WO2013172210A1 - 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池 - Google Patents

光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池 Download PDF

Info

Publication number
WO2013172210A1
WO2013172210A1 PCT/JP2013/062775 JP2013062775W WO2013172210A1 WO 2013172210 A1 WO2013172210 A1 WO 2013172210A1 JP 2013062775 W JP2013062775 W JP 2013062775W WO 2013172210 A1 WO2013172210 A1 WO 2013172210A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
carbon atoms
alkyl group
dye
Prior art date
Application number
PCT/JP2013/062775
Other languages
English (en)
French (fr)
Inventor
駿河 和行
岡地 誠
高橋 岳洋
育夫 木村
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Priority to JP2013529891A priority Critical patent/JP5363690B1/ja
Publication of WO2013172210A1 publication Critical patent/WO2013172210A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • C09B23/0058Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof the substituent being CN
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0075Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of an heterocyclic ring
    • C09B23/0083Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of an heterocyclic ring the heteroring being rhodanine in the chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/04Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups one >CH- group, e.g. cyanines, isocyanines, pseudocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • C09B23/145Styryl dyes the ethylene chain carrying an heterocyclic residue, e.g. heterocycle-CH=CH-C6H5
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • C09B23/145Styryl dyes the ethylene chain carrying an heterocyclic residue, e.g. heterocycle-CH=CH-C6H5
    • C09B23/146(Benzo)thiazolstyrylamino dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • C09B23/148Stilbene dyes containing the moiety -C6H5-CH=CH-C6H5
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a sensitizing dye used in a dye-sensitized photoelectric conversion element, a photoelectric conversion element using the same, and a dye-sensitized solar cell.
  • solar cells using photoelectric conversion elements that convert solar energy into electrical energy have been attracting attention.
  • inorganic solar cells such as single crystal, polycrystal, amorphous silicon, gallium arsenide, cadmium sulfide, indium copper selenide and other compound semiconductors have been mainly studied, some of which are for residential use. Have been put to practical use.
  • these inorganic solar cells have problems such as high manufacturing costs and difficulty in securing raw materials.
  • organic solar cells using organic materials are said to be advantageous in terms of manufacturing cost, increase in area, and securing raw materials.
  • a Schottky junction type organic solar cell using generation of electromotive force at a contact interface between an organic semiconductor and a metal has been known, but it is recognized that there is a limit in improving photoelectric conversion efficiency. It came to be. Therefore, a pn heterojunction organic solar cell using a contact interface between two organic semiconductors or a contact interface between an organic semiconductor and an inorganic semiconductor has been expected.
  • the photoelectric conversion efficiency of these organic solar cells is significantly lower than that of inorganic solar cells, and there is a problem that durability is poor.
  • Non-Patent Document 1 a dye-sensitized solar cell exhibiting high photoelectric conversion efficiency was reported by Professor Gretzel of Lausanne University of Technology in Switzerland (for example, Non-Patent Document 1).
  • the proposed dye-sensitized solar cell is a wet solar cell composed of a titanium oxide porous thin film electrode, a ruthenium complex dye, and an electrolytic solution.
  • Dye-sensitized solar cells have a simpler device structure than other solar cells, and can be manufactured without large-scale manufacturing facilities, and are comparable to amorphous silicon solar cells already in practical use. In recent years, it has attracted attention as a next-generation solar cell because high photoelectric conversion efficiency is expected.
  • ruthenium complex As the sensitizing dye used in the dye-sensitized solar cell, from the point of photoelectric conversion efficiency, ruthenium complex is considered to be the most dominant, but ruthenium is a noble metal, which is disadvantageous in terms of production cost, and When practical use requires a large amount of ruthenium complex, resource constraints also become a problem. Therefore, research on dye-sensitized solar cells using organic dyes that do not contain noble metals such as ruthenium as sensitizing dyes has been actively conducted.
  • Patent Documents 1 to 3 have the advantages of being inexpensive, having a large extinction coefficient, and capable of controlling absorption characteristics due to the diversity of structures, in terms of photoelectric conversion efficiency and stability over time, The present situation is that a product that sufficiently satisfies the required characteristics has not been obtained.
  • the problem to be solved by the present invention is to provide a sensitizing dye having a novel structure capable of efficiently taking out an electric current, and further using the sensitizing dye, a photoelectric conversion element having good photoelectric conversion and a dye sensitization It is to provide a solar cell.
  • the present invention has the following contents.
  • the present invention provides a sensitizing dye for photoelectric conversion represented by the following general formula (1).
  • R 1 and R 2 each represents an optionally substituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted aryl group.
  • R 3 represents an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • R 4 to R 7 may be the same or different and each represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • m represents an integer of 2 to 8
  • n represents an integer of 1 to 3. When n is 2 or 3, a plurality of R 4 to R 7 may be the same as or different from each other.
  • A represents a monovalent group represented by any one of the following general formulas (2) to (4).
  • R 8 represents an acidic group.
  • R 9 represents an alkyl group having 1 to 6 carbon atoms having an acidic group as a substituent, or an unsubstituted alkyl group having 1 to 6 carbon atoms.
  • R 10 to R 13 may be the same or different, and may have a hydrogen atom, a halogen atom, an acidic group, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or a substituent. Or an alkenyl group having 2 to 6 carbon atoms.
  • at least one of R 9 to R 13 is an alkyl group having 1 to 6 carbon atoms having an acidic group as a substituent (in the case of R 9 ) or an acidic group (in the case of R 10 to R 13 ). It shall be.
  • R 10 to R 13 may be bonded to each other through a single bond between adjacent groups to form a ring.
  • X represents a sulfur atom, an oxygen atom, or C (CH 3 ) 2 .
