WO2013174120A1 - 泵送机构及其控制方法以及混凝土泵送设备 - Google Patents

泵送机构及其控制方法以及混凝土泵送设备 Download PDF

Info

Publication number
WO2013174120A1
WO2013174120A1 PCT/CN2012/086097 CN2012086097W WO2013174120A1 WO 2013174120 A1 WO2013174120 A1 WO 2013174120A1 CN 2012086097 W CN2012086097 W CN 2012086097W WO 2013174120 A1 WO2013174120 A1 WO 2013174120A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
pumping
piston rod
reversing
width
Prior art date
Application number
PCT/CN2012/086097
Other languages
English (en)
French (fr)
Inventor
万梁
李四中
王佳茜
Original Assignee
中联重科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司 filed Critical 中联重科股份有限公司
Publication of WO2013174120A1 publication Critical patent/WO2013174120A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous

Definitions

  • the present invention relates to a pumping mechanism, such as a concrete pumping mechanism, a mud pumping mechanism, etc.
  • the present invention also relates to a method of controlling a pumping mechanism, and to a concrete pumping apparatus having the pumping mechanism. Background technique
  • Pumping mechanisms are widely used in construction machinery and can be used to pump building materials such as concrete and mud.
  • concrete pumping equipment can usually include two pumping cylinders, two cylinders, two swing cylinders, a wide distribution (for example, S wide), a first commutating width, a second commutating width, a main pump, and Swing pump.
  • the two pumping cylinders may be connected in series with each other, and the main pump drives the two pumping cylinders and controls the direction of movement of the pumping cylinder through the first commutation.
  • Two pumping cylinders drive two cylinders separately.
  • the two oscillating cylinders can be interlocked with each other, and the oscillating pump drives the two oscillating cylinders and controls the direction of movement of the two oscillating cylinders by the second commutation.
  • the motion of the two oscillating cylinders drives a wide swing.
  • the concrete pumping equipment works by drawing concrete from the hopper through the boring cylinder and then pouring the concrete into the working position through the conveying pipe. More specifically, the piston rod of the ram cylinder is reciprocated by the pumping cylinder drive, and the reciprocating motion of the piston rod of the oscillating cylinder drives the distribution valve to reciprocate and oscillate, and by distributing the coordinated action of the wide and the ⁇ cylinder, the distribution width is alternately One of the cylinders is in communication with the delivery tube, and the other cylinder is in communication with the hopper to achieve approximately continuous flow of concrete in the delivery conduit.
  • the coordinated action of the distribution wide and the cylinder can be achieved by controlling the first commutation width and the second commutation. Also, in order to reduce the impact of the pumping cylinder, it is usually necessary to simultaneously control the displacement of the main pump. In the existing pumping mechanism, it is usually installed at predetermined positions of the cylinders of the two pumping cylinders. Near switch, when the piston rod of the pumping cylinder passes the proximity switch, the proximity switch sends a signal to the control unit. After receiving the signal, the control unit sends a signal to the main pump, the first commutation wide and the second exchange in a fixed logic sequence.
  • Width that is, a predetermined time interval (for example, tl) is sent to the main pump to send a down-regulation signal, and a predetermined time (for example, t2) is sent to the first commutation wide to transmit a commutation signal, which is separated by a predetermined time (for example, t3)
  • the second commutation sends a commutation signal.
  • the value of tl is usually smaller than the value of t2 and t3, so that the main pump is first reduced in displacement to reduce the speed of movement of the piston rod of the pumping cylinder.
  • the first A commutation wide and a second commutation are widely reversed to reduce the impact on the pumping cylinder.
  • the values of tl, t2, and t3 are usually determined based on trial and error and experience.
  • the movement speed of the piston rod of the pumping cylinder may be It does not fall to a predetermined level, so that the impact of the pumping cylinder cannot be effectively reduced, resulting in an uncoordinated movement of the pumping cylinder and the wide distribution, thereby reducing the overall performance of the pumping mechanism.
  • An object of the present invention is to provide a pumping mechanism capable of reducing the impact of a pumping cylinder, improving the coordination of the pumping cylinder and the widening movement, thereby improving the overall performance of the pumping mechanism; Another object is to provide a corresponding control method for the pumping mechanism. Still another object of the present invention is to provide a concrete pumping apparatus.
  • the present invention provides a pumping mechanism including a pumping cylinder, a swing cylinder, a first commutating wide, a second commutating wide, a main pump, and an oscillating pump
  • a main pump drives the pumping cylinder and controls a direction of movement of the pumping cylinder by the first commutation
  • the oscillating pump drives the oscillating cylinder and controls the oscillating cylinder through the second directional valve
  • the pumping mechanism further includes a controller that transmits a commutation signal to the first commutation width and the second commutation width according to a speed of movement of the piston rod of the pumping cylinder.
  • the controller transmits a commutation signal to the first commutation width and the second commutation width when a speed of movement of the piston rod of the pumping cylinder reaches a first predetermined speed value.
  • the first reversing valve is a three-position electromagnetic reversing valve, and when the moving speed of the piston rod of the pumping cylinder reaches the first predetermined speed value, the controller changes to the first A commutation signal that causes the first commutating electromagnets to be de-energized to be de-energized.
  • the second reversing valve is a three-position electromagnetic reversing valve, and when the moving speed of the piston rod of the pumping cylinder reaches the first predetermined speed value, the controller changes to the second The commutation signal that causes the second commutation to be different from the last electromagnet of the last electrified electromagnet is electrically transmitted.
  • the pumping mechanism further includes a first sensor for detecting a stroke of the pumping cylinder in real time, the controller determining the according to a stroke signal of the pumping cylinder detected by the first sensor in real time The speed of movement of the piston rod of the pumping cylinder.
  • the controller further determines a position of a piston rod of the pumping cylinder according to a stroke signal detected by the first sensor in real time, and when the piston rod of the pumping cylinder reaches a first predetermined position, The controller sends a signal to the main pump that reduces the displacement.
  • the controller also sends a signal to increase the displacement to the main pump when the speed of movement of the piston rod of the swing cylinder reaches a second predetermined speed value.
  • the pumping mechanism further includes a second sensor for detecting a stroke of the swing cylinder in real time, the controller determining the swing cylinder according to a stroke signal of the swing cylinder detected by the second sensor in real time. The speed of movement of the piston rod.
  • the controller further determines a position of a piston rod of the swing cylinder according to a stroke signal detected by the second sensor in real time, and when the piston rod of the swing cylinder reaches a second predetermined position, the controller Transmitting a commutation signal to the first commutation.
  • the first commutation is wide to three-position electromagnetic commutation, and when the piston rod of the swing cylinder reaches the second predetermined position, the controller sends the first commutation width to the The commutation signal of the other side electromagnet that is different from the one of the electromagnets that were electrically electrified at the first time is electrically commutated.
  • the pumping mechanism comprises two of the swing cylinders, the piston rod phases of the two swing cylinders Interconnecting, detecting the travel of the two swing cylinders in real time by the same second sensor.
  • the present invention also provides a control method of a pumping mechanism, the pumping mechanism comprising a pumping cylinder, a swing cylinder, a first commutating wide, a second commutating wide, a main pump and a swing pump,
  • the main pump drives the pumping cylinder and controls the direction of movement of the pumping cylinder by the first commutation
  • the swing pump drives the swing cylinder and controls the swing by the second reversing valve
  • the direction of movement of the cylinder wherein the control method comprises the control step of: controlling the first commutation width and the second commutation wide commutation according to a movement speed of a piston rod of the pumping cylinder.
  • the controlling step when the moving speed of the piston rod of the pumping cylinder reaches a first predetermined speed value, the first commutation width and the second commutation are widened.
  • the first commutation is wide to three-position commutation, and in the controlling step, when the moving speed of the piston rod of the pumping cylinder reaches the first predetermined speed value, One change is wide in the middle.
  • the second commutation is a three-way commutation, and in the controlling step, when the moving speed of the piston rod of the pumping cylinder reaches the first predetermined speed value, The two commutations are widened to another working position in the left and right positions.
  • control method further includes: a detecting step of: detecting a stroke of the pumping cylinder in real time; and a calculating step: calculating a piston of the pumping cylinder according to a stroke of the pumping cylinder obtained by the detecting step in real time The speed of movement of the rod.
  • the calculating step calculating a position of the piston rod of the pumping cylinder according to the stroke of the pumping cylinder obtained by the detecting step in real time, and in the controlling step, when When the piston rod of the pumping cylinder reaches the first predetermined position, the main pump is lowered in displacement.
  • the main pump is caused to increase the displacement.
