2油圧ポンプの容量の補正量を演算し第2油圧ポンプ13の容量を制御するポンプ容量補正装置とを有し、
     前記ポンプ容量補正装置は、
     前記基準圧力値を設定する基準値設定器と、
     前記圧力検出装置によって検出した圧力と前記基準圧力値との差分値から前記油圧シリンダ装置が伸び動作のときの前記第2油圧ポンプの容量の補正量を算出する第1演算装置と、
     前記圧力検出装置によって検出した圧力と前記基準圧力値との差分値から前記油圧シリンダ装置が縮み動作のときの前記第2油圧ポンプの容量の補正量を算出する第2演算装置と、
     前記動作検出装置によって検出した前記油圧シリンダ装置の動作方向に基づいて前記第1及び第2演算装置の一方を選択する選択装置とを有することを特徴とする油圧閉回路システム。
  5.  請求項3又は4記載の油圧閉回路システムにおいて、
     前記ポンプ容量補正装置は、前記基準圧力値を含む所定の圧力範囲において前記第2油圧ポンプの容量の補正を行わない不感帯を設けることを特徴とする油圧閉回路システム。
  6.  請求項1~5のいずれか1項記載の油圧閉回路システムにおいて、
     前記原動機は電動モータと油圧モータのいずれかであることを特徴とする油圧閉回路システム。
  7.  請求項1~5のいずれか1項記載の油圧閉回路システムにおいて、
     前記第1及び第2油圧ポンプは、1ポンプ2ポート流量分配型のポンプであり、
     前記ポンプ容量制御装置は、前記1ポンプ2ポート流量分配型のポンプの2ポートにおける流量割合を変更することで前記第2油圧ポンプの容量を制御することを特徴とする油圧閉回路システム。
PCT/JP2013/059687 2012-05-24 2013-03-29 油圧閉回路システム WO2013175866A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147032365A KR102024644B1 (ko) 2012-05-24 2013-03-29 유압 폐회로 시스템
CN201380026704.XA CN104334891B (zh) 2012-05-24 2013-03-29 液压闭合回路系统
EP13794458.3A EP2857696B1 (en) 2012-05-24 2013-03-29 Hydraulic closed circuit system
US14/398,476 US9695841B2 (en) 2012-05-24 2013-03-29 Hydraulic closed circuit system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-119044 2012-05-24
JP2012119044A JP5701248B2 (ja) 2012-05-24 2012-05-24 油圧閉回路システム

Publications (1)

Publication Number Publication Date
WO2013175866A1 true WO2013175866A1 (ja) 2013-11-28

Family

ID=49623570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059687 WO2013175866A1 (ja) 2012-05-24 2013-03-29 油圧閉回路システム

Country Status (6)

Country Link
US (1) US9695841B2 (ja)
EP (1) EP2857696B1 (ja)
JP (1) JP5701248B2 (ja)
KR (1) KR102024644B1 (ja)
CN (1) CN104334891B (ja)
WO (1) WO2013175866A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6324186B2 (ja) * 2014-04-21 2018-05-16 日立建機株式会社 油圧駆動装置
JP6383676B2 (ja) * 2015-02-06 2018-08-29 日立建機株式会社 作業機械
US10871174B2 (en) * 2015-10-23 2020-12-22 Aol Prime mover system and methods utilizing balanced flow within bi-directional power units
EP3365559A4 (en) * 2015-10-23 2019-06-26 AOI (Advanced Oilfield Innovations, Dba A.O. International II, Inc.) DRIVE MOTOR SYSTEM AND METHODS USING BALANCED FLOW IN BIDIRECTIONAL POWER UNITS
DE102015119108A1 (de) * 2015-11-06 2017-05-11 Pleiger Maschinenbau Gmbh & Co. Kg Verfahren und Vorrichtung zum Ansteuern einer hydraulisch betätigten Antriebseinheit einer Armatur
KR102514523B1 (ko) * 2015-12-04 2023-03-27 현대두산인프라코어 주식회사 건설기계의 유압 제어 장치 및 유압 제어 방법
SE1600171A1 (en) 2016-05-19 2017-11-20 Flutron Ab Electrohydraulic drive and control system
DE102016217541A1 (de) * 2016-09-14 2018-03-15 Robert Bosch Gmbh Hydraulisches Antriebssystem mit mehreren Zulaufleitungen
IT201700093544A1 (it) * 2017-08-11 2019-02-11 Kverneland Group Ravenna Srl Imballatore connettibile ad un trattore per realizzare balle rotonde e metodo per realizzare balle rotonde
EP3536864B1 (en) * 2018-03-09 2020-12-30 Sandvik Mining and Construction Oy Hydraulic system and method of controlling hydraulic actuator
US11459732B2 (en) * 2018-10-24 2022-10-04 Volvo Construction Equipment Ab Hydraulic system for a working machine
JP7182434B2 (ja) * 2018-11-19 2022-12-02 川崎重工業株式会社 液圧システム
DE102021113665A1 (de) * 2021-05-27 2022-12-01 HMS - Hybrid Motion Solutions GmbH Hydraulisches Antriebssystem