  • Y represents an ani
  • R 14 and R 15 may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms having at least two acidic groups as a substituent, or an unsubstituted alkyl group having 1 to 6 carbon atoms. To express. However, at least one of R 14 and R 15 is an alkyl group having 1 to 6 carbon atoms having at least two acidic groups as substituents. p represents an integer of 0-2. When p is 2, two R 14 may be the same as or different from each other.
  • R 1 is preferably a substituted or unsubstituted aryl group.
  • m is preferably 3 or 4.
  • R 2 and R 3 are preferably methyl groups.
  • R 4 to R 7 are preferably hydrogen atoms and n is preferably 1.
  • the present invention also provides a dye-sensitized photoelectric conversion element in which at least a semiconductor layer and an electrolyte layer are provided between a pair of opposing electrodes, and the photoelectric conversion sensitizing dye is supported on the semiconductor layer.
  • a photoelectric conversion element is provided.
  • the electrolyte layer preferably contains 4-tert-butylpyridine.
  • the present invention also provides a dye-sensitized solar cell having a photoelectric conversion element, wherein the photoelectric conversion element is modularized and provided with predetermined electrical wiring.
  • the present invention it is possible to obtain a sensitizing dye for photoelectric conversion capable of efficiently taking out current. Moreover, by using the sensitizing dye for photoelectric conversion, a highly efficient and highly durable photoelectric conversion element and a dye-sensitized solar cell can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the photoelectric conversion elements of Examples 1 to 20 and Comparative Examples 1 to 4 of the present invention.
  • the sensitizing dye for photoelectric conversion of the present invention is used as a sensitizer in a dye-sensitized photoelectric conversion element.
  • a photoelectrode obtained by adsorbing a dye to a semiconductor layer on a conductive support and a counter electrode are arranged to face each other with an electrolyte layer interposed therebetween.
  • the sensitizing dye for photoelectric conversion represented by the general formula (1) will be specifically described, but the present invention is not limited thereto.
  • aryl group in the “substituted or unsubstituted aryl group” represented by R 1 or R 2 in the general formula (1) include carbons such as a phenyl group, a naphthyl group, an anthryl group, and a pyrenyl group. Examples thereof include aryl groups having 6 to 20 atoms.
  • the aryl group includes an aromatic hydrocarbon group and a condensed polycyclic aromatic group.
  • substituted or unsubstituted aryl group represented by R 1 or R 2 in the general formula (1)
  • substituents such as fluorine atom, chlorine atom and bromine atom
  • a linear or branched alkyl group having 1 to 6 carbon atoms such as a group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, hexyl group
  • methoxy group, ethoxy group A linear or branched alkoxy group having 1 to 6 carbon atoms such as propoxy group, t-butoxy group, pentyloxy group; dimethylamino group, diethylamino group, ethylmethylamino group, methylpropylamino group, di-t -Straight-chain or branched alkyl groups having 1 to 6 carbon atoms, such as butylamino groups
  • alkyl group having 1 to 6 carbon atoms in the “optionally substituted alkyl group having 1 to 6 carbon atoms” represented by R 1 to R 7 in the general formula (1) is as follows: Specifically, a linear or branched alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, and n-hexyl group. Can give.
  • substituted alkyl group having 1 to 6 carbon atoms represented by R 1 to R 7 in the general formula (1)
  • substituents include a fluorine atom, Halogen atoms such as chlorine and bromine atoms; linear or branched alkoxy groups having 1 to 6 carbon atoms such as methoxy, ethoxy, propoxy, t-butoxy and pentyloxy; phenyl and naphthyl Aryl groups such as a group, anthryl group and pyrenyl group; a dimethylamino group, a diethylamino group, an ethylmethylamino group, a methylpropylamino group, a di-t-butylamino group, a diphenylamino group and the like, having 1 to 6 carbon atoms
  • a disubstituted amino group having a substituent selected from a linear or branched alkyl group, an aromatic hydrocarbon group, and a con
  • R 1 to R 7 are an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkyl having no substituent It is preferably a group (unsubstituted alkyl group).
  • A represents a monovalent adsorbing group represented by any one of the general formulas (2) to (4).
  • the “acidic group” represented by R 8 in the general formula (2) include a carboxyl group, a sulfonic acid group, a phosphoric acid group, a hydroxamic acid group, a phosphonic acid group, a boric acid group, a phosphinic acid group, and a silanol. Group. Among these, a carboxyl group or a phosphonic acid group is preferable, and a carboxyl group is more preferable.
  • alkyl group having 1 to 6 carbon atoms in the “alkyl group having 1 to 6 carbon atoms having an acidic group as a substituent” represented by R 9 in the general formula (3) is specifically methyl Examples thereof include straight-chain or branched alkyl groups having 1 to 6 carbon atoms such as a group, ethyl group, n-propyl group, isopropyl group, butyl group, t-butyl group and n-hexyl group. Among these, a linear or branched alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group or an ethyl group is more preferable.
  • the “acidic group” in the “alkyl group having 1 to 6 carbon atoms having an acidic group as a substituent” represented by R 9 in the general formula (3) include a carboxyl group, a sulfonic acid group, phosphorus Examples thereof include an acid group, a hydroxamic acid group, a phosphonic acid group, a boric acid group, a phosphinic acid group, and a silanol group. Among these, a carboxyl group or a phosphonic acid group is preferable, and a carboxyl group is more preferable.
  • the number of “acidic groups” may be one or more, it is preferably one.
  • the substitution position of the “acidic group” is preferably the terminal of the alkyl group.
  • alkyl group having 1 to 6 carbon atoms having an acidic group as a substituent represented by R 9 in the general formula (3) is a group having 1 to 6 carbon atoms having a carboxyl group or a phosphonic acid group as a substituent. 3 linear or branched alkyl groups are preferred, and a methyl group or ethyl group having a carboxyl group as a substituent is more preferred.
  • R 9 Specific examples of the “unsubstituted alkyl group having 1 to 6 carbon atoms” represented by R 9 in the general formula (3) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. And straight-chain or branched alkyl groups having 1 to 6 carbon atoms such as t-butyl group and n-hexyl group. Among these, a linear or branched alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group or an ethyl group is more preferable.
