WO2013172401A1 - 新規化合物、重合性液晶性化合物、モノマー/液晶混合材料および高分子/液晶複合材料 - Google Patents

新規化合物、重合性液晶性化合物、モノマー/液晶混合材料および高分子/液晶複合材料 Download PDF

Info

Publication number
WO2013172401A1
WO2013172401A1 PCT/JP2013/063625 JP2013063625W WO2013172401A1 WO 2013172401 A1 WO2013172401 A1 WO 2013172401A1 JP 2013063625 W JP2013063625 W JP 2013063625W WO 2013172401 A1 WO2013172401 A1 WO 2013172401A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
compound
monomer
Prior art date
Application number
PCT/JP2013/063625
Other languages
English (en)
French (fr)
Inventor
菊池 裕嗣
博紀 樋口
勇磨 竹内
泰志 奥村
松本 純一
剛知 松山
光弘 幸田
Original Assignee
国立大学法人九州大学
大阪有機化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 大阪有機化学工業株式会社 filed Critical 国立大学法人九州大学
Priority to JP2014515662A priority Critical patent/JPWO2013172401A1/ja
Priority to KR1020147033694A priority patent/KR20150013217A/ko
Publication of WO2013172401A1 publication Critical patent/WO2013172401A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2078Ph-COO-Ph-COO-Ph
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases

Definitions

  • the present invention relates to a novel compound and a liquid crystal display material using the same, and more particularly to a liquid crystal display material having a polymer-stabilized blue phase.
  • a liquid crystal display element typified by a flat panel liquid crystal display has features that it is lightweight and consumes little power, and has been rapidly spreading in recent years. In addition, an increase in screen size and image quality of liquid crystal display elements has been attempted.
  • the conventional liquid crystal display element has a slow response to an electric field, has insufficient definition of moving image display, and has a problem in high-speed moving image tracking. Further, it is necessary to perform a rubbing treatment in order to give orientation to the alignment film. For this reason, there exists a problem that productivity resulting from a rubbing process is low.
  • a liquid crystal display device in a blue phase mode is expected as a next-generation liquid crystal display device.
  • the liquid crystal display device in the blue phase mode is a liquid crystal display device using a liquid crystal phase called a blue phase.
  • the blue phase (Blue Phase, hereinafter also referred to as “BP”) appears in a narrow temperature range of several degrees (generally 1 to 3 ° C.) between the cholesteric phase and the isotropic phase.
  • BP Battery Phase
  • One of the liquid crystal phases One of the liquid crystal phases. In the blue phase, compared to conventional liquid crystal, it is superior in high-speed response and does not require rubbing treatment, so it is highly productive.
  • the formation temperature range (temperature range) of a blue phase is greatly expanded by forming a polymer network derived from a monomer having a specific structure in a low-molecular liquid crystal exhibiting a blue phase (for example, see Patent Document 1).
  • a mixture of a polymerizable liquid crystal compound, a non-liquid crystalline monomer, a chiral agent and a photopolymerization initiator is photopolymerized at a blue phase expression temperature.
  • Patent Document 1 increases the blue phase expression temperature after photopolymerization, and does not expand the temperature range before photopolymerization. For this reason, when industrially producing a large-screen liquid crystal display using the method of Patent Document 1, the temperature before photopolymerization is controlled to an extremely narrow temperature range of about 1 ° C., and a large area is uniformly processed. There is a need. Such temperature control is an obstacle to industrialization.
  • the present invention has been made in view of the above problems, and its purpose is to expand the blue phase expression temperature range before photopolymerization without using a special low-molecular liquid crystal, and to provide a monomer /
  • the object is to provide a liquid crystal mixed material.
  • Another object of the present invention is to provide a polymer / liquid crystal composite material from which a liquid crystal display element having excellent contrast can be obtained.
  • the present inventors have found that a compound having a novel refractive molecular structure can broaden the expression temperature range before photopolymerization of a blue phase by adding to a liquid crystal composition.
  • the present invention has been completed by finding out what can be done. It was also found that the resulting polymer-stabilized blue phase has a high light transmittance and contrast ratio. That is, the present invention is as follows.
  • the compound of the present invention is a compound represented by the following general formula (1).
  • a 1 and A 2 each independently represent a polymerizable group, S 1 and S 2 represent a methylene group; m and n each independently represent an integer of 1 to 20, B represents a single bond or an oxygen atom, D is a 1,4-phenylene group having a carboxyl group at the 1-position or 4-position (provided that one or more hydrogen atoms are F, Cl, Br, an alkyl group having 1 to 8 carbon atoms, 1 to 3 carbon atoms) A straight-chain fluoroalkyl group, a straight-chain fluoroalkoxyl group having 1 to 3 carbon atoms, which may be substituted with a cyano group)
  • Q is 1,2-phenylene or 1,3-phenylene (where one or more hydrogen atoms are F, Cl, Br, an alkyl group having 1 to 8 carbon atoms, or linear fluoro having 1 to 3 carbon atoms)
  • the monomer / liquid crystal mixed material of the present invention contains the compound represented by the general formula (1).
  • the monomer / liquid crystal mixed material of the present invention preferably contains a compound represented by the general formula (1) and a polymerizable liquid crystal compound other than the compound represented by the general formula (1).
  • the monomer / liquid crystal mixed material may further contain a low-molecular liquid crystalline compound, a non-liquid crystalline monomer, a chiral agent, and a photopolymerization initiator.
  • the polymer / liquid crystal composite material of the present invention is a photopolymerized product of the above monomer / liquid crystal mixed material.
  • the present invention provides a pair of substrates at least one of which is transparent, an electrode formed on at least one of the pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and an outer side of one of the pair of substrates.
  • a liquid crystal display device comprising: a formed polarizing plate; and an electric field applying unit that applies an electric field to the liquid crystal layer through the electrode, wherein the liquid crystal layer includes the polymer / liquid crystal composite material.
  • the novel compound of the present invention is a compound having a novel refractive molecular structure.
  • the temperature range of the blue phase before polymerization of the liquid crystal material can be expanded.
  • a polymer / liquid crystal composite material obtained by polymerizing the novel compound of the present invention with a known polymerizable liquid crystal compound has a wide blue phase expression temperature range, exhibits high-speed response, and has excellent contrast. .
  • a high quality liquid crystal display element can be obtained. Also, no rubbing process is required.
  • FIG. 1 is a schematic diagram showing an optical system used for measurement of transmitted light intensity with respect to an applied electric field performed in Examples and Comparative Examples.
  • FIG. 2 is a graph showing the relationship between transmitted light intensity and applied electric field when the polymer / liquid crystal composite materials of Examples 6 and 9 of the present invention and Comparative Example 1 are used.
  • the compound represented by the general formula (1) uses 1,2-phenylene or 1,3-phenylene at the Q site, and other molecules at the 1,2-position or 1,3-position of the phenylene group. Takes a combined structure. For this reason, it has a refracted molecular structure (refractive molecular structure). It is considered that the refracted molecular structure has a function of extending the temperature range of the blue phase in the polymer network. Moreover, the compound represented by General formula (1) should just have a polymeric group at both ends and superpose
  • the compound represented by the general formula (1) may be a liquid crystal compound or a non-liquid crystal compound.
  • the compound of the present invention is specifically a compound represented by the following general formula (1).
  • a 1 and A 2 each independently represent a polymerizable group, S 1 and S 2 represent a methylene group; m and n each independently represent an integer of 1 to 20, B represents a single bond or an oxygen atom, D is a 1,4-phenylene group having a carboxyl group at the 1-position or 4-position (provided that one or more hydrogen atoms are F, Cl, Br, an alkyl group having 1 to 8 carbon atoms, 1 to 3 carbon atoms) Which may be substituted with any one selected from the group consisting of a linear fluoroalkyl group, a linear fluoroalkoxyl group of 1 to 3 and a cyano group)
  • Q is 1,2-phenylene or 1,3-phenylene (where one or more hydrogen atoms are F, Cl, Br, an alkyl group having 1 to 8 carbon atoms, or linear fluoro having 1 to 3 carbon atoms)
  • the alkyl group having 1 to 8 carbon atoms specifically includes methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-methylpropyl group, 2-butyl group.
  • the straight-chain fluoroalkyl group having 1 to 3 carbon atoms means a group in which one or more hydrogens of a methyl group, an ethyl group, and a 1-propyl group are substituted with fluorine.
  • a straight-chain fluoroalkoxyl group having 1 to 3 carbon atoms means a group in which one or more hydrogen atoms of a methoxy group, an ethoxy group, or a propyloxy group are substituted with fluorine.
  • X represents a hydrogen atom, a chlorine atom, fluorine, a trifluoromethyl group, or an alkyl group.
  • l is a number of 1 to 10, preferably 1 to 7.
  • the alkyl group is, for example, an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, specifically a methyl group, an ethyl group, 1- A propyl group etc. are mentioned.
  • m and n are each independently preferably 1 to 12, more preferably 1 to 6, and most preferably 1 to 4.
  • At least one hydrogen atom of Q is F, Cl, Br, an alkyl group having 1 to 8 carbon atoms, a linear fluoroalkyl group having 1 to 3 carbon atoms, or a linear fluoroalkoxyl having 1 to 3 carbon atoms. It is preferably substituted with any one selected from the group consisting of a group and a cyano group.
  • Q is particularly 1,3-phenylene
  • at least one hydrogen atom is Cl, Br, an alkyl group having 1 to 8 carbon atoms, a linear fluoroalkyl group having 1 to 3 carbon atoms, 1 to It is preferably substituted with any one selected from the group consisting of 3 linear fluoroalkoxyl groups and cyano groups.
  • Q is more preferably substituted with Cl, Br or an alkyl group having 1 to 3 carbon atoms.
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (1a).
  • X represents a hydrogen atom, a chlorine atom, a fluorine atom, a trifluoromethyl group or an alkyl group.
  • L is a number of 1 to 10, preferably 1 to 7, and p and q are Each independently represents an integer of 1 to 4, Q 1 is 1,2-phenylene or 1,3-phenylene having at least one substituent Y on the aromatic ring, and Y represents Cl, Br, carbon number (Any one selected from the group consisting of an alkyl group having 1 to 8, a linear fluoroalkyl group having 1 to 3 carbon atoms, a linear fluoroalkoxyl group having 1 to 3 carbon atoms, and a cyano group)
  • the alkyl group, the alkyl group having 1 to 8 carbon atoms, the linear fluoroalkyl group having 1 to 3 carbon atoms, and the linear fluoroalkoxyl group having 1 to 3 carbon atoms described with respect to the formula (1a) It means the same thing as already explained.
  • Specific examples of the compound represented by the general formula (1) include, for example, the following 1,3-bis- [4- (3-acryloyloxypropyloxy) benzoyloxy] -5-methylbenzene (2), 1, Examples include 2-bis- [4- (3-acryloyloxypropoxyoxy) benzoyloxy] -4-methylbenzene (3).
  • the following compounds are novel compounds.
  • the compound represented by the general formula (1) can be produced, for example, by the following method. First, intermediate 1 is synthesized, intermediate 2 is synthesized therefrom, and then intermediate 2 is reacted to obtain a compound represented by general formula (1).
  • intermediate 1 is synthesized by reacting a 4-hydroxybenzoate such as methyl 4-hydroxybenzoate with a halohydrin such as chloropropanol.
  • a 4-hydroxybenzoate such as methyl 4-hydroxybenzoate
  • a halohydrin such as chloropropanol.
  • R is bonded to the carboxyl group of D to form an ester.
  • Hr means halogen such as chlorine, bromine and iodine.
  • the monomer / liquid crystal mixed material of the present invention includes a compound represented by the general formula (1) as a monomer and a liquid crystal composition having no polymerizable group and exhibiting a nematic phase, a chiral nematic phase, or a blue phase. It is.
  • the monomer / liquid crystal mixed material of the present invention preferably further contains a polymerizable liquid crystal compound other than the compound represented by the general formula (1) as a monomer.
  • the compound represented by the general formula (1) is effective in expanding the blue phase expression temperature range in the monomer / liquid crystal mixed material state before polymerization.
  • the polymerizable liquid crystal compound other than the compound represented by the general formula (1) is not particularly limited, and a known polymerizable liquid crystal compound can be used.
  • the “polymerizable liquid crystal compound” refers to a liquid crystal compound having a polymerizable functional group.
  • the polymerizable liquid crystalline compound is preferably a photopolymerization type.
  • examples of the polymerizable liquid crystalline compound include compounds represented by the following formula.
  • the compound represented by the general formula (1) is preferably added in an amount of 2 to 8% by mass, more preferably 4 to 6% by mass with respect to the polymerizable liquid crystal compound other than the compound represented by the general formula (1). do it. If the amount of the compound represented by the general formula (1) is less than 2% by mass, the temperature range of the blue phase may not be expanded. Moreover, when there is more addition amount of the compound represented by General formula (1) than 8 mass%, there exists a possibility that a polymer stabilization effect may fall.
  • the monomer / liquid crystal mixed material of the present invention further contains a low molecular liquid crystal compound, a non-liquid crystal monomer, a chiral agent, a photopolymerization initiator, and the like.
  • the liquid crystal composition constituting the monomer / liquid crystal mixed material and polymer / liquid crystal composite material of the present invention is a composition in which a chiral agent is combined with a low molecular liquid crystal compound, and a polymerizable functional group is added to the structure. Not included.
  • a composition in which a low-molecular liquid crystal compound and a chiral agent are combined is treated as a chiral nematic liquid crystal in a broad sense, and the liquid crystal phase exhibited by the liquid crystal composition is a chiral nematic phase.