  • the stroke of the swing cylinder is also detected in real time; in the calculating step, the swing cylinder is further calculated according to the stroke of the swing cylinder obtained in real time in the detecting step. The speed of movement of the piston rod.
  • the calculating step calculating the position of the piston rod of the swing cylinder according to the stroke of the swing cylinder obtained in real time in the detecting step, and when the piston rod of the swing cylinder reaches the first When the two positions are predetermined, the first commutation is widened.
  • the first commutation is wide to three-position commutation, and in the controlling step, when the piston rod of the swing cylinder reaches the second predetermined position, the first commutation is changed To the other work position in the left and right positions.
  • the present invention provides a concrete pumping apparatus, wherein the concrete pumping apparatus comprises a pumping mechanism as described above.
  • the controller since the controller sends the commutation signal to the first commutation width and the second commutation width according to the movement speed of the piston rod of the pumping cylinder, the first commutation width and the second commutation width can be made Accurately reversing when the moving speed of the piston rod of the pumping cylinder reaches a predetermined level, thereby effectively reducing the impact of the pumping cylinder, improving the coordination of the pumping cylinder and the widening movement, thereby improving the pumping mechanism Overall performance.
  • FIG. 1 is a schematic structural view of a pumping mechanism according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing a control principle of a pumping mechanism according to an embodiment of the present invention
  • FIG. 3 is a pumping process as shown in FIG. A more specific schematic diagram of the organization's control principles.
  • the first commutation is wide; 4 The second commutation is wide; 5 main pump; 6 swing pump;
  • a pumping mechanism includes a pumping cylinder 1, a swing cylinder 2, a first commutation width 3, a second commutation width 4, a main pump 5, and a swing pump 6,
  • the main a pump 5 drives the pumping cylinder 1 and controls the direction of movement of the pumping cylinder 1 by the first commutation width 3
  • the oscillating pump 6 drives the oscillating cylinder 2 and passes the second commutation 4 controlling the direction of movement of the swing cylinder 2
  • the pumping mechanism further comprises a controller 7, the controller 7 is wider to the first commutator according to the speed of movement of the piston rod of the pumping cylinder 1
  • the second commutation width 4 sends the commutation signals 1 2 and i 3 .
  • the piston rod of the pumping cylinder 1 is coupled to the piston rod of the cylinder 10 to drive the piston rod of the cylinder 10 to reciprocate.
  • the piston rod of the oscillating cylinder 2 is connected to the distribution width 11 through the drive shaft to drive the distribution width 11 swing.
  • the pumping mechanism includes two pumping cylinders 1, two cylinders 10, and two swing cylinders 2.
  • the two pumping cylinders 1 are connected in series with each other, and the piston rods of the two swing cylinders 2 are linked.
  • the pumping mechanism of the present invention is not limited to the above specific configuration, and the number of the pumping cylinder 1, the cylinder 10, and the swing cylinder 2 can be appropriately changed.
  • the water tank 12 and the hopper 13 are also shown in Fig. 1. The specific structure and connection relationship are well known in the art and will not be described herein.
  • the controller 7 sends the commutation signal to the first commutation width 3 and the second commutation width 4 according to the movement speed of the piston rod of the pumping cylinder 1, the first commutation width 3 and the first The second commutation width 4 can accurately reach the predetermined level of the movement speed of the piston rod of the pumping cylinder 1
  • the impact of the pumping cylinder 1 can be effectively reduced, and the coordination of the movement of the pumping cylinder 1 and the distribution width 11 can be improved, thereby improving the overall performance of the pumping mechanism.
  • the controller 7 sends a commutation signal i to the first commutation width 3 2 , send the commutation signal i 3 to the second commutation width 4.
  • the commutation signals 1 2 and i 3 can be determined according to the specific form of the first commutation width 2 and the second commutation width 3 and the specific pumping mode of the pumping mechanism.
  • the first commutating width 3 is a three-position electromagnetic commutation, and when the moving speed of the piston rod of the pumping cylinder 1 reaches the first predetermined speed value VI, The controller 7 sends a commutation signal i 2 that causes both electromagnets of the first commutating width 3 to be de-energized to the first commutating width 3, that is, the first commutating width 3 is at The center is such that the main pump 5 stops driving the pumping cylinder 1.
  • the second commutation width 4 is a three-position electromagnetic commutation, and when the movement speed of the piston rod of the pumping cylinder 1 reaches the first predetermined speed value VI, transmission controller 7 such that the second transducer is energized electromagnet side to the other side of the electromagnet is energized the last 4 distinct width to the second width commutated commutation signal 4 i 3. That is to say, if the second commutation width 4 is the last time the left electromagnet is energized (in the left position), the right electromagnet of the second commutation width 4 is now energized (in the right position), and vice versa.
  • the piston rod of the swing cylinder 2 is reciprocated, so that the distribution width 11 reciprocates.
  • the first predetermined speed value VI may be determined according to actual needs, usually a value close to zero, so as to be 3 and 2 to the first commutation when the speed of movement of the piston rod of the pumping cylinder 1 is reduced to near zero.
  • the commutation width 4 sends a commutation signal, thereby minimizing the impact on the pumping cylinder 1, while allowing the distribution width 11 to switch the working position in a state where material (e.g., concrete) hardly flows.
  • the first predetermined speed value VI is typically a value close to zero, which may be, for example, 5%-20% of the steady speed of movement of the piston rod of the pumping cylinder 1.
  • the moving speed profile of the piston rod of the pumping cylinder 1 is generally substantially trapezoidal, and is divided into three stages of acceleration, constant speed (i.e., movement at the steady speed), and speed reduction.
  • the steady movement speed of the piston rod of the pumping cylinder 1 is lm/s
  • the first predetermined speed value VI may be 0.05-0.2 m/s, for example 0.1 m/s.
  • the speed of movement of the piston rod of the pumping cylinder 1 can be determined in a variety of suitable manners. Preferably, as shown in FIGS.
  • the pumping mechanism further includes a first sensor 8 for detecting the stroke of the pumping cylinder 1 in real time, the controller 7 detecting the real time according to the first sensor 8
  • the stroke signal i 4 of the pumping cylinder 1 determines the speed of movement of the piston rod of the pumping cylinder 1.
  • the real-time movement speed of the piston rod of the pumping cylinder 1 can be conveniently calculated by the stroke of the pumping cylinder 1 detected in real time and the time point corresponding to the stroke.
  • the displacement of the main pump 5 is usually lowered first, so as to reduce the movement speed of the piston rod of the pumping cylinder 1, thereby making the pump
  • the piston rod of the delivery cylinder 1 can gradually reduce the movement speed and reduce the impact on the pumping cylinder 1.
  • the controller 7 8 further real-time detection of the first sensor signal 14 to determine the position of the stroke of the piston rod of the pumping cylinder 1, and when according to the When the piston rod of the pumping cylinder 1 reaches the first predetermined position S1, the controller 7 sends a signal for reducing the displacement to the main pump 5, so that the main pump 5 can reduce the displacement according to a predetermined curve as needed, so that the main pump The moving speed of the piston rod of the delivery cylinder 1 is gradually lowered by a corresponding predetermined curve to reduce the impact on the pumping cylinder 1.
  • the swing cylinder 2 is usually provided with a buffer chamber which is gradually decelerated when the piston rod of the swing cylinder 2 moves into the buffer chamber.
  • the controller 7 when the moving speed of the piston rod of the swing cylinder 2 reaches the second predetermined speed value V2, the controller 7 also sends an increased displacement to the main pump 5.
  • the signal ⁇ is used to timely increase the speed of movement of the piston rod of the pumping cylinder 1.
  • the main pump 5 can be increased in accordance with a predetermined curve as needed, so that the system builds pressure to push the piston rod of the pumping cylinder 1 to move.
  • the second predetermined speed value V2 may be determined according to actual conditions, and is usually a value close to zero.
  • the second predetermined speed value V2 is typically a value close to zero, which may be, for example, 5%-20% of the steady motion speed of the piston rod of the swing cylinder 2. More specifically, the moving speed profile of the piston rod of the swing cylinder 2 is generally substantially trapezoidal, and is divided into three stages of acceleration, constant speed (i.e., movement at the steady speed), and speed reduction. If the steady motion speed of the piston rod of the swing cylinder 2 is lm/s, the second predetermined speed value V2 may be 0.05-0.2 m/s, for example 0.1 m/s. The speed of the piston rod of the swing cylinder 2 can be determined in various suitable ways.
  • the pumping mechanism further includes a second sensor for detecting the stroke of the swing cylinder 2 in real time.
  • the controller 7 determines the speed of movement of the piston rod of the swing cylinder 2 based on the stroke signal i 5 of the swing cylinder 2 detected by the second sensor 9 in real time.
  • the real-time movement speed of the piston rod of the swing cylinder 2 can be conveniently calculated by the stroke of the swing cylinder 2 detected in real time and the time point corresponding to the stroke.