  • the “acidic group” represented by R 10 to R 13 in the general formula (3) include a carboxyl group, a sulfonic acid group, a phosphoric acid group, a hydroxamic acid group, a phosphonic acid group, a boric acid group, and a phosphinic acid.
  • a carboxyl group or a phosphonic acid group is preferable, and a carboxyl group is more preferable.
  • R 9 to R 13 is an alkyl group having 1 to 6 carbon atoms (in the case of R 9 ) or an acidic group (R 10 to R 13 ) having an acidic group as a substituent. 13 ).
  • R 9 is an unsubstituted alkyl group having 1 to 6 carbon atoms
  • at least one of R 10 to R 13 is an acidic group
  • all of R 10 to R 13 are not acidic groups
  • R 9 is an alkyl group having 1 to 6 carbon atoms having an acidic group as a substituent.
  • halogen atom represented by R 10 to R 13 in the general formula (3)
  • halogen atom represented by R 10 to R 13 in the general formula (3)
  • Specific examples of the “alkyl group having 1 to 6 carbon atoms” and the “alkenyl group having 2 to 6 carbon atoms” in the “2-6 alkenyl group” include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • a linear or branched alkyl group having 1 to 6 carbon atoms such as n-butyl group, t-butyl group, n-hexyl group; and vinyl group, allyl group, isopropenyl group, 2-butenyl group, Examples thereof include straight-chain or branched alkenyl groups having 2 to 6 carbon atoms such as 1-hexenyl group.
  • R 10 to R 13 may be bonded to each other through a single bond between adjacent groups to form a ring.
  • Specific examples of the “substituent” in “2 to 6 alkenyl group” include halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups such as methoxy group, ethoxy group and propoxy group; phenyl group, naphthyl group, Aryl groups such as anthryl group and pyrenyl group; linear or branched alkyl groups having 1 to 6 carbon atoms, such as dimethylamino group, diethylamino group, di-t-butylamino group, diphenylamino group, aromatic Examples thereof include a disubstituted amino group having a substituent selected from a hydrocarbon group and a condensed polycyclic aromatic group. Although the number of these substituents may be one or more, R
  • X represents a sulfur atom, an oxygen atom, or C (CH 3 ) 2 .
  • a sulfur atom or C (CH 3 ) 2 is preferable.
  • Y as the “anion” represented by Y in the general formula (3), specifically, iodide ion, bromide ion, chloride ion, hexafluorophosphate ion, tetrafluoroborate ion, perchlorine Acid ions can be raised.
  • iodide ion, bromide ion, hexafluorophosphate ion or perchlorate ion is preferable, and iodide ion or bromide ion is more preferable.
  • an alkyl group having 1 to 6 carbon atoms in “an alkyl group having 1 to 6 carbon atoms having at least two acidic groups as a substituent” represented by R 14 or R 15 in the general formula (4) Is specifically a straight-chain or branched group having 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group and n-hexyl group.
  • An alkyl group can be mentioned. Among these, a linear or branched alkyl group having 1 to 3 carbon atoms is preferable, an ethyl group or an n-propyl group is more preferable, and an ethyl group is particularly preferable.
  • the “acidic group” in the “alkyl group having 1 to 6 carbon atoms having at least two acidic groups as a substituent” represented by R 14 or R 15 in the general formula (4) is specifically a carboxyl group. Sulfonic acid group, phosphoric acid group, hydroxamic acid group, phosphonic acid group, boric acid group, phosphinic acid group, and the like. Among these, a carboxyl group or a phosphonic acid group is preferable, and a carboxyl group is more preferable.
  • the number of “acidic groups” is two or more, but preferably two.
  • the plurality of acidic groups may be the same or different.
  • the “alkyl group having 1 to 6 carbon atoms having at least two acidic groups as a substituent” represented by R 14 or R 15 in the general formula (4) is a carbon atom having a carboxyl group or a phosphonic acid group.
  • a linear or branched alkyl group of 1 to 3 is preferable, and an ethyl group or n-propyl group having a carboxyl group or a phosphonic acid group is more preferable.
  • a 1,2-dicarboxyethyl group or a 1,3-dicarboxypropyl group is more preferable, and a 1,2-dicarboxyethyl group is particularly preferable.
  • R 14 or R 15 in the general formula (4) examples include an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • straight-chain or branched alkyl groups having 1 to 6 carbon atoms such as t-butyl group and n-hexyl group.
  • a linear or branched alkyl group having 2 to 4 carbon atoms is preferable, a linear alkyl group having 2 to 4 carbon atoms is more preferable, and an ethyl group or an n-propyl group is more preferable.
  • An ethyl group is particularly preferred.
  • R 14 and R 15 are alkyl group having 1 to 6 carbon atoms having at least two acidic groups as substituents.
  • R 14 does not exist, so R 15 is an alkyl group having 1 to 6 carbon atoms having at least two acidic groups as substituents.
  • any one of the two R 14 and R 15 may be an alkyl group having 1 to 6 carbon atoms having at least two acidic groups as substituents.
  • R 1 is preferably a substituted or unsubstituted aryl group, and more preferably a substituted or unsubstituted phenyl group.
  • R 2 is preferably an unsubstituted alkyl group having 1 to 6 carbon atoms or an unsubstituted aryl group, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms or an unsubstituted phenyl group, and particularly preferably a methyl group.
  • R 3 is preferably an unsubstituted alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • R 4 to R 7 are preferably a hydrogen atom or a hexyl group, and more preferably a hydrogen atom.
  • m represents an integer of 2 to 8
  • the ring containing (CH 2 ) m is formed from m CH 2 (methylene group) and two carbon atoms on the indoline ring.
  • m is preferably an integer of 2 to 6, more preferably 3 (5-membered ring) or 4 (6-membered ring).
  • n represents an integer of 1 to 3, preferably 1 or 2, and more preferably 1.
  • R 9 is preferably an alkyl group having 1 to 3 carbon atoms having an acidic group as a substituent, and more preferably a methyl group or an ethyl group having a carboxyl group or a phosphonic acid group.
  • R 10 to R 13 are preferably a hydrogen atom, an acidic group, or an alkenyl group having 2 to 6 carbon atoms that may have a substituent, and may have a hydrogen atom, a carboxyl group, or a substituent. A good alkenyl group having 2 to 6 carbon atoms is more preferred.
  • p is an integer of 0 to 2, preferably 0 or 1.
  • the sensitizing dye for photoelectric conversion of the present invention represented by the general formula (1) is particularly efficient. Since a high photoelectric conversion element is obtained, it is preferable. Furthermore, the sensitizing dye for photoelectric conversion of the present invention represented by the general formula (1) can easily adsorb the sensitizing dye on the surface of the semiconductor layer by having a carboxyl group or a phosphonic acid group. This leads to improvement of photoelectric conversion characteristics.
  • the sensitizing dye for photoelectric conversion of the present invention represented by the general formula (1) includes all possible stereoisomers. Any isomer can be suitably used as a sensitizing dye for photoelectric conversion in the present invention.
  • the sensitizing dye for photoelectric conversion of the present invention when A is a monovalent group represented by the general formula (2) is represented by the following general formula (5) or (6). It is intended to include such compounds.
  • the sensitizing dye for photoelectric conversion of the present invention when A is a monovalent group represented by the general formula (4) and p is 0, the sensitizing dye for photoelectric conversion of the present invention has the following general formula ( The compound represented by 7) or (8) is included. In addition, it may be a mixture of two or more selected from these stereoisomers.
  • sensitizing dye for photoelectric conversion of the present invention represented by the general formula (1) are shown below, but the present invention is not limited thereto.
  • the following exemplary compounds show examples of possible stereoisomers, and include all other stereoisomers. Moreover, each may be a mixture of two or more stereoisomers.
  • the sensitizing dye for photoelectric conversion of the present invention can be synthesized using a known method.
  • A is a sensitizing dye for photoelectric conversion represented by the general formula (2) in the general formula (1)
  • it can be synthesized as follows.
  • a bromo compound (B-1) represented by the following general formula (B-1) and a boronic acid (B-2) represented by the following general formula (B-2) having a formyl group such as 4-formylphenylboronic acid -2) is used to carry out a cross-coupling reaction such as Suzuki coupling, whereby a formyl body (B-3) represented by the following general formula (B-3) can be obtained.
  • a sensitizing dye for photoelectric conversion of the present invention can be synthesized by performing a condensation reaction between the obtained formyl body (B-3) and cyanoacetic acid.
  • the sensitizing dye for photoelectric conversion in which A is represented by the general formula (3) or (4) in the general formula (1) can also be synthesized by the same method.
  • the bromo compound (B-1) represented by the general formula (B-1) can also be synthesized using a known method. For example, it can be synthesized by bromination of the corresponding 9-position hexahydrocarbazole substituted with an aryl group with bromine or N-bromosuccinimide.
  • the sensitizing dye for photoelectric conversion of the present invention may be used alone or in combination of two or more.
  • the sensitizing dye for photoelectric conversion of the present invention can be used in combination with other sensitizing dyes not belonging to the present invention.
  • Specific examples of other sensitizing dyes include ruthenium complexes, coumarin dyes, cyanine dyes, merocyanine dyes, rhodacyanine dyes, phthalocyanine dyes, porphyrin dyes, xanthene dyes, represented by the general formula (1).
  • Examples of the sensitizing dye other than the sensitizing dye for photoelectric conversion may be mentioned.
  • the amount of the other sensitizing dye used for the sensitizing dye for photoelectric conversion of the present invention is 10 to 200% by mass.
  • the content is 20 to 100% by mass.
  • a method for producing a dye-sensitized photoelectric conversion element is not particularly limited.
  • a semiconductor layer is formed on a conductive support (electrode), and the photoelectric conversion sensitizing dye of the present invention is formed on the semiconductor layer.
  • a method of adsorption is preferred.
  • a method for adsorbing the dye a method of immersing the semiconductor layer in a solution obtained by dissolving the dye in a solvent is generally used.
  • a glass substrate or a plastic substrate provided with a conductive layer having a conductive material on the surface can be used as the conductive support.
  • the conductive material include metals such as gold, silver, copper, aluminum and platinum, conductive transparent oxide semiconductors such as fluorine-doped tin oxide and indium-tin composite oxide, and carbon.
  • the semiconductor forming the semiconductor layer in the present invention include metals such as titanium oxide, zinc oxide, tin oxide, indium oxide, zirconium oxide, tungsten oxide, tantalum oxide, iron oxide, gallium oxide, nickel oxide, and yttrium oxide.
  • the aspect of the semiconductor layer in the present invention is not particularly limited, but is preferably a thin film having a porous structure composed of fine particles.
  • the semiconductor particle diameter is preferably 5 to 500 nm, more preferably 10 to 100 nm.
  • the thickness of the semiconductor layer is usually 2 to 100 ⁇ m, more preferably 5 to 20 ⁇ m.
  • a paste containing semiconductor fine particles is applied on a conductive substrate by a wet coating method such as a spin coating method, a doctor blade method, a squeegee method, or a screen printing method, and then a solvent or additive is baked.
  • a wet coating method such as a spin coating method, a doctor blade method, a squeegee method, or a screen printing method
  • a solvent or additive is baked.
  • examples thereof include, but are not limited to, a method for forming a film by removing the film, and a method for forming a film by sputtering, vapor deposition, electrodeposition, electrodeposition, microwave irradiation, and the like.
  • a commercially available product may be used as the paste containing semiconductor fine particles, or a paste prepared by dispersing a commercially available semiconductor fine powder in a solvent may be used.
  • the solvent used in preparing the paste include alcohol solvents such as water, methanol, ethanol, isopropyl alcohol, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, n-hexane, cyclohexane, benzene, Hydrocarbon solvents such as toluene can be mentioned, but are not limited to these. These solvents can be used alone or as a mixed solvent of two or more.
  • the semiconductor fine powder when it is dispersed in the solvent, it may be ground with a mortar or the like, and a dispersing machine such as a ball mill, a paint conditioner, a vertical bead mill, a horizontal bead mill, or an attritor may be used.
  • a dispersing machine such as a ball mill, a paint conditioner, a vertical bead mill, a horizontal bead mill, or an attritor may be used.
  • a surfactant or the like when preparing the paste, it is preferable to add a surfactant or the like in order to prevent aggregation of the semiconductor fine particles, and it is preferable to add a thickener such as polyethylene glycol to increase the viscosity.
  • the adsorption of the sensitizing dye for photoelectric conversion of the present invention onto the surface of the semiconductor layer is performed by immersing the semiconductor layer in the dye solution and allowing it to stand at room temperature for 30 minutes to 100 hours, or for 10 minutes to 24 hours under heating conditions. However, it is preferably left at room temperature for 10 to 20 hours.
  • the dye concentration in the dye solution is preferably 10 to 2000 ⁇ M, more preferably 50 to 500 ⁇ M.
  • the solvent used when the sensitizing dye for photoelectric conversion of the present invention is adsorbed on the surface of the semiconductor layer include alcohol solvents such as methanol, ethanol, isopropyl alcohol, tert-butyl alcohol, acetone, methyl ethyl ketone, methyl Ketone solvents such as isobutyl ketone, ester solvents such as ethyl formate, ethyl acetate and n-butyl acetate, ether solvents such as diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran and 1,3-dioxolane, N, N Amide solvents such as dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, nitrile solvents such as acetonitrile, methoxyacetonitrile, propionitrile, dichloromethane, chloroform, bromoform, o-dichlorobenz
  • Halogenated hydrocarbon solvents such as toluene, but are not limited to. These solvents are used alone or as a mixed solvent of two or more. Of these solvents, methanol, ethanol, tert-butyl alcohol, acetone, methyl ethyl ketone, tetrahydrofuran and acetonitrile are preferred.
  • a cholic acid derivative such as cholic acid or deoxycholic acid, chenodeoxycholic acid, lysocholic acid, and dehydrocholic acid is dissolved in the dye solution, It may be co-adsorbed with the dye.
  • cholic acid or a cholic acid derivative association between the dyes is suppressed, and electrons can be efficiently injected from the dye into the semiconductor layer in the photoelectric conversion element.
  • concentration in the dye solution is preferably from 0.1 to 100 mM, more preferably from 1 to 10 mM.
  • the counter electrode (electrode) used in the photoelectric conversion element of the present invention is not particularly limited as long as it has conductivity, but a conductive material having catalytic ability is used to promote the redox ion oxidation-reduction reaction. It is preferable to do this.
  • the conductive material include, but are not limited to, platinum, rhodium, ruthenium, carbon, and the like. In the present invention, it is particularly preferable to use as a counter electrode a platinum thin film formed on a conductive support.
  • a paste containing a conductive material is applied onto a conductive substrate by a wet coating method such as a spin coating method, a doctor blade method, a squeegee method, or a screen printing method, and then fired.
  • a wet coating method such as a spin coating method, a doctor blade method, a squeegee method, or a screen printing method
  • examples thereof include a method for forming a film by removing a solvent and additives, and a method for forming a film by a sputtering method, a vapor deposition method, an electrodeposition method, an electrodeposition method, a microwave irradiation method, and the like, but are not limited thereto.
  • an electrolyte is filled between a pair of opposed electrodes to form an electrolyte layer.
  • a redox electrolyte is preferable.
  • redox electrolytes include, but are not limited to, redox ion pairs such as iodine, bromine, tin, iron, chromium, and anthraquinone. Among these, iodine-based electrolytes and bromine-based electrolytes are preferable.
  • an iodine-based electrolyte for example, a mixture of potassium iodide, lithium iodide, dimethylpropylimidazolium iodide and the like and iodine is used.
  • an electrolytic solution obtained by dissolving these electrolytes in a solvent.
  • the concentration of the electrolyte in the electrolytic solution is preferably 0.05 to 5M, and more preferably 0.2 to 1M.
  • Solvents for dissolving the electrolyte include nitrile solvents such as acetonitrile, methoxyacetonitrile, propionitrile, 3-methoxypropionitrile, benzonitrile, ether solvents such as diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran, N Amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide, carbonate solvents such as ethylene carbonate and propylene carbonate, and lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone. It is not limited to. These solvents are used alone or as a mixed solvent of two or more. Of these solvents, nitrile solvents are preferred.
  • 4-tert-butylpyridine 4-methylpyridine, 2-vinylpyridine, N, N-dimethyl-4-aminopyridine, N, N-dimethylaniline, N-methylbenzimidazole, etc.
  • These amine compounds, particularly 4-tert-butylpyridine may be contained.
  • the concentration of the amine compound in the electrolytic solution is preferably 0.05 to 5M, and more preferably 0.2 to 1M.
  • the inclusion of an amine compound in the electrolytic solution is particularly preferable because the open-circuit voltage and fill factor of the dye-sensitized photoelectric conversion element are increased.
  • a gel electrolyte obtained by adding a gelling agent, a polymer or the like to the electrolytic solution may be used.
  • a solid electrolyte using a polymer such as a polyethylene oxide derivative may be used instead of the electrolytic solution containing the redox electrolyte.
  • a solid charge transport layer may be formed between a pair of opposed electrodes instead of the electrolyte.
  • the charge transport material contained in the solid charge transport layer is preferably a hole transport material.
  • the charge transport material include inorganic hole transport materials such as copper iodide, copper bromide and copper thiocyanide, polypyrrole, polythiophene, poly-p-phenylene vinylene, polyvinyl carbazole, polyaniline, oxadiazole derivatives, tri Organic hole transport materials such as phenylamine derivatives, pyrazoline derivatives, fluorenone derivatives, hydrazone compounds, and stilbene compounds are exemplified, but not limited thereto.
  • a film-forming binder resin when forming a solid charge transport layer using an organic hole transport material, it is preferable to use a film-forming binder resin in combination.
  • the film-forming binder resin include polystyrene resin, polyvinyl acetal resin, polycarbonate resin, polysulfone resin, polyester resin, polyphenylene oxide resin, polyarylate resin, alkyd resin, acrylic resin, phenoxy resin, and the like. However, it is not limited to these. These resins can be used alone or as a copolymer in combination of one or more.
  • the amount of these binder resins used relative to the organic hole transport material is preferably 20 to 1000% by mass, more preferably 50 to 500% by mass.
  • an electrode photoelectrode
  • a counter electrode serves as a cathode.
  • Light such as sunlight may be irradiated from either the photoelectrode side or the counter electrode side, but irradiation from the photoelectrode side is preferred.
  • the dye absorbs light and becomes excited to emit electrons. The electrons flow to the outside via the semiconductor layer and move to the counter electrode.
  • the dye that has been in an oxidized state by emitting electrons returns to the ground state by receiving electrons supplied from the counter electrode via ions in the electrolyte. By this cycle, a current flows and functions as a photoelectric conversion element.
  • the short circuit current represents the current per 1 cm 2 flowing between the two terminals when the output terminal is short-circuited
  • the open circuit voltage represents the voltage between the two terminals when the output terminal is opened.
  • the fill factor is a value obtained by dividing the maximum output (product of current and voltage) by the product of the short-circuit current and the open-circuit voltage, and mainly depends on the internal resistance.
  • the photoelectric conversion efficiency is obtained as a percentage value obtained by multiplying the value obtained by dividing the maximum output (W) by the light intensity (W) per 1 cm 2 by 100.
  • the photoelectric conversion element of the present invention can be applied to a dye-sensitized solar cell, various optical sensors, and the like.
  • the photoelectric conversion element containing the sensitizing dye represented by the general formula (1) becomes a cell, and the required number of the cells are arranged to be modularized, and predetermined electrical wiring is provided. Can be obtained.
  • the structure of the obtained reddish brown powder was identified by NMR analysis.
  • the crude product was dissolved in 30 ml of ethyl acetate, washed with 30 ml of saturated brine, and the organic layer was dried over anhydrous sodium acetate. After the solvent was distilled off, crystallization was performed using 16 ml of chloroform, 0.8 ml of ethyl acetate, and 80 ml of n-hexane to obtain 0.51 g of sensitizing dye for photoelectric conversion (A-46) (yield 63%). A reddish brown powder was obtained.
  • the structure of the obtained reddish brown powder was identified by NMR analysis.
  • a platinum thin film having a thickness of 15 nm was formed on a glass substrate coated with a fluorine-doped tin oxide thin film by a sputtering method using an auto fine coater (JFC-1600 manufactured by JEOL Ltd.) as a counter electrode.
  • a spacer (heat-sealing film) having a thickness of 60 ⁇ m is sandwiched between the photoelectrode and the counter electrode, and bonded together by heat sealing. After the electrolyte is injected from the hole previously formed in the counter electrode, the hole is sealed. And the photoelectric conversion element was produced.
  • a 3-methoxypropionitrile solution of lithium iodide 0.1M, dimethylpropylimidazolium iodide 0.6M, iodine 0.05M, and 4-tert-butylpyridine 0.5M was used.
  • Example 2 to 20 A photoelectric conversion element was prepared in the same manner as in Example 1 except that the sensitizing dye shown in Table 1 was used instead of (A-1) as the sensitizing dye for photoelectric conversion, and the current-voltage characteristics were measured. . In addition, the photoelectric conversion efficiency was measured after 20 hours of irradiation with light, and the change in characteristics was evaluated. The measurement results are summarized in Table 1.
  • the solar cell using the sensitizing dye for photoelectric conversion of the present invention is useful as a dye-sensitized solar cell capable of efficiently converting sunlight energy into electric energy, and can provide clean energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、下記一般式(1)で表される光電変換用増感色素;一対の対向する電極間に少なくとも半導体層および電解質層が設けられている色素増感型の光電変換素子において、前記光電変換用増感色素が前記半導体層に担持されている、光電変換素子;および前記光電変換素子を有する色素増感太陽電池であって、前記光電変換素子がモジュール化され、所定の電気配線が設けられた、色素増感太陽電池に関する。

Description

光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
 本発明は色素増感型の光電変換素子に用いられる増感色素と、それを用いた光電変換素子ならびに色素増感太陽電池に関する。
 近年、石炭、石油、天然ガス等の化石燃料から生じる二酸化炭素が温室効果ガスとして地球温暖化や、地球温暖化による環境破壊を引き起こすこと、また、人口増加に伴う世界的なエネルギー消費の増大により、地球規模での環境破壊がますます進行することが懸念されている。このような状況において、化石燃料とは異なり枯渇する恐れの少ない太陽エネルギーの利用が精力的に検討されている。太陽光発電の導入により、地球温暖化の防止、光熱費の節約等が期待できるため、太陽エネルギーの開発や利用は、欧州や日本を中心に年々急速に進んでいる。
 太陽光発電の手段としては、太陽光のエネルギーを電気エネルギーに変換する光電変換素子を用いた太陽電池が注目されるようになってきた。太陽電池としては、単結晶、多結晶、アモルファスのシリコン系、ガリウムヒ素、硫化カドミウム、セレン化インジウム銅等の化合物半導体系といった無機系太陽電池が主に研究され、それらのうちいくつかは住宅用等に実用化されている。しかし、これらの無機系太陽電池は製造コストが高いことや、原材料の確保が困難であること等の問題点を抱えている。
 その一方で、有機材料を用いた有機系太陽電池は、製造コスト、大面積化、原材料確保の点で有利と言われている。有機系太陽電池としては、有機半導体と金属との接触界面における起電力の発生を利用するショットキー接合型有機系太陽電池が知られていたが、光電変換効率の向上に限界があることが認識されるようになった。そのため、2種の有機半導体の接触界面、あるいは有機半導体と無機半導体の接触界面を利用したpnヘテロ接合型有機系太陽電池が期待されるようになった。しかし、これらの有機系太陽電池の光電変換効率は無機系太陽電池と比べると格段に低く、耐久性も悪いという問題があった。
 こうした状況の中、スイスのローザンヌ工科大学のグレッツェル教授らにより、高い光電変換効率を示す色素増感太陽電池が報告された(例えば、非特許文献1)。提案された色素増感太陽電池は、酸化チタン多孔質薄膜電極、ルテニウム錯体色素、電解液からなる湿式太陽電池である。色素増感太陽電池は、他の太陽電池に比べて素子構造が簡単で、大型の製造設備がなくても製造できる可能性があり、また、既に実用化されているアモルファスシリコン太陽電池に匹敵する高い光電変換効率が期待されることから、近年になって次世代型太陽電池として注目を集めている。
 色素増感太陽電池に用いられる増感色素としては、光電変換効率の点からは、ルテニウム錯体が最も優位と考えられているが、ルテニウムは貴金属であるため製造コスト面で不利であり、かつ、実用化されて大量のルテニウム錯体が必要になった場合には、資源的な制約も問題となる。そのため、増感色素として、ルテニウム等の貴金属を含まない有機色素を用いた色素増感太陽電池の研究が盛んに行われるようになった。貴金属を含まない有機色素としては、クマリン系色素、シアニン系色素、メロシアニン系色素、ロダシアニン系色素、フタロシアニン系色素、ポルフィリン系色素、キサンテン系色素等が報告されている(例えば、特許文献1~3)。
 特許文献1~3に記載されている有機色素は、安価で吸光係数が大きく、かつ構造の多様性により吸収特性の制御が可能といった長所を有するものの、光電変換効率および経時安定性の面で、要求される特性を充分に満足するものが得られていないのが現状である。
日本国特開平11-214730号公報 日本国特開平11-238905号公報 日本国特開2010-31204号公報
Nature(第353巻、737~740頁、1991年)
 本発明が解決しようとする課題は、効率よく電流を取り出すことのできる新規構造の増感色素を提供し、さらには該増感色素を用いた、光電変換が良好な光電変換素子ならびに色素増感太陽電池を提供することである。
 上記課題を解決するため、発明者らは増感色素の光電変換特性向上について鋭意検討した結果、特定の構造を有する増感色素を用いることにより、高効率かつ高耐久性の光電変換素子が得られることを見出した。すなわち本発明は、以下の内容で構成されている。
 本発明は、下記一般式(1)で表される光電変換用増感色素を提供する。
Figure JPOXMLDOC01-appb-C000005
 式中、RおよびRは、置換基を有していてもよい炭素原子数1~6のアルキル基、または置換もしくは無置換のアリール基を表す。Rは、置換基を有していてもよい炭素原子数1~6のアルキル基を表す。R~Rは同一でも異なっていてもよく、水素原子または置換基を有していてもよい炭素原子数1~6のアルキル基を表す。mは2~8の整数、nは1~3の整数を表す。nが2または3の場合、複数個存在するR~Rは、それぞれ互いに同一でも異なっていてもよい。Aは、下記一般式(2)~(4)のいずれかで示される1価基を表す。
Figure JPOXMLDOC01-appb-C000006
 式中、Rは酸性基を表す。
Figure JPOXMLDOC01-appb-C000007
 式中、Rは、酸性基を置換基として有する炭素原子数1~6のアルキル基、または炭素原子数1~6の無置換アルキル基を表す。R10~R13は同一でも異なっていてもよく、水素原子、ハロゲン原子、酸性基、置換基を有していてもよい炭素原子数1~6のアルキル基、または置換基を有していてもよい炭素原子数2~6のアルケニル基を表す。ただし、少なくともR~R13のいずれか1つは、酸性基を置換基として有する炭素原子数1~6のアルキル基(Rの場合)もしくは酸性基(R10~R13の場合)であるものとする。また、R10~R13は、隣り合う基同士で単結合を介して互いに結合し、環を形成してもよい。Xは硫黄原子、酸素原子、またはC(CHを表す。Yは陰イオンを表す。
Figure JPOXMLDOC01-appb-C000008
 式中、R14、R15は同一でも異なっていてもよく、少なくとも2つの酸性基を置換基として有する炭素原子数1~6のアルキル基、または炭素原子数1~6の無置換アルキル基を表す。ただし、少なくともR14またはR15のいずれか1つは、少なくとも2つの酸性基を置換基として有する炭素原子数1~6のアルキル基であるものとする。pは0~2の整数を表す。pが2の場合、2個存在するR14は、互いに同一でも異なっていてもよい。