  • the liquid crystal composition exhibits a chiral nematic phase or a blue phase (BP) at least at room temperature, and the most preferred composition is a liquid crystal composition exhibiting BP.
  • room temperature means 10 to 45 ° C.
  • the helical pitch is preferably 500 nm or less.
  • the expression of BP can be confirmed by observation of a characteristic platelet-like structure with a polarizing microscope and a peak appearing at a wavelength corresponding to the platelet-like structure by measurement of a reflection spectrum.
  • Examples of the low molecular liquid crystalline compound constituting the liquid crystal composition include a nematic liquid crystalline compound, a smectic liquid crystalline compound, and a discotic liquid crystalline compound, and a nematic liquid crystalline compound is preferable.
  • One kind of low molecular liquid crystalline compound may be used, but it is preferable to use two or more kinds of low molecular liquid crystalline compounds in order to optimize various characteristics.
  • two or more kinds of low-molecular liquid crystalline compounds it is preferable to exhibit a nematic liquid crystal phase after mixing. What is necessary is just to select suitably the mixing ratio of 2 or more types of low molecular liquid crystalline compounds according to the kind etc. of the low molecular liquid crystalline compound to be used.
  • the low molecular liquid crystal compound examples include a biphenyl liquid crystal compound, a terphenyl liquid crystal compound, and a tolan liquid crystal compound.
  • the chiral agent may be a liquid crystal compound or a non-liquid crystal compound.
  • the chiral structure possessed by the chiral agent may be any of an asymmetric carbon atom, axial asymmetry, and plane asymmetry, but a compound having axial asymmetry is preferred from the viewpoint of helical induction.
  • isosorbitol derivatives, binaphthol derivatives, and atropisomers are preferred.
  • the addition amount of the chiral agent can be appropriately determined depending on the combination of the low molecular liquid crystal compound and the chiral agent so as to obtain a desired helical pitch, but it should be 20% by mass or less, preferably 1 to 10% by mass in the liquid crystal material. Is preferred. When the amount of the chiral agent is more than 20% by mass, it is not preferable because, when a polymer / liquid crystal composite material is used, the properties of the material may be adversely affected by precipitation or phase separation. Moreover, the minimum of the addition amount of a chiral agent should just be the quantity from which a desired helical pitch is obtained.
  • the monomer / liquid crystal mixed material of the present invention includes, for example, methyl acrylate, ethyl acrylate, propyl acrylate, for the purpose of further improving durability and contrast when the polymer / liquid crystal composite material of the present invention described later is used.
  • Non-liquid crystalline monomer having no asymmetric structure composed of alkyl acrylate such as butyl acrylate, 2-ethylhexyl acrylate, hexyl acrylate, dodecyl acrylate, stearyl acrylate, etc.
  • non-liquid crystalline monofunctional monomer such as corresponding alkyl methacrylate Can also be added as appropriate.
  • the addition amount of the non-liquid crystalline monomer is not particularly limited as long as the above functions can be exhibited.
  • the addition amount is preferably 5% by mass or less, more preferably 2 to 5% by mass in the composite material.
  • the polymer / liquid crystal composite material of the present invention can be obtained by polymerizing the monomer / liquid crystal mixed material.
  • a compound represented by the general formula (1) and a polymerizable liquid crystal compound other than the compound represented by the general formula (1) are dispersed in a liquid crystal composition having no polymerizable group, It can be produced by polymerization with heat or light in an optically isotropic state to be described later.
  • a copolymer as a polymer network is formed in the liquid crystal composition, and this polymer network is used to polymerize the liquid crystalline compound in the liquid crystal composition. It is possible to improve the thermodynamic stability of the ordered structure at the time, that is, the blue phase, and to expand the usable temperature range of the ordered structure.
  • the polymer / liquid crystal composite material is obtained.
  • the durability is improved, but at the same time, the driving voltage is increased. Therefore, it is preferably as small as possible within the range not impairing the durability, and the ratio is 1 to 40% by mass with respect to the total amount of the obtained polymer / liquid crystal composite material.
  • the obtained polymer / liquid crystal composite material is used as a display element or the like, it is practically obtained by the compound represented by the general formula (1) and the general formula (1).
  • the total amount of the polymerizable liquid crystal compound other than the above compound is 5 to 15% by mass of the polymer / liquid crystal composite material.
  • the blending ratio of the liquid crystal composition can be set to a ratio of preferably 99 to 60% by mass, more preferably 95 to 85% by mass, based on the total amount of the polymer / liquid crystal composite material to be obtained.
  • the content of the liquid crystal composition refers to the blending ratio of the low molecular liquid crystal when only the low molecular liquid crystal is used, and the low molecular liquid crystal and the chiral when the low molecular liquid crystal and the chiral agent are used in combination. It means the total amount of agent.
  • photopolymerization initiator examples include acetophenones, benzophenones, benzoins, benzyls, Michler ketones, benzoin alkyl ethers, benzyl dimethyl ketals, and thioxanthones.
  • a thermal-polymerization initiator a peroxide and an azo compound are mentioned, for example.
  • the addition amount of the polymerization initiator can be appropriately determined according to the reactivity of the polymerizable liquid crystal compound other than the compound represented by the general formula (1) and the compound represented by the general formula (1), but is too excessive. Since an undesirable side reaction may occur if added, a polymerizable liquid crystal compound other than the compound represented by the general formula (1) and the compound represented by the general formula (1), and a polymerization initiator It is preferable to set it as 5 mass% or less with respect to a total amount.
  • the polymerization temperature is a temperature at which a mixture of the compound represented by the general formula (1) and the polymerizable liquid crystal compound other than the compound represented by the general formula (1) exhibits optical isotropy at the start of polymerization. It is preferable that the temperature be BP. Such temperature can be appropriately selected according to the kind and combination of the mixture.
  • the polymer / liquid crystal composite material of the present invention is obtained by polymerization in an optically isotropic state, that is, in a BP or isotropic phase state, and is also referred to as a polymer-stabilized blue phase.
  • the optically isotropic state means that the ordered arrangement structure in the polymer / liquid crystal composite material is less than the optical order and has no macroscopic anisotropy.
  • BP or an isotropic phase can be cited as such an optically isotropic state.
  • BP can be confirmed by observing the characteristic platelet-like structure with a polarizing microscope as described above, and the peak appearing at the wavelength corresponding to the platelet-like structure by measuring the reflection spectrum. In the case of showing a phase, it can be confirmed by the fact that no anisotropy is observed by observation with a polarizing microscope.
  • the compound represented by the general formula (1) and the general formula (1) in the mixture by light or heat are used.
  • the composite material of the present invention can be produced by polymerizing a polymerizable liquid crystal compound other than the compound.
  • the temperature range during polymerization in the composite material of the present invention is expanded.
  • the temperature range in which the BP of the composite material is usually exhibited is about 3.5 ° C.
  • this temperature range is expanded by 1 to 2 ° C.
  • the polymer / liquid crystal composite material of the present invention can be used as an electrooptic element such as a light modulation element based on an electrooptic effect or an optical switching.
  • an electrooptic element such as a light modulation element based on an electrooptic effect or an optical switching.
  • the form of optimal use as these light modulation elements is appropriately configured according to each application, and is not particularly limited.
  • the composite material of the present invention is sandwiched between a substrate with an electrode or a substrate having a comb electrode and a substrate having no electrode.
  • the liquid crystal display element of the present invention is also preferred.
  • the liquid crystal display element of the present invention includes a pair of substrates, at least one of which is transparent, an electrode formed on at least one of the pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and the pair of substrates.
  • a polarizing plate formed on one outer side and an electric field applying means for applying an electric field to the liquid crystal layer through the electrode are provided, and the liquid crystal layer includes the composite material of the present invention.
  • an alignment film made of polyimide or the like may be used for the purpose of aligning liquid crystal molecules on the substrate in the horizontal or vertical direction.
  • the transmittance is higher and the contrast ratio is higher than when only a normal polymerizable liquid crystal compound is used.
  • the response speed equivalent to the case where only the polymerizable liquid crystal compound of the present invention is used without using the compound represented by the general formula (1) is shown. Therefore, the polymer / liquid crystal composite material of the present invention can be usefully used for an optical element such as a liquid crystal display element.
  • reaction solution was washed twice with 130 g of 10% aqueous hydrochloric acid.
  • organic phase was concentrated under reduced pressure, and the obtained residue was recrystallized with an acetone / methanol mixed solvent to obtain 82 g of the desired product KM3AA006.
  • Example 2 Synthesis of 1,2-bis- [4- (3-acryloyloxypropoxyoxy) benzoyloxy] -4-methylbenzene (KM3AA007) Instead of 5-methylresorcinol in Example 1, The same operation was performed except that methyl catechol was used to obtain 84.8 g of the target product KM3AA007.
  • Example 3 As the liquid crystal composition, fluorine-based mixed liquid crystal JC-1041XX (manufactured by JNC Corporation) 46.25 mass%, 4-cyano-4′-pentylbiphenyl (5CB) 46.25 mass%, chiral compound 2,5-bis- [ 4 ′-(hexyloxy) -phenyl-4-carbonyl] -1,4; 3,6-dianhydride-D-sorbitol (ISO- (6OBA) 2 ) 7.5% by mass of the whole system isotropic phase
  • a liquid crystal composition was prepared by uniformly mixing at the indicated temperature.
  • liquid crystal composition 92% by mass of liquid crystal composition, 3.84% by mass of lauryl acrylate, 3.84% by mass of KM3AA006 obtained in Example 1, 0.32% by mass of 2,2′-dimethoxyphenylacetophenone (DMPAP) which is a photopolymerization initiator Were mixed uniformly to obtain a photopolymerizable monomer / liquid crystal mixed material.
  • DMPAP 2,2′-dimethoxyphenylacetophenone
  • Example 4 The same operation was performed except that 3.84% by mass of KM3AA006 in Example 3 was changed to a mixture of 1.92% by mass of RM-257 and 1.92% by mass of KM3AA006.
  • Example 5 The same operation was performed except that 3.84% by mass of KM3AA006 in Example 3 was changed to a mixture of 2.69% by mass of RM-257 and 1.15% by mass of KM3AA006.
  • Example 6 The same operation was performed except that 3.84% by mass of KM3AA006 in Example 3 was changed to a mixture of 3.46% by mass of RM-257 and 0.38% by mass of KM3AA006.
  • Example 7 The same operation was performed except that 3.84% by mass of lauryl acrylate in Example 3 was changed to 2.30% by mass, and 3.84% by mass of KM3AA006 was changed to 5.38% by mass.
  • Example 1 (Comparative Example 1) The same operation as in Example 3 was performed, except that 3.84% by mass of KM3AA006 in Example 3 was changed to RM-257 3.84% by mass.
  • Example 8 The same operation as in Example 3 was performed except that 3.84% by mass of KM3AA006 in Example 3 was changed to 3.84% by mass of KM3AA007.
  • Example 9 The same operation as in Example 3 was performed, except that 3.84% by mass of KM3AA006 in Example 3 was changed to a mixture of 3.46% by mass of RM-257 and 0.38% by mass of KM3AA007.
  • the obtained polymer-stabilized blue phase liquid crystal sample (polymer / liquid crystal composite material) was placed in the optical system shown in FIG.
  • a rectangular wave AC electric field (frequency 1 KHz) was applied to the sample, and the transmitted light intensity with respect to the applied electric field was measured.
  • FIG. 2 is a graph showing the relationship between the transmitted light intensity and the applied electric field when the polymer / liquid crystal composite materials of Examples 6 and 9 of the present invention and Comparative Example 1 are used.
  • the horizontal axis represents applied voltage (V)
  • the vertical axis represents transmittance (%)
  • represents Example 6
  • represents Example 9, and ⁇ represents Comparative Example 1.
  • the polymer / liquid crystal composite material of the present invention has a higher transmitted light intensity with respect to the applied voltage than the polymer / liquid crystal composite material of the comparative example. Therefore, it can be seen that the use of the polymer / liquid crystal composite material of the present invention provides an optical element having a high transmitted light intensity and a high contrast ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

 本発明は、特殊な低分子液晶性分子を用いずに、光重合前のブルー相発現温度範囲を広げて、工業的生産に適したモノマー/液晶混合材料を提供し、また、コントラストに優れた液晶表示素子が得られる高分子/液晶複合材料を提供するものであり、下記一般式(1)で表される新規な屈折型分子構造を有する化合物を用いることを特徴とする。

Description

新規化合物、重合性液晶性化合物、モノマー/液晶混合材料および高分子/液晶複合材料
 本発明は、新規化合物、およびこれを用いた液晶表示材料に関し、特に高分子安定化ブルー相を有する液晶表示材料に関する。
 フラットパネル液晶ディスプレイに代表される液晶表示素子は、軽量で消費電力が小さいという特徴を有し、近年急速に普及している。また、液晶表示素子の大画面化と高画質化も図られている。しかし、従来の液晶表示素子は、電界に対する応答が遅く、動画表示の精細度が不十分であり、高速動画追随性に問題がある。また、配向膜に配向性を与えるため、ラビング処理を行う必要がある。このため、ラビング処理に起因する生産性が低いという問題がある。
 一方、ブルー相モードの液晶表示装置が次世代の液晶表示装置として期待されている。ブルー相モードの液晶表示装置は、ブルー相と呼ばれる液晶相を用いる液晶表示装置である。
 ブルー相(Blue Phase、以下、「BP」ということもある)は、コレステリック相と等方相との間の数℃(一般的には、1~3℃)程度の幅の狭い温度範囲に発現する液晶相の一つである。ブルー相では、従来の液晶に比べ、高速応答性に優れ、ラビング処理も不要であるので生産性が高い。
 しかし、ブルー相を発現しうる温度範囲が狭いため、精密な温度管理が必要である。このため、実用化が困難であるという問題がある。
 この問題を解決するために、ブルー相を発現しうる温度範囲を広げることが試みられている。例えば、ブルー相を示す低分子の液晶中に特定構造のモノマー由来の高分子のネットワークを形成させることにより、ブルー相の発現温度範囲(温度幅)を大幅に拡大することが行われている(例えば、特許文献1参照)。
 具体的には、ブルー相を発現しうる低分子液晶中で、重合性液晶化合物と、非液晶性モノマーと、カイラル剤と光重合開始剤からなる混合物をブルー相発現温度で光重合させる。
 しかし、特許文献1に記載の方法は、光重合後のブルー相発現温度を広げるものであり、光重合前の温度範囲を広げるものではない。このため、特許文献1の方法を用いて大画面の液晶ディスプレイを工業的に生産する場合、光重合前の温度を1℃程度の極めて狭い温度範囲に制御して、広い面積を均一に処理する必要がある。このような温度制御は、工業化の障害となる。
 一方、光重合前のブルー相発現温度を広げることも試みられている。例えば、λ型、U字型、屈曲型と呼ばれる特殊な液晶分子をデザインして、ブルー相発現温度を大幅に広げることが提案されている(例えば、非特許文献1参照)。
 しかし、特殊な液晶分子の製造は複雑であり、工業的に製造するのは、コストの面から問題がある。
特許第3779937号公報
A. Yoshizawa, M. Sato, J. Rokunohe, "A blue phase observed for a novel chiral compound possessing molecular biaxiality" J. Matter. Chem., 15, pp. 3285-3290 (2005).
 すなわち、本発明は上記問題に鑑みなされたものであり、その目的は、特殊な低分子液晶を用いずに、光重合前のブルー相発現温度範囲を広げて、工業的生産に適したモノマー/液晶混合材料を提供することにある。本発明の目的は、コントラストに優れた液晶表示素子が得られる高分子/液晶複合材料を提供することにもある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、新規な屈折型分子構造を有する化合物が、液晶組成物への添加により、ブルー相の光重合前の発現温度範囲を広げることができることを見出し、本発明を完成した。また、得られる高分子安定化ブルー相は高い光透過率とコントラスト比を有することも見出した。すなわち、本発明は、以下の通りである。
 本発明の化合物は、下記一般式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000003
(式中、A1およびA2は、それぞれ互いに独立に、重合性基を表し、
1およびS2は、メチレン基を表し、
mおよびnは、それぞれ互いに独立に、1~20の整数を表し、
Bは、単結合または酸素原子を表し、
Dは、1位または4位にカルボキシル基を有する1,4-フェニレン基(ただし、1個以上の水素原子は、F、Cl、Br、炭素数1~8のアルキル基、炭素数1~3の直鎖状フルオロアルキル基、炭素数1~3の直鎖状フルオロアルコキシル基、シアノ基で置換されていてもよい)を表し、
Qは、1,2-フェニレンまたは1,3-フェニレン(ただし、1個以上の水素原子は、F、Cl、Br、炭素数1~8のアルキル基、炭素数1~3の直鎖状フルオロアルキル基、炭素数1~3の直鎖状フルオロアルコキシル基、シアノ基で置換されていてもよい)を表す)
 また、本発明のモノマー/液晶混合材料は、上記一般式(1)で表される化合物を含む。
 本発明のモノマー/液晶混合材料は、上記一般式(1)で表される化合物と、さらに一般式(1)で表される化合物以外の重合性液晶性化合物を含むことが好ましい。
 上記モノマー/液晶混合材料は、さらに、低分子液晶性化合物、非液晶性モノマー、カイラル剤、および光重合開始剤を含むとよい。
 本発明の高分子/液晶複合材料は、上記モノマー/液晶混合材料の光重合物である。
 本発明は、少なくとも一方が透明な一対の基板と、該一対の基板の少なくとも一方に形成された電極と、該一対の基板間に挟持された液晶層と、該一対の基板の一方の外側に形成された偏光板と、前記電極を介して液晶層に電界を印加する電界印加手段とを備えた液晶表示素子であって、上記液晶層が、上記高分子/液晶複合材料を含む液晶表示素子に関する。
 本発明の新規な化合物は、新規な屈折型分子構造を有する化合物である。この化合物は、液晶材料に添加して使用することにより、液晶材料の重合前のブルー相の発現温度範囲を広げることができる。この結果、大画面のブルー相モードの液晶表示装置であっても、工業的に製造することが可能になる高分子/液晶複合材料を得ることができる。
 また、本発明の新規な化合物を既知の重合性液晶性化合物と共に重合して得られた高分子/液晶複合材料は、広いブルー相発現温度範囲を有し、高速応答性を示し、コントラストに優れる。この結果、高品質な液晶表示素子を得ることができる。また、ラビング処理が要求されない。
図1は、実施例および比較例で行った印加電界に対する透過光強度の測定に用いた光学系を示す概略図である。 図2は、本発明の実施例6、9と比較例1の高分子/液晶複合材料を用いた場合の印加電界に対する透過光強度の関係を示すグラフである。
(一般式(1)で表される化合物)
 一般式(1)で表される化合物は、Qの部位に1,2-フェニレンまたは1,3-フェニレンを用いたものであり、このフェニレン基1,2位または1,3位に他の分子が結合した構造をとる。このため、屈折した分子構造(屈折型分子構造)を有する。屈折した分子構造が高分子ネットワーク内でブルー相の発現温度範囲を広げる機能を有すると考えられる。また、一般式(1)で表される化合物は、両端に重合性基を有し、他の重合性化合物と重合するものであればよい。一般式(1)で表される化合物は、液晶性化合物であってもよく、非液晶性化合物であってもよい。
 本発明の化合物は、具体的には、下記一般式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000004
(式中、A1およびA2は、それぞれ互いに独立に、重合性基を表し、
1およびS2は、メチレン基を表し、
mおよびnは、それぞれ互いに独立に、1~20の整数を表し、
Bは、単結合または酸素原子を表し、
Dは、1位または4位にカルボキシル基を有する1,4-フェニレン基(ただし、1個以上の水素原子は、F、Cl、Br、炭素数1~8のアルキル基、炭素数1~3の直鎖状フルオロアルキル基、1~3の直鎖状フルオロアルコキシル基およびシアノ基からなる群から選択されるいずれかで置換されていてもよい)を表し、
Qは、1,2-フェニレンまたは1,3-フェニレン(ただし、1個以上の水素原子は、F、Cl、Br、炭素数1~8のアルキル基、炭素数1~3の直鎖状フルオロアルキル基、1~3の直鎖状フルオロアルコキシル基およびシアノ基からなる群から選択されるいずれかで置換されていてもよい)を表す)