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396303A (ja) * 1986-10-09 1988-04-27 Hitachi Constr Mach Co Ltd 油圧閉回路駆動装置
JP2002054602A (ja) 2000-08-11 2002-02-20 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 油圧閉回路
JP2006194325A (ja) * 2005-01-12 2006-07-27 Bosch Rexroth Corp 液圧駆動装置
JP2006336842A (ja) * 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd 作業機械の制御装置
JP2009079775A (ja) * 2008-12-08 2009-04-16 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 油圧閉回路の油圧シリンダ保持装置
JP4733645B2 (ja) * 2003-12-17 2011-07-27 テールズ ホールディングス ユーケー ピーエルシー アクチュエータ、アクチュエータの作動方法、動作シミュレータ・マシン用の動作プラットフォーム、及び動作シミュレータ。

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4008792A1 (de) * 1990-03-19 1991-09-26 Rexroth Mannesmann Gmbh Antrieb fuer einen hydraulischen zylinder, insbesondere differentialzylinder
CN1306606A (zh) * 1999-05-28 2001-08-01 日立建机株式会社 泵容量控制装置和阀装置
JP2002021807A (ja) * 2000-07-10 2002-01-23 Kobelco Contstruction Machinery Ltd 電動液圧駆動装置及びアクチュエータ駆動装置
CN1282827C (zh) * 2002-10-23 2006-11-01 株式会社小松制作所 作业车辆的作业机用油压泵的控制方法以及控制装置
US7234298B2 (en) * 2005-10-06 2007-06-26 Caterpillar Inc Hybrid hydraulic system and work machine using same
JP2009539043A (ja) * 2006-06-02 2009-11-12 ブリューニングハウス ハイドロマティック ゲゼルシャフト ミット ベシュレンクテル ハフツング 体積流量が均等化される静油圧式駆動装置
US8720197B2 (en) * 2008-02-12 2014-05-13 Parker-Hannifin Corporation Flow management system for hydraulic work machine
WO2010028100A1 (en) * 2008-09-03 2010-03-11 Parker Hannifin Corporation Velocity control of unbalanced hydraulic actuator subjected to over-center load conditions
US20120055149A1 (en) * 2010-09-02 2012-03-08 Bucyrus International, Inc. Semi-closed hydraulic systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396303A (ja) * 1986-10-09 1988-04-27 Hitachi Constr Mach Co Ltd 油圧閉回路駆動装置
JP2002054602A (ja) 2000-08-11 2002-02-20 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 油圧閉回路
JP4733645B2 (ja) * 2003-12-17 2011-07-27 テールズ ホールディングス ユーケー ピーエルシー アクチュエータ、アクチュエータの作動方法、動作シミュレータ・マシン用の動作プラットフォーム、及び動作シミュレータ。
JP2006194325A (ja) * 2005-01-12 2006-07-27 Bosch Rexroth Corp 液圧駆動装置
JP2006336842A (ja) * 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd 作業機械の制御装置
JP2009079775A (ja) * 2008-12-08 2009-04-16 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 油圧閉回路の油圧シリンダ保持装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2857696A4

Also Published As

Publication number Publication date
KR20150015464A (ko) 2015-02-10
US20150107236A1 (en) 2015-04-23
JP2013245740A (ja) 2013-12-09
EP2857696A4 (en) 2016-05-11
CN104334891B (zh) 2016-10-12
CN104334891A (zh) 2015-02-04
KR102024644B1 (ko) 2019-09-24
US9695841B2 (en) 2017-07-04
JP5701248B2 (ja) 2015-04-15
EP2857696B1 (en) 2018-03-07
EP2857696A1 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5701248B2 (ja) 油圧閉回路システム
JP7098612B2 (ja) 作業車両、及び、作業車両の制御方法
JP5956184B2 (ja) 油圧駆動システム
KR20140056148A (ko) 건설 기계의 제어 장치
JP5956179B2 (ja) 油圧駆動システム
CN110352304B (zh) 工程机械
JP2008196165A (ja) 油圧建設機械のポンプトルク制御装置
JP7021210B2 (ja) 作業車両、及び、作業車両の制御方法
US11118328B2 (en) Construction machine
JP2011052792A (ja) 作業車両
JP5752526B2 (ja) 油圧駆動システム
CN110914577B (zh) 作业车辆及作业车辆的控制方法
EP3067473A1 (en) Hybrid work machine
JP4922795B2 (ja) 作業車両の走行制御装置
JP6453736B2 (ja) 建設機械の油圧駆動装置
JP5588136B2 (ja) 油圧回路、及びそれを備える車両
JP2017522480A (ja) 油圧システム用の低ノイズ制御アルゴリズム
JPH04258505A (ja) 油圧建設機械の駆動制御装置
JP2013044399A (ja) 油圧駆動システム
JP2015197212A (ja) 作業機械のポンプ装置
JPS622186B2 (ja)
JPH0193663A (ja) 油圧閉回路の油圧駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14398476

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013794458

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147032365

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE