WO2013172446A1 - 糖液の製造方法 - Google Patents

糖液の製造方法 Download PDF

Info

Publication number
WO2013172446A1
WO2013172446A1 PCT/JP2013/063771 JP2013063771W WO2013172446A1 WO 2013172446 A1 WO2013172446 A1 WO 2013172446A1 JP 2013063771 W JP2013063771 W JP 2013063771W WO 2013172446 A1 WO2013172446 A1 WO 2013172446A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrothermal treatment
cellulose
sugar
liquid
solution
Prior art date
Application number
PCT/JP2013/063771
Other languages
English (en)
French (fr)
Inventor
栗原 宏征
裕子 石塚
淳 南野
山田 勝成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to AU2013261286A priority Critical patent/AU2013261286B2/en
Priority to EP13791282.0A priority patent/EP2860269B1/en
Priority to US14/401,900 priority patent/US10519476B2/en
Priority to CA2873864A priority patent/CA2873864A1/en
Priority to BR112014028617-5A priority patent/BR112014028617B1/pt
Priority to DK13791282.0T priority patent/DK2860269T3/en
Priority to JP2013535975A priority patent/JP6269061B2/ja
Publication of WO2013172446A1 publication Critical patent/WO2013172446A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/18Apparatus specially designed for the use of free, immobilized or carrier-bound enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/06Means for pre-treatment of biological substances by chemical means or hydrolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/09Means for pre-treatment of biological substances by enzymatic treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/14Multiple stages of fermentation; Multiple types of microorganisms or re-use of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • C13K13/002Xylose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing a sugar liquid from cellulose-containing biomass.
  • a method for recovering and reusing cellulase derived from filamentous fungi used for cellulose hydrolysis has been proposed.
  • a method of performing continuous solid-liquid separation using a spin filter, filtering the obtained sugar solution through an ultrafiltration membrane to recover cellulase derived from filamentous fungi (Patent Document 1), and a surfactant at the stage of enzymatic saccharification (Patent Document 2) that suppresses filamentous fungus-derived cellulase adsorption and improves recovery efficiency, and that recovers the filamentous fungus-derived cellulase component by energizing the residue after enzymatic saccharification (Patent Document 3)
  • a method of increasing the amount of adsorbed enzyme recovered by secondary hydrolysis of the saccharification residue (Patent Document 4), first adding recovered cellulase, performing primary hydrolysis, and then adding unused cellulase to perform secondary hydrolysis
  • hydrothermal treatment When hydrothermal treatment is used as a pretreatment for cellulose-containing biomass when producing sugar solution from cellulose-containing biomass, dilute oligosaccharides and furan are used when hydrolyzing cellulose with biomass after hydrothermal treatment. A large amount of hydrothermal treatment liquid containing enzyme saccharification inhibitors such as compounds and aromatic compounds was discharged.
  • the present invention aims to find a means of utilizing hydrothermal treatment liquid that has been a waste liquid in the saccharification process of cellulose-containing biomass, and to reduce the amount of enzyme used in hydrolysis of cellulose-containing solids.
  • a hydrothermal treatment liquid obtained by hydrothermal treatment of cellulose-containing biomass recovers filamentous fungus-derived cellulase for cellulose hydrolysis from a saccharification process.
  • the present invention was completed by finding that it can be used as an eluent.
  • [1] A method for producing a sugar liquid from cellulose-containing biomass, comprising the following steps (1) to (3).
  • Step (1) A step of separating the cellulose-containing biomass into a hydrothermal treatment liquid and a cellulose-containing solid after hydrothermal treatment.
  • Step (2) A step of adding cellulose-derived cellulase to the cellulose-containing solid content in step (1) to hydrolyze the cellulose, and then separating it into a saccharification residue and a sugar solution.
  • Step (3) Washing the saccharification residue of step (2) with the hydrothermal treatment solution of step (1), and eluting the filamentous fungus-derived cellulase adsorbed on the saccharification residue into the hydrothermal treatment solution, followed by solid-liquid separation The process of obtaining the solution component containing a filamentous fungus origin cellulase.
  • step (3) The method for producing a sugar liquid according to any one of [1] to [5], wherein the hydrothermal treatment liquid in the step (3) contains a total of 1 g / L or more of inorganic ions, acetic acid and / or furfural.
  • step (3) The method for producing a sugar liquid according to any one of [1] to [6], wherein the saccharification residue is washed with a hydrothermal treatment liquid at 30 to 70 ° C. in the step (3).
  • step (2) the saccharification residue and the sugar solution are separated by membrane separation, and in step (3), the saccharification residue is washed by passing a hydrothermal treatment liquid vertically to the saccharification residue on the membrane surface.
  • a process for producing a sugar solution by the method according to any one of [1] to [9] and a microorganism having an ability to produce a chemical product using the sugar solution as a fermentation raw material to produce a chemical product A method for producing a chemical product, comprising a process.
  • the sugar liquid production apparatus according to [12], wherein the apparatus in which the sugar liquid recovery device and the enzyme recovery device are integrated is a membrane separation device.
  • the membrane separation device is a press filtration device or a belt filter device.
  • the enzyme recovery device includes an ultrafiltration membrane separation device that separates the cellulase derived from filamentous fungus and the sugar solution.
  • the recovered enzyme amount and activity of the filamentous fungus-derived cellulase adsorbed on the enzyme saccharification residue is improved, and the production of the sugar liquid using cellulose-containing biomass as a raw material
  • the amount of enzyme used for the process can be reduced.
  • saccharification of the oligosaccharide contained in the hydrothermal treatment liquid is also possible.
  • Sugar yield is also improved.
  • FIG. 1 is a drawing showing a block flow of a method for producing a sugar solution of the present invention.
  • FIG. 2 is a drawing showing an example of an apparatus for carrying out the method for producing a sugar liquid of the present invention (when a press filtration apparatus is used as a sugar liquid recovery apparatus and an enzyme recovery apparatus).
  • FIG. 3 is a drawing showing an example of an apparatus for carrying out the method for producing a sugar solution of the present invention (when an ultrafiltration membrane apparatus is added as an enzyme recovery apparatus).
  • FIG. 4 is a drawing showing details of the sugar liquid production apparatus of FIGS.
  • FIG. 5 is a photograph of a gel stained by SDS-PAGE of the recovered enzyme.
  • FIG. 6 is a schematic diagram when solid-liquid separation in step (2), washing of saccharification residue in step (3), and solid-liquid separation are performed in the same apparatus (membrane separation apparatus).
  • Step (1) Step of separating cellulose-containing biomass into hydrothermal treatment liquid and cellulose-containing solid after hydrothermal treatment
  • Cellulose-containing biomass is bagasse, switchgrass, napiergrass, Eliansus, corn stover, corn cob, rice straw It refers to biomass derived from aquatic environment such as grassy biomass such as straw, coconut husk, or woody biomass such as trees, poplars and waste building materials, and algae and seaweed.
  • Such biomass contains lignin, which is an aromatic polymer, in addition to cellulose and hemicellulose (hereinafter referred to as “cellulose” as a generic term for cellulose and hemicellulose).
  • hydrothermal treatment of the biomass containing cellulose is performed in order to improve the enzymatic saccharification efficiency in the second step.
  • Hydrothermal treatment is the addition of water so that the cellulose-containing biomass solids content is 0.1 to 50% by weight, the reaction temperature is in the range of 100 to 400 ° C., and the cellulose-containing biomass is in the range of 1 second to 60 minutes. It is intended to hydrolyze hemicellulose present in cellulose-containing biomass by hydrothermal treatment, to promote solubilization of lignin, and to make the cellulose and hemicellulose easy to be enzymatically degraded.
  • reaction temperature of the hydrothermal treatment in this step is not particularly limited, and an optimum temperature at which the enzymatic saccharification efficiency is appropriately increased may be set according to the type of cellulose-containing biomass, and is usually in the range of 120 ° C to 240 ° C. The range is preferably 180 ° C to 240 ° C.
  • acids such as sulfuric acid, hydrochloric acid and acetic acid, and alkalis such as sodium hydroxide and calcium hydroxide may be added, but the addition amount is preferably minimized, and the final concentration is 2% by weight. More preferably, it is carried out at less than 1% and even more preferably at a final concentration of less than 1% by weight.
  • the number of hydrothermal treatments is not particularly limited, and may be performed once or more. Moreover, when hydrothermal treatment is performed twice or more, the first and second and subsequent processes may be performed under different condition settings.
  • the hydrothermal treatment liquid and the cellulose-containing solid content are separated.
  • Low molecular weight compounds that inhibit enzymatic saccharification such as furfural, HMF, vanillin, guaiacyl alcohol, syringic acid, coumaric acid, ferulic acid, acetic acid, formic acid, inorganic ions, etc.
  • the enzyme saccharification inhibitory substance is generally referred to as an enzyme saccharification inhibiting substance.
  • the enzyme saccharification inhibitory substance can be separated on the hydrothermal treatment liquid side by solid-liquid separation of the hydrothermally treated product into a hydrothermal treatment liquid and a cellulose-containing solid.
  • the solid-liquid separation method press filtration, belt filter, Pneumapress, screw press, centrifugal separation, screw decanter, etc. can be used, and when a hydrothermal treatment apparatus has a separation function like a screw press, In the course of the hydrothermal treatment, it can be separated into a hydrothermal treatment liquid and a cellulose-containing solid content. In addition, the cellulose-containing solid content can be more completely removed of the enzyme saccharification inhibitor by washing with water or the like. After the hydrothermal treatment, the cellulose-containing solid content obtained by solid-liquid separation may be further subjected to alkali treatment, acid treatment, and the like.
  • Step (2) A step of adding cellulose-derived cellulase to the cellulose-containing solid content in step (1) to hydrolyze the cellulose, and then separating the saccharified residue containing the filamentous fungus-derived cellulase and sugar solution In step (2) Then, filamentous fungus-derived cellulase is added to the cellulose-containing solid content that has been solid-liquid separated in step (1), and after hydrolysis of cellulose, saccharification residue and sugar solution are separated.
  • the cellulase derived from filamentous fungi used in this step is a cellulase enzyme group capable of hydrolyzing a sugar polymer in which glucose is ⁇ 1-4 linked, such as cellobiohydrase, endoglucanase, exoglucanase, ⁇ -glucosidase, xylanase, xylosidase, etc. It comprises a group of hemicellulase enzymes capable of hydrolyzing a sugar polymer in which xylose is ⁇ 1-4 linked.
  • Cellobiohydrase is a general term for cellulases characterized by hydrolysis from the terminal portion of cellulose.
  • the enzyme group belonging to cellobiohydrase is represented by EC number: EC3.2.1.91. Are listed.
  • Endoglucanase is a general term for cellulases characterized by hydrolysis from the central part of the cellulose molecular chain.
  • Exoglucanase is a general term for cellulases characterized by hydrolysis from the end of a cellulose molecular chain, and is assigned to the exoglucanase as EC numbers: EC3.2.1.74 and EC3.2.1.58. Enzyme groups are described.
  • ⁇ -glucosidase is a general term for cellulases characterized by acting on cellooligosaccharide or cellobiose, and an enzyme group belonging to ⁇ -glucosidase is described as EC number: EC 3.2.1.21.
  • Xylanase is a general term for cellulases characterized by acting on hemicellulose or particularly xylan, and an enzyme group belonging to xylanase is described as EC number: EC3.2.1.8.
  • Xylosidase is a general term for cellulases characterized by acting on xylo-oligosaccharides, and an enzyme group belonging to xylosidase is described as EC number: EC 3.2.1.37.
  • the filamentous fungus-derived cellulase may also contain other enzyme components involved in biomass degradation other than those described above.
  • other enzyme components include mannanase, mannosidase, arabinofuranosidase, xylan esterase, ferulic acid esterase, chitinase and the like.
  • a saccharifying enzyme having a high specific activity with respect to hydrolysis of a cellulose-containing solid can be preferably used.
  • Cellulases derived from filamentous fungi include Trichoderma, Aspergillus, Cellulomonas, Clostridium, Streptomyces, Humicola, and Humicola. Cellulases derived from genus Irpex, Ircor, Mucor, Talaromyces, Phanerochaete, white rot fungus, brown rot fungus, and the like can be used. In the present invention, among these filamentous fungus-derived cellulases, it is preferable to use trichoderma-derived filamentous fungus-derived cellulases having high cellulose-degrading activity.
  • Trichoderma reesei QM9414 Trichoderma reesei QM9414
  • Trichoderma reesei QM9123 Trichoderma reeseiQM9123
  • Trichoderma reesei Rutc-30er Trichoderma reesei RutC-30er Reisei PC3-7 (Trichoderma reesei PC3-7)
  • Trichoderma reesei ATCC 68589 Trichoderma reesei ATCC 68589
  • Trichoderma reesei CL-847 Trichoderma reesei CL-847
  • Trichoderma Reisei MC-847 Trichoderma reesei CL-847) eesei MCG77), Trichoderma reesei MCG80 (Trichoderma reeseiMCG80), can be exemplified Trichoderma viride Q
  • a crude enzyme product is preferably used as the Trichoderma-derived cellulase.
  • the crude enzyme product is derived from a culture supernatant obtained by culturing the microorganism for an arbitrary period in a medium adjusted so that a microorganism of the genus Trichoderma produces saccharifying enzyme.
  • the medium components to be used are not particularly limited, but a medium to which cellulose or xylan is added can be generally used to promote cellulase production.
  • the culture supernatant is preferably used as it is, or the culture supernatant from which the cells have been removed.
  • Trichoderma microorganisms produce strong cellulase components in the culture solution, while ⁇ -glucosidase has low ⁇ -glucosidase activity in the culture solution because it is retained in the cell or on the cell surface. Further, a heterogeneous or homologous ⁇ -glucosidase may be added. As the heterogeneous ⁇ -glucosidase, ⁇ -glucosidase derived from Aspergillus can be preferably used. Examples of ⁇ -glucosidase derived from the genus Aspergillus include Novozyme 188 commercially available from Novozyme.
  • a gene is introduced into a Trichoderma microorganism, and the Trichoderma microorganism that has been genetically modified so as to be produced in the culture solution is cultured.
  • a method of isolating the culture solution may also be used.
  • the hydrolysis reaction temperature by the filamentous fungus-derived cellulase is preferably in the range of 15 to 100 ° C, more preferably 40 to 60 ° C, and most preferably 50 ° C.
  • the pH during the hydrolysis reaction is preferably in the range of pH 3 to 9, more preferably pH 4 to 5.5, and most preferably pH 5.
  • acid or alkali can be added and adjusted so as to achieve the target pH, and a buffer solution may be used as appropriate.
  • the solid concentration of the cellulose pretreated product is preferably in the range of 1 to 25% by weight.
  • the hydrolyzate by the filamentous fungus-derived cellulase is separated into the saccharification residue and the sugar solution which is the object of the present invention.
  • the solid-liquid separation of the hydrolyzate can be carried out by a known solid-liquid separation technique, but is preferably solid-liquid separation by membrane separation, more preferably separated by solid-liquid separation by press filtration or a belt filter.
  • the solid content or turbid component contained in the hydrothermal treatment liquid can be relatively reduced.
  • Such solid-liquid separation may be carried out by combining one or more methods, and is not limited as long as it is a means capable of efficiently recovering a saccharification residue containing filamentous fungus-derived cellulase.
  • the filamentous fungus-derived cellulase Although most of the filamentous fungus-derived cellulase is adsorbed on the saccharification residue, a small amount remains in the saccharide solution, and a step of recovering the saccharification enzyme from the saccharide solution may be added. At that time, about the sugar solution, after the first solid-liquid separation by a filtration method such as a centrifugal separation method or a press filtration, the solid matter is further removed by performing membrane filtration with a microfiltration membrane. When the filamentous fungus-derived cellulase is recovered from the liquid by an ultrafiltration membrane described later, fouling of the ultrafiltration membrane can be suppressed.
  • a filtration method such as a centrifugal separation method or a press filtration
  • Step (3) After washing the saccharification residue containing the saccharifying enzyme of step (2) with the hydrothermal treatment solution of step (1) and dissolving the filamentous fungus-derived cellulase bound to the saccharification residue in the hydrothermal treatment solution Step of obtaining solution component containing filamentous fungus-derived cellulase by solid-liquid separation
  • step (3) the saccharification residue is washed with the hydrothermal treatment liquid, and the saccharification residue is utilized by utilizing the biomass extraction component contained in the hydrothermal treatment liquid.
  • the cellulase derived from the filamentous fungus adsorbed (bound) on the cell is eluted (desorbed) in the hydrothermal treatment solution.
  • the hydrothermal treatment liquid in the step (3) is a hydrothermal treatment liquid containing a total of 1 g / L or more of inorganic ions, acetic acid and / or furfural.
  • the oligosaccharide contained in the hydrothermal treatment liquid is hydrolyzed by the action of the filamentous fungus-derived cellulase adsorbed on the saccharification residue.
  • the amount of xylose mainly increases due to hydrolysis of the hydrothermal treatment liquid.
  • the saccharification residue is preferably washed with a hydrothermal treatment liquid at 30 to 70 ° C.
  • a hydrothermal treatment liquid at 30 to 70 ° C. By using a hydrothermal treatment liquid at 30 to 70 ° C., the effect of promoting the desorption of the enzyme component adsorbed on the saccharification residue, and the oligo component contained in the hydrothermal treatment liquid by the action of the enzyme component adsorbed on the saccharification residue as described above. This is because sugar has an effect of being hydrolyzed.
  • a more preferable temperature of the hydrothermal treatment liquid is in the range of 40 to 60 ° C.
  • step (3) solid-liquid separation by membrane separation is preferable as in step (2), and press filtration or a belt filter is more preferable.
  • steps (2) and (3) are solid-liquid separation by membrane separation, the saccharification residue on the membrane surface after the saccharification residue and the sugar liquid are separated by membrane separation in the step (2).
  • the steps (2) and (3) can be carried out in the same apparatus. Become.
  • hydrothermal treatment liquid it is preferable to pass the hydrothermal treatment liquid through the saccharification residue in a direction perpendicular to the saccharification residue on the membrane surface, thereby generating a rapid flow of hydrothermal treatment liquid in the saccharification residue. Therefore, more enzyme components adsorbed on the saccharification residue can be recovered. Moreover, it is preferable to recirculate the saccharification residue once it has been passed through, thereby allowing more enzyme components to be recovered.
  • the washing liquid in the step (3) is subjected to solid-liquid separation, the solution components are filtered through an ultrafiltration membrane, and the filamentous fungus-derived cellulase can be separated and recovered as a non-permeating liquid, and further concentrated (step (step (3)). 4)).
  • a sugar solution can be obtained as the permeate of the ultrafiltration membrane.
  • the solid-liquid separation in step 3 can be performed by a known solid-liquid separation method such as a centrifugal separation method such as a screw decanter, a filtration method such as pressure / suction filtration, or a membrane filtration method such as microfiltration.
  • Such solid-liquid separation may be carried out by combining one or more techniques, and is not limited as long as it is a means for efficiently removing saccharification residues.
  • the solid components are not contained as much as possible in the solution component after solid-liquid separation, and specifically, a centrifugal separation method or press filtration is used.
  • the obtained solution components are further subjected to membrane filtration with a microfiltration membrane to completely remove the solid matter.
  • the microfiltration membrane is also called membrane filtration, and is a separation membrane that can separate and remove particles of about 0.01 to 10 ⁇ m from a fine particle suspension using a pressure difference as a driving force.
  • the surface of the microfiltration membrane has pores in the range of 0.01 to 10 ⁇ m, and fine particle components exceeding the pores can be separated and removed to the membrane side.
  • the material of the microfiltration membrane include cellulose acetate, aromatic polyamide, polyvinyl alcohol, polysulfone, polyvinylidene fluoride, polyethylene, polyacrylonitrile, ceramic, polypropylene, polycarbonate, and polytetrafluoroethylene (Teflon (registered trademark)).
  • a microfiltration membrane made of polyvinylidene fluoride is preferable in terms of antifouling properties, chemical resistance, strength, and filterability.
  • An ultrafiltration membrane generally has a pore diameter in the range of 1.5 to 250 nanometers and blocks water-soluble polymers having a molecular weight in the range of 1,000 to 200,000 as a non-permeate.
  • a separation membrane capable of The ultrafiltration membrane may be a fractional molecular weight capable of recovering filamentous fungus-derived cellulase, and a preferred fractional molecular weight is 1,000 to 100,000 Da, more preferably 10,000 to 30,000 Da.
  • a membrane made of materials such as polyethersulfone (PES), polyvinylidene fluoride (PVDF), and regenerated cellulose can be used.
  • an ultrafiltration membrane made of a synthetic polymer such as PVDF.
  • a tubular type, a spiral element, a flat membrane or the like can be preferably used.
  • the ultrafiltration membrane may be filtered by a crossflow method or a dead end filtration method, but the crossflow filtration method is preferred in terms of fouling or flux.
  • the filamentous fungus-derived cellulase separated and recovered by the ultrafiltration membrane can be reused in the cellulose-containing solid in the step 2.
  • unused cellulase or hemicellulase may be added and used together with the recovered enzyme, or other enzyme components may be added separately.
  • the sugar solution obtained by the method for producing a sugar solution according to the present invention is further filtered through a nanofiltration membrane and / or a reverse osmosis membrane, which is a method described in WO2010 / 067875, to obtain an impermeable solution.
  • a concentrated sugar solution in which the sugar component is concentrated can be obtained.
  • the nanofiltration membrane is also called a nanofilter (nanofiltration membrane, NF membrane), and is a membrane generally defined as “a membrane that transmits monovalent ions and blocks divalent ions”. . It is a membrane that is considered to have a minute gap of about several nanometers, and is mainly used to block minute particles, molecules, ions, salts, and the like in water.
  • the reverse osmosis membrane is also called an RO membrane, and is a membrane generally defined as “a membrane having a desalting function including monovalent ions”. It is a membrane that is thought to have ultrafine pores of several angstroms to several nanometers, and is mainly used for removing ionic components such as seawater desalination and ultrapure water production.
  • the material of the nanofiltration membrane or reverse osmosis membrane used in the present invention can be a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer, polysulfone, etc. It is not limited to the film
  • the nanofiltration membrane used in the present invention is preferably a spiral membrane element.
  • preferable nanofiltration membrane elements include, for example, GE Osmonics GEsepa, which is a cellulose acetate nanofiltration membrane element, Alfa Laval nanofiltration membrane element NF99 or NF99HF having a functional layer of polyamide, and crosslinked piperazine Nanofiltration membrane element manufactured by Filmtec with a functional layer of polyamide NF-45, NF-90, NF-200, NF-270 or NF-400, or nanofiltration manufactured by Toray Industries, Inc., which is mainly composed of crosslinked piperazine polyamide
  • the company's nanofiltration membrane element SU-210, SU-220, SU-600 or SU-610, including the membrane UTC60 may be mentioned, more preferably NF99 or NF99HF, NF-45, NF-90, NF-200 or NF -400, yes SU-210, SU-220, a SU-600 or SU-610, more preferably
  • a composite membrane using a cellulose acetate-based polymer as a functional layer (hereinafter also referred to as a cellulose acetate-based reverse osmosis membrane) or a composite membrane using a polyamide as a functional layer (hereinafter referred to as a functional layer) And a polyamide-based reverse osmosis membrane).
  • a cellulose acetate-based polymer organic acid esters of cellulose such as cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate and the like, or a mixture thereof and those using mixed esters can be mentioned. It is done.
  • the polyamide includes a linear polymer or a crosslinked polymer having an aliphatic and / or aromatic diamine as a monomer.
  • reverse osmosis membrane used in the present invention include, for example, ultra-low pressure type SUL-G10, SUL-G20, low pressure type SU-710, SU-, which are polyamide-based reverse osmosis membrane modules manufactured by Toray Industries, Inc.
  • SU-720F SU-710L, SU-720L, SU-720LF, SU-720R, SU-710P, SU-720P, high-pressure type SU-810, SU-820 including UTC80 as a reverse osmosis membrane, SU-820L, SU-820FA, the company's cellulose acetate reverse osmosis membrane SC-L100R, SC-L200R, SC-1100, SC-1200, SC-2100, SC-2200, SC-3100, SC-3200, SC-8100 , SC-8200, NTR-759HR, NTR-729HF, NT made by Nitto Denko Corporation -70 SWC, ES10-D, ES20-D, ES20-U, ES15-D, ES15-U, LF10-D, Alfa Laval RO98pHt, RO99, HR98PP, CE4040C-30D, GE GE Sepa, Filmtec BW30-4040 TW30-4040, X
  • the term “fermentation-inhibiting substance” as used herein refers to a component other than a sugar that inhibits fermentation in the subsequent fermentation step, and specifically includes aromatic compounds, furan compounds, organic acids, monovalent inorganic salts, and the like. be able to. Examples of such representative aromatic compounds and furan compounds include furfural, hydroxymethylfurfural, vanillin, vanillic acid, syringic acid, coniferyl aldehyde, coumaric acid, ferulic acid and the like.
  • the organic acid and inorganic salt examples include acetic acid, formic acid, potassium, sodium and the like.
  • the sugar concentration of the concentrated sugar solution can be arbitrarily set in the range of 50 g / L to 400 g / L depending on the processing conditions of the nanofiltration membrane and / or reverse osmosis membrane, and can be arbitrarily set according to the use of the concentrated sugar solution, etc. Should be set.
  • a nanofiltration membrane compared with a reverse osmosis membrane.
  • Whether to use a nanofiltration membrane or a reverse osmosis membrane may be selected in view of the concentration of the fermentation inhibitor contained in the mixed sugar solution, or the influence of subsequent fermentation.
  • Various chemicals can be produced by growing microorganisms having the ability to produce chemicals using the sugar solution obtained by the present invention as a fermentation raw material.
  • growing a microorganism as a fermentation raw material means that a sugar component or an amino source contained in a sugar solution is used as a nutrient for the microorganism to propagate and maintain the growth of the microorganism.
  • Specific examples of chemical products include substances that are mass-produced in the fermentation industry, such as alcohols, organic acids, amino acids, and nucleic acids. Such chemical products are accumulated and produced as chemical products inside and outside the body in the process of metabolism using the sugar component in the sugar solution as a carbon source.
  • chemicals that can be produced by microorganisms include ethanol, 1,3-propanediol, 1,4-butanediol, glycerol and other alcohols, acetic acid, lactic acid, pyruvic acid, succinic acid, malic acid, itaconic acid, citric acid.
  • examples thereof include organic acids such as acids, nucleosides such as inosine and guanosine, nucleotides such as inosinic acid and guanylic acid, and amine compounds such as cadaverine.
  • the sugar solution of the present invention can be applied to the production of enzymes, antibiotics, recombinant proteins and the like.
  • the microorganism used for the production of such a chemical product may be any microorganism that can efficiently produce the target chemical product, and microorganisms such as Escherichia coli, yeast, filamentous fungi, and basidiomycetes can be used.
  • FIG. 1 is a hydrothermal treatment apparatus (1) for hydrothermally treating cellulose-containing biomass to separate a hydrothermally treated product, and hydrolysis for hydrolyzing the cellulose-containing solid matter discharged from the hydrothermal treatment apparatus with cellulase derived from filamentous fungi.
  • Apparatus (14), sugar liquid recovery apparatus (23) for solid-liquid separation of a cellulose-containing solid hydrolyzate obtained by the hydrolysis apparatus, and saccharification residue and hydrothermal treatment apparatus separated by the sugar liquid recovery apparatus It is a sugar liquid production apparatus including an enzyme recovery apparatus (28) that mixes, retains heat, and separates solid liquid from the hydrothermal treatment liquid discharged more.
  • FIG. 2 is an example of an apparatus including a press filtration device (24, 35), particularly in solid-liquid separation of a sugar liquid recovery apparatus and an enzyme recovery apparatus, and FIG. 3 shows a limit for further separation into cellulase derived from filamentous fungi and sugar liquid. It is an example of an apparatus containing an outer filtration membrane separator (40).
  • a hydrothermal treatment apparatus (1) for hydrothermally treating cellulose-containing biomass to solid-liquid separate a hydrothermally treated product heats a heated and pressurized container (2) for performing the hydrothermal treatment and the heated and pressurized container (2).
  • a solid-liquid separator (10) for solid-liquid separation of the hydrothermally treated product, a pump (9) for transferring the hydrothermally-treated product to the solid-liquid separator (10), a solid-liquid separator ( 10) Separation membrane (11) installed in the interior of the hydrothermal treatment liquid Seisuru is preferably a device comprising a valve (12).
  • the heating device (3) can heat the heat-retaining and pressurized container (2) to a predetermined temperature (170 ° C. to 220 ° C.) of the cellulose-containing biomass.
  • the agitator (5) is preferably one that can continuously move the cellulose-containing biomass inside the heat retaining and pressurizing vessel (2), and can homogenize the temperature, cellulosic biomass, and water. Moreover, continuous hydrothermal treatment of the cellulose-containing biomass becomes possible by continuously or intermittently charging new cellulose-containing biomass from the raw material feeder (4) into the heat and pressure vessel (2).
  • the solid-liquid separation device (10) includes centrifugation, filtration, sedimentation separation, etc., but a separation method using a separation membrane (11) is preferable because a cellulose-containing solid content having a high solid matter concentration can be obtained.
  • the material of the separation membrane (11) can be appropriately selected from metal mesh, woven fabric, non-woven fabric and the like. Since the separated cellulose-containing solid content is a solid, it is preferable to use a belt conveyor (13) for the phase to the hydrolysis apparatus (14).
  • the kneading apparatus for hydrolyzing the cellulose-containing solid content filamentous fungus-derived cellulase. It is preferable to perform primary hydrolysis for uniform mixing of cellulose-containing solids and filamentous fungus-derived cellulase and viscosity reduction.
  • the kneading device (15) preferably has a stirring and transferring device (16) and a heating device (17) for setting the temperature for hydrolysis.
  • the stirring vessel (19) preferably has a heating device (20). It is preferable to have the pump (22) for liquid transfer via the valve
  • the sugar liquid recovery device (23) for solid-liquid separation of the hydrolyzate of the cellulose-containing solid obtained by the hydrolysis apparatus is a solid-liquid separation apparatus (24) for separating the sugar liquid and the saccharification residue, and further the solid-liquid
  • the separation device may have a separation membrane (25) and a valve (26) for separation.
  • the saccharification residue is transferred to the enzyme recovery device (28) by the belt conveyor (27).
  • the enzyme recovery device (28) that mixes the saccharification residue separated by the sugar liquid recovery apparatus and the hydrothermal treatment liquid discharged from the hydrothermal treatment apparatus, and retains the temperature and solid-liquid separates the heat exchange for heat exchange of the hydrothermal treatment liquid. It is preferable to have a vessel (29), a heat retaining tank (31) for mixing and keeping the saccharification residue with the saccharification residue, a stirring device (32), and a heat retaining device (30).
  • the heat retaining tank (31) is connected to the solid-liquid separator (35) via the valve (33) and the pump (34), and is separated into saccharification residue and recovered enzyme.
  • the solid-liquid separator (35) preferably has a separation membrane (36), and the recovered enzyme solution can be adjusted by a valve (38).
  • the separated saccharification residue is washed with the washing liquid in the washing liquid tank (37), and the enzyme component in the saccharification residue is recovered. Moreover, the saccharification residue separated into solid and liquid is discharged by the belt conveyor (39). The discharged saccharification residue is preferably transferred to a boiler, converted into steam / electric power, and used for sugar solution production.
  • the enzyme recovery device (28) preferably further includes an ultrafiltration membrane separation device (40) that separates the filamentous fungus-derived cellulase and sugar solution.
  • the ultrafiltration membrane separation device (40) is provided with a sugar solution storage tank (41), a microfiltration membrane pump (42), and a microfiltration membrane module (43), thereby providing a fine particle component as a pretreatment for ultrafiltration.
  • the filtrate of the microfiltration membrane module (43) is once recovered in the microfiltration membrane filtrate tank (44), and further supplied to the ultrafiltration membrane module (46) via the ultrafiltration membrane pump (45), so that the cellulase can be obtained.
  • the hemicellulase component can be separated and recovered as a non-permeate.
  • the separated enzyme component can be recovered in the microfiltration membrane filtrate tank (44) as an enzyme concentrate. Further, the collected enzyme concentrate is totally collected in the cellulose hydrolyzing apparatus (14) as a collected enzyme by the pump (47).
  • the permeate of the ultrafiltration membrane module (46) can be used as a sugar solution that is a raw material for various fermentation productions.
  • FIG. 6 shows a schematic diagram in the case where the solid-liquid separation in the step (2) and the solid-liquid separation in the step (3) are performed by the same apparatus (membrane separation apparatus).
  • the hydrolyzate obtained in the step (2) is supplied to the membrane separation device 48 (preferably a press filtration device or a belt filter device) through the hydrolyzate supply line 50.
  • a membrane 49 is installed in the membrane separation device 48, and the saccharification residue is separated on the non-permeation side of the membrane 49 by the pressurization from the membrane side or the negative pressure from the permeation side, and the sugar solution is separated on the permeation side.
  • the obtained sugar solution is collected by the collection line 51.
  • the hydrothermal treatment liquid is supplied to the saccharification residue through the hydrolyzate supply line 50 or the hydrothermal treatment supply line 51 independent of the same as in the step (2), with respect to the saccharification residue separated on the membrane surface.
  • the hydrothermal treatment liquid supplied to the saccharification residue permeates the saccharification residue by pressure from the membrane side or negative pressure from the permeation side, and is further collected on the permeation side of the membrane.
  • the saccharification residue can be washed with a hydrothermal treatment liquid.
  • the cleaning liquid can be recovered from the recovery line 51, and the recovered cleaning liquid can be further passed through the saccharification residue a plurality of times through the hydrolyzate supply line 50 or the hydrothermal treatment supply line 51.
  • the recovered enzyme amount of filamentous fungus-derived cellulase that can be recovered in step (3) is 1) crystalline cellulose decomposition activity, 2) cellobiose decomposition activity, and 3) xylan decomposition.
  • the activity was quantified by measuring three kinds of degradation activities (hereinafter referred to as activity values).
  • Cellobiose decomposition activity Cellobiose (manufactured by Wako Pure Chemical Industries, Ltd.) 500 mg / L, sodium acetate buffer (pH 5.0) is added to the enzyme solution so as to be 100 mM, and the reaction is carried out at 50 ° C. for 0.5 hour. I let you. The reaction solution was adjusted with a 1 mL tube, and the reaction was carried out while rotating and mixing under the above conditions. After the reaction, the tube was centrifuged, and the glucose concentration of the supernatant component was measured. The glucose concentration was measured according to the method described in Reference Example 2. For the cellobiose degradation activity, the produced glucose concentration (g / L) was used as an active amount as it was, and used for comparison of the amount of recovered enzyme.
  • xylan decomposition activity To the enzyme solution, xylan (Birch wood xylan, manufactured by Wako Pure Chemical Industries, Ltd.) 10 g / L, sodium acetate buffer solution (pH 5.0) was added to a concentration of 100 mM. Reacted for hours. The reaction solution was adjusted with a 1 mL tube, and the reaction was carried out while rotating and mixing under the above conditions. After the reaction, the tube was centrifuged, and the xylose concentration of the supernatant component was measured. The xylose concentration was measured according to the method described in Reference Example 2. For the xylose decomposition activity, the produced xylose concentration (g / L) was used as it was as the active amount, and used for comparison of the recovered enzyme amount.
  • xylan (Birch wood xylan, manufactured by Wako Pure Chemical Industries, Ltd.) 10 g / L, sodium acetate buffer solution (pH 5.0) was added to a concentration of 100 mM
  • Aromatic compound analysis column Synergi HideRP 4.6 mm ⁇ 250 mm (Phenomenex)
  • Mobile phase Acetonitrile-0.1% H 3 PO 4 (flow rate 1.0 mL / min)
  • Detection method UV (283 nm)
  • Temperature 40 ° C.
  • Acetic acid / formic acid / lactic acid analysis column Shim-Pack SPR-H (manufactured by Shimadzu Corporation) in series mobile phase: 5 mM p-toluenesulfonic acid (flow rate 0.8 mL / min) Reaction solution: 5 mM p-toluenesulfonic acid, 20 mM Bistris, 0.1 mM EDTA ⁇ 2Na (flow rate 0.8 mL / min) Detection method: electric conductivity temperature: 45 ° C.
  • the sample was transferred to a stainless steel bat and air-dried in a laboratory atmosphere until the equilibrium was approximately reached.
  • the sample was pulverized by a Willet mill, and the particle size was adjusted to about 200 to 500 ⁇ m by sieving.
  • the sample after this condition adjustment was vacuum-dried at a temperature of 60 ° C., and the content of each component on an absolute dry basis was calculated by correcting the absolute dry mass.
  • 0.3 g of this analytical sample was weighed into a beaker using a balance, 3 mL of 72% sulfuric acid was added thereto, and the mixture was allowed to stand at 30 ° C. with occasional stirring for 1 hour.
  • This reaction solution was completely transferred to a pressure-resistant bottle with 84 mL of purified water, and then thermally decomposed in an autoclave at a temperature of 120 ° C. for 1 hour. After the thermal decomposition, the decomposition solution and the residue were separated by filtration, and added to the filtrate and the residue washing solution to make a constant volume of 100 mL.
  • an addition recovery test using a monosaccharide was performed in parallel to correct the excessive decomposition of the sugar during the thermal decomposition.
  • Monosaccharides xylose, arabinose, mannose, glucose, galactose
  • the constituent sugar amount in the sample was calculated from the monosaccharide concentration of the obtained decomposition solution and the sample decomposition amount.
  • Example 1 Hydrothermal treatment condition setting (step (1)) Rice straw was pulverized with a rotary cutter mill RCM-400 (8 mm mesh) manufactured by Nara Machinery Co., Ltd. at a rotation speed of 420 rpm. Thereafter, hydrothermal treatment was performed.
  • the device used was a blasting device (reactor 2L size) manufactured by Nippon Electric Heat Co., Ltd.
  • the steam generator used a 40 kW electric boiler. Since the processing temperature is uniquely determined when the set processing pressure is set, various reaction conditions were examined by changing the processing pressure and processing time as shown in Table 1.
  • Example 2 Preparation of hydrothermal treatment liquid and cellulose-containing solid content (step (1))
  • the hydrothermally treated product obtained under the condition of test number 7 described in Example 1 (at 215 ° C. for 5 minutes) was centrifuged at 3000 G for 10 minutes to separate and recover the hydrothermally treated liquid, and the resulting solid matter A series of operations for adding water further, centrifuging, and removing the supernatant were performed twice.
  • the obtained solid was used as a cellulose-containing solid in the following examples and comparative examples.
  • Example 1 Hydrolysis when mixing cellulose-containing solid content and hydrothermal treatment liquid 1 g / L of "Accel Lace Duet" used in Example 1 was compared to 1 g of cellulose-containing solid content of Example 2. It added so that it might become final concentration of 8 g / L, 0.5 g / L, and 0.35 g / L, and it hydrolyzed at 50 degreeC for 24 hours. Moreover, the hydrothermal treatment liquid obtained in Example 2 was added and prepared so that the solid substance density
  • Example 3 Hydrolysis of cellulose-containing solid (Step (2)) “Accel lace duet” used in Example 1 has final concentrations of 1 g / L, 0.8 g / L, 0.5 g / L, and 0.35 g / L with respect to 1 g of cellulose-containing solid content of Example 2. And then hydrolyzed at 50 ° C. for 24 hours. RO water was added and prepared so that the solid concentration of the cellulose-containing solid content was 10 wt%. The pH at the time of hydrolysis was adjusted with dilute sulfuric acid and dilute sodium hydroxide so that the pH ranged from 4.6 to 5.4. The obtained hydrolyzate was centrifuged and separated into 8 g of sugar solution and 2 g of saccharification residue. The results of measuring the glucose concentration of the sugar solution are shown in Table 3.
  • the amount of glucose produced with the same saccharifying enzyme amount was only that of the cellulose-containing solid content of Example 3.
  • the hydrothermal treatment liquid contains a component that inhibits hydrolysis of the cellulose-containing solid content, and it was shown that the amount of glucose produced and the amount of sugar produced increase when separated.
  • Example 2 Enzymatic saccharification of hydrothermally treated liquid
  • the final result of “Accel Race Duet” used in Example 1 was 0.04 g / L to 0.8 g / L with respect to the hydrothermally treated liquid obtained in Example 2 It added so that it might become a density
  • Example 4 Washing of saccharification residue with hydrothermal treatment liquid (step (3))
  • the hydrothermal treatment liquid was added at a weight ratio of 1: 4 and 1: 8 with respect to 2 g (containing water) of the saccharification residue obtained when the addition concentration of “Accel Race Duet” in Example 3 was 0.8 g / L.
  • the mixture was kept at 50 ° C. for 0 hours, 6 hours, 24 hours, 48 hours, and 72 hours to wash the saccharification residue. After washing, the supernatant for each reaction time was centrifuged (8000 G, 20 minutes), and the supernatant was collected (1: 4: 8 g, 1: 8: 16 g). Concentration of glucose and xylose contained in the washing solution was measured by the method of Reference Example 1. The results are shown in Tables 5 and 6.
  • Example 4 it was found that the production amount of xylose increased in Example 4 as compared with Comparative Example 3 (Table 6). This was thought to be because xylan or xylo-oligosaccharides in the hydrothermal treatment solution were hydrolyzed by the action of enzyme components adsorbed on the saccharification residue. This coincides with the tendency that the amount of xylose produced increases remarkably by adding the fungal cellulase to the hydrothermal treatment liquid of Comparative Example 2 described above.
  • Example 5 Enzyme recovery from saccharification residue washing solution by hydrothermal treatment solution (step (4))
  • the hydrothermal treatment liquid was added at a weight ratio of 1: 4 to the saccharification residue 2 g (containing water) obtained when the addition concentration of “Accel Race Duet” of Example 3 was 0.8 g / L, and at 50 ° C.
  • the mixture was kept warm for 24 hours, and the saccharification residue was washed. After washing, the supernatant for each reaction time was collected by centrifugation (8000 G, 20 minutes) to obtain 8 g of washing solution. 8 g of the cleaning solution was further filtered using a Millex HV filter unit filtration (Millipore, 33 mm, PVDF, pore size 0.45 ⁇ m).
  • the obtained filtrate was filtered through an ultrafiltration membrane with a molecular weight cut-off of 10,000 (VARISPIN 20 material: PES, manufactured by Sartorius steady biotech), and centrifuged at 4500 G until the membrane fraction became 1 mL. Distilled water (10 mL) was added to the membrane fraction and centrifuged again at 4500 G until the membrane fraction reached 0.5 mL. Thereafter, the enzyme was recovered from the membrane fraction. Each activity of the recovered enzyme was measured according to Reference Example 2.
  • each activity of the recovered enzyme collected from the saccharification residue washing solution by the hydrothermal treatment solution ( Avicel decomposition activity, cellobiose decomposition activity, xylan decomposition activity) were found to be higher. That is, it was considered that enzyme recovery was promoted by the components contained in the hydrothermal treatment liquid.
  • Example 6 Component analysis of hydrothermal treatment liquid
  • the inorganic ion concentration contained in the hydrothermal treatment liquid was measured according to the procedure of Reference Example 3. As a result, as shown in Table 8, it was found that the hydrothermal treatment liquid contains 1 g / L or more of inorganic ions, and particularly contains a lot of potassium components.
  • Example 7 Separation analysis of recovered enzyme by SDS-PAGE
  • the recovered enzyme solutions of Comparative Example 4, Comparative Example 5 and Example 5 were analyzed by SDS-PAGE.
  • a sample preparation buffer (Ez Apply, ATTO) was added to each recovered enzyme solution, and SDS-PAGE (e-PAGE, 15% gel concentration, ATTO) was performed. Staining was performed with Coomassie Brilliant Blue (BioSafecoomastain Stain, BioRAD).
  • a molecular weight marker (PrecisionPlus Protein Standard, Kaleidoscope, BioRAD) was used. The results are shown in FIG. Compared to Comparative Example 4 and Comparative Example 5, it was confirmed that the recovered enzyme component of Example 5 was increased. Moreover, it has confirmed that the component which collection
  • Example 8 Ethanol Fermentation Production Using Sugar Liquid as Fermentation Raw Material Using the sugar liquid obtained in Example 4 as a fermentation raw material, an ethanol fermentation test using yeast (Saccharomyces cerevisiae OC-2: wine yeast) was performed. . The yeast was precultured in YPD medium (2% glucose, 1% yeast extract (Bacto Yeast Extract / BD), 2% polypeptone (manufactured by Nippon Pharmaceutical Co., Ltd.) for 1 day at 25 ° C. The obtained culture broth was added to the first sugar solution so as to be 1%, and the microorganism was added, followed by incubation for 2 days at 25 ° C.
  • yeast Sacharomyces cerevisiae OC-2: wine yeast
  • Example 9 Lactic acid fermentation production using sugar solution as fermentation raw material Using the sugar solution obtained in Example 4 as fermentation raw material, Lactococcus lactis JCM7638 strain, which is a lactic acid bacterium, was cultured at a temperature of 37 ° C for 24 hours. The culture was stationary. As a result of analyzing the L-lactic acid concentration contained in the culture solution under the conditions of Reference Example 3, it was confirmed that L-lactic acid was accumulated at 11 g / L, and lactic acid production was possible with the sugar solution of the present invention. It could be confirmed.
  • Example 10 Washing of saccharification residue with hydrothermal treatment liquid (step (3)): Influence of temperature of hydrothermal treatment liquid Obtained when the concentration of “Accel Race Duet” in Example 3 is 0.8 g / L Hydrothermal treatment liquid was added at a weight ratio of 1: 4 to 2 g (containing water) of the saccharification residue, and the temperature was kept at 4 ° C, 25 ° C, 40 ° C, 60 ° C, 70 ° C, 80 ° C. The saccharification residue was washed. After washing, the supernatant for each reaction time was collected by centrifugation (8000 G, 20 minutes) to obtain 8 g of washing solution. The glucose and xylose concentrations contained in each cleaning solution were measured by the method of Reference Example 1. The results are shown in Tables 10 and 11.
  • the temperature of the hydrothermal treatment liquid at the time of washing is preferably in the range of 40 to 60 ° C. because oligohydrolysis progresses most in the hydrothermal treatment liquid and both glucose and xylose in the washing liquid increase.
  • Example 11 Enzyme recovery from saccharification residue washing solution (Example 10) by hydrothermal treatment solution (Step (4)) 8 g of each cleaning solution obtained in Example 10 was filtered through an ultrafiltration membrane in the same procedure as Example 5 to recover the enzyme in the cleaning solution. Each activity of the recovered enzyme was measured according to Reference Example 2. For comparison, each enzyme activity of only “Accel Race Duet” (0.8 g / L) was measured according to Reference Example 2, and the activity at that time was defined as 100 (%), and relative values of cellulase and hemi Cellulase activity is summarized in Table 12.
  • the temperature of the hydrothermal treatment liquid at the time of washing is preferably in the range of 40 to 60 ° C. because the enzyme activity (Avicel decomposition activity, cellobiose decomposition activity, xylan decomposition activity) in the cleaning liquid is most improved.
  • Example 12 Washing of saccharification residue with hydrothermal treatment liquid using a press filtration device (step (3)), enzyme recovery from the washing solution (step (4))
  • step (3) To 100 g of the cellulose-containing solid in Example 2, “Accel lace duet” was added to a final concentration of 0.8 g / L, followed by hydrolysis at 50 ° C. for 24 hours. At this time, RO water was added and prepared so that the solid concentration of the cellulose-containing solid content was 10 wt% (total 10 L).
  • the obtained hydrolyzate 10L was subjected to press filtration using a small filter press (filter press MO-4 manufactured by Iwata Sangyo).
  • a polyester woven cloth (T2731C manufactured by Iwata Sangyo) was used as the filter cloth.
  • the slurry liquid 10L was put in a small tank, the liquid inlet was opened while aerated with compressed air from the bottom, and the slurry liquid was gradually introduced into the filter chamber by an air pump (Taiyo International 66053-3EB).
  • the filter press filtrate was recovered as a sugar solution ((Step (3))).
  • the hydrothermal treatment liquid expanded the attached diaphragm and performed the pressing process.
  • the pressing pressure was gradually increased, raised to 0.5 MPa, and allowed to stand for about 30 minutes, and the filtrate was further recovered as a sugar solution.
  • the sugar solution recovered as a filtrate was 7 L.
  • the saccharification residue separated in the filter chamber was preliminarily kept at 50 ° C., and 5 L of hydrothermal treatment liquid was passed and circulated.
  • the hydrothermal treatment liquid was placed in a small tank, the liquid inlet was opened, and the hydrothermal treatment liquid was passed through the saccharification residue separated in the filter chamber by an air pump. After the water flow, the gradually obtained filtrate was kept at 50 ° C. again and then repeated to return to the small tank. After performing this operation regularly for 2 hours, the squeezing pressure was gradually increased again, and after raising the pressure to 0.5 MPa, it was left for about 30 minutes to collect 5 L of the cleaning liquid.
  • the obtained cleaning liquid 5L was filtered using a steric cup HV filter unit (Millipore).
  • the obtained filtrate was a small flat membrane filtration device (“Sepa” (registered trademark) manufactured by GE Osmonics) on which a flat membrane of an ultrafiltration membrane with a molecular weight cut off of 10,000 (GE SEPA PW series, functional surface material: polyethersulfone) was set. ) Filtered through CF II Med / High Foulant System) to separate the recovered enzyme and saccharide component. Filtration separates 4.5L out of 5L as filtrate while controlling the operating pressure so that the raw water flow rate is 2.5L / min and the membrane flux is constant at 0.1m / D, and 0.5L is recovered.
  • the sugar solution obtained by the method for producing a sugar solution of the present invention can be used as a fermentation raw material for various chemical products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 以下の工程(1)~(3)を含む糖液の製造方法により、これまで廃液として扱われていたセルロース含有バイオマスの水熱処理液を糖液の製造に活用することができる。 工程(1):セルロース含有バイオマスを水熱処理後、水熱処理液とセルロース含有固形分に分離する工程。 工程(2):工程(1)のセルロース含有固形分に糸状菌由来セルラーゼを添加してセルロースを加水分解後、糖化残さと糖液に分離する工程。 工程(3):工程(1)の水熱処理液で工程(2)の糖化残さを洗浄して、糖化残さに吸着した糸状菌由来セルラーゼを水熱処理液中に溶出させた後、固液分離により糸状菌由来セルラーゼを含む溶液成分を得る工程。

Description

糖液の製造方法
 本発明は、セルロース含有バイオマスから糖液を製造する方法に関する。
 近年、セルロース含有バイオマスを酸処理、水熱処理、アルカリ処理などで前処理した後、糸状菌由来セルラーゼを添加し加水分解することで糖液を製造する方法が広く検討されている。しかしながら、こうした糸状菌由来セルラーゼを使用する方法の欠点として、糖化酵素の使用量が多く、かつ価格も高いため、糖液製造コストが増大するという課題がある。
 本課題を解決する手法として、セルロース加水分解に使用した糸状菌由来セルラーゼを回収再利用する方法が提案されている。例えば、スピンフィルターによる連続固液分離を行い、得られた糖液を限外濾過膜に通じて濾過し、糸状菌由来セルラーゼを回収する方法(特許文献1)、酵素糖化の段階において界面活性剤を投入することで糸状菌由来セルラーゼ吸着を抑制し回収効率を向上させる方法(特許文献2)、酵素糖化後の残さを通電処理することで糸状菌由来セルラーゼ成分を回収する方法(特許文献3)、糖化残さを二次加水分解することにより吸着酵素の回収量を高める方法(特許文献4)、回収セルラーゼをまず添加し、一次加水分解を行い、その後未使用セルラーゼを添加し二次加水分解を繰り返し行うことによって、回収酵素量、糖生成量を高める方法(特許文献5)などが開示されているが根本的な課題解決には至っていない。
特開2006-87319号公報 特開昭63-87994号公報 特開2008-206484号公報 WO2011/115039号 WO2011/115040号
 セルロース含有バイオマスから糖液を製造する際のセルロース含有バイオマスの前処理として水熱処理を採用する場合、セルロース含有バイオマスを水熱処理後に糸状菌セルラーゼでセルロースを加水分解する際に希薄なオリゴ糖とフラン系化合物、芳香族化合物などの酵素糖化阻害物質を含む大量の水熱処理液が排出されていた。
 そこで本発明は、セルロース含有バイオマスの糖化プロセスの際に、これまで廃液となっていた水熱処理液の活用手段を見出すこと、またセルロース含有固形分の加水分解における酵素使用量を削減することを課題とする。
 本発明者は、上記課題を解決するため鋭意研究を行った結果、セルロース含有バイオマスの水熱処理により得られる水熱処理液が、糖化プロセスからセルロース加水分解のための糸状菌由来セルラーゼを回収するための溶出液として利用できることを見出し、本発明を完成した。
 すなわち、本発明は以下の[1]~[15]の構成を有する。
[1]セルロース含有バイオマスからの糖液の製造方法であって、以下の工程(1)~(3)を含む、糖液の製造方法。
工程(1):セルロース含有バイオマスを水熱処理後、水熱処理液とセルロース含有固形分に分離する工程。
工程(2):工程(1)のセルロース含有固形分に糸状菌由来セルラーゼを添加してセルロースを加水分解後、糖化残さと糖液に分離する工程。
工程(3):工程(1)の水熱処理液で工程(2)の糖化残さを洗浄して、糖化残さに吸着した糸状菌由来セルラーゼを水熱処理液中に溶出させた後、固液分離により糸状菌由来セルラーゼを含む溶液成分を得る工程。
[2]工程(3)で得られた溶液成分を限外濾過膜に通じて濾過することにより非透過液として糸状菌由来セルラーゼを回収するとともに、透過液として糖液を得る工程(4)を含む、[1]に記載の糖液の製造方法。
[3]工程(4)で回収した糸状菌由来セルラーゼを工程(2)のセルロース加水分解に再利用する、[2]に記載の糖液の製造方法。
[4]糸状菌由来セルラーゼがトリコデルマ由来セルラーゼである、[1]から[3]のいずれかに記載の糖液の製造方法。
[5]工程(1)の水熱処理が120~240℃の温度範囲での処理である、[1]から[4]のいずれかに記載の糖液の製造方法。
[6]工程(3)の水熱処理液が無機イオン、酢酸および/またはフルフラールを合計1g/L以上含む、[1]から[5]のいずれかに記載の糖液の製造方法。
[7]工程(3)において30~70℃の水熱処理液で糖化残さを洗浄する、[1]から[6]のいずれかに記載の糖液の製造方法。
[8]工程(2)として膜分離によって糖化残さと糖液を分離し、工程(3)として該膜面上の糖化残さに対して水熱処理液を垂直方向に通水させて糖化残さを洗浄して糸状菌由来セルラーゼを含む溶液成分を得る、[1]から[7]のいずれかに記載の糖液の製造方法。
[9]膜分離がプレス濾過またはベルトフィルターによる膜分離である、[8]に記載の糖液の製造方法。
[10][1]から[9]のいずれかに記載の方法により糖液を製造する工程および該糖液を発酵原料として化学品を生産する能力を有する微生物を培養して化学品を製造する工程を含む、化学品の製造方法。
[11]セルロース含有バイオマスを水熱処理して水熱処理物を固液分離する水熱処理装置、該水熱処理装置より排出されるセルロース含有固形分を糸状菌由来セルラーゼにより加水分解する加水分解装置、該加水分解装置で得られるセルロース含有固形分の加水分解物を固液分離する糖液回収装置、ならびに糖液回収装置で分離された糖化残さと該水熱処理装置より排出される水熱処理液を混合、保温および固液分離する酵素回収装置を含む、糖液製造装置。
[12]糖液回収装置および酵素回収装置が一体化した装置である、[11]に記載の糖液製造装置。
[13]糖液回収装置および酵素回収装置が一体化した装置が膜分離装置である、[12]に記載の糖液製造装置。
[14]膜分離装置がプレス濾過装置またはベルトフィルター装置である、[13]に記載の糖液製造装置。
[15]前記酵素回収装置が、糸状菌由来セルラーゼと糖液に分離する限外濾過膜分離装置を含む、[11]から[14]のいずれかに記載の糖液製造装置。
 本発明によれば、水熱処理液に含まれるバイオマス抽出成分の効果によって、酵素糖化残さに吸着した糸状菌由来セルラーゼの回収酵素量・活性が向上し、セルロース含有バイオマスを原料とする糖液の製造工程に使用する酵素使用量を削減できることができる。また、糸状菌由来セルラーゼを回収するために水熱処理液で酵素糖化残さに吸着した糸状菌由来セルラーゼを溶出させることで水熱処理液に含まれるオリゴ糖の糖化も可能になるため、製造プロセス全体の糖収率も向上する。
図1は、本発明の糖液の製造方法のブロックフローを示す図面である。 図2は、本発明の糖液の製造方法を実施する装置一例(糖液回収装置および酵素回収装置としてプレス濾過装置を使用した場合)を示す図面である。 図3は、本発明の糖液の製造方法を実施する装置一例(酵素回収装置として限外濾過膜装置を追加した場合)を示す図面である。 図4は、図1~3の糖液の製造装置の詳細を示す図面である。 図5は、回収酵素のSDS-PAGEを行い、染色したゲルの写真である。 図6は、工程(2)の固液分離と、工程(3)の糖化残さの洗浄と固液分離を同一装置(膜分離装置)で行う際の模式図である。
 本発明を実施するための形態に関し、工程ごとに詳細に説明する。
 [工程(1)]セルロース含有バイオマスを水熱処理後、水熱処理液とセルロース含有固形分に分離する工程
 セルロース含有バイオマスとは、バガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー、コーンコブ、稲わら、麦わら、椰子殻、などの草本系バイオマス、あるいは樹木、ポプラ、廃建材などの木質系バイオマス、さらに藻類、海草、など水生環境由来のバイオマスのことを指す。こうしたバイオマスには、セルロースおよびヘミセルロース(以下、セルロースとヘミセルロースの総称として「セルロース」という。)の他に芳香族高分子であるリグニン等を含有している。
 本工程では、後段の工程2での酵素糖化効率を向上させるために、セルロース含有バイオマスの水熱処理を行う。水熱処理とは、セルロース含有バイオマス固形物含量が0.1~50重量%となるよう水を添加し、反応温度が100~400℃の範囲で、1秒~60分の範囲でセルロース含有バイオマスを水熱処理することでセルロース含有バイオマス中に存在するヘミセルロースの加水分解を行うこと、リグニンの可溶化を促進しセルロースおよびヘミセルロースが酵素分解されやすい状態にすることを目的とするものである。なお、本工程での水熱処理の反応温度は特に制限はなく、セルロース含有バイオマスの種類に応じて適宜酵素糖化効率が高くなる最適温度を設定すればよく、通常、120℃~240℃の範囲、好ましくは180℃~240℃の範囲である。また、水熱処理において、硫酸、塩酸、酢酸、などの酸、水酸化ナトリウム、水酸化カルシウム、などのアルカリを添加してもよいが、添加量は最小限となることが好ましく、最終濃度2重量%未満で実施することがより好ましく、最終濃度1重量%未満で実施することがさらに好ましい。なお、水熱処理の際に酸またはアルカリを添加した場合、後段の糖化酵素の添加あるいは加水分解の前段階で中和することが好ましい。酸、アルカリを水熱処理時に添加することによって、水熱処理における温度をより低い条件で実施することが可能になる。
 水熱処理の回数は特に限定されず、1回以上行えばよい。また、水熱処理を2回以上行う場合、1回目と2回目以降の処理を異なる条件設定にて実施してもよい。
 本工程では、水熱処理後、水熱処理液とセルロース含有固形分に分離する。セルロース含有バイオマスを水熱処理すると、副産物としてフルフラール、HMF、バニリン、グアイアシルアルコール、シリンガ酸、クマル酸、フェルラ酸、酢酸、ギ酸、無機イオンなどの酵素糖化を阻害する低分子化合物(以下、これらを総称して酵素糖化阻害物質という。)が生じるが、水熱処理物を水熱処理液とセルロース含有固形分に固液分離することにより酵素糖化阻害物質を水熱処理液側に分離することができる。固液分離の手法は、プレス濾過、ベルトフィルター、Pneumapress、スクリュープレス、遠心分離、スクリューデカンタなどを使用することができ、また、水熱処理の装置内にスクリュープレスのような分離機能を有する場合、その水熱処理の過程で、水熱処理液とセルロース含有固形分に分離することも可能である。また、セルロース含有固形分は、水などで洗浄を行うことでより完全に酵素糖化阻害物質を除去することができる。水熱処理後、固液分離によって得られたセルロース含有固形分は、さらにアルカリ処理、酸処理などを行ってもよい。
 [工程(2)]工程(1)のセルロース含有固形分に糸状菌由来セルラーゼを添加してセルロースを加水分解後、糸状菌由来セルラーゼを含む糖化残さと糖液に分離する工程
 工程(2)では、工程(1)にて固液分離したセルロース含有固形分に糸状菌由来セルラーゼを添加し、セルロースの加水分解後、糖化残さと糖液に分離する。
 本工程で使用する糸状菌由来セルラーゼは、セロビオハイドラーゼ、エンドグルカナーゼ、エキソグルカナーゼ、βグルコシダーゼ、などグルコースがβ1-4結合した糖ポリマーを加水分解することができるセルラーゼ酵素群とキシラナーゼ、キシロシダーゼなどキシロースがβ1-4結合した糖ポリマーを加水分解することできるヘミセルラーゼ酵素群を含むことを特徴とする。
 セロビオハイドラーゼとは、セルロースの末端部分から加水分解していくことを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.91としてセロビオハイドラーゼに帰属される酵素群が記載されている。
 エンドグルカナーゼとは、セルロース分子鎖の中央部分から加水分解することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.4、EC3.2.1.6、EC3.2.1.39、EC3.2.1.73としてエンドグルカナーゼに帰属される酵素群が記載されている。
 エキソグルカナーゼとは、セルロース分子鎖の末端から加水分解することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.74、EC3.2.1.58としてエキソグルカナーゼに帰属される酵素群が記載されている。
 βグルコシダーゼとは、セロオリゴ糖あるいはセロビオースに作用することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.21としてβグルコシダーゼに帰属される酵素群が記載されている。
 キシラナーゼとは、ヘミセルロースあるいは特にキシランに作用することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.8としてキシラナーゼに帰属される酵素群が記載されている。
 キシロシダーゼとは、キシロオリゴ糖に作用することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.37としてキシロシダーゼに帰属される酵素群が記載されている。
 また、糸状菌由来セルラーゼは、前記以外のバイオマス分解に関与する他の酵素成分をも含んでいてもよい。他の酵素成分としては、マンナナーゼ、マンノシダーゼ、アラビノフラノシダーゼ、キシランエステラーゼ、フェルラ酸エステラーゼ、キチナーゼなどを例示することができる。本発明で使用する糖化酵素は、セルロース含有固形分の加水分解に対する比活性が高いものが好ましく使用できる。
 糸状菌由来セルラーゼは、トリコデルマ属(Trichoderma)、アスペルギルス属(Aspergillus)、セルロモナス属(Cellulomonas)、クロストリジウム属(Clostridium)、ストレプトマイセス属(Streptomyces)、フミコラ属(Humicola)、アクレモニウム属(Acremonium)、イルペックス属(Irpex)、ムコール属(Mucor)、タラロマイセス属(Talaromyces)、ファネロカエーテ(Phanerochaete)属、白色腐朽菌、褐色腐朽菌、などに由来するセルラーゼを使用することができる。本発明では、こうした糸状菌由来セルラーゼの中でも、セルロース分解活性が高いトリコデルマ由来の糸状菌由来セルラーゼを使用することが好ましい。
 また、トリコデルマ属微生物は特に限定されないが、具体的にはトリコデルマ・リーセイQM9414(Trichoderma reesei QM9414)、トリコデルマ・リーセイQM9123(Trichoderma reeseiQM9123)、トリコデルマ・リーセイRutC-30(Trichoderma reeseiRut C-30)、トリコデルマ・リーセイPC3-7(Trichoderma reesei PC3-7)、トリコデルマ・リーセイATCC68589(Trichoderma reesei ATCC68589)、トリコデルマ・リーセイCL-847(Trichoderma reeseiCL-847)、トリコデルマ・リーセイMCG77(Trichoderma reesei MCG77)、トリコデルマ・リーセイMCG80(Trichoderma reeseiMCG80)、トリコデルマ・ビリデQM9123(Trichoderma viride9123)を例示することができる。また、前述のトリコデルマ属に由来する微生物であって、これらを変異剤あるいは紫外線照射などで変異処理を施し、糖化酵素生産性が向上した変異株であってもよい。
 トリコデルマ由来セルラーゼとしては、粗酵素物が好ましく使用される。粗酵素物は、トリコデルマ属の微生物が糖化酵素を産生するよう調整した培地中で、任意の期間該微生物を培養した培養上清に由来する。使用する培地成分は特に限定されないが、セルラーゼの産生を促進するために、セルロースあるいはキシランを添加した培地が一般的に使用できる。そして、粗酵素物として、培養液をそのまま、あるいは菌体を除去したのみの培養上清が好ましく使用される。
 トリコデルマ属微生物は、強力なセルラーゼ成分を培養液中に生産する一方で、βグルコシダーゼに関しては、細胞内あるいは細胞表層に保持していることにより培養液中のβグルコシダーゼ活性は低いため、粗酵素物に、さらに異種または同種のβグルコシダーゼを添加してもよい。異種のβグルコシダーゼとしては、アスペルギルス属由来のβグルコシダーゼが好ましく使用できる。アスペルギルス属由来のβグルコシダーゼとして、ノボザイム社より市販されているNovozyme188などを例示することができる。粗酵素物に異種または同種のβグルコシダーゼを添加する方法としては、トリコデルマ属の微生物に遺伝子を導入し、その培養液中に産生されるよう遺伝子組換えされたトリコデルマ属の微生物を培養し、その培養液を単離する方法でもよい。
 糸状菌由来セルラーゼによる加水分解反応温度は、15~100℃の範囲が好ましく、40~60℃がより好ましく、50℃が最も好ましい。また、加水分解反応時のpHは、pH3~9の範囲が好ましく、pH4~5.5がより好ましく、pH5が最も好ましい。pH調整には、酸あるいはアルカリを目的のpHとなるように添加し調整することができ、また、適宜緩衝液を使用してもよい。その他、セルロース含有固形分の加水分解では、とセルラーゼおよびヘミセルラーゼとの接触を促進させるため、また加水分解物の糖濃度を均一にするため攪拌混合を行うことが好ましい。セルロース前処理物の固形分濃度は、1~25重量%の範囲であることが好ましい。
 さらに本工程では、糸状菌由来セルラーゼによる加水分解物を糖化残さと本発明の目的物である糖液に分離する。加水分解物の固液分離は、公知の固液分離手法により実施することができるが、好ましくは膜分離による固液分離であり、より好ましくはプレス濾過またはベルトフィルターによる固液分離では分離された水熱処理液に含まれる固形分あるいは濁質成分が比較的少なくすることができる。こうした固液分離は1以上の複数手法組み合わせて実施してもよく、効率的に糸状菌由来セルラーゼを含む糖化残さを回収できる手段であれば限定されない。
 なお、糸状菌由来セルラーゼの大部分は糖化残さに吸着しているが、少量は糖液中に残っており、糖液中から糖化酵素を回収する工程を加えてもよい。その際、糖液については、遠心分離法もしくはプレス濾過などの濾過法にて1回目の固液分離した後、さらに精密濾過膜によって膜濾過することによってさらに固形物を除去しておけば、糖液から後述の限外濾過膜により糸状菌由来セルラーゼを回収する場合に限外濾過膜のファウリングを抑制することができる。
 [工程(3)]工程(1)の水熱処理液で工程(2)の糖化酵素を含む糖化残さを洗浄して、糖化残さに結合した糸状菌由来セルラーゼを水熱処理液中に溶解させた後、固液分離により糸状菌由来セルラーゼを含む溶液成分を得る工程
 工程(3)では、水熱処理液で糖化残さを洗浄することで、水熱処理液中に含まれるバイオマス抽出成分を活用して糖化残さに吸着(結合)してある糸状菌由来セルラーゼを水熱処理液中に溶出(脱離)させる。その一方で、水熱処理液に含まれる糖以外の成分による効果により、糖化残さに吸着したセルラーゼおよびヘミセルラーゼの水熱処理液中への脱離が促進される。これは水熱処理液に含まれる無機イオン、酢酸および/またはフルフラール濃度が高い程、糖化残さに吸着した糸状菌由来セルラーゼの脱離効果が高いからである。工程(3)での水熱処理液には無機イオン、酢酸および/またはフルフラールそれらが合計1g/L以上含まれる水熱処理液であることが好ましい。また、水熱処理液で糖化残さを洗浄することの別の効果として、水熱処理液中に含まれるオリゴ糖が、糖化残さに吸着した糸状菌由来セルラーゼの作用によって加水分解される。水熱処理液の加水分解によって主にキシロースの量が増大する。
 糖化残さの洗浄は、30~70℃の水熱処理液で洗浄することが好ましい。30~70℃の水熱処理液を使用することで、糖化残さに吸着した酵素成分の脱着を促進する効果、さらに、前述したとおり糖化残さに吸着した酵素成分の作用により水熱処理液に含まれるオリゴ糖が加水分解される効果を有するためである。なお、水熱処理液のより好ましい温度は40~60℃の範囲である。
 工程(3)の固液分離は公知の固液分離を使用できるが、前記工程(2)と同様に膜分離による固液分離が好ましく、プレス濾過またはベルトフィルターがより好ましい。特に、工程(2)および(3)を膜分離による固液分離とする場合、工程(2)で膜分離により糖化残さと糖液の固液分離を行った後、該膜面上の糖化残さに対し、水熱処理液を通水することで水熱処理液による糖化残さの洗浄と固液分離を行うことができるため、工程(2)と(3)を同一の装置で実施することが可能になる。
 糖化残さへの水熱処理液を通水は、膜面上の糖化残さに対して水熱処理液を垂直方向に通水させることが好ましく、それにより糖化残さ内に早い水熱処理液の流れを発生させることができるため、糖化残さに吸着したより多くの酵素成分の回収が可能になる。また、一度糖化残さを通水したものを再度循環して通水させることが好ましく、それによりさらにより多くの酵素成分の回収が可能になる。
 工程(3)の洗浄液は、固液分離し、溶液成分を限外濾過膜に通じて濾過し、非透過液として、糸状菌由来セルラーゼを分離・回収、さらに濃縮を行うことができる(工程(4))。一方で、限外濾過膜の透過液として、糖液を得ることができる。工程3の固液分離は、スクリューデカンタなどの遠心分離法、加圧・吸引濾過などの濾過法、あるいは精密濾過などの膜濾過法といった公知の固液分離手法により実施することができる。こうした固液分離は1以上の複数手法組み合わせて実施してもよく、効率的に糖化残さを除去する手段であれば限定されない。但し、後段の限外濾過膜のファウリングを抑制するという観点において、固液分離後の溶液成分には極力固形物が含まれないことが好ましく、具体的には遠心分離法もしくはプレス濾過などの濾過法にて1回目の固液分離した後、得られた溶液成分を、さらに精密濾過膜によって膜濾過することで、完全に固形物を除去することが好ましい。精密濾過膜とは、メンブレンフィルトレーションとも呼ばれ、圧力差を駆動力として、微粒子懸濁液から0.01~10μm程度の粒子を分離除去できる分離膜である。精密濾過膜の表面には0.01~10μmの範囲の細孔を有し、その細孔以上の微粒子成分は膜側に分離除去することができる。精密濾過膜の材質は、酢酸セルロース、芳香族ポリアミド、ポリビニルアルコール、ポリスルホン、ポリフッ化ビニリデン、ポリエチレン、ポリアクリロニトリル、セラミック、ポリプロピレン、ポリカーボネート、ポリテトラフルオロエチレン(テフロン(登録商標))などが例示できるが特に限定されるものではないが、対汚性、薬品耐性、強度、濾過性といった観点において、ポリフッ化ビニリデン製の精密濾過膜であることが好ましい。
 次に、前記、固液分離で得られた溶液成分を限外濾過膜処理する。限外濾過膜とは、一般的に細孔径1.5ナノメートルから250ナノメートルの範囲であって、分子量1,000~200,000の範囲の水溶性高分子を非透過液として阻止することが可能な分離膜のことを指す。限外濾過膜は、糸状菌由来セルラーゼを回収できる分画分子量であればよく、好ましい分画分子量は1,000~100,000Da、より好ましくは10,000~30,000Daである。限外濾過膜の素材としては、ポリエーテルサルホン(PES)、ポリフッ化ビニルデン(PVDF)、再生セルロースなどの素材の膜を使用することができるが、セルロースは、セルラーゼによる分解を受けるため、PES、PVDFなどの合成高分子を素材とした限外濾過膜を使用することが好ましい。限外濾過膜形状は、チューブラー式、スパイラルエレメント、平膜などが好ましく使用できる。限外濾過膜の濾過は、クロスフロー方式、デッドエンド濾過方式が挙げられるが、ファウリングあるいはフラックスの面でクロスフロー濾過方式が好ましい。
 なお、限外濾過膜によって分離、回収された糸状菌由来セルラーゼは、工程2のセルロース含有固形物において再利用することができる。再利用に際して、未使用のセルラーゼあるいはヘミセルラーゼを回収酵素と併せて添加、使用してもよく、また、それ以外の酵素成分を別途添加してもよい。
 [糖濃縮工程]
 本発明の糖液の製造方法で得られた糖液は、さらにWO2010/067785号に記載される方法である、ナノ濾過膜および/または逆浸透膜に通じて濾過することにより、非透過液として、糖成分が濃縮された濃縮糖液を得ることができる。
 ナノ濾過膜とは、ナノフィルター(ナノフィルトレーション膜、NF膜)とも呼ばれるものであり、「一価のイオンは透過し、二価のイオンを阻止する膜」と一般に定義される膜である。数ナノメートル程度の微小空隙を有していると考えられる膜で、主として、水中の微小粒子や分子、イオン、塩類等を阻止するために用いられる。
 逆浸透膜とは、RO膜とも呼ばれるものであり、「一価のイオンを含めて脱塩機能を有する膜」と一般に定義される膜である。数オングストロームから数ナノメートル程度の超微小空隙を有していると考えられる膜で、主として海水淡水化や超純水製造などイオン成分除去に用いられる。
 本発明で使用されるナノ濾過膜あるいは逆浸透膜の素材には、酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマー、ポリサルホンなどの高分子素材を使用することができるが、前記1種類の素材で構成される膜に限定されず、複数の膜素材を含む膜であってもよい。
 本発明で用いるナノ濾過膜は、スパイラル型の膜エレメントが好ましく使用される。好ましいナノ濾過膜エレメントの具体例としては、例えば、酢酸セルロース系のナノ濾過膜エレメントであるGE Osmonics社製GEsepa、ポリアミドを機能層とするアルファラバル社製ナノ濾過膜エレメントのNF99またはNF99HF、架橋ピペラジンポリアミドを機能層とするフィルムテック社製ナノ濾過膜エレメントのNF-45、NF-90、NF-200、NF-270またはNF-400、あるいは架橋ピペラジンポリアミドを主成分とする東レ株式会社製ナノ濾過膜のUTC60を含む同社製ナノ濾過膜エレメントSU-210、SU-220、SU-600またはSU-610が挙げられ、より好ましくはNF99またはNF99HF、NF-45、NF-90、NF-200またはNF-400、あるいはSU-210、SU-220、SU-600またはSU-610であり、さらに好ましくはSU-210、SU-220、SU-600またはSU-610である。
 本発明で使用される逆浸透膜の素材としては、酢酸セルロース系のポリマーを機能層とした複合膜(以下、酢酸セルロース系の逆浸透膜ともいう)またはポリアミドを機能層とした複合膜(以下、ポリアミド系の逆浸透膜ともいう)が挙げられる。ここで、酢酸セルロース系のポリマーとしては、酢酸セルロース、二酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酪酸セルロース等のセルロースの有機酸エステルの単独もしくはこれらの混合物並びに混合エステルを用いたものが挙げられる。ポリアミドとしては、脂肪族および/または芳香族のジアミンをモノマーとする線状ポリマーまたは架橋ポリマーが挙げられる。
 本発明で使用される逆浸透膜の具体例としては、例えば、東レ株式会社製ポリアミド系逆浸透膜モジュールである超低圧タイプのSUL-G10、SUL-G20、低圧タイプのSU-710、SU-720、SU-720F、SU-710L、SU-720L、SU-720LF、SU-720R、SU-710P、SU-720Pの他、逆浸透膜としてUTC80を含む高圧タイプのSU-810、SU-820、SU-820L、SU-820FA、同社酢酸セルロース系逆浸透膜SC-L100R、SC-L200R、SC-1100、SC-1200、SC-2100、SC-2200、SC-3100、SC-3200、SC-8100、SC-8200、日東電工株式会社製NTR-759HR、NTR-729HF、NTR-70SWC、ES10-D、ES20-D、ES20-U、ES15-D、ES15-U、LF10-D、アルファラバル製RO98pHt、RO99、HR98PP、CE4040C-30D、GE製GE Sepa、Filmtec製BW30-4040、TW30-4040、XLE-4040、LP-4040、LE-4040、SW30-4040、SW30HRLE-4040、KOCH製TFC-HR、TFC-ULP、TRISEP製ACM-1、ACM-2、ACM-4などが挙げられる。
 ナノ濾過膜および/または逆浸透膜を使用して、糖液を濃縮する効果として、糖液中の糖濃度を高めるとともに、透過液として発酵阻害物質を除去できるという利点を有する。ここでいう発酵阻害物質とは、後段発酵工程で発酵を阻害する糖以外の成分のことを指し、具体的には、芳香族化合物、フラン系化合物、有機酸、1価無機塩などを例示することができる。こうした代表的な、芳香族化合物およびフラン系化合物の例としては、フルフラール、ヒドロキシメチルフルフラール、バニリン、バニリン酸、シリンガ酸、コニフェリルアルデヒド、クマル酸、フェルラ酸などを例示できる。有機酸、無機塩としては、酢酸、ギ酸、カリウム、ナトリウムなどを例示することができる。濃縮糖液の糖濃度は、ナノ濾過膜および/または逆浸透膜の処理条件によって、50g/L~400g/Lの範囲で任意に設定することができ、濃縮糖液の用途等に応じて任意に設定すればよい。また前述した発酵阻害物質をより除去したい場合、糖液あるいは濃縮糖液に加水し、ナノ濾過膜および/または逆浸透膜で目的の糖濃度となるまで濃縮すればよく、この際、透過液として発酵阻害物質を除去することができる。なお、逆浸透膜に比べ、ナノ濾過膜を使用した方が、発酵阻害物質の除去効果が高いため好ましい。ナノ濾過膜を使用するか、あるいは逆浸透膜を使用するかは、混合糖液に含まれる発酵阻害物質の濃度、あるいは後段発酵で影響を鑑みて選択すればよい。
 [糖液の用途]
 本発明により得られた糖液を発酵原料として化学品を生産する能力を有する微生物を生育させることで、各種化学品を製造することができる。ここでいう発酵原料として微生物を生育させるとは、糖液に含まれる糖成分あるいはアミノ源を微生物の栄養素として利用し、微生物の増殖、生育維持を行うことを意味している。化学品の具体例としては、アルコール、有機酸、アミノ酸、核酸など発酵工業において大量生産されている物質を挙げることができる。こうした化学品は、糖液中の糖成分を炭素源として、その代謝の過程において生体内外に化学品として蓄積生産する。微生物によって生産可能な化学品の具体例として、エタノール、1,3-プロパンジオール、1,4-ブタンジオール、グリセロールなどのアルコール、酢酸、乳酸、ピルビン酸、コハク酸、リンゴ酸、イタコン酸、クエン酸などの有機酸、イノシン、グアノシンなどのヌクレオシド、イノシン酸、グアニル酸などのヌクレオチド、カダベリンなどのアミン化合物を挙げることができる。さらに、本発明の糖液は、酵素、抗生物質、組換えタンパク質などの生産に適用することも可能である。こうした化学品の製造に使用する微生物に関しては、目的の化学品を効率的に生産可能な微生物であればよく、大腸菌、酵母、糸状菌、担子菌などの微生物を使用することができる。
 [装置]
 本発明の糖液の製造方法を実施するための装置に関して、図1~4に基づき説明する。
 図1は、セルロース含有バイオマスを水熱処理して水熱処理物を固液分離する水熱処理装置(1)、該水熱処理装置より排出されるセルロース含有固形分を糸状菌由来セルラーゼにより加水分解する加水分解装置(14)、該加水分解装置で得られるセルロース含有固形分の加水分解物を固液分離する糖液回収装置(23)、ならびに該糖液回収装置で分離された糖化残さと該水熱処理装置より排出される水熱処理液を混合、保温および固液分離する酵素回収装置(28)を含む、糖液製造装置である。
 図2は、特に糖液回収装置および酵素回収装置の固液分離において、プレス濾過装置(24、35)を含む装置例であり、図3は、さらに糸状菌由来セルラーゼと糖液に分離する限外濾過膜分離装置(40)を含む装置例である。
 次に、図1~3の糖液製造装置を詳細に説明するために、図4を使用して装置構成に関し、説明する。セルロース含有バイオマスを水熱処理して水熱処理物を固液分離する水熱処理装置(1)は、水熱処理を行うための保温加圧容器(2)と、前記保温加圧容器(2)を加熱するための加熱装置(3)、バイオマスを保温加圧容器(2)に投入するための原料フィーダー(4)、保温加圧容器内でセルロース含有バイオマスを混合するための攪拌装置(5)、保温加圧容器(2)の圧力開放するための圧力開放槽(7)、水熱処理物を水希釈するための水希釈槽(8)、水熱処理物を圧力開放槽(7)から水希釈槽(8)に移送する移送装置(6)、水熱処理物を固液分離する固液分離装置(10)、固液分離装置(10)に水熱処理物を移送するポンプ(9)、固液分離装置(10)の内部に設置された分離膜(11)、水熱処理液の排出を調製するバルブ(12)を具備する装置であることが好ましい。加熱装置(3)は、セルロース含有バイオマスを所定の温度(170℃~220℃)まで保温加圧容器(2)を加熱できることが好ましい。攪拌装置(5)は、セルロース含有バイオマスを保温加圧容器(2)内部を連続的に移動させることができ、かつ、温度、セルロース系バイオマス、水を均一化できるものが好ましい。また、原料フィーダー(4)より新たなセルロース含有バイオマスを連続的、あるいは断続的に保温加圧容器(2)に投入することで、セルロース含有バイオマスの連続的な水熱処理が可能になる。固液分離装置(10)は、遠心分離、濾過、沈降分離などがあるが、分離膜(11)を使用する分離方式が、高い固形物濃度のセルロース含有固形分を得ることができるため好ましい。分離膜(11)の素材は、金属メッシュ、織布、不織布などから適宜選定できる。分離されたセルロース含有固形分は、固形物であるため、加水分解装置(14)への位相は、ベルトコンベア(13)を使用することが好ましい。
 該水熱処理装置より排出されるセルロース含有固形分を糸状菌由来セルラーゼにより加水分解する加水分解装置(14)に関しては、セルロース含有固形分の糸状菌由来セルラーゼの加水分解を行うための混練装置(15)を使用して、セルロース含有固形分と糸状菌由来セルラーゼの均一混合ならびに粘度低下のための一次加水分解を行うことが好ましい。混練装置(15)は、攪拌移液装置(16)および加水分解のための温度を設定するための加温装置(17)を有していることが好ましい。また、混練装置(15)による一次加水分解に引き続き、攪拌槽(19)にて、攪拌装置(18)にて攪拌混合しながら、二次加水分解を行う。攪拌槽(19)には、混練装置(15)と同じく、加温装置(20)を有していることが好ましい。攪拌槽(19)の下部には、バルブ(21)を介して、移液のためのポンプ(22)を有することが好ましい。
 該加水分解装置で得られるセルロース含有固形分の加水分解物を固液分離する糖液回収装置(23)は、糖液と糖化残さを分離するための固液分離装置(24)、さらに固液分離装置には分離のための分離膜(25)、バルブ(26)を有していてもよい。糖化残さは、ベルトコンベア(27)にて、酵素回収装置(28)に移液する。
 糖液回収装置で分離された糖化残さと該水熱処理装置より排出される水熱処理液を混合、保温および固液分離する酵素回収装置(28)は、水熱処理液を熱交換するための熱交換器(29)、水熱処理液を糖化残さと混合、保温する保温槽(31)、攪拌装置(32)、保温装置(30)を有することが好ましい。保温槽(31)は、バルブ(33)およびポンプ(34)を介して、固液分離装置(35)に連結しており、糖化残さと回収酵素に分離される。固液分離装置(35)は、分離膜(36)を有していることが好ましく、バルブ(38)にて回収酵素液を調節することができる。分離された糖化残さは、洗浄液槽(37)の洗浄液によって洗浄され、糖化残さ中の酵素成分を回収する。また、固液分離した糖化残さは、ベルトコンベア(39)で排出される。排出された糖化残さは、ボイラに移送され、蒸気・電力に変換され、糖液製造に使用されることが好ましい。酵素回収装置(28)は、糸状菌由来セルラーゼと糖液に分離する限外濾過膜分離装置(40)をさらに含むことが好ましい。また、限外濾過膜分離装置(40)には、糖液貯槽(41)、精密濾過膜ポンプ(42)および精密濾過膜モジュール(43)を設置することで限外濾過の前処理として微粒子成分の除去を行うことが好ましい。精密濾過膜モジュール(43)の濾液は、精密濾過膜濾液槽(44)にいったん回収し、さらに限外濾過膜ポンプ(45)を介して限外濾過膜モジュール(46)に供することで、セルラーゼおよびヘミセルラーゼ成分を非透過液として分離・回収することができる。分離された酵素成分は、精密濾過膜濾液槽(44)に酵素濃縮液として回収できる。また、回収した酵素濃縮液は、ポンプ(47)にて、回収酵素として、セルロース加水分解装置(14)に総液される。一方、限外濾過膜モジュール(46)の透過液は、各種発酵生産のための原料となる糖液として使用することができる。
 また、図6に工程(2)の固液分離と工程(3)の固液分離を同一装置(膜分離装置)で実施する場合の模式図を示す。工程(2)で得られた加水分解物を膜分離装置48(好ましくは、プレス濾過装置またはベルトフィルター装置)に加水分解物供給ライン50を通じて供給する。膜分離装置48には膜49が設置されており、膜側からの加圧もしくは透過側からの陰圧によって、膜49の非透過側に糖化残さが分離され、透過側に糖液が分離される。得られた糖液は回収ライン51で回収される。さらに膜面上に分離された糖化残さに対し、工程(2)と同じ、加水分解物供給ライン50あるいは、これとは独立した水熱処理供給ライン51を通じて、水熱処理液を糖化残さに供給することができる。糖化残さに供給された水熱処理液は、膜側からの加圧もしくは透過側からの陰圧によって、糖化残さを透過し、さらに膜の透過側に回収される。その際、糖化残さの水熱処理液による洗浄が可能である。また、洗浄液は、回収ライン51より回収可能であり、また回収された洗浄液は、さらに加水分解物供給ライン50または水熱処理供給ライン51を通じて、糖化残さに複数回通水させることができる。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。
 (参考例1)糖濃度の測定
 糖液に含まれるグルコースおよびキシロース濃度は、下記に示すHPLC条件で、標品との比較により定量した。
カラム:Luna NH(Phenomenex社製)
移動相:ミリQ:アセトニトリル=25:75(流速0.6mL/分)
反応液:なし
検出方法:RI(示差屈折率)
温度:30℃。
 (参考例2)糸状菌由来セルラーゼの回収酵素活性の測定方法
 工程(3)で回収できる糸状菌由来セルラーゼの回収酵素量は、1)結晶セルロース分解活性、2)セロビオース分解活性、3)キシラン分解活性、の3種の分解活性(以下、活性値という。)を測定することにより定量した。
 1)結晶セルロース分解活性
 酵素液(所定条件で調整)に対し、結晶セルロースであるアビセル(メルク社製、Cellulose Microcrystalline)を1g/L、酢酸ナトリウム緩衝液(pH 5.0)を100mMとなるよう添加し、50℃で24時間反応させた。反応液は1mLチューブで調整し、前記条件にて回転混和しながら反応を行った。反応後、チューブを遠心分離し、その上清成分のグルコース濃度を測定した。グルコース濃度は、参考例2に記載の方法に準じて測定した。結晶セルロース分解活性は、生成したグルコース濃度(g/L)をそのまま活性量として使用し、回収酵素量の比較に使用した。
 2)セロビオース分解活性
 酵素液に対し、セロビオース(和光純薬工業株式会社製)500mg/L、酢酸ナトリウム緩衝液(pH 5.0)を100mMとなるよう添加し、50℃で0.5時間反応させた。反応液は1mLチューブで調整し、前記条件にて回転混和しながら反応を行った。反応後、チューブを遠心分離し、その上清成分のグルコース濃度を測定した。グルコース濃度は、参考例2に記載の方法に準じて測定した。セロビオース分解活性は、生成したグルコース濃度(g/L)をそのまま活性量として使用し、回収酵素量の比較に使用した。
 3)キシラン分解活性
 酵素液に対し、キシラン(Birch wood xylan、和光純薬工業株式会社製)10g/L、酢酸ナトリウム緩衝液(pH 5.0)を100mMとなるよう添加し、50℃で4時間反応させた。反応液は1mLチューブで調整し、前記条件にて回転混和しながら反応を行った。反応後、チューブを遠心分離し、その上清成分のキシロース濃度を測定した。キシロース濃度は、参考例2に記載の方法に準じて測定した。キシロース分解活性は、生成したキシロース濃度(g/L)をそのまま活性量として使用し、回収酵素量の比較に使用した。
 (参考例3)無機イオン濃度、芳香族化合物、酢酸・ギ酸・乳酸の測定
 糖液に含まれるカチオンおよびアニオン濃度、芳香族化合物濃度、酢酸・ギ酸濃度は、下記に示すHPLC条件で、標品との比較により定量した。
 1)カチオン分析
カラム:Ion Pac AS22(DIONEX社製)
移動相:4.5mM NaCO/1.4mM NaHCO(流速1.0mL/分)
反応液:なし
検出方法:電気伝導度(サプレッサ使用)
温度:30℃。
 2)アニオン分析
カラム:Ion Pac CS12A(DIONEX社製)
移動相:20mMメタンスルホン酸(流速1.0mL/分)
反応液:なし
検出方法:電気伝導度(サプレッサ使用)
温度:30℃。
 3)芳香族化合物分析
カラム:Synergi HidroRP 4.6mm×250mm(Phenomenex製)
移動相:アセトニトリル-0.1% HPO(流速1.0mL/min)
検出方法:UV(283nm)
温度:40℃。
 4)酢酸・ギ酸・乳酸分析
カラム:Shim-Pack SPR-H(株式会社島津製作所製)の直列
移動相:5mM p-トルエンスルホン酸(流速0.8mL/min)
反応液:5mM p-トルエンスルホン酸、20mM ビストリス、0.1mM EDTA・2Na(流速0.8mL/min)
検出方法:電気伝導度
温度:45℃。
 (参考例4)セルロース含有バイオマスの水熱処理物中の構成糖分析方法
 LAP法(“Determination of Structural Carbohydrates and Lignin in Biomass, Laboratory Analytical Procedure(LAP)”)を参考に、次に示す方法で組成を分析した。
 試料の適量を分取し、上記の参考例2の方法で含水率を測定した。次に、参考例2の含水率を算定後、得られた乾燥試料を、600℃の温度で強熱し灰分率を求めた。
 また、試料をステンレス型バットに移し、実験室雰囲気でおおよそ平衡状態になるまで風乾し、これをウィレーミルにより粉砕し、ふるいにより粒径を約200~500μm」に調整した。本状態調節後の試料を60℃の温度で真空乾燥し、絶乾質量を補正することによって、各成分の絶乾ベースでの含有量を算定した。この分析用試料0.3gを天秤でビーカーにはかりとり、これに濃度72%の硫酸3mLを加え、30℃の温度でときどき攪拌しながら1時間放置した。この反応液を、精製水84mLで耐圧瓶に完全に移した後、120℃の温度で1時間、オートクレーブで加熱分解した。加熱分解後、分解液と残渣を、濾別し、濾液と残渣の洗浄液に加えて100mLに定容したものを検液とした。また、加熱分解時、糖の過分解を補正するために単糖を用いた添加回収試験を並行して行った。検液中の単糖(キシロース、アラビノース、マンノース、グルコース、ガラクトース)については、高速液体クロマトグラフ法(GLサイエンス製 GL-7400、蛍光検出)により定量を行った。得られた分解液の単糖濃度と試料分解量から、試料中の構成糖量を算定した。
 (実施例1)水熱処理の条件設定(工程(1))
 稲わらを奈良機械製作所製のロータリーカッターミル・RCM-400(8mmメッシュ)にて回転速度420回転/分で粉砕した。その後、水熱処理を行った。装置は、日本電熱株式会社製の爆砕装置(反応器2Lサイズ)を使用した。蒸気発生装置は40kWの電気ボイラを使用した。設定した処理圧力を設定すると一義的に処理温度も決定するため、反応条件は、表1の通り処理圧力および処理時間を変更して各種条件を検討した。本条件で1回200gの粉砕した稲ワラを投入し、表1の条件下で反応を行い、爆砕処理した含水した固形分を2Lの水を加えて攪拌し、日立工機株式会社製のラボ用遠心分離機“HimacCF7D2”を用いて5000rpmで水熱処理液とセルロース含有固形分に分離した。分離したセルロース含有固形分の構成糖分析を行った。その後、各爆砕処理物について、含水率を測定し、水および1N 水酸化ナトリウム水溶液(和光純薬工業株式会社製)を添加してpHを4.6~5.0の範囲に調整し、最終的に固形分濃度が5%となるように水をさらに添加しスラリー液を調整した。さらに、スラリー液に各爆砕処理物の乾燥重量に対して酵素重量が100分の1となるようにジェネンコア製の糸状菌由来セルラーゼ(トリコデルマ由来セルラーゼ)“アクセルレースデュエット”(酵素濃度:40g/L)を添加して、グルコース成分およびキシロース成分の糖化率を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、セルロース含有バイオマスとして稲わらを使用した場合のとしては、180~240℃の温度範囲で行うことが好ましいことが判明した。
 (実施例2)水熱処理液およびセルロース含有固形分の調製(工程(1))
 実施例1記載の試験番号7の条件(215℃、5分の条件)で得られた水熱処理物に関して、3000Gで10分遠心分離を行い、水熱処理液を分離回収し、得られた固形物にさらに水を添加し、遠心分離、上清を除去する一連の操作を2回行った。得られた固形物をセルロース含有固形分として、以下、実施例および比較例に使用した。
 (比較例1)セルロース含有固形分と水熱処理液を混合した場合の加水分解
 実施例2のセルロース含有固形分1gに対し、実施例1で使用した“アクセルレースデュエット”が1g/L、0.8g/L、0.5g/L、0.35g/Lの最終濃度となるように添加し、50℃、24時間、加水分解を行った。また、セルロース含有固形分の固形物濃度は、10wt%になるよう実施例2で得られた水熱処理液を添加し調製した。また加水分解時のpHは、pH4.6~5.4の範囲となるよう希硫酸および希水酸化ナトリウムで調製した。得られた加水分解物は、遠心分離を行い、糖液8gと、糖化残さ2gに分離した。糖液のグルコース濃度を測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (実施例3)セルロース含有固形分の加水分解(工程(2))
 実施例2のセルロース含有固形分1gに対し、実施例1で使用した“アクセルレースデュエット”が1g/L、0.8g/L、0.5g/L、0.35g/Lの最終濃度となるように添加し、50℃、24時間、加水分解を行った。セルロース含有固形分の固形物濃度は、10wt%になるようRO水を添加し調製した。また加水分解時のpHは、pH4.6~5.4の範囲となるよう希硫酸および希水酸化ナトリウムで調製した。得られた加水分解物は、遠心分離を行い、糖液8gと、糖化残さ2gに分離した。糖液のグルコース濃度を測定した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 比較例1のセルロース含有固形分と水熱処理液を混合した場合の加水分解の結果(表2)と比較すると、同一糖化酵素量でのグルコース生成量は、実施例3のセルロース含有固形分のみの方が多くなることが判明した。すなわち、水熱処理液中には、セルロース含有固形分の加水分解を阻害する成分が含まれており、分離することでグルコース生成量、および糖生成量が増大することが示された。
 (比較例2)水熱処理液の酵素糖化