 上記式において、炭素数1~8のアルキル基とは、具体的には、メチル基、エチル基、1-プロピル基、2-プロピル基、1-ブチル基、2-メチルプロピル基、2-ブチル基、1,1-ジメチルエチル基、1-ペンチル基、3-メチルブチル基、2,2-ジメチルプロピル基、1,1-ジメチルプロピル基、1-ヘキシル基、4-メチルペンチル基、1-ヘプチル基、1-メチルヘキシル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、2-メチルヘキシル基、2-エチルペンチル基、2-エチル2-メチルブチル基、4,4-ジメチルペンチル基、1-オクチル基、1-メチルヘプチル基、1,1-ジメチルヘキシル基、2,2-2-エチルヘキシル基、2-メチルヘプチル基、2-エチルヘキシル基、2-エチル2-メチルペンチル基、5,5-ジメチルヘキシル基などが挙げられる。
 上記式(1)において、炭素数1~3の直鎖状フルオロアルキル基とは、メチル基、エチル基、1-プロピル基の1以上の水素がフッ素で置換されているものをいう。
 上記式において、炭素数1~3の直鎖状フルオロアルコキシル基とは、メトキシ基、エトキシ基、プロピルオキシ基の1以上の水素がフッ素で置換されているものをいう。
 式(1)中、A1、A2で表される重合性基としては、例えば、CH2=CX-COO-、CH2=CXCOS-、CH2=CX-、CH2=CH-O-、HS-(CH2l-COO-または下記式で表される基もしくはこれらの組み合わせが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 上記式において、Xは、水素原子、塩素原子、フッ素、トリフルオロメチル基、アルキル基を表す。lは、1~10、好ましくは1~7の数である。アルキル基は、例えば、炭素数1~5のアルキル基、好ましくは1~4のアルキル基、さらに好ましくは、炭素数1~3のアルキル基、具体的には、メチル基、エチル基、1-プロピル基などが挙げられる。
 上記式において、mおよびnは、それぞれ独立して、好ましくは1~12、さらに好ましくは1~6、最も好ましくは1~4である。
 上記式において、Qの少なくとも1つの水素原子は、F、Cl、Br、炭素数1~8のアルキル基、炭素数1~3の直鎖状フルオロアルキル基、1~3の直鎖状フルオロアルコキシル基およびシアノ基からなる群から選択されるいずれかで置換されていることが好ましい。また、Qが特に1,3-フェニレンの場合、少なくとも1つ以上の水素原子は、Cl、Br、炭素数1~8のアルキル基、炭素数1~3の直鎖状フルオロアルキル基、1~3の直鎖状フルオロアルコキシル基およびシアノ基からなる群から選択されるいずれかで置換されていることが好ましい。さらにQは、Cl、Brまたは炭素数1~3のアルキル基で置換されていることがより好ましい。
 本発明のもう1つの実施態様においては、一般式(1)で表される化合物は、つぎの一般式(1a)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
(式中、A3およびA4は、互いに独立してCH2=CX-COO-、CH2=CXCOS-、CH2=CX-、CH2=CH-O-、HS-(CH2l-COO-または
Figure JPOXMLDOC01-appb-C000007
(式中、Xは、水素原子、塩素原子、フッ素原子、トリフルオロメチル基、アルキル基を表す。lは、1~10、好ましくは1~7の数である)であり、pおよびqは、互いに独立して1~4の整数であり、Q1は芳香環に少なくとも1つの置換基Yを有する1,2-フェニレンまたは1,3-フェニレンであり、Yは、Cl、Br、炭素数1~8のアルキル基、炭素数1~3の直鎖状フルオロアルキル基、1~3の直鎖状フルオロアルコキシル基およびシアノ基からなる群から選択されるいずれかである)
 式(1a)に関して記載されるアルキル基、炭素数1~8のアルキル基、炭素数1~3の直鎖状フルオロアルキル基、1~3の直鎖状フルオロアルコキシル基は、式(1)についてすでに説明したものと同じものを意味する。
 一般式(1)で表される化合物の具体例としては、例えば下記の1,3-ビス-[4-(3-アクリロイルオキシプロピルオキシ)ベンゾイルオキシ]-5-メチルベンゼン(2)、1,2-ビス-[4-(3-アクリロイルオキシプロピロキシオキシ)ベンゾイルオキシ]-4-メチルベンゼン(3)などが挙げられる。下記の化合物は、新規化合物である。
Figure JPOXMLDOC01-appb-C000008
(一般式(1)で表される化合物の製法)
 一般式(1)で表される化合物は、例えば、以下の方法で製造することができる。まず、中間体1を合成し、これから中間体2を合成した後に、中間体2を反応させて一般式(1)で表される化合物を得る。
[中間体1の合成]
 まず、4-ヒドロキシ安息香酸メチルなどの4-ヒドロキシ安息香酸エステルにクロロプロパノールなどのハロヒドリンを反応させて、中間体1を合成する。
Figure JPOXMLDOC01-appb-C000009
 式中、RはDのカルボキシル基と結合してエステルを形成している。また、Hrは、塩素、臭素、ヨウ素などのハロゲンを意味する。
[中間体2の合成]
 中間体1とアクリル酸メチルなどの不飽和カルボン酸エステルなどを反応させて、中間体2を合成する。中間体1と反応する化合物を選択することで、本発明の一般式(1)で表される化合物の両端に導入される重合性基を変更することができる。
Figure JPOXMLDOC01-appb-C000010
 式中、RはA1のカルボキシル基と結合してエステルを形成しており、たとえば、中間体1のヒドロキシル基とのあいだで、エステル交換反応が行われる。
[一般式(1)で表される化合物]
 上記中間体2と置換基を有していてもよい1,2-フェニレンまたは1,3-フェニレンとを反応させて、一般式(1)で表される化合物を得る。この場合に、中間体2として、異なる重合性基を有するものを併用すれば、1,2-フェニレンまたは1,3-フェニレンに非対称の重合性基を導入することができる。
Figure JPOXMLDOC01-appb-C000011
(モノマー/液晶混合材料)
 本発明のモノマー/液晶混合材料は、モノマーとして上記一般式(1)で表される化合物と、重合性基を持たずかつネマチック相、カイラルネマチック相またはブルー相を示す液晶組成物を含む混合材料である。本発明のモノマー/液晶混合材料は、モノマーとして一般式(1)で表される化合物以外の重合性液晶性化合物をさらに含むことが好ましい。一般式(1)で表される化合物は、重合前のモノマー/液晶混合材料状態でのブルー相発現温度範囲の拡大に効果を示す。一方、一般式(1)で表される化合物と一般式(1)で表される化合物以外の重合性液晶性化合物とを併用すると、重合前のブルー相の温度範囲の拡大に加えて、重合後のブルー相に対し優れた高分子安定化効果が得られる。
 一般式(1)で表される化合物以外の重合性液晶性化合物としては、特に制限はされず、公知の重合性液晶性化合物を用いることができる。本明細書で、「重合性液晶性化合物」とは、重合性官能基を有する液晶性化合物をいう。また、重合性液晶性化合物は、光重合型であることが好ましい。例えば、重合性液晶性化合物の例としては、下記式で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 一般式(1)で表される化合物は、一般式(1)で表される化合物以外の重合性液晶性化合物に対して、好ましくは2~8質量%、より好ましくは4~6質量%添加すればよい。一般式(1)で表される化合物の添加量が2質量%より少ないとブルー相の温度範囲を広げることができないおそれがある。また、一般式(1)で表される化合物の添加量が8質量%より多いと高分子安定化効果が低下するおそれがある。
 本発明のモノマー/液晶混合材料は、低分子液晶性化合物、非液晶性モノマー、カイラル剤、光重合開始剤などをさらに含む。
(液晶組成物)
 本発明のモノマー/液晶混合材料および高分子/液晶複合材料を構成する液晶組成物は、低分子液晶性化合物にカイラル剤を組合せた組成物であって、その構造中に重合性の官能基を含まない。本発明においては低分子液晶性化合物とカイラル剤を組合せた組成物を広義にカイラルネマチック液晶として扱い、該液晶組成物が示す液晶相をカイラルネマチック相とする。
 本発明において液晶組成物は、少なくとも室温でカイラルネマチック相またはブルー相(BP)を示し、最も好ましい組成物はBPを示す液晶組成物である。ここで、室温とは、10~45℃を意味する。