  • the pumping cylinder 1 Before the displacement of the main pump 5 is increased, the pumping cylinder 1 is usually first reversed, so that the piston rod speed of the reversing pumping cylinder 1 is gradually increased. Therefore, preferably, as shown in FIG. 2 and FIG. 3, the controller 7 further determines the position of the piston rod of the swing cylinder 2 according to the stroke signal i 5 detected by the second sensor 9 in real time, and when the swing When the piston rod of the cylinder 2 reaches the second predetermined position S2, the controller 7 transmits a commutation signal i 2 to the first commutation width 3.
  • the commutation signal i 2 can be determined according to the specific form of the first commutation width 2 and the specific pumping mode of the pumping mechanism.
  • the first commutation width 3 is a three-position electromagnetic commutation, and when the piston rod of the swing cylinder 2 reaches the second predetermined position, the controller 7 is The first commutating width 3 transmits a commutation signal that causes the other commutating electromagnet that is different from the last electrified side electromagnet to be electrically commutated.
  • the piston rod of the pumping cylinder 1 is reciprocated.
  • the second sensor 9 is used to detect the strokes of the two swing cylinders 2 in real time, and since the piston rods of the two swing cylinders 2 are connected to each other, the piston rods of the two swing cylinders 2 are synchronously moved, so The same second sensor 9 is used to detect the stroke of the two swing cylinders 2 in real time, thereby saving costs.
  • two second sensors 9 may be used to detect the strokes of the two swing cylinders 2 in real time, respectively.
  • the first sensor 8 and the second sensor 9 described above may employ various sensors known in the art capable of detecting the stroke of the brake cylinder (such as the pumping cylinder 1 and the swing cylinder 2 in the present invention) in real time, for example.
  • a displacement sensor can be used.
  • the first sensor 8 and the second sensor 9 can be mounted to the pumping cylinder 1 and the swing cylinder 2 by various suitable means, and will not be described herein.
  • the present invention provides a control method of a pumping mechanism including a pumping cylinder 1, a swing cylinder 2, a first commutation width 3, a second commutation width 4, a main pump 5, and An oscillating pump 6,
  • the main pump 5 drives the pumping cylinder 1 and controls the direction of movement of the pumping cylinder 1 by the first commutation width 3
  • the oscillating pump 6 drives the oscillating cylinder 2 and passes
  • the second commutation width 4 controls a movement direction of the swing cylinder 2
  • the control method includes a control step of: controlling the first commutation width according to a movement speed of a piston rod of the pumping cylinder 1 3 and the second commutation wide 4 reversing.
  • the first commutation width is 3
  • the second reversing width 4 can be accurately reversed when the moving speed of the piston rod of the pumping cylinder 1 reaches a predetermined level, thereby effectively reducing the impact of the pumping cylinder 1, raising the pumping cylinder 1 and distributing the width 11 The coordination of the movements, thereby improving the overall performance of the pumping mechanism.
  • the first commutation width is 3 and the second Reversing the width of 4 reversing.
  • the specific commutation mode can be determined according to the specific form of the first commutation width 2 and the second commutation width 3 and the specific pumping mode of the pumping mechanism.
  • the first commutation width 3 is a three-position commutation width, and in the controlling step, when the movement speed of the piston rod of the pumping cylinder 1 reaches the first predetermined At the speed value VI, the first commutation width 3 is made to be in the neutral position, so that the main pump 5 stops driving the pumping cylinder 1.
  • the second commutation width 4 is a three-position commutation width, and in the controlling step, when the movement speed of the piston rod of the pumping cylinder 1 reaches the first predetermined speed In the case of value, the second commutation width 4 is commutated to another of the left and right positions.
  • the first predetermined speed value VI It can be determined according to actual needs, usually a value close to zero, in order to send a commutation signal to the first commutating width 3 and the second commutating width 4 when the moving speed of the piston rod of the pumping cylinder 1 is reduced to near zero.
  • the distribution width 11 can switch the working position in a state where material (for example, concrete) hardly flows.
  • the speed of movement of the piston rod of the pumping cylinder 1 can be determined in a variety of suitable manners.
  • the control method further comprises: a detecting step of: detecting a stroke of the pumping cylinder 1 in real time; and a calculating step: calculating the pumping cylinder according to a stroke of the pumping cylinder 1 obtained by real-time detection in the detecting step The speed of movement of the piston rod of 1.
  • the real-time moving speed of the piston rod of the pumping cylinder 1 can be conveniently calculated by the stroke of the pumping cylinder 1 detected in real time and the time point corresponding to the stroke.
  • the displacement of the main pump 5 is usually lowered first, so as to reduce the movement speed of the piston rod of the pumping cylinder 1, thereby making the pump
  • the piston rod of the delivery cylinder 1 can gradually reduce the movement speed and reduce the impact on the pumping cylinder 1. Therefore, preferably, in the calculating step, the position of the piston rod of the pumping cylinder 1 is also calculated according to the stroke of the pumping cylinder 1 obtained by the detecting step in real time, and in the controlling step, When the piston rod of the pumping cylinder 1 reaches the first predetermined position S1, the main pump 5 is caused to lower the displacement.
  • the main pump 5 can be lowered in accordance with a predetermined curve as needed, so that the moving speed of the piston rod of the main pump pumping cylinder 1 is gradually lowered in accordance with a corresponding predetermined curve, and the impact on the pumping cylinder 1 is reduced.
  • the swing cylinder 2 is usually provided with a buffer chamber which gradually decelerates when the piston rod of the swing cylinder 2 moves into the buffer chamber.
  • the main pump 5 is increased in displacement so as to timely increase the pumping cylinder 1
  • the speed of movement of the piston rod can be increased in accordance with a predetermined curve as needed, so that the system builds pressure to push the piston rod of the pumping cylinder 1 to move.
  • the second predetermined speed value V2 can be determined based on actual conditions, typically a value close to zero.
  • the speed of the piston rod of the swing cylinder 2 can be determined in various suitable manners.
  • the stroke of the swing cylinder 2 is also detected in real time; in the calculating step, The speed of movement of the piston rod of the swing cylinder 2 is also calculated based on the stroke of the swing cylinder 2 detected in real time in the detecting step.
  • the real-time movement speed of the piston rod of the swing cylinder 2 can be conveniently calculated by the stroke of the swing cylinder 2 detected in real time and the time point corresponding to the stroke.
  • the pumping cylinder 1 Before the displacement of the main pump 5 is increased, the pumping cylinder 1 is normally reversed, so that the piston rod speed of the reversing pumping cylinder 1 is gradually increased. Therefore, preferably, in the calculating step, the position of the piston rod of the swing cylinder 2 is also calculated according to the stroke of the swing cylinder 2 obtained in real time in the detecting step, and when the swing cylinder 2 is When the piston rod reaches the second predetermined position, the first commutation width 3 is reversed.
  • the specific commutation mode of the first commutation width 3 can be determined according to the specific form of the first commutation width 2 and the specific pumping mode of the pumping mechanism.
  • the first commutation width 3 is a three-position commutation width, and in the controlling step, when the piston rod of the swing cylinder 2 reaches the second predetermined position, The first commutation width 3 is switched to another of the left and right positions. More specifically, the first commutation width 3 is switched to the last different working position in the left or right position (i.e., the first commutation is widened by 3). That is, if the first commutation width 3 is in the left position, the first reversal width 3 is now in the right position, and vice versa, so that the piston rod of the pumping cylinder 1 reciprocates.
  • the first commutation width 3 is in one of the working positions (for example, the left position), and the second reversing width 4 is in one of the working positions (for example, the left position), thereby pumping the piston rod of the cylinder 1 and the piston of the oscillating cylinder 2
  • the poles move together.
  • the piston rod of the pumping cylinder 1 is moved to the first predetermined position S1
  • the main pump 5 is caused to lower the displacement, so that the pumping cylinder 1 enters the buffering stroke, and the piston rod of the pumping cylinder 1 is mainly decelerated by the inertia.
  • the first commutating width 3 is made to be in the middle position, so that the piston rod of the pumping cylinder 1 stops moving while making the second commutation
  • the width 4 is reversed (for example, switched to the right position), so that the distribution width 11 switches the working position in a state where no material (for example, concrete) flows.
  • the piston rod of the pumping cylinder 1 When the piston rod of the swing cylinder 2 moves to the second predetermined position S2, the first commutation width 3 is reversed (for example, switching to the right position), Thereby, the piston rod of the pumping cylinder 1 can be moved in the reverse direction (but since the displacement of the main pump 5 is low at this time, the piston rod of the pumping cylinder 1 is hardly moved).
  • the piston rod of the swing cylinder 2 enters the buffer chamber to decelerate, when the movement speed of the piston rod of the swing cylinder 2 reaches the second predetermined speed V2, the main pump 5 is increased in displacement according to a predetermined curve, so that the system builds pressure and pushes The piston rod of the pumping cylinder 1 moves. In this cycle, the pumping mechanism pours the material to the working position, and the impact of the pumping cylinder is small, the coordination of the pumping cylinder and the wide distribution movement is better, and the overall performance of the pumping mechanism is better.
  • the above pumping mechanism and its control method can be applied to various pumping devices, for example, for concrete pumping equipment, mud pumping equipment, and the like.