 実施例2で得られた水熱処理液に対して、実施例1で使用した“アクセルレースデュエット”が0.04g/L~0.8g/Lの最終濃度となるように添加し、50℃、24時間、加水分解を行った。反応後、水熱処理液を遠心分離し、上清成分のグルコースおよびキシロース濃度の測定を実施した。得られた分析結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 結果、酵素濃度が増えるに伴って、グルコース、キシロース生成量が増大することが判明した。また、50℃、24時間の反応では、酵素濃度が0.16g/L以上になっても糖生成量が大きく増大しないことが判明した。つまり、50℃、24時間の反応で、水熱処理液の十分な加水分解を行うためには、0.16g/Lの酵素添加が必要であることが判明した。
 (実施例4)水熱処理液による糖化残さの洗浄(工程(3))
 実施例3での“アクセルレースデュエット”添加濃度が0.8g/Lの場合に得られた糖化残さ2g(含水)に対して、水熱処理液を1:4、1:8の重量比率で添加し、50℃で、0時間、6時間、24時間、48時間、72時間保温し、糖化残さを洗浄した。洗浄後、各反応時間の洗浄液を遠心分離(8000G、20分)にて上清を回収し(1:4の場合:8g、1:8の場合:16g)洗浄液中に含まれるグルコースおよびキシロース濃度を参考例1の手法にて測定した。この結果を表5および表6に示す。
 (比較例3)RO水による糖化残さの洗浄
 実施例4の糖化残さ重量2g(含水)に対して、RO水を1:4、1:8の比率で添加し、50℃で、0時間、6時間、24時間、48時間、72時間保温後、遠心分離(8000G、20分)にて上清を回収した(1:4の場合:8g、1:8の場合:16g)。各上清のグルコースおよびキシロース濃度を参考例1の手法にて測定した結果を表5および表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5および6に示すように、糖化残さに水熱処理液を添加して保温する場合、グルコースおよびキシロースの生成量が増大することが判明した。水熱処理液に対する糖化残さの比率(糖化残さ:水熱処理液を1:4、1:8)を変化させ同様の検討を行ってみたが、いずれにおいてもグルコースおよびキシロースの生成量が増大することが判明した。また、糖化残さにRO水を添加して保温するだけでも糖生成量、特にグルコース生成量が増大することが判明した。
 一方、実施例4では比較例3と比較してキシロースの生成量が増大することが判明した(表6)。これは水熱処理液中のキシランあるいはキシロオリゴ糖が、糖化残さに吸着した酵素成分の作用により加水分解されたためと考えられた。これは前述の比較例2の水熱処理液に糸状菌由来セルラーゼを添加することで、特にキシロースの生成量が著しく増加する傾向とも一致する。
 (実施例5)水熱処理液による糖化残さ洗浄液からの酵素回収(工程(4))
 実施例3の“アクセルレースデュエット”添加濃度が0.8g/Lの場合に得られた糖化残さ2g(含水)に対して、水熱処理液を1:4の重量比率で添加し、50℃で、24時間、保温し、糖化残さを洗浄した。洗浄後、各反応時間の洗浄液を遠心分離(8000G、20分)にて上清を回収し、8gの洗浄液を得た。前記洗浄液8gをさらにマイレクスHVフィルターユニット濾過(ミリポア社、33mm、PVDF製、細孔径0.45μm)を使用して濾過を行った。得られた濾液は、分画分子量10000の限外濾過膜(Sartorius stedim biotech社製 VIVASPIN 20 材質:PES)で濾過し、膜画分が1mLになるまで4500Gにて遠心した。蒸留水10mLを膜画分に添加し、再度膜画分が0.5mLになるまで4500Gにて遠心した。この後、膜画分から酵素を回収した。回収酵素の各活性は、参考例2に準じて測定した。また比較のため、“アクセルレースデュエット”(0.8g/L)のみの各酵素活性を参考例2に準じて測定を行い、その際の活性を100(%)として、相対値としてセルラーゼおよびヘミセルラーゼの活性を表7にまとめた。
 (比較例4)セルロース含有固形分の加水分解で得られた糖液を限外濾過膜に通じて濾過した場合の糸状菌由来セルラーゼの回収
 実施例3での“アクセルレースデュエット”添加濃度が0.8g/Lの場合に得られた糖液(8g)を、さらにマイレクスHVフィルターユニット(ミリポア社、33mm、PVDF製、細孔径0.45μm)を使用して濾過を行った。得られた濾液は、分画分子量10000の限外濾過膜(Sartorius stedim biotech社製 VIVASPIN 20 材質:PES)で濾過し、膜画分が0.5mLになるまで4500Gにて遠心した。蒸留水10mLを膜画分に添加し、再度膜画分が0.5mLになるまで4500Gにて遠心した。この後、膜画分から酵素を回収した。回収酵素の各活性は、参考例4に準じて測定した(表7)。
 (比較例5)RO水による糖化残さ洗浄液からの酵素回収
 実施例3の“アクセルレースデュエット”添加濃度が0.8g/Lの場合に得られた糖化残さ2g(含水)に対して、RO水を1:4で添加し、50℃で24時間加水分解)をさらにマイレクスHVフィルターユニット(ミリポア社、33mm、PVDF製、細孔径0.45μm)を使用して濾過を行った。得られた濾液は、分画分子量10000の限外濾過膜(Sartorius stedim biotech社製 VIVASPIN 20 材質:PES)で濾過し、膜画分が1mLになるまで4500Gにて遠心した。蒸留水10mLを膜画分に添加し、再度膜画分が0.5mLになるまで4500Gにて遠心した。この後、膜画分から酵素を回収した。回収酵素の各活性は、参考例4に準じて測定した(表7)。
Figure JPOXMLDOC01-appb-T000007
 セルロース含有固形分由来の糖液から回収された酵素活性と、水熱処理液による糖化残さ洗浄液から回収された酵素活性を比較すると、水熱処理液による糖化残さ洗浄液から回収された回収酵素の各活性(アビセル分解活性、セロビオース分解活性、キシラン分解活性)の方が高いことが判明した。すなわち、水熱処理液に含まれる成分によって酵素回収が促進されたものと考えられた。
 (実施例6)水熱処理液の成分分析
 水熱処理液に含まれる無機イオン濃度を参考例3の手順にて測定を実施した。その結果は表8に示すとおり水熱処理液には無機イオンが1g/L以上含まれ、特にカリウム成分を多く含むことが判明した。
Figure JPOXMLDOC01-appb-T000008
 次に、芳香族成分および有機酸の分析を参考例3の手順にて測定を実施した。その結果は表9に示すとおり、芳香族成分の内、特にフルフラールの成分量が1g/L以上含まれることが判明した。また、有機酸の内、酢酸成分が1g/L以上含まれることが判明した。すなわち、水熱処理液の成分分析の結果、水熱処理液の添加における酵素回収性の改善は、水熱処理液に有効量含まれる無機イオン、フルフラール、酢酸の濃度と関係性があることが示された。
Figure JPOXMLDOC01-appb-T000009
 (実施例7)回収酵素のSDS-PAGEによる分離解析
 比較例4、比較例5、実施例5の各回収酵素液に関して、SDS-PAGEによる分析を実施した。各回収酵素液には、サンプル調整液緩衝液(Ez Apply、ATTO社)を添加し、SDS-PAGE(e-PAGEL、15% ゲル濃度、ATTO社)を行った。染色は、クマシーブリリアントブルー(BioSafecoomassie Stain、BioRAD社)にて行った。なお分子量を測定するために、分子量マーカー(PrecisionPlus Protein Standard、 Kaleidoscope、BioRAD社)を使用した。結果を、図5に示す。比較例4および比較例5に対して、実施例5の回収酵素成分の方が増大していることが確認できた。また、分子量マーカーとの比較により、実施例5にて回収が向上している成分は、セロビオハイドラーゼ成分、キシラナーゼ成分であることが確認できた(図5)。
 (実施例8)糖液を発酵原料とするエタノール発酵生産
 実施例4で得られた糖液を発酵原料として使用して、酵母(Saccharomycecs cerevisiae OC-2:ワイン酵母)によるエタノール発酵試験を行った。前述酵母をYPD培地(2% グルコース、1% 酵母エキス(Bacto Yeast Extract/BD社)、2% ポリペプトン(日本製薬株式会社製)にて、1日間25℃で前培養を行った。次に、得られた培養液を、第一の糖液に対し、1%となるように添加した。微生物を添加後、25℃で2日間インキュベートした。この操作で得られた培養液に含まれるエタノール蓄積濃度は、ガスクロマトグラフ法(Shimadzu GC-2010キャピラリーGC TC-1(GL science) 15 meter L.*0.53mm I.D.,df1.5μmを用いて、水素塩イオン化検出器により検出・算出して評価。)で測定した。その結果、培養液中には8g/Lのエタノールが含まれることが確認できた。すなわち、本発明の糖液発酵原料としてエタノールが製造できることが確認できた。
 (実施例9)糖液を発酵原料とする乳酸発酵生産
 実施例4で得られた糖液を発酵原料として使用して、乳酸菌であるラクトコッカス・ラクティスJCM7638株を24時間、37℃の温度で静置培養した。培養液に含まれるL-乳酸濃度を参考例3の条件で分析した結果、L-乳酸が11g/L蓄積していることが確認され、本発明の糖液により乳酸生産が可能であることが確認できた。
 (実施例10)水熱処理液による糖化残さの洗浄(工程(3)):水熱処理液の温度による影響
 実施例3での“アクセルレースデュエット”添加濃度が0.8g/Lの場合に得られた糖化残さ2g(含水)に対して、水熱処理液を1:4の重量比率で添加し、温度を4℃、25℃、40℃、60℃、70℃、80℃の各温度で保温し、糖化残さを洗浄した。洗浄後、各反応時間の洗浄液を遠心分離(8000G、20分)にて上清を回収し、8gの洗浄液を得た。各洗浄液に含まれるグルコースおよびキシロース濃度を参考例1の手法にて測定した。この結果を表10および11に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 洗浄時の水熱処理液の温度としては、40~60℃の範囲が最も水熱処理液中のオリゴ加水分解が進み、洗浄液中のグルコース、キシロースともに増加するため好ましいことが確認できた。
 (実施例11)水熱処理液による糖化残さ洗浄液(実施例10)からの酵素回収(工程(4))
 実施例10で得られた各洗浄液8gを、実施例5と同じ手順で限外濾過膜によって濾過して洗浄液中の酵素を回収した。回収酵素の各活性は、参考例2に準じて測定した。また比較のため、“アクセルレースデュエット”(0.8g/L)のみの各酵素活性を参考例2に準じて測定を行い、その際の活性を100(%)として、相対値としてセルラーゼおよびヘミセルラーゼの活性を表12にまとめた。
Figure JPOXMLDOC01-appb-T000012
 洗浄時の水熱処理液の温度としては、40~60℃の範囲が最も洗浄液中の酵素活性(アビセル分解活性、セロビオース分解活性、キシラン分解活性)が向上するため好ましいことが確認できた。
 (実施例12)プレス濾過装置を使用した水熱処理液による糖化残さの洗浄(工程(3))、洗浄液からの酵素回収(工程(4))
 実施例2のセルロース含有固形物100gに対して、“アクセルレースデュエット”が0.8g/L、の最終濃度となるように添加し、50℃、24時間、加水分解を行った。このとき、セルロース含有固形分の固形物濃度は、10wt%になるようRO水を添加し調製した(合計10L)。得られた加水分解物10Lは、プレス濾過は小型フィルタプレス装置(薮田産業製フィルタプレス MO-4)を用いた。ろ布はポリエステル製織布(薮田産業製 T2731C)を使用した。スラリー液10Lを小型タンクの中に入れて下から圧縮空気で曝気しながら液投入口を開いてエアーポンプ(タイヨーインタナショナル製 66053-3EB)で徐々に濾室内にスラリー液を投入した。スラリー投入後、フィルタプレス濾液を糖液として回収した((工程(3)))。水熱処理液は、付設されているダイヤフラムを膨らませて圧搾工程を行った。徐々に圧搾圧力を上昇させていき、0.5MPaまで上昇させてから約30分間放置して濾液を糖液としてさらに回収した。濾液として回収できた糖液は7Lであった。次に濾室に分離された糖化残さに対して、予め50℃に保温しておいて、水熱処理液5Lを通水および循環を行った。水熱処理液を小型タンクに入れ、液投入口を開いて、エアーポンプで濾室内に分離された糖化残さに水熱処理液を通水した。通水後、徐々に得られた濾液は、再度50℃に保温した後、小型タンクに戻す循環操作を繰り返した。この操作を定期的に2時間行った後、再度、徐々に圧搾圧力を上昇させていき、0.5MPaまで上昇させてから約30分間放置して洗浄液5Lを回収した。
 得られた洗浄液5Lは、ステリカップHVフィルターユニット(ミリポア社製)を使用して濾過を行った。得られた濾液は、分画分子量10000の限外濾過膜(GE製 SEPA PWシリーズ 機能面材質:ポリエーテルスルホン)の平膜をセットした小型平膜濾過装置(GEオスモニクス製“Sepa”(登録商標) CF II Med/High Foulant System)に通じて濾過し、回収酵素と糖液成分に分離した。濾過は、原水側流速2.5L/分、膜フラックスが0.1m/Dと一定になるように操作圧力を制御しながら5Lのうち4.5Lを濾液として分離するとともに、0.5Lを回収酵素として回収した。回収酵素の活性は、参考例1に準じて測定を行った。比較のため、アクセルレースデゥエット(0.8g/L)のみの各酵素活性を参考例2に準じて測定を行い、その際の活性を100(%)として、相対値としてセルラーゼおよびヘミセルラーゼの活性を表13にまとめた。
 (比較例6)プレス濾過装置を使用したRO水による糖化残さの洗浄、洗浄液からの酵素回収
 実施例12と同じ手順で、前記水熱処理液の代わりに、RO水を同じ手順で通水および循環を行った。また実施例12と同じ手順で洗浄液より回収酵素を得た。このときの回収酵素活性を1として表13に示す。比較のため、アクセルレースデゥエット(0.8g/L)のみの各酵素活性を参考例2に準じて測定を行い、その際の活性を100(%)として、相対値としてセルラーゼおよびヘミセルラーゼの活性を表13にまとめた。
Figure JPOXMLDOC01-appb-T000013
 表13に示すように水熱処理液で糖化残さを洗浄する場合(実施例12)、RO水で同じ操作を行った場合(比較例5)と比較して回収酵素量が大きく増大した。
産業上の利用の可能性
 本発明の糖液の製造方法によって得られた糖液は、各種化学品の発酵原料として使用することができる。
1 水熱処理装置
2 保温加圧容器
3 加熱装置
4 原料フィーダー
5 攪拌装置
6 移送装置
7 圧力開放槽
8 水希釈槽
9 ポンプ
10 固液分離装置
11 分離膜
12 バルブ
13 ベルトコンベア
14 加水分解装置
15 混練装置
16 攪拌移液装置
17 加温装置
18 撹拌装置
19 攪拌槽
20 加温装置
21 バルブ
22 ポンプ
23 糖液回収装置
24 固液分離装置
25 分離膜
26 バルブ
27 ベルトコンベア
28 酵素回収装置
29 熱交換器
30 保温装置
31 保温槽
32 撹拌装置
33 バルブ
34 ポンプ
35 固液分離装置
36 分離膜
37 洗浄液槽
38 バルブ
39 ベルトコンベア
40 限外濾過膜装置
41 糖液貯槽
42 精密濾過膜ポンプ
43 精密濾過膜モジュール
44 精密濾過膜濾液槽
45 限外濾過膜ポンプ
46 限外濾過膜モジュール
47 ポンプ
48 膜分離装置
49 膜
50 加水分解物供給ライン
51 回収ライン
52 水熱処理液供給ライン