 本発明において液晶組成物がBPを示すには、カイラルネマチック液晶において、らせんピッチが500nm以下であることが好ましい。BPが発現することは偏光顕微鏡による特徴的な小板状組織の観察や反射スペクトルの測定による小板状組織に対応する波長に現れるピークによって確認できる。
 液晶組成物を構成する低分子液晶性化合物としては、例えば、ネマチック性液晶性化合物、スメクチック性液晶性化合物、ディスコチック性液晶性化合物が挙げられ、ネマチック性液晶性化合物が好ましい。低分子液晶性化合物は1種を用いてもよいが、種々の特性を最適化するためには2種以上の低分子液晶性化合物を用いるのが好ましい。2種以上の低分子液晶性化合物を用いる場合には、混合した後にネマチック液晶相を示すことが好ましい。2種以上の低分子液晶性化合物の混合割合は、使用する低分子液晶性化合物の種類等により、適宜選択すればよい。
 低分子液晶性化合物の具体例としては、ビフェニル系液晶性化合物、ターフェニル系液晶性化合物、トラン系液晶性化合物が挙げられる。
 カイラル剤としては、液晶性化合物であっても非液晶性化合物であっても良い。カイラル剤が有する不斉構造としては、不斉炭素原子、軸不斉、面不斉のいずれでもよいが、らせん誘起力の観点からは軸不斉を有する化合物が好ましい。例えば、イソソルビトール誘導体、ビナフトール誘導体、アトロプ異性体が好ましく挙げられる。
 カイラル剤の添加量は、低分子液晶性化合物およびカイラル剤の組み合わせにより所望のらせんピッチとなるように適宜決定できるが、液晶材料中に20質量%以下、好ましくは1~10質量%とすることが好ましい。カイラル剤が20質量%より多いと、高分子/液晶複合材料としたときに、析出や相分離等により材料の特性に悪影響を及ぼす可能性があるため好ましくない。また、カイラル剤の添加量の下限は、所望のらせんピッチが得られる量であればよい。
 本発明のモノマー/液晶混合材料には、後述する本発明の高分子/液晶複合材料とした際の、耐久性、コントラストなどの更なる改善を目的として、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、ヘキシルアクリレート、ドデシルアクリレート、ステアリルアクリレート等のアルキルアクリレートや、対応するアルキルメタクリレート等の非液晶性単官能性モノマーなどからなる不斉構造を有さない非液晶性モノマーを適宜添加することもできる。非液晶性モノマーの添加量は、上記機能を発揮することができれば、特に制限されないが、例えば、複合材料中に、好ましくは5質量%以下、より好ましくは2~5質量%添加すればよい。
(高分子/液晶複合材料)
 本発明の高分子/液晶複合材料は、上記モノマー/液晶混合材料を重合することによって得ることができる。たとえば、上記一般式(1)で表される化合物と、一般式(1)で表される化合物以外の重合性液晶性化合物とを、重合性基を持たない液晶組成物中に分散して、後述する光学的に等方性の状態で、熱または光により重合することにより製造できる。このようにして得られた高分子/液晶複合材料は、液晶組成物中に高分子ネットワークとしての共重合体が形成されており、この高分子ネットワークが、液晶組成物中の液晶性化合物の重合時における配列秩序構造、すなわちブルー相の熱力学的安定性を向上し、該配列秩序構造の利用可能な温度範囲を拡大することを可能とする。
 上記一般式(1)で表される化合物と一般式(1)で表される化合物以外の重合性液晶性化合物とからなるモノマーの配合割合が多いほど、高分子/液晶複合材料としたときの耐久性は向上するが、同時に駆動電圧の上昇を招くため、耐久性を損なわない範囲では少ないほど好ましく、得られる高分子/液晶複合材料の総量に対して1~40質量%となるような割合にすることが好ましく、得られる高分子/液晶複合材料を表示素子等として用いる場合には、実用的には得られる上記一般式(1)で表される化合物と一般式(1)で表される化合物以外の重合性液晶性化合物との合計量は、高分子/液晶複合材料の5~15質量%となるような割合にすることがより好ましい。従って、液晶組成物の配合割合は、得られる高分子/液晶複合材料の総量に対して、好ましくは99~60質量%、より好ましくは95~85質量%となるような割合にすることができる。なお、本発明において、液晶組成物の含有量というときは、低分子液晶のみを用いるときは、低分子液晶の配合割合を、低分子液晶とカイラル剤を併用する場合は、低分子液晶とカイラル剤の合計量を意味する。
 重合にあたっては、上記一般式(1)で表される化合物と一般式(1)で表される化合物以外の重合性液晶性化合物との反応性に応じて、別途光重合開始剤および熱重合開始剤を用いることができる。光重合開始剤および熱重合開始剤としては、特に制限はなく、公知のものを用いればよい。
 光重合開始剤としては、例えば、アセトフェノン類、ベンゾフェノン類、ベンゾイン類、ベンジル類、ミヒラーケトン類、ベンゾインアルキルエーテル類、ベンジルジメチルケタール類またはチオキサントン類が挙げられる。また、熱重合開始剤としては、例えば、過酸化物、アゾ化合物が挙げられる。
 重合開始剤の添加量は、一般式(1)で表される化合物と一般式(1)で表される化合物以外の重合性液晶性化合物の反応性に応じて適宜決定できるが、あまり過剰に加えると好ましくない副反応等が起こる可能性があるため、一般式(1)で表される化合物と一般式(1)で表される化合物以外の重合性液晶性化合物と、重合開始剤との合計量に対して5質量%以下とすることが好ましい。
 重合温度は、一般式(1)で表される化合物と一般式(1)で表される化合物以外の重合性液晶性化合物との混合物が、重合開始時において光学的等方性を示す温度とすることがよく、BPを示す温度とすることが最も好ましい。このような温度は、該混合物の種類および組み合わせに応じて適宜選択することができる。
 本発明の高分子/液晶複合材料は、光学的に等方性の状態、すなわちBPまたは等方相の状態で重合を行うことにより得られ、高分子安定化ブルー相とも言う。ここで、光学的に等方性の状態とは、高分子/液晶複合材料中の配列秩序構造が光学オーダー以下であり、巨視的な異方性を有さないことをいう。液晶性化合物において、このような光学的に等方性を示す状態としては、BPあるいは等方相が挙げられる。
 一般式(1)で表される化合物と一般式(1)で表される化合物以外の重合性液晶性化合物と液晶組成物との混合物が、重合する温度において光学的等方性を示すことは、例えば、BPを示していることは前述したように偏光顕微鏡による特徴的な小板状組織の観察や、反射スペクトルの測定による小板状組織に対応する波長に現れるピークによって確認でき、等方相を示す場合においては偏光顕微鏡観察によって異方性が観察されないことなどによって確認することができる。
 上記方法により確認された該混合物が光学的に等方性の状態にある温度において、光または熱によって該混合物中の一般式(1)で表される化合物と一般式(1)で表される化合物以外の重合性液晶性化合物を重合させることで本発明の複合材料が製造できる。
 本発明では、本発明の複合材料における重合時の温度範囲が拡大される。例えば、上記した一般式(1)で表される化合物以外の重合性液晶性化合物を用いた場合、通常複合材料のBPを呈する温度範囲は3.5℃程度である。本発明の一般式(1)で表される化合物を使用することで、この温度範囲が、1~2℃広がる。この結果、大画面であっても、厳密な温度管理をせずに、均質なBP相が得られ、高分子/液晶複合材料を工業的に製造することができる。また、特殊な重合性液晶性化合物を用いないので、製造コストを抑えることもできる。
 本発明の高分子/液晶複合材料は電気光学効果に基づく光変調素子や光スイッチング等の電気光学素子として利用することができる。これら光変調素子としての最適な利用の形態は、それぞれの用途に応じて適宜構成され、特に限定されない。
 例えば、光変調あるいは光スイッチングのための基本的な素子としては、本発明の複合材料を、電極付基板で挟持させてなるもの、あるいは櫛型電極を有する基板と電極を有しない基板で挟持させてなるものが挙げられ、本発明の液晶表示素子も好ましく挙げられる。
 本発明の液晶表示素子は、少なくとも一方が透明な一対の基板と、該一対の基板の少なくとも一方に形成された電極と、該一対の基板間に挟持された液晶層と、該一対の基板の一方の外側に形成された偏光板と、前記電極を介して液晶層に電界を印加する電界印加手段とを備え、前記液晶層が、本発明の複合材料を含むものである。この時、基板上の液晶分子を水平または垂直方向に配向させる目的で、ポリイミド等からなる配向膜を用いてもよい。