Abstract

一种泵送机构,包括泵送缸(1)、摆动缸(2)、第一换向阀(3)、第二换向阀(4)、主泵(5)、摆动泵(6)和控制器(7)。主泵(5)驱动泵送缸(1),并通过第一换向阀(3)控制泵送缸(1)的运动方向。摆动泵(6)驱动摆动缸(2),并通过第二换向阀(4)控制摆动缸(2)的运动方向。控制器(7)根据泵送缸(1)的活塞杆的运动速度来向第一换向阀(3)和第二换向阀(4)发送换向信号。还相应的公开了控制该泵送机构的控制方法和具有该泵送机构的混凝土泵送设备。该泵送机构能够减少泵送缸的冲击,提高泵送缸的分配阀的运动协调性,从而提高泵送机构的整体性能。

Description

泵送机构及其控制方法以及混凝土泵送设备
技术领域
本发明涉及泵送机构, 例如混凝土泵送机构、 泥浆泵送机构等, 本发 明还涉及一种泵送机构的控制方法, 本发明还涉及一种具有该泵送机构的 混凝土泵送设备。 背景技术
泵送机构 (例如混凝土泵送设备)是工程机械中广泛应用的一种设备, 可以用于泵送混凝土、 泥浆等粘稠状态的建筑材料。 以混凝土泵送设备为 例, 通常可以包括两个泵送缸、 两个砼缸、 两个摆动缸、 分配阔 (例如 S 阔)、第一换向阔、第二换向阔、主泵和摆动泵。两个泵送缸可以相互串联, 主泵驱动该两个泵送缸并通过第一换向阔控制泵送缸的运动方向。 两个泵 送缸则分别驱动两个砼缸。 两个摆动缸可以相互联动, 摆动泵驱动该两个 摆动缸并通过第二换向阔控制两个摆动缸的运动方向。 两个摆动缸的运动 驱动分配阔摆动。
混凝土泵送设备的工作过程为, 通过砼缸从料斗中吸取混凝土, 然后 通过输送管将混凝土浇筑到工作位置上。 更具体地说, 砼缸的活塞杆通过 泵送缸驱动而往复运动, 摆动缸的活塞杆的往复运动则驱动分配阀往复摆 动, 通过分配阔和砼缸的协调动作, 使得分配阔交替地将其中一个砼缸与 输送管连通, 而另一个砼缸与料斗连通, 从而实现混凝土在输送管道中近 似连续的流动。
分配阔与砼缸的协调动作可以通过控制第一换向阔和第二换向阔来实 现。 并且, 为了降低泵送油缸的冲击, 通常还需要同时控制主泵的排量。 在现有的泵送机构中, 通常在两个泵送缸的缸体的预定位置上分别安装接 近开关, 当泵送缸的活塞杆通过接近开关时, 接近开关发送信号给控制单 元, 控制单元接收到该信号后, 以固定逻辑顺序发信号给主泵、 第一换向 阔和第二换向阔, 也就是说, 间隔预定时间 (例如 tl ) 给主泵发送降排量 信号, 间隔预定时间 (例如 t2) 给第一换向阔发送换向信号, 间隔预定时 间 (例如 t3 )给第二换向阔发送换向信号。 tl值通常比 t2值和 t3值小, 从 而先使主泵降低排量从而降低泵送缸的活塞杆的运动速度, 当泵送缸的活 塞杆的运动速度降低到预定水平后, 再使得第一换向阔和第二换向阔换向, 从而减少对泵送缸的冲击。 tl、 t2和 t3的值通常根据反复试验和经验来确 定。 而实际上, 由于泵送机构的工况和负载经常发生变化, 因此当第一换 向阔、 第二换向阔接收到换向信号进行换向时, 可能泵送缸的活塞杆的运 动速度并没有降至预定水平, 从而无法有效地减少泵送缸的冲击, 导致泵 送缸和分配阔的运动不协调, 从而降低了泵送机构的整体性能。 发明内容
本发明的一个目的是提供一种泵送机构, 该泵送机构能够减少泵送缸 的冲击、 提高泵送缸和分配阔的运动的协调性, 从而提高泵送机构的整体 性能; 本发明的另一个目的是提供一种相应的泵送机构的控制方法。 本发 明的还另一个目的是提供一种混凝土泵送设备。
为了实现上述目的, 一方面, 本发明提供了一种泵送机构, 该泵送机 构包括泵送缸、 摆动缸、 第一换向阔、 第二换向阔、 主泵和摆动泵, 所述 主泵驱动所述泵送缸并通过所述第一换向阔控制所述泵送缸的运动方向, 所述摆动泵驱动所述摆动缸并通过所述第二换向阀控制所述摆动缸的运动 方向, 其中, 该泵送机构还包括控制器, 该控制器根据所述泵送缸的活塞 杆的运动速度来向所述第一换向阔和第二换向阔发送换向信号。
优选地, 当所述泵送缸的活塞杆的运动速度达到第一预定速度值时, 所述控制器向所述第一换向阔和第二换向阔发送换向信号。 优选地, 所述第一换向阀为三位电磁换向阀, 当所述泵送缸的活塞杆 的运动速度达到所述第一预定速度值时, 所述控制器向所述第一换向阔发 送使得所述第一换向阔的两侧电磁铁都失电的换向信号。
优选地, 所述第二换向阀为三位电磁换向阀, 当所述泵送缸的活塞杆 的运动速度达到所述第一预定速度值时, 所述控制器向所述第二换向阔发 送使得所述第二换向阔的与上次得电的一侧电磁铁相异的另一侧电磁铁得 电的换向信号。
优选地, 该泵送机构还包括用于实时检测所述泵送缸的行程的第一传 感器, 所述控制器根据所述第一传感器实时检测的所述泵送缸的行程信号 来确定所述泵送缸的活塞杆的运动速度。
优选地, 所述控制器还根据所述第一传感器实时检测的行程信号确定 所述泵送缸的活塞杆的位置, 并且当所述泵送缸的活塞杆到达第一预定位 置时, 所述控制器向所述主泵发送降低排量的信号。
优选地, 当所述摆动缸的活塞杆的运动速度达到第二预定速度值时, 所述控制器还向所述主泵发送提高排量的信号。
优选地, 该泵送机构还包括用于实时检测所述摆动缸的行程的第二传 感器, 所述控制器根据所述第二传感器实时检测的所述摆动缸的行程信号 来确定所述摆动缸的活塞杆的运动速度。
优选地, 所述控制器还根据所述第二传感器实时检测的行程信号确定 所述摆动缸的活塞杆的位置, 并且当所述摆动缸的活塞杆到达第二预定位 置时, 所述控制器向所述第一换向阔发送换向信号。
优选地, 所述第一换向阔为三位电磁换向阔, 当所述摆动缸的活塞杆 到达所述第二预定位置时, 所述控制器向所述第一换向阔发送使得所述第 一换向阔的与上次得电的一侧电磁铁相异的另一侧电磁铁得电的换向信 号。
优选地, 该泵送机构包括两个所述摆动缸, 该两个摆动缸的活塞杆相 互连接, 通过同一个所述第二传感器实时检测所述两个摆动缸的行程。 另一方面, 本发明还提供了一种泵送机构的控制方法, 所述泵送机构 包括泵送缸、 摆动缸、 第一换向阔、 第二换向阔、 主泵和摆动泵, 所述主 泵驱动所述泵送缸并通过所述第一换向阔控制所述泵送缸的运动方向, 所 述摆动泵驱动所述摆动缸并通过所述第二换向阀控制所述摆动缸的运动方 向, 其中, 所述控制方法包括控制步骤: 根据所述泵送缸的活塞杆的运动 速度来控制所述第一换向阔和第二换向阔换向。
优选地, 在所述控制步骤中, 当所述泵送缸的活塞杆的运动速度达到 第一预定速度值时, 使所述第一换向阔和第二换向阔换向。
优选地, 所述第一换向阔为三位换向阔, 在所述控制步骤中, 当所述 泵送缸的活塞杆的运动速度达到所述第一预定速度值时, 使所述第一换向 阔处于中位。
优选地, 所述第二换向阔为三位换向阔, 在所述控制步骤中, 当所述 泵送缸的活塞杆的运动速度达到所述第一预定速度值时, 使所述第二换向 阔换向至左位和右位中的另一工作位。
优选地, 该控制方法还包括: 检测步骤: 实时检测所述泵送缸的行程; 以及计算步骤: 根据所述检测步骤实时检测得到的所述泵送缸的行程计算 所述泵送缸的活塞杆的运动速度。
优选地, 在所述计算步骤中, 还根据所述检测步骤实时检测得到的所 述泵送缸的行程计算所述泵送缸的活塞杆的位置, 并且在所述控制步骤中, 当所述泵送缸的活塞杆到达第一预定位置时, 使所述主泵降低排量。
优选地, 在所述控制步骤中, 当所述摆动缸的活塞杆的运动速度达到 第二预定速度值时, 使所述主泵提高排量。
优选地, 在所述检测步骤中, 还实时检测所述摆动缸的行程; 在所述 计算步骤中, 还根据所述检测步骤中实时检测得到的所述摆动缸的行程来 计算所述摆动缸的活塞杆的运动速度。 优选地, 在所述计算步骤中, 还根据所述检测步骤中实时检测得到的 所述摆动缸的行程来计算所述摆动缸的活塞杆的位置, 并且当所述摆动缸 的活塞杆到达第二预定位置时, 使所述第一换向阔换向。
优选地, 所述第一换向阔为三位换向阔, 在所述控制步骤中, 当所述 摆动缸的活塞杆到达所述第二预定位置时, 使所述第一换向阔换向至左位 和右位中的另一工作位。
还另一方面, 本发明还提供了一种混凝土泵送设备, 其中, 该混凝土 泵送设备包括如上文所述的泵送机构。