Claims (15)

  1.  セルロース含有バイオマスからの糖液の製造方法であって、以下の工程(1)~(3)を含む、糖液の製造方法。
    工程(1):セルロース含有バイオマスを水熱処理後、水熱処理液とセルロース含有固形分に分離する工程。
    工程(2):工程(1)のセルロース含有固形分に糸状菌由来セルラーゼを添加してセルロースを加水分解後、糖化残さと糖液に分離する工程。
    工程(3):工程(1)の水熱処理液で工程(2)の糖化残さを洗浄して、糖化残さに吸着した糸状菌由来セルラーゼを水熱処理液中に溶出させた後、固液分離により糸状菌由来セルラーゼを含む溶液成分を得る工程。
  2.  工程(3)で得られた溶液成分を限外濾過膜に通じて濾過することにより非透過液として糸状菌由来セルラーゼを回収するとともに、透過液として糖液を得る工程(4)を含む、請求項1に記載の糖液の製造方法。
  3.  工程(4)で回収した糸状菌由来セルラーゼを工程(2)のセルロース加水分解に再利用する、請求項2に記載の糖液の製造方法。
  4.  糸状菌由来セルラーゼがトリコデルマ由来セルラーゼである、請求項1から3のいずれかに記載の糖液の製造方法。
  5.  工程(1)の水熱処理が120~240℃の温度範囲での処理である、請求項1から4のいずれかに記載の糖液の製造方法。
  6.  工程(3)の水熱処理液が無機イオン、酢酸および/またはフルフラールを合計1g/L以上含む、請求項1から5のいずれかに記載の糖液の製造方法。
  7.  工程(3)において30~70℃の水熱処理液で糖化残さを洗浄する、請求項1から6のいずれかに記載の糖液の製造方法。
  8.  工程(2)として膜分離によって糖化残さと糖液を分離し、工程(3)として該膜面上の糖化残さに対して水熱処理液を垂直方向に通水させて糖化残さを洗浄して糸状菌由来セルラーゼを含む溶液成分を得る、請求項1から7のいずれかに記載の糖液の製造方法。
  9.  膜分離がプレス濾過またはベルトフィルターによる膜分離である、請求項8に記載の糖液の製造方法。
  10.  請求項1から9のいずれかに記載の方法により糖液を製造する工程および該糖液を発酵原料として化学品を生産する能力を有する微生物を培養して化学品を製造する工程を含む、化学品の製造方法。
  11.  セルロース含有バイオマスを水熱処理して水熱処理物を固液分離する水熱処理装置、該水熱処理装置より排出されるセルロース含有固形分を糸状菌由来セルラーゼにより加水分解する加水分解装置、該加水分解装置で得られるセルロース含有固形分の加水分解物を固液分離する糖液回収装置、ならびに糖液回収装置で分離された糖化残さと該水熱処理装置より排出される水熱処理液を混合、保温および固液分離する酵素回収装置を含む、糖液製造装置。
  12.  糖液回収装置および酵素回収装置が一体化した装置である、請求項11に記載の糖液製造装置。
  13.  糖液回収装置および酵素回収装置が一体化した装置が、プレス濾過装置またはベルトフィルター装置である、請求項12に記載の糖液製造装置。
  14.  膜分離装置がプレス濾過装置またはベルトフィルター装置である、請求項13に記載の糖液製造装置。
  15.  前記酵素回収装置が、糸状菌由来セルラーゼと糖液に分離する限外濾過膜分離装置を含む、請求項11から14のいずれかに記載の糖液製造装置。
PCT/JP2013/063771 2012-05-18 2013-05-17 糖液の製造方法 WO2013172446A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2013261286A AU2013261286B2 (en) 2012-05-18 2013-05-17 Method for producing sugar solution
EP13791282.0A EP2860269B1 (en) 2012-05-18 2013-05-17 Method for producing a sugar solution
US14/401,900 US10519476B2 (en) 2012-05-18 2013-05-17 Method of producing sugar liquid
CA2873864A CA2873864A1 (en) 2012-05-18 2013-05-17 Method for producing sugar liquid
BR112014028617-5A BR112014028617B1 (pt) 2012-05-18 2013-05-17 métodos para produzir um líquido de açúcar a partir de biomassa contendo celulose e para produzir uma substância química
DK13791282.0T DK2860269T3 (en) 2012-05-18 2013-05-17 Process for preparing a sugar solution
JP2013535975A JP6269061B2 (ja) 2012-05-18 2013-05-17 糖液の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-114234 2012-05-18
JP2012114234 2012-05-18

Publications (1)

Publication Number Publication Date
WO2013172446A1 true WO2013172446A1 (ja) 2013-11-21

Family

ID=49583845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063771 WO2013172446A1 (ja) 2012-05-18 2013-05-17 糖液の製造方法

Country Status (8)

Country Link
US (1) US10519476B2 (ja)
EP (1) EP2860269B1 (ja)
JP (1) JP6269061B2 (ja)
AU (1) AU2013261286B2 (ja)
BR (1) BR112014028617B1 (ja)
CA (1) CA2873864A1 (ja)
DK (1) DK2860269T3 (ja)
WO (1) WO2013172446A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103185A1 (ja) * 2012-12-28 2014-07-03 川崎重工業株式会社 濃縮糖化液製造方法
WO2014208493A1 (ja) * 2013-06-25 2014-12-31 東レ株式会社 糖液の製造方法
CN104690068A (zh) * 2015-02-11 2015-06-10 中原工学院 一种利用生物质制备水热焦的方法
WO2016035875A1 (ja) * 2014-09-05 2016-03-10 東レ株式会社 糖液の製造方法
WO2016068223A1 (ja) * 2014-10-31 2016-05-06 東レ株式会社 糖液およびキシロオリゴ糖の製造方法
WO2018147289A1 (ja) 2017-02-07 2018-08-16 東レ株式会社 連続発酵によるアルコールの製造方法およびそれに用いる連続発酵装置
JP2020000230A (ja) * 2018-06-27 2020-01-09 アンスティテュ ナシオナル ドゥ ラ ルシェルシュ アグロノミク リグノセルロース系バイオマスを処理するための方法
JP2020043816A (ja) * 2018-09-19 2020-03-26 王子ホールディングス株式会社 糖化液
WO2021166102A1 (ja) * 2020-02-19 2021-08-26 王子ホールディングス株式会社 糖化液
WO2021167064A1 (ja) * 2020-02-19 2021-08-26 王子ホールディングス株式会社 糖化液及び精製糖化液
WO2021166273A1 (ja) * 2020-02-19 2021-08-26 王子ホールディングス株式会社 糖化液

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY179671A (en) * 2014-07-21 2020-11-11 Xyleco Inc Processing biomass
CN109430816A (zh) * 2018-11-17 2019-03-08 湖南犟哥生态农业有限公司 一种葛根淀粉加工废渣废水处理方法及设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387994A (ja) 1986-10-02 1988-04-19 Res Assoc Petroleum Alternat Dev<Rapad> 糖化液から糖液および酵素を得る方法
JP2006087319A (ja) 2004-09-22 2006-04-06 Research Institute Of Innovative Technology For The Earth リグノセルロースの連続糖化法
JP2008206484A (ja) 2007-02-28 2008-09-11 Oji Paper Co Ltd 酵素回収方法
JP2009183805A (ja) * 2008-02-01 2009-08-20 Mitsubishi Heavy Ind Ltd バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP2010036058A (ja) * 2008-07-31 2010-02-18 Oji Paper Co Ltd 糖化システム、糖化液の製造方法、発酵システム、及び発酵液の製造方法
WO2010067785A1 (ja) 2008-12-09 2010-06-17 東レ株式会社 糖液の製造方法
WO2011115039A1 (ja) 2010-03-15 2011-09-22 東レ株式会社 糖液の製造方法およびその装置
WO2011115040A1 (ja) 2010-03-15 2011-09-22 東レ株式会社 糖液の製造方法およびその装置
JP2011223975A (ja) * 2010-03-30 2011-11-10 Toray Ind Inc 糖液の製造方法及び製造装置
WO2011162009A1 (ja) * 2010-06-24 2011-12-29 東レ株式会社 精製糖水溶液の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2847476C (en) * 2006-10-26 2014-09-02 Xyleco, Inc. Methods of processing biomass comprising electron-beam radiation
BRPI1009205B1 (pt) * 2010-07-09 2021-04-20 Mitsubishi Power Environmental Solutions, Ltd sistema de processamento de biomassa e método de produção de solução sacarídea usando material de biomassa
BRPI1005516B1 (pt) * 2010-09-03 2019-12-03 Mitsubishi Heavy Ind Ltd aparelho de decomposição de biomassa
JP5246379B2 (ja) * 2011-03-03 2013-07-24 東レ株式会社 糖液の製造方法
CA2831543C (en) * 2011-03-29 2019-11-05 Toray Industries, Inc. Method for producing sugar solution
JP5516750B2 (ja) * 2011-09-14 2014-06-11 東レ株式会社 糖液の製造装置及び糖液の製造システム
JP6387994B2 (ja) * 2016-03-24 2018-09-12 日本電気株式会社 管理装置、管理方法及びプログラム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387994A (ja) 1986-10-02 1988-04-19 Res Assoc Petroleum Alternat Dev<Rapad> 糖化液から糖液および酵素を得る方法
JP2006087319A (ja) 2004-09-22 2006-04-06 Research Institute Of Innovative Technology For The Earth リグノセルロースの連続糖化法
JP2008206484A (ja) 2007-02-28 2008-09-11 Oji Paper Co Ltd 酵素回収方法
JP2009183805A (ja) * 2008-02-01 2009-08-20 Mitsubishi Heavy Ind Ltd バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP2010036058A (ja) * 2008-07-31 2010-02-18 Oji Paper Co Ltd 糖化システム、糖化液の製造方法、発酵システム、及び発酵液の製造方法
WO2010067785A1 (ja) 2008-12-09 2010-06-17 東レ株式会社 糖液の製造方法
WO2011115039A1 (ja) 2010-03-15 2011-09-22 東レ株式会社 糖液の製造方法およびその装置
WO2011115040A1 (ja) 2010-03-15 2011-09-22 東レ株式会社 糖液の製造方法およびその装置
JP2011223975A (ja) * 2010-03-30 2011-11-10 Toray Ind Inc 糖液の製造方法及び製造装置
WO2011162009A1 (ja) * 2010-06-24 2011-12-29 東レ株式会社 精製糖水溶液の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AI KOBAYASHI ET AL.: "Lignophenol ni yoru Cellulase no Kyuchaku Kaishu to Sairiyo", ABSTRACTS, ANNUAL MEETING OF THE SOCIETY OF POLYMER SCIENCE, vol. 60, no. 1, 10 May 2011 (2011-05-10), JAPAN, pages 2090, 2PFLL8, XP008175270 *
HIROSHI NONAKA ET AL.: "Adsorption recovery of cellulase using lignophenol", THE JAPAN INSTITUTE OF ENERGY TAIKAI KOEN YOSHISHU, vol. 18, 30 July 2009 (2009-07-30), pages 182 - 183, XP008175258 *
See also references of EP2860269A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103185A1 (ja) * 2012-12-28 2014-07-03 川崎重工業株式会社 濃縮糖化液製造方法
WO2014208493A1 (ja) * 2013-06-25 2014-12-31 東レ株式会社 糖液の製造方法
JPWO2016035875A1 (ja) * 2014-09-05 2017-06-15 東レ株式会社 糖液の製造方法
US10781466B2 (en) 2014-09-05 2020-09-22 Toray Industries, Inc. Method of producing sugar liquid
WO2016035875A1 (ja) * 2014-09-05 2016-03-10 東レ株式会社 糖液の製造方法
JPWO2016068223A1 (ja) * 2014-10-31 2017-08-03 東レ株式会社 糖液およびキシロオリゴ糖の製造方法
WO2016068223A1 (ja) * 2014-10-31 2016-05-06 東レ株式会社 糖液およびキシロオリゴ糖の製造方法
US10253343B2 (en) 2014-10-31 2019-04-09 Toray Industries, Inc. Method of producing sugar solution and xylooligosaccharide
CN104690068A (zh) * 2015-02-11 2015-06-10 中原工学院 一种利用生物质制备水热焦的方法
WO2018147289A1 (ja) 2017-02-07 2018-08-16 東レ株式会社 連続発酵によるアルコールの製造方法およびそれに用いる連続発酵装置
JP2020000230A (ja) * 2018-06-27 2020-01-09 アンスティテュ ナシオナル ドゥ ラ ルシェルシュ アグロノミク リグノセルロース系バイオマスを処理するための方法
JP2020043816A (ja) * 2018-09-19 2020-03-26 王子ホールディングス株式会社 糖化液
WO2021166102A1 (ja) * 2020-02-19 2021-08-26 王子ホールディングス株式会社 糖化液
WO2021167064A1 (ja) * 2020-02-19 2021-08-26 王子ホールディングス株式会社 糖化液及び精製糖化液
WO2021166273A1 (ja) * 2020-02-19 2021-08-26 王子ホールディングス株式会社 糖化液

Also Published As

Publication number Publication date
JP6269061B2 (ja) 2018-01-31
EP2860269B1 (en) 2017-07-05
EP2860269A1 (en) 2015-04-15
AU2013261286B2 (en) 2017-09-21
BR112014028617A2 (pt) 2017-06-27
US10519476B2 (en) 2019-12-31
AU2013261286A1 (en) 2014-12-04
DK2860269T3 (en) 2017-09-11
CA2873864A1 (en) 2013-11-21
EP2860269A4 (en) 2016-06-15
BR112014028617B1 (pt) 2020-11-10
JPWO2013172446A1 (ja) 2016-01-12
US20150125908A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP6269061B2 (ja) 糖液の製造方法
JP5246379B2 (ja) 糖液の製造方法
JP6136267B2 (ja) 糖液の製造方法
ES2764124T3 (es) Procedimiento para producir líquido que contiene azúcar
AU2015337881B2 (en) Method for producing sugar solution and xylooligosaccharide
EP2650384A1 (en) Method for producing concentrated aqueous sugar solution
JP6459514B2 (ja) 糖液の製造方法
AU2013275309B2 (en) Method for producing sugar solution
US10563238B2 (en) Method of producing a sugar liquid

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013535975

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2873864

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013791282

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013791282

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14401900

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013261286

Country of ref document: AU

Date of ref document: 20130517

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014028617

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014028617

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141117