 本発明の高分子/液晶複合材料は、液晶表示素子などの光学素子に用いた場合、通常の重合性液晶性化合物のみを用いた場合に比べ、透過率が高く、高いコントラスト比を示す。また、一般式(1)で表される化合物を用いず、従来の本発明の重合性液晶性化合物のみを用いた場合と同等の応答速度を示す。したがって、本発明の高分子/液晶複合材料は、液晶表示素子のような光学素子に有用に利用することができる。
 以下、実施例に基づいて、本発明を詳細に説明するが、本発明は実施例に限定されるものではない。
(実施例1)1,3-ビス-[4-(3-アクリロイルオキシプロピルオキシ)ベンゾイルオキシ]-5-メチルベンゼン(KM3AA006)の合成
(中間体1の合成)
 撹拌装置、還流冷却管、滴下ロート、温度計を備えた反応容器に4-ヒドロキシ安息香酸メチル152g(1mol)、炭酸カリウム158g、トリエチルアンモニウムクロライド7.6g、ジエチレングリコールジメチルエーテル600gを仕込み室温で撹拌したのち、120℃まで加熱した。
 加熱した溶液に滴下ロートから3-クロロプロパノール104g(1.1mol)を1時間かけて滴下し、その後6時間反応させた。反応後の溶液は100℃まで温度を下げたのち、20%水酸化ナトリウム水溶液400gを加え3時間撹拌した。反応液は室温まで冷却後、10%塩酸水溶液でpH3に調整し、テトラヒドロフラン440gと水270gを加え1時間撹拌した。撹拌の後、水相を分液し、有機相は、減圧下55℃で濃縮した。濃縮により得られた白色スラリー液をろ別し、トルエンついでヘキサンで洗浄後、減圧乾燥を行い、中間体1を128g得た。
Figure JPOXMLDOC01-appb-C000013
(中間体2の合成)
 撹拌装置、還流冷却管、蒸留塔、分留管、温度計を備えた反応容器に中間体1を98g(500mmol)、アクリル酸メチル1290g、ヘキサン75g、70%メタンスルホン酸14g、ブチルヒドロキシトルエン1.2gを仕込み、撹拌下70~80℃で反応させた。反応は、蒸留塔頂から反応により生成するメタノールを分留管に抜き出し、メタノールの生成が無くなるまで行った。反応液は室温まで冷却後、分液ロートに移し、水200mlで水相のpHが3になるまで洗浄を行った。有機相はトルエン100gを加えた後、常圧下65~75℃で濃縮し、スラリー液を得た。スラリー液は、ろ別後、トルエンついでヘキサンで洗浄後、減圧乾燥し、中間体2を94g得た。
Figure JPOXMLDOC01-appb-C000014
(1,3-ビス-[4-(3-アクリロイルオキシプロピルオキシ)ベンゾイルオキシ]-5-メチルベンゼン(KM3AA006)の合成)
 攪拌機、還流冷却管、温度計を備えた反応器に中間体2を50g(20mmol)、ジメチルアミノピリジン2g、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩51g、塩化メチレン225gを仕込み撹拌下、氷冷し、5-メチルレゾルシノール10gを少量ずつ加えた。その後、室温で6時間反応させた。反応液は、10%塩酸水溶液130gで2回洗浄した。有機相を減圧下に濃縮し、得られた残渣をアセトン/メタノール混合溶媒で再結晶することにより、目的物KM3AA006を82g得た。
Figure JPOXMLDOC01-appb-C000015
物性値
 1H-NMR(測定溶媒:重ジメチルスルホキシド):2.09~2.13(m,4H),2.36(s,3H),4.13(d,4H),4.28(d,4H),5.93(d,2H),6.18(dd,2H),6.33(d,2H),7.03(s,3H),7.11(d,4H),8.05(d,4H)
(実施例2)1,2-ビス-[4-(3-アクリロイルオキシプロピロキシオキシ)ベンゾイルオキシ]-4-メチルベンゼン(KM3AA007)の合成
 実施例1の5-メチルレゾルシノールに代えて、4-メチルカテコールを用いる以外は、同様の操作を行い、目的物KM3AA007を84.8g得た。
Figure JPOXMLDOC01-appb-C000016
 物性値
 1H-NMR(測定溶媒:重ジメチルスルホキシド):2.02~2.09(m,4H),2.36(s,3H),4.09~4.12(m,4H),4.22~4.25(m,4H),5.91(d,2H),6.17(dd,2H),6.32(d,2H),6.96~6.99(m,4H),7.18(dd,1H),7.25(d,1H),7.31(d,1H),7.86~7.90(m,4H)
(実施例3)
 液晶組成物としてフッ素系混合液晶JC-1041XX(JNC株式会社製)46.25質量%、4-シアノ-4'-ペンチルビフェニル(5CB)46.25質量%、カイラル化合物2,5-ビス-[4'-(ヘキシルオキシ)-フェニル-4-カルボニル]-1,4;3,6-ジアンハイドライド-D-ソルビトール(ISO-(6OBA)2)7.5質量%を系全体が等方相を示す温度で均一に混合し、液晶組成物を調製した。
 液晶組成物92質量%、ラウリルアクリレート3.84質量%、実施例1で得たKM3AA006 3.84質量%、光重合開始剤である2,2'-ジメトキシフェニルアセトフェノン(DMPAP)0.32質量%を均一に混合し、光重合性モノマー/液晶混合材料を得た。
(実施例4)
 実施例3のKM3AA006 3.84質量%をRM-257 1.92質量%とKM3AA006 1.92質量%の混合物に変えた以外は同様の操作を行った。
(実施例5)
 実施例3のKM3AA006 3.84質量%をRM-257 2.69質量%とKM3AA006 1.15質量%の混合物に変えた以外は同様の操作を行った。
(実施例6)
 実施例3のKM3AA006 3.84質量%をRM-257 3.46質量%とKM3AA006 0.38質量%の混合物に変えた以外は同様の操作を行った。
(実施例7)
 実施例3のラウリルアクリレート3.84質量%を2.30質量%に、KM3AA006 3.84質量%を5.38質量%に変えた以外は同様の操作を行った。
(比較例1)
 実施例3のKM3AA006 3.84質量%をRM-257 3.84質量%に変えた以外は実施例3と同様の操作を行った。
Figure JPOXMLDOC01-appb-C000017
(実施例8)
 実施例3のKM3AA006 3.84質量%をKM3AA007 3.84質量%に変えた以外は実施例3と同様の操作を行った。
(実施例9)
 実施例3のKM3AA006 3.84質量%をRM-257 3.46質量%とKM3AA007 0.38質量%の混合物に変えた以外は実施例3と同様の操作を行った。
<光重合前のブルー相液晶発現温度幅の評価>
 実施例3~9および比較例1で得た光重合性モノマー/液晶混合材料を、配向処理のされていない一対のガラス基板(基板間距離10μm)で構成される評価用セルに充填し、偏光子と検光子を直交させた偏光顕微鏡を用い、0.5℃毎分の昇温速度でブルー相発現温度幅を確認した。
 その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000018
 表1から、本発明のモノマー/液晶混合材料を用いるとブルー相発現温度範囲が広がることがわかる。
<光重合による高分子安定化ブルー相液晶の調製と電気光学特性の評価>
 実施例3~9および比較例1で得た光重合性モノマー/液晶混合材料を配向処理のされていない櫛形電極基板とガラス基板とで構成される評価用セル(基板間距離10μm)に充填し、ブルー相が発現する温度を保持した状態で、紫外線(紫外線強度1.5mWcm-2、365nm)を20分間照射した。
 得られた高分子安定化ブルー相液晶サンプル(高分子/液晶複合材料)を図1に示した光学系に配置した。サンプルに矩形波交流電界(周波数1KHz)を印加して印加電界に対する透過光強度を測定した。その結果を表2および図2に示す。
Figure JPOXMLDOC01-appb-T000019
 図2は、本発明の実施例6、9と比較例1の高分子/液晶複合材料を用いた場合の印加電界に対する透過光強度の関係を示すグラフである。図中、横軸は印加電圧(V)を、縦軸は透過率(%)を、●は実施例6を、△は実施例9を、■は比較例1をそれぞれ示す。
 表2および図2から、本発明の高分子/液晶複合材料は、比較例の高分子/液晶複合材料に比べ、印加電圧に対する透過光強度が上昇していることがわかる。したがって、本発明の高分子/液晶複合材料を用いると、透過光強度が高く、コントラスト比が高い光学素子が提供されることがわかる。