通过上述技术方案, 由于控制器根据泵送缸的活塞杆的运动速度来向 第一换向阔和第二换向阔发送换向信号, 从而使得第一换向阔和第二换向 阔能够准确地在泵送缸的活塞杆的运动速度达到预定水平时进行换向, 从 而能够有效地减少泵送缸的冲击、 提高泵送缸和分配阔的运动的协调性, 从而提高泵送机构的整体性能。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说 明。 附图说明
附图是用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与下面的具体实施方式一起用于解释本发明, 但并不构成对本发明的限制 在附图中:
图 1是根据本发明的一种实施方式的泵送机构的结构示意图; 图 2是根据本发明的一种实施方式的泵送机构的控制原理示意图; 图 3是如图 2所示的泵送机构的更具体的控制原理示意图。
附图标记说明
1 泵送缸; 2 摆动缸;
3 第一换向阔; 4 第二换向阔; 5 主泵; 6 摆动泵;
7 控制器; 8 第一传感器;
9 第二传感器; 10 砼缸;
11 分配阔。 具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是, 此处所描述的具体实施方式仅用于说明和解释本发明, 并不用于限制本发 明。
一方面, 本发明提供了一种泵送机构。 如图 1 所示, 根据本发明的一 种泵送机构包括泵送缸 1、 摆动缸 2、 第一换向阔 3、 第二换向阔 4、 主泵 5 和摆动泵 6,所述主泵 5驱动所述泵送缸 1并通过所述第一换向阔 3控制所 述泵送缸 1的运动方向, 所述摆动泵 6驱动所述摆动缸 2并通过所述第二 换向阔 4控制所述摆动缸 2的运动方向,其中,该泵送机构还包括控制器 7, 该控制器 7根据所述泵送缸 1 的活塞杆的运动速度来向所述第一换向阔 3 和第二换向阔 4发送换向信号 12和 i3
如图 1所示, 泵送缸 1的活塞杆与砼缸 10的活塞杆连接, 以驱动砼缸 10的活塞杆往复运动。摆动缸 2的活塞杆通过传动轴与分配阔 11连接, 以 驱动分配阔 11摆动。 在图 1所示的实施方式中, 泵送机构包括两个泵送缸 1、 两个砼缸 10、 两个摆动缸 2。 两个泵送缸 1相互串联, 两个摆动缸 2的 活塞杆联动。但是本发明的泵送机构并不限于上述具体结构, 泵送缸 1、砼 缸 10、摆动缸 2的个数可以适当地变化。在图 1中还示出了水箱 12和料斗 13, 其具体结构和连接关系为本领域所公知, 在此不再赘述。
通过上述技术方案, 由于控制器 7根据泵送缸 1的活塞杆的运动速度 来向第一换向阔 3和第二换向阔 4发送换向信号, 从而使得第一换向阔 3 和第二换向阔 4能够准确地在泵送缸 1的活塞杆的运动速度达到预定水平 时进行换向, 从而能够有效地减少泵送缸 1 的冲击、 提高泵送缸 1和分配 阔 11的运动的协调性, 从而提高泵送机构的整体性能。
优选地, 如图 3所示, 当所述泵送缸 1的活塞杆的运动速度达到第一 预定速度值 VI时, 所述控制器 7向所述第一换向阔 3发送换向信号 i2, 向 第二换向阔 4发送换向信号 i3。 该换向信号 12和 i3可以根据第一换向阔 2 和第二换向阔 3 的具体形式和泵送机构的具体泵送方式来确定。 例如作为 一种具体的实施方式, 所述第一换向阔 3为三位电磁换向阔, 当所述泵送 缸 1的活塞杆的运动速度达到所述第一预定速度值 VI时,所述控制器 7向 所述第一换向阔 3发送使得所述第一换向阔 3的两侧电磁铁都失电的换向 信号 i2, 也就是说, 使得第一换向阔 3处于中位, 从而主泵 5停止驱动泵送 缸 1。 作为一种具体的实施方式, 所述第二换向阔 4为三位电磁换向阔, 当 所述泵送缸 1的活塞杆的运动速度达到所述第一预定速度值 VI时,所述控 制器 7向所述第二换向阔 4发送使得所述第二换向阔 4的与上次得电的一 侧电磁铁相异的另一侧电磁铁得电的换向信号 i3。也就是说,如果第二换向 阔 4上一次是左侧电磁铁得电 (位于左位), 则现在就使得第二换向阔 4的 右侧电磁铁得电 (位于右位), 反之亦然, 从而使得摆动缸 2的活塞杆往复 运动, 从而使得分配阔 11往复摆动。 所述第一预定速度值 VI可以根据实 际需要进行确定, 通常为接近于零的值, 以便在泵送缸 1 的活塞杆的运动 速度降低到接近零时向第一换向阔 3和第二换向阔 4发送换向信号, 从而 最大程度地减小对泵送缸 1的冲击, 同时使得分配阔 11能够在物料 (例如 混凝土) 几乎不流动的状态下切换工作位。 如上文所述, 第一预定速度值 VI通常为接近于零的值, 该值例如可以为泵送缸 1的活塞杆的稳定运动速 度的 5%-20%。更具体地说, 泵送缸 1的活塞杆的运动速度曲线通常大致为 梯形, 分为加速、 恒速 (即以所述稳定速度运动) 和降速三个阶段。 如果 泵送缸 1的活塞杆的稳定运动速度为 lm/s, 则第一预定速度值 VI可以为 0.05-0.2 m/s, 例如 0.1 m/s。 可以采用各种适当的方式来确定所述泵送缸 1 的活塞杆的运动速度。 优选地, 如图 1和图 2所示, 泵送机构还包括用于实时检测所述泵送缸 1 的行程的第一传感器 8,所述控制器 7根据所述第一传感器 8实时检测的所 述泵送缸 1的行程信号 i4来确定所述泵送缸 1的活塞杆的运动速度。 通过 实时检测的泵送缸 1 的行程和与该行程对应的时间点可以方便地计算得到 泵送缸 1的活塞杆的实时的运动速度。
如上文所述, 在使得第一换向阔 3和第二换向阔 4换向之前, 通常先 降低主泵 5的排量, 以便降低泵送缸 1的活塞杆的运动速度, 从而使得泵 送缸 1 的活塞杆能够逐渐降低运动速度, 减少对泵送缸 1 的冲击。 因此优 选地, 如图 2和图 3所示, 所述控制器 7还根据所述第一传感器 8实时检 测的行程信号 14确定所述泵送缸 1 的活塞杆的位置, 并且当所述泵送缸 1 的活塞杆到达第一预定位置 S1时, 所述控制器 7向所述主泵 5发送降低排 量的信号 可以根据需要使得主泵 5按照预定曲线降低排量,使得主泵泵 送缸 1 的活塞杆的运动速度按相应的预定曲线逐渐降低, 减少对泵送缸 1 的冲击。
摆动缸 2通常设置有缓冲腔, 当摆动缸 2的活塞杆运动至缓冲腔内后 会逐渐减速。 优选地, 如图 2和图 3所示, 当所述摆动缸 2的活塞杆的运 动速度达到第二预定速度值 V2时,所述控制器 7还向所述主泵 5发送提高 排量的信号 ^, 以便适时地提高泵送缸 1的活塞杆的运动速度。可以根据需 要使得主泵 5按照预定曲线提高排量, 使得系统建压而推动泵送缸 1 的活 塞杆动作。所述第二预定速度值 V2可以根据实际情况进行确定, 通常为接 近于零的值。 如上文所述, 第二预定速度值 V2通常为接近于零的值, 该值 例如可以为摆动缸 2的活塞杆的稳定运动速度的 5%-20%。更具体地说, 摆 动缸 2 的活塞杆的运动速度曲线通常大致为梯形, 分为加速、 恒速 (即以 所述稳定速度运动) 和降速三个阶段。 如果摆动缸 2 的活塞杆的稳定运动 速度为 lm/s, 则第二预定速度值 V2可以为 0.05-0.2 m/s, 例如 0.1 m/s。 可以采用各种适当的方式来确定摆动缸 2 的活塞杆的速度, 优选地, 如图 2和图 3所示, 泵送机构还包括用于实时检测所述摆动缸 2的行程的 第二传感器 9,所述控制器 7根据所述第二传感器 9实时检测的所述摆动缸 2的行程信号 i5来确定所述摆动缸 2的活塞杆的运动速度。通过实时检测的 摆动缸 2的行程和与该行程对应的时间点可以方便地计算得到摆动缸 2的 活塞杆的实时的运动速度。
在提高主泵 5的排量之前, 通常先使得泵送缸 1换向, 从而使得换向 后的泵送缸 1的活塞杆速度逐渐增大。 因此优选地, 如图 2和图 3所示, 所述控制器 7还根据所述第二传感器 9实时检测的行程信号 i5确定所述摆 动缸 2的活塞杆的位置, 并且当所述摆动缸 2的活塞杆到达第二预定位置 S2时, 所述控制器 7向所述第一换向阔 3发送换向信号 i2
该换向信号 i2可以根据第一换向阔 2的具体形式和泵送机构的具体泵 送方式来确定。 例如作为一种具体的实施方式, 所述第一换向阔 3 为三位 电磁换向阔, 当所述摆动缸 2 的活塞杆到达所述第二预定位置时, 所述控 制器 7向所述第一换向阔 3发送使得所述第一换向阔 3的与上次得电的一 侧电磁铁相异的另一侧电磁铁得电的换向信号。 也就是说, 如果第一换向 阔 3上一次是左侧电磁铁得电 (位于左位), 则现在就使得第一换向阔 3的 右侧电磁铁得电 (位于右位), 反之亦然, 从而使得泵送缸 1的活塞杆往复 运动。