Claims (6)

  1.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、A1およびA2は、それぞれ互いに独立に、重合性基を表し、
    1およびS2は、メチレン基を表し、
    mおよびnは、それぞれ互いに独立に、1~20の整数を表し、
    Bは、単結合または酸素原子を表し、
    Dは、1位または4位にカルボキシル基を有する1,4-フェニレン基(ただし、1個以上の水素原子は、F、Cl、Br、炭素数1~8のアルキル基、炭素数1~3の直鎖状フルオロアルキル基、炭素数1~3の直鎖状フルオロアルコキシル基、シアノ基で置換されていてもよい)を表し、
    Qは、1,2-フェニレンまたは1,3-フェニレン(ただし、1個以上の水素原子は、F、Cl、Br、炭素数1~8のアルキル基、炭素数1~3の直鎖状フルオロアルキル基、炭素数1~3の直鎖状フルオロアルコキシル基、シアノ基で置換されていてもよい)を表す)
  2.  下記一般式(1)で表される化合物を含むモノマー/液晶混合材料。
    Figure JPOXMLDOC01-appb-C000002
    (式中、A1およびA2は、それぞれ互いに独立に、重合性基を表し、
    1およびS2は、メチレン基を表し、
    mおよびnは、それぞれ互いに独立に、1~20の整数を表し、
    Bは、単結合または酸素原子を表し、
    Dは、1位または4位にカルボキシル基を有する1,4-フェニレン基(ただし、1個以上の水素原子は、F、Cl、Br、炭素数1~8のアルキル基、炭素数1~3の直鎖状フルオロアルキル基、炭素数1~3の直鎖状フルオロアルコキシル基、シアノ基で置換されていてもよい)を表し、
    Qは、1,2-フェニレンまたは1,3-フェニレン(ただし、1個以上の水素原子は、F、Cl、Br、炭素数1~8のアルキル基、炭素数1~3の直鎖状フルオロアルキル基、炭素数1~3の直鎖状フルオロアルコキシル基、シアノ基で置換されていてもよい)を表す)
  3.  一般式(1)で表される化合物以外の重合性液晶性化合物を含む請求項2記載のモノマー/液晶混合材料。
  4.  さらに、低分子液晶性化合物、非液晶性モノマー、カイラル剤、および光重合開始剤を含む請求項2または3記載のモノマー/液晶混合材料。
  5.  請求項2~4のいずれかに記載のモノマー/液晶混合材料の光重合物である高分子/液晶複合材料。
  6.  少なくとも一方が透明な一対の基板と、該一対の基板の少なくとも一方に形成された電極と、該一対の基板間に挟持された液晶層と、該一対の基板の一方の外側に形成された偏光板と、前記電極を介して液晶層に電界を印加する電界印加手段とを備えた液晶表示素子であって、
     前記液晶層が、請求項5記載の高分子/液晶複合材料を含む液晶表示素子。
PCT/JP2013/063625 2012-05-17 2013-05-16 新規化合物、重合性液晶性化合物、モノマー/液晶混合材料および高分子/液晶複合材料 WO2013172401A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014515662A JPWO2013172401A1 (ja) 2012-05-17 2013-05-16 新規化合物、重合性液晶性化合物、モノマー/液晶混合材料および高分子/液晶複合材料
KR1020147033694A KR20150013217A (ko) 2012-05-17 2013-05-16 신규 화합물, 중합성 액정성 화합물, 모노머/액정 혼합재료 및 고분자/액정 복합재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012113550 2012-05-17
JP2012-113550 2012-05-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/382,940 A-371-Of-International US10065559B2 (en) 2012-03-08 2013-02-15 Attachment structure of lighting device
US16/042,656 Continuation US10315562B2 (en) 2012-03-08 2018-07-23 Attachment structure of lighting device

Publications (1)

Publication Number Publication Date
WO2013172401A1 true WO2013172401A1 (ja) 2013-11-21

Family

ID=49583805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063625 WO2013172401A1 (ja) 2012-05-17 2013-05-16 新規化合物、重合性液晶性化合物、モノマー/液晶混合材料および高分子/液晶複合材料

Country Status (4)

Country Link
JP (1) JPWO2013172401A1 (ja)
KR (1) KR20150013217A (ja)
TW (1) TW201412703A (ja)
WO (1) WO2013172401A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101737990B1 (ko) * 2014-03-07 2017-05-22 금오공과대학교 산학협력단 비대칭성 이관능기를 갖는 굽은핵 반응성 메소젠 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06507987A (ja) * 1992-04-27 1994-09-08 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 電気光学液晶システム
JPH08104870A (ja) * 1994-09-12 1996-04-23 F Hoffmann La Roche Ag 光重合性液晶
JPH09104656A (ja) * 1994-10-13 1997-04-22 Fuji Photo Film Co Ltd 液晶組成物およびそれからなる光学的異方性材料および化合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06507987A (ja) * 1992-04-27 1994-09-08 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 電気光学液晶システム
JPH08104870A (ja) * 1994-09-12 1996-04-23 F Hoffmann La Roche Ag 光重合性液晶
JPH09104656A (ja) * 1994-10-13 1997-04-22 Fuji Photo Film Co Ltd 液晶組成物およびそれからなる光学的異方性材料および化合物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C. BAILEY ET AL.: "Large Flow Birefringence of Nematogenic Bent-Core Liquid Crystals", PHYSICAL REVIEW LETTERS, vol. 103, no. 23, 2009, pages 237803/1 - 237803/4 *
CERVINI, RAOUL ET AL.: "Aligned silane-treated MWCNT/liquid crystal polymer films", NANOTECHNOLOGY, vol. 19, no. 17, 2008, pages 175602/1 - 175602/ 10 *
MARTIN CHAMBERS ET AL.: "Calamitic Liquid- Crystalline Elastomers Swollen in Bent-Core Liquid-Crystal Solvents", ADVANCED MATERIALS, vol. 21, no. 16, 2009, pages 1622 - 1626 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101737990B1 (ko) * 2014-03-07 2017-05-22 금오공과대학교 산학협력단 비대칭성 이관능기를 갖는 굽은핵 반응성 메소젠 및 이의 제조방법

Also Published As

Publication number Publication date
TW201412703A (zh) 2014-04-01
KR20150013217A (ko) 2015-02-04
JPWO2013172401A1 (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
CN107406407B (zh) 液晶组合物、高分子/液晶复合材料、光元件、化合物
JP6248927B2 (ja) 重合性基を4つ有する化合物、液晶組成物および液晶表示素子
JP6098415B2 (ja) 2、2−ジフルオロビニルオキシ基または1、2、2−トリフルオロビニルオキシ基を有する化合物、液晶組成物および液晶表示素子
KR20100068380A (ko) 액정성 화합물, 액정 조성물 및 액정 표시 소자
JP6299969B2 (ja) 共役結合を有する重合性化合物、液晶組成物および液晶表示素子
CN111465592A (zh) 具有甲氧基甲基丙烯酸基的聚合性化合物、液晶组合物及液晶显示元件
JPWO2014192627A1 (ja) 液晶媒体、光素子および液晶化合物
TWI550074B (zh) 聚合性化合物、組成物、聚合物與其用途、以及液晶顯示元件
TWI694140B (zh) 聚合性極性化合物、液晶組成物及液晶顯示元件
CN109486499A (zh) 具有氟联苯基的介电各向异性为负的液晶性化合物、液晶组合物及液晶显示元件
CN113166035A (zh) 化合物、液晶组合物及液晶显示元件
TW201544580A (zh) 雙反應性介晶化合物
JP2007182423A (ja) 側方α−置換アクリレート化合物およびその重合体
JP6179373B2 (ja) 液晶媒体、光素子および液晶化合物
WO2014065293A1 (ja) 液晶化合物、液晶媒体および光素子
JP2011020981A (ja) 重合性化合物及び当該化合物の製造中間体
KR101737990B1 (ko) 비대칭성 이관능기를 갖는 굽은핵 반응성 메소젠 및 이의 제조방법
JP6115303B2 (ja) 隣接基としてカルボニル基を有するフェノール化合物およびその用途
CN108473404B (zh) 具有2原子键结基与2,3-二氟亚苯基的4环液晶性化合物、液晶组合物和液晶显示元件
WO2013172401A1 (ja) 新規化合物、重合性液晶性化合物、モノマー/液晶混合材料および高分子/液晶複合材料
CN109415283B (zh) 具有萘环的化合物、液晶组合物、及液晶显示元件
CN110914233A (zh) 聚合性极性化合物、液晶组合物及液晶显示元件
WO2018168721A1 (ja) 液晶組成物および液晶表示素子
KR101745371B1 (ko) 하키스틱형 반응성 메소겐 화합물 및 그 제조방법
JP4402413B2 (ja) U字型化合物およびこれを含む液晶組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515662

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147033694

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13790517

Country of ref document: EP

Kind code of ref document: A1