如上文所述, 第二传感器 9用于实时检测两个摆动缸 2的行程, 而由 于两个摆动缸 2的活塞杆相互连接, 因此两个摆动缸 2的活塞杆是同步运 动的, 因此可以采用同一个第二传感器 9来实时检测两个摆动缸 2的行程, 从而节约成本。 而为了提高检测精度, 如图 1和图 2所示, 也可以采用两 个第二传感器 9来分别地实时检测两个摆动缸 2的行程。
上述第一传感器 8和第二传感器 9可以采用本领域公知的各种能够实 时检测制动缸(如本发明中的泵送缸 1和摆动缸 2) 的行程的传感器, 例如 可以采用位移传感器。 并且第一传感器 8和第二传感器 9可以通过各种适 当的方式安装到泵送缸 1和摆动缸 2上, 在此不再赘述。
另一方面, 本发明提供了一种泵送机构的控制方法, 所述泵送机构包 括泵送缸 1、 摆动缸 2、 第一换向阔 3、 第二换向阔 4、 主泵 5和摆动泵 6, 所述主泵 5驱动所述泵送缸 1并通过所述第一换向阔 3控制所述泵送缸 1 的运动方向, 所述摆动泵 6驱动所述摆动缸 2并通过所述第二换向阔 4控 制所述摆动缸 2 的运动方向, 其中, 所述控制方法包括控制步骤: 根据所 述泵送缸 1 的活塞杆的运动速度来控制所述第一换向阔 3和第二换向阔 4 换向。
通过上述技术方案, 由于在控制步骤中, 根据泵送缸 1 的活塞杆的运 动速度来向第一换向阔 3和第二换向阔 4发送换向信号, 从而使得第一换 向阔 3和第二换向阔 4能够准确地在泵送缸 1的活塞杆的运动速度达到预 定水平时进行换向, 从而能够有效地减少泵送缸 1 的冲击、 提高泵送缸 1 和分配阔 11的运动的协调性, 从而提高泵送机构的整体性能。
优选地, 如图 3所示, 在所述控制步骤中, 当所述泵送缸 1 的活塞杆 的运动速度达到第一预定速度值 VI时,使所述第一换向阔 3和第二换向阔 4换向。具体的换向方式可以根据第一换向阔 2和第二换向阔 3的具体形式 和泵送机构的具体泵送方式来确定。 例如作为一种具体的实施方式, 所述 第一换向阔 3为三位换向阔, 在所述控制步骤中, 当所述泵送缸 1的活塞 杆的运动速度达到所述第一预定速度值 VI时,使所述第一换向阔 3处于中 位, 从而使得主泵 5停止驱动泵送缸 1。 作为一种具体的实施方式, 所述第 二换向阔 4为三位换向阔, 在所述控制步骤中, 当所述泵送缸 1 的活塞杆 的运动速度达到所述第一预定速度值时, 使所述第二换向阔 4换向至左位 和右位中的另一工作位。 也就是说, 如果第二换向阔 4上一次是位于左位, 则现在就使得第二换向阔 4换向至右位, 反之亦然, 从而使得摆动缸 2的 活塞杆往复运动, 从而使得分配阔 11往复摆动。 所述第一预定速度值 VI 可以根据实际需要进行确定, 通常为接近于零的值, 以便在泵送缸 1 的活 塞杆的运动速度降低到接近零时向第一换向阔 3和第二换向阔 4发送换向 信号, 从而最大程度低减小对泵送缸 1的冲击, 同时使得分配阔 11能够在 物料 (例如混凝土) 几乎不流动的状态下切换工作位。
可以采用各种适当的方式来确定所述泵送缸 1 的活塞杆的运动速度。 优选地, 该控制方法还包括: 检测步骤: 实时检测所述泵送缸 1 的行程; 以及计算步骤: 根据所述检测步骤实时检测得到的所述泵送缸 1 的行程计 算所述泵送缸 1的活塞杆的运动速度。 通过实时检测的泵送缸 1的行程和 与该行程对应的时间点可以方便地计算得到泵送缸 1 的活塞杆的实时的运 动速度。
如上文所述, 在使得第一换向阔 3和第二换向阔 4换向之前, 通常先 降低主泵 5的排量, 以便降低泵送缸 1的活塞杆的运动速度, 从而使得泵 送缸 1 的活塞杆能够逐渐降低运动速度, 减少对泵送缸 1 的冲击。 因此优 选地, 在所述计算步骤中, 还根据所述检测步骤实时检测得到的所述泵送 缸 1 的行程计算所述泵送缸 1 的活塞杆的位置, 并且在所述控制步骤中, 当所述泵送缸 1的活塞杆到达第一预定位置 S1时,使所述主泵 5降低排量。 可以根据需要使得主泵 5按照预定曲线降低排量, 使得主泵泵送缸 1的活 塞杆的运动速度按相应的预定曲线逐渐降低, 减少对泵送缸 1的冲击。
摆动缸 2通常设置有缓冲腔, 当摆动缸 2的活塞杆运动至缓冲腔内后 会逐渐减速。 优选地, 在所述控制步骤中, 当所述摆动缸 2 的活塞杆的运 动速度达到第二预定速度值 V2时, 使所述主泵 5提高排量, 以便适时地提 高泵送缸 1的活塞杆的运动速度。 可以根据需要使得主泵 5按照预定曲线 提高排量, 使得系统建压而推动泵送缸 1 的活塞杆动作。 所述第二预定速 度值 V2可以根据实际情况进行确定, 通常为接近于零的值。
可以采用各种适当的方式来确定摆动缸 2 的活塞杆的速度, 优选地, 在所述检测步骤中, 还实时检测所述摆动缸 2的行程; 在所述计算步骤中, 还根据所述检测步骤中实时检测得到的所述摆动缸 2 的行程来计算所述摆 动缸 2的活塞杆的运动速度。 通过实时检测的摆动缸 2的行程和与该行程 对应的时间点可以方便地计算得到摆动缸 2的活塞杆的实时的运动速度。
在提高主泵 5的排量之前, 通常先使得泵送缸 1换向, 从而使得换向 后的泵送缸 1 的活塞杆速度逐渐增大。 因此优选地, 在所述计算步骤中, 还根据所述检测步骤中实时检测得到的所述摆动缸 2 的行程来计算所述摆 动缸 2的活塞杆的位置, 并且当所述摆动缸 2的活塞杆到达第二预定位置 时, 使所述第一换向阔 3换向。
第一换向阔 3的具体的换向方式可以根据第一换向阔 2的具体形式和 泵送机构的具体泵送方式来确定。 例如作为一种具体的实施方式, 所述第 一换向阔 3为三位换向阔, 在所述控制步骤中, 当所述摆动缸 2的活塞杆 到达所述第二预定位置时, 使所述第一换向阔 3切换至左位和右位中的另 一工作位。 更具体地说, 使所述第一换向阔 3切换至左位或右位中与上次 相异的工作位 (即, 使得第一换向阔 3换向)。 也就是说, 如果第一换向阔 3上一次是位于左位, 则现在就使得第一换向阔 3位于右位, 反之亦然, 从 而使得泵送缸 1的活塞杆往复运动。
下面参照图 3对本发明优选实施方式提供的泵送机构总的工作过程进 行简要的说明。 首先, 第一换向阔 3处于其中一个工作位 (例如左位), 第 二换向阔 4处于其中一个工作位(例如左位), 从而泵送缸 1的活塞杆和摆 动缸 2的活塞杆一起运动。当泵送缸 1的活塞杆运动到第一预定位置 S1时, 使得主泵 5降低排量, 从而泵送缸 1进入缓冲行程, 泵送缸 1的活塞杆主 要在惯性作用下减速。 当检测到泵送缸 1 的活塞杆的运动速度达到第一预 定速度 VI时, 使得第一换向阔 3位于中位, 从而使得泵送缸 1的活塞杆停 止运动, 同时使得第二换向阔 4换向 (例如切换至右位), 从而使得分配阔 11在没有物料 (例如混凝土) 流动的状态下切换工作位。 当摆动缸 2的活 塞杆运动到第二预定位置 S2时, 使第一换向阔 3换向 (例如切换至右位), 从而使得泵送缸 1 的活塞杆能够反向运动 (但是由于此时主泵 5的排量很 低, 因此泵送缸 1的活塞杆还几乎不动)。 随着摆动缸 2的活塞杆进入缓冲 腔而减速运动, 当摆动缸 2的活塞杆的运动速度达到第二预定速度 V2时, 使得主泵 5按预定曲线提高排量, 使得系统建压而推动泵送缸 1的活塞杆 运动。 以此循环, 泵送机构将物料浇筑到工作位置, 并且泵送缸的冲击较 小、 泵送缸和分配阔的运动的协调性较好, 从而泵送机构的整体性能较好。
上述泵送机构及其控制方法可以应用于各种泵送设备, 例如可以用于 混凝土泵送设备、 泥浆泵送设备等。
以上结合附图详细描述了本发明的优选实施方式, 但是, 本发明并不 限于上述实施方式中的具体细节, 在本发明的技术构思范围内, 可以对本 发明的技术方案进行多种简单变型, 这些简单变型均属于本发明的保护范 围。
另外需要说明的是, 在上述具体实施方式中所描述的各个具体技术特 征, 在不矛盾的情况下, 可以通过任何合适的方式进行组合。 为了避免不 必要的重复, 本发明对各种可能的组合方式不再另行说明。
此外, 本发明的各种不同的实施方式之间也可以进行任意组合, 只要 其不违背本发明的思想, 其同样应当视为本发明所公开的内容。

Claims

权利要求
1、 一种泵送机构, 该泵送机构包括泵送缸 (1 )、 摆动缸 (2)、 第一换 向阔 (3 )、 第二换向阔 (4)、 主泵 (5 ) 和摆动泵 (6), 所述主泵 (5 ) 驱 动所述泵送缸 (1 ) 并通过所述第一换向阔 (3 ) 控制所述泵送缸 (1 ) 的运 动方向, 所述摆动泵(6)驱动所述摆动缸(2)并通过所述第二换向阔(4) 控制所述摆动缸 (2) 的运动方向, 其特征在于, 该泵送机构还包括控制器
(7), 该控制器 (7) 根据所述泵送缸 (1 ) 的活塞杆的运动速度来向所述 第一换向阔 (3) 和第二换向阔 (4) 发送换向信号。
2、 根据权利要求 1所述的泵送机构, 其特征在于, 当所述泵送缸 (1 ) 的活塞杆的运动速度达到第一预定速度值时, 所述控制器 (7) 向所述第一 换向阔 (3) 和第二换向阔 (4) 发送换向信号。
3、根据权利要求 2所述的泵送机构,其特征在于,所述第一换向阔(3) 为三位电磁换向阔, 当所述泵送缸 (1 ) 的活塞杆的运动速度达到所述第一 预定速度值时, 所述控制器 (7) 向所述第一换向阔 (3 ) 发送使得所述第 一换向阔 (3) 的两侧电磁铁都失电的换向信号。
4、根据权利要求 2所述的泵送机构,其特征在于,所述第二换向阔(4) 为三位电磁换向阔, 当所述泵送缸 (1 ) 的活塞杆的运动速度达到所述第一 预定速度值时, 所述控制器 (7) 向所述第二换向阔 (4) 发送使得所述第 二换向阔 (4) 的与上次得电的一侧电磁铁相异的另一侧电磁铁得电的换向 信号。
5、 根据权利要求 1至 4中任意一项所述的泵送机构, 其特征在于, 该 泵送机构还包括用于实时检测所述泵送缸 (1 ) 的行程的第一传感器 (8), 所述控制器 (7) 根据所述第一传感器 (8) 实时检测的所述泵送缸 (1 ) 的 行程信号来确定所述泵送缸 (1 ) 的活塞杆的运动速度。
6、 根据权利要求 5所述的泵送机构, 其特征在于, 所述控制器 (7) 还根据所述第一传感器 (8) 实时检测的行程信号确定所述泵送缸 (1 ) 的 活塞杆的位置, 并且当所述泵送缸 (1 ) 的活塞杆到达第一预定位置时, 所 述控制器 (7) 向所述主泵 (5) 发送降低排量的信号。
7、 根据权利要求 6所述的泵送机构, 其特征在于, 当所述摆动缸 (2) 的活塞杆的运动速度达到第二预定速度值时, 所述控制器 (7) 还向所述主 泵 (5) 发送提高排量的信号。
8、 根据权利要求 7所述的泵送机构, 其特征在于, 该泵送机构还包括 用于实时检测所述摆动缸 (2) 的行程的第二传感器 (9), 所述控制器 (7) 根据所述第二传感器 (9) 实时检测的所述摆动缸 (2) 的行程信号来确定 所述摆动缸 (2) 的活塞杆的运动速度。
9、 根据权利要求 8所述的泵送机构, 其特征在于, 所述控制器 (7) 还根据所述第二传感器 (9) 实时检测的行程信号确定所述摆动缸 (2) 的 活塞杆的位置, 并且当所述摆动缸 (2) 的活塞杆到达第二预定位置时, 所 述控制器 (7) 向所述第一换向阔 (3 ) 发送换向信号。
10、 根据权利要求 9所述的泵送机构, 其特征在于, 所述第一换向阔 ( 3 ) 为三位电磁换向阔, 当所述摆动缸 (2) 的活塞杆到达所述第二预定 位置时, 所述控制器 (7) 向所述第一换向阔 (3 ) 发送使得所述第一换向 阔 (3) 的与上次得电的一侧电磁铁相异的另一侧电磁铁得电的换向信号
11、 根据权利要求 8所述的泵送机构, 其特征在于, 该泵送机构包括 两个所述摆动缸 (2), 该两个摆动缸 (2) 的活塞杆相互连接, 通过同一个 所述第二传感器 (9) 实时检测所述两个摆动缸 (2) 的行程。
12、 一种泵送机构的控制方法, 所述泵送机构包括泵送缸 (1 )、 摆动 缸 (2)、 第一换向阔 (3 )、 第二换向阔 (4)、 主泵 (5) 和摆动泵 (6), 所 述主泵 (5) 驱动所述泵送缸 (1 ) 并通过所述第一换向阔 (3) 控制所述泵 送缸 (1 ) 的运动方向, 所述摆动泵 (6) 驱动所述摆动缸 (2) 并通过所述 第二换向阔 (4) 控制所述摆动缸 (2) 的运动方向, 其特征在于, 所述控 制方法包括控制步骤: 根据所述泵送缸 (1 ) 的活塞杆的运动速度来控制所 述第一换向阔 (3 ) 和第二换向阔 (4) 换向。
13、 根据权利要求 12所述的泵送机构的控制方法, 其特征在于, 在所 述控制步骤中, 当所述泵送缸 (1 ) 的活塞杆的运动速度达到第一预定速度 值时, 使所述第一换向阔 (3) 和第二换向阔 (4) 换向。
14、 根据权利要求 13所述的泵送机构的控制方法, 其特征在于, 所述 第一换向阔 (3 ) 为三位换向阔, 在所述控制步骤中, 当所述泵送缸 (1 ) 的活塞杆的运动速度达到所述第一预定速度值时, 使所述第一换向阔 (3 ) 处于中位。
15、 根据权利要求 13所述的泵送机构的控制方法, 其特征在于, 所述 第二换向阔 (4) 为三位换向阔, 在所述控制步骤中, 当所述泵送缸 (1 ) 的活塞杆的运动速度达到所述第一预定速度值时, 使所述第二换向阔 (4) 换向至左位和右位中的另一工作位
16、 根据权利要求 12至 15中任意一项所述的泵送机构的控制方法, 其特征在于, 该控制方法还包括:
检测步骤: 实时检测所述泵送缸 (1 ) 的行程; 以及
计算步骤: 根据所述检测步骤实时检测得到的所述泵送缸(1 ) 的行程 计算所述泵送缸 (1 ) 的活塞杆的运动速度。
17、 根据权利要求 16所述的泵送机构的控制方法, 其特征在于, 在所 述计算步骤中, 还根据所述检测步骤实时检测得到的所述泵送缸 (1 ) 的行 程计算所述泵送缸 (1 ) 的活塞杆的位置, 并且在所述控制步骤中, 当所述 泵送缸 (1 ) 的活塞杆到达第一预定位置时, 使所述主泵 (5 ) 降低排量。
18、 根据权利要求 17所述的泵送机构的控制方法, 其特征在于, 在所 述控制步骤中, 当所述摆动缸 (2) 的活塞杆的运动速度达到第二预定速度 值时, 使所述主泵 (5 ) 提高排量。
19、 根据权利要求 18所述的泵送机构的控制方法, 其特征在于, 在所 述检测步骤中, 还实时检测所述摆动缸 (2) 的行程; 在所述计算步骤中, 还根据所述检测步骤中实时检测得到的所述摆动缸(2) 的行程来计算所述 摆动缸 (2) 的活塞杆的运动速度。
20、 根据权利要求 19所述的泵送机构的控制方法, 其特征在于, 在所 述计算步骤中, 还根据所述检测步骤中实时检测得到的所述摆动缸 (2) 的 行程来计算所述摆动缸 (2) 的活塞杆的位置, 并且当所述摆动缸 (2) 的 活塞杆到达第二预定位置时, 使所述第一换向阔 (3 ) 换向。
21、 根据权利要求 20所述的泵送机构的控制方法, 其特征在于, 所述 第一换向阔 (3 ) 为三位换向阔, 在所述控制步骤中, 当所述摆动缸 (2) 的活塞杆到达所述第二预定位置时, 使所述第一换向阔 (3) 换向至左位和 右位中的另一工作位。
22、 一种混凝土泵送设备, 其特征在于, 该混凝土泵送设备包括根据 权利要求 1至 11中任意一项所述的泵送机构。
PCT/CN2012/086097 2012-05-23 2012-12-07 泵送机构及其控制方法以及混凝土泵送设备 WO2013174120A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210162701.6 2012-05-23
CN201210162701.6A CN103423139B (zh) 2012-05-23 2012-05-23 泵送机构及其控制方法以及混凝土泵送设备

Publications (1)

Publication Number Publication Date
WO2013174120A1 true WO2013174120A1 (zh) 2013-11-28

Family

ID=49623060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086097 WO2013174120A1 (zh) 2012-05-23 2012-12-07 泵送机构及其控制方法以及混凝土泵送设备

Country Status (2)

Country Link
CN (1) CN103423139B (zh)
WO (1) WO2013174120A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104832412A (zh) * 2014-12-19 2015-08-12 北汽福田汽车股份有限公司 泵送排量控制方法、装置和系统
CN104847643A (zh) * 2014-12-22 2015-08-19 北汽福田汽车股份有限公司 混凝土泵送系统换向控制方法及相应换向控制装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2977442C (en) * 2015-03-09 2021-10-26 Weir Minerals Netherlands B.V. Hydraulic pump system for handling a slurry medium
CN106014903B (zh) * 2015-12-07 2018-01-12 巩高铄 双缸稳流输送泵及采用这种双缸稳流输送泵的拖泵和泵车
DE102017000047A1 (de) * 2017-01-05 2018-07-05 Atlas Copco Ias Gmbh Vorrichtung zum Fördern von viskosem Material
CN107237794B (zh) * 2017-07-21 2019-11-08 青岛九合重工机械有限公司 一种混凝土机械泵送机械摆缸
CN109058085B (zh) * 2018-07-17 2020-06-12 三一汽车制造有限公司 泵送系统控制方法及控制装置
CN115143072B (zh) * 2022-07-07 2023-03-21 中联重科股份有限公司 用于泵送系统的控制方法、处理器及泵送系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0971127A1 (en) * 1998-07-09 2000-01-12 Cifa S.P.A. Piston speed modulation for a concrete pump
US6171075B1 (en) * 1995-11-13 2001-01-09 Putzmeister Ag Process and device for controlling a two-cylinder thick medium pump
CN1788160A (zh) * 2004-03-26 2006-06-14 粉刷师股份公司 用于控制泥浆泵的装置和方法
CN102265034A (zh) * 2008-12-29 2011-11-30 阿尔法拉瓦尔股份有限公司 具有两个泵单元的泵装置、系统、用途和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793247A (zh) * 2009-01-20 2010-08-04 徐工集团工程机械股份有限公司建设机械分公司 混凝土泵车及其混凝土输送泵换向系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171075B1 (en) * 1995-11-13 2001-01-09 Putzmeister Ag Process and device for controlling a two-cylinder thick medium pump
EP0971127A1 (en) * 1998-07-09 2000-01-12 Cifa S.P.A. Piston speed modulation for a concrete pump
CN1788160A (zh) * 2004-03-26 2006-06-14 粉刷师股份公司 用于控制泥浆泵的装置和方法
CN102265034A (zh) * 2008-12-29 2011-11-30 阿尔法拉瓦尔股份有限公司 具有两个泵单元的泵装置、系统、用途和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104832412A (zh) * 2014-12-19 2015-08-12 北汽福田汽车股份有限公司 泵送排量控制方法、装置和系统
CN104847643A (zh) * 2014-12-22 2015-08-19 北汽福田汽车股份有限公司 混凝土泵送系统换向控制方法及相应换向控制装置
CN104847643B (zh) * 2014-12-22 2016-08-17 北汽福田汽车股份有限公司 混凝土泵送系统换向控制方法及相应换向控制装置

Also Published As

Publication number Publication date
CN103423139B (zh) 2016-04-27
CN103423139A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2013174120A1 (zh) 泵送机构及其控制方法以及混凝土泵送设备
WO2014019313A1 (zh) 泵送机构及其控制方法以及混凝土泵送设备
CN100416095C (zh) 用于控制泥浆泵的装置和方法
WO2015081774A1 (zh) 油缸控制系统、控制方法及泵送机械
JP2007530853A (ja) 濃厚物質ポンプの制御装置および制御方法
WO2011116702A1 (zh) 一种串联液压缸及其行程控制装置和方法
CN103481093B (zh) 一种工件的加工机构及加工系统
WO2013174121A1 (zh) 液压缸缓冲控制方法、缓冲式液压缸控制系统及液压设备
CN206785581U (zh) 一种单缸双作用磁力泵
CN203463248U (zh) 直线电机直接驱动的双作用多缸泥浆泵
CN106274922B (zh) 一种用于隧道衬砌模板台车的液压行走机构及控制方法
WO2013033915A1 (zh) 一种用于泵送装置的泵送换向控制方法、装置以及系统
JPH1182312A (ja) 油圧駆動のピストンポンプ
CN113006490B (zh) 混凝土泵送设备及其控制方法
CN106996071B (zh) 一种水泥路面碎石化设备的气液混合式激振系统
CN110529356A (zh) 混凝土泵送设备泵送控制系统及方法
JP2575688B2 (ja) コンクリ−トポンプの制御装置
JP4219464B2 (ja) ピストンポンプの切換衝撃低減装置
CN206383954U (zh) 一种用于隧道衬砌模板台车的液压行走机构
CN111456976A (zh) 泵送机械液压系统及泵送机械
CN210461021U (zh) 泵送电控换向系统
JP2511471Y2 (ja) コンクリ―トポンプの切換装置
CN112412726B (zh) 车辆的泵送系统控制方法、泵送系统及车辆
RU2647286C2 (ru) Установка гидропривода насоса для добычи нефти и соответствующий гидравлический насос для добычи нефти
CN217271091U (zh) 一种混凝土泵送液压控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877187

Country of ref document: EP

Kind code of ref document: A1