 前記一般式(1)において、Rが置換もしくは無置換のアリール基であることが好ましい。
 前記一般式(1)において、mが3または4であることが好ましい。
 前記一般式(1)において、RおよびRがメチル基であることが好ましい。
 前記一般式(1)において、R~Rが水素原子であり、nが1であることが好ましい。
 本発明はまた、一対の対向する電極間に少なくとも半導体層および電解質層が設けられている色素増感型の光電変換素子において、前記光電変換用増感色素が前記半導体層に担持されている、光電変換素子を提供する。
 前記光電変換素子において、前記電解質層が4-tert-ブチルピリジンを含有することが好ましい。
 本発明はまた、光電変換素子を有する色素増感太陽電池であって、前記光電変換素子がモジュール化され、所定の電気配線が設けられた、色素増感太陽電池を提供する。
 本発明によれば、効率よく電流を取り出すことが可能な光電変換用増感色素を得ることができる。また、該光電変換用増感色素を用いることにより、高効率かつ高耐久性の光電変換素子および色素増感太陽電池を得ることができる。
図1は、本発明の実施例1~20、比較例1~4の光電変換素子の構成を表す概略断面図である。
 以下、本発明の実施の形態について、詳細に説明する。本発明の光電変換用増感色素は、色素増感型の光電変換素子において増感剤として用いられる。本発明の光電変換素子は、例えば導電性支持体上の半導体層に色素を吸着させてなる光電極と対極とを、電解質層を介して対向配置させたものである。
 以下に、前記一般式(1)で表される光電変換用増感色素について具体的に説明するが、本発明はこれらに限定されるものではない。
 一般式(1)においてRまたはRで表される、「置換もしくは無置換のアリール基」における「アリール基」としては具体的に、フェニル基、ナフチル基、アントリル基、ピレニル基などの炭素原子数6~20のアリール基をあげることができる。ここで、アリール基とは、芳香族炭化水素基および縮合多環芳香族基を含む。
 一般式(1)においてRまたはRで表される、「置換もしくは無置換のアリール基」における「置換基」としては具体的に、フッ素原子、塩素原子、臭素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、ヘキシル基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキル基;メトキシ基、エトキシ基、プロポキシ基、t-ブトキシ基、ペンチルオキシ基などの炭素原子数1~6の直鎖状もしくは分岐状のアルコキシ基;ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、メチルプロピルアミノ基、ジ-t-ブチルアミノ基、ジフェニルアミノ基などの、炭素原子数1~6の直鎖状もしくは分岐状のアルキル基、芳香族炭化水素基、縮合多環芳香族基、から選択される置換基を有する二置換アミノ基;水酸基;カルボキシル基、メチルエステル基、エチルエステル基などのエステル化されていてもよいカルボキシル基;カルボキシル基で置換された炭素原子数1~6の直鎖状または分岐状のアルコキシ基;フェニルエテニル基、ジフェニルエテニル基などのエテニル基;シアノ基などをあげることができる。これら置換基の数は、1つでも複数でもよい。
 一般式(1)においてR~Rで表される、「置換基を有していてもよい炭素原子数1~6のアルキル基」における「炭素原子数1~6のアルキル基」としては具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキル基をあげることができる。
 一般式(1)においてR~Rで表される、「置換基を有していてもよい炭素原子数1~6のアルキル基」における「置換基」としては具体的に、フッ素原子、塩素原子、臭素原子などのハロゲン原子;メトキシ基、エトキシ基、プロポキシ基、t-ブトキシ基、ペンチルオキシ基などの炭素原子数1~6の直鎖状もしくは分岐状のアルコキシ基;フェニル基、ナフチル基、アントリル基、ピレニル基などのアリール基;ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、メチルプロピルアミノ基、ジ-t-ブチルアミノ基、ジフェニルアミノ基などの、炭素原子数1~6の直鎖状もしくは分岐状のアルキル基、芳香族炭化水素基、縮合多環芳香族基、から選択される置換基を有する二置換アミノ基;水酸基;カルボキシル基、メチルエステル基、エチルエステル基などのエステル化されていてもよいカルボキシル基;シアノ基などをあげることができる。これら置換基の数は、1つでも複数でもよいが、R~Rが置換基を有していてもよい炭素原子数1~6のアルキル基である場合、置換基を有さないアルキル基(無置換アルキル基)であるのが好ましい。
 一般式(1)において、Aは、一般式(2)~(4)のいずれかで示される1価の吸着基を表す。
 一般式(2)においてRで表される「酸性基」としては具体的に、カルボキシル基、スルホン酸基、リン酸基、ヒドロキサム酸基、ホスホン酸基、ホウ酸基、ホスフィン酸基、シラノール基などをあげることができる。これらの中でも、カルボキシル基またはホスホン酸基が好ましく、カルボキシル基がより好ましい。
 一般式(3)においてRで表される、「酸性基を置換基として有する炭素原子数1~6のアルキル基」における「炭素原子数1~6のアルキル基」としては具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、t-ブチル基、n-ヘキシル基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキル基をあげることができる。これらの中でも、炭素原子数1~3の直鎖状もしくは分岐状のアルキル基が好ましく、メチル基またはエチル基がより好ましい。
 一般式(3)においてRで表される、「酸性基を置換基として有する炭素原子数1~6のアルキル基」における「酸性基」としては具体的に、カルボキシル基、スルホン酸基、リン酸基、ヒドロキサム酸基、ホスホン酸基、ホウ酸基、ホスフィン酸基、シラノール基、などをあげることができる。これらの中でも、カルボキシル基またはホスホン酸基が好ましく、カルボキシル基がより好ましい。「酸性基」の数は、1つでも複数でも良いが、1つであるのが好ましい。また、「酸性基」の置換位置は、アルキル基の末端であるのが好ましい。
 一般式(3)においてRで表される、「酸性基を置換基として有する炭素原子数1~6のアルキル基」としては、カルボキシル基またはホスホン酸基を置換基として有する炭素原子数1~3の直鎖状もしくは分岐状のアルキル基が好ましく、カルボキシル基を置換基として有するメチル基またはエチル基がより好ましい。
 一般式(3)においてRで表される、「炭素原子数1~6の無置換アルキル基」としては具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキル基をあげることができる。これらの中でも、炭素原子数1~3の直鎖状もしくは分岐状のアルキル基が好ましく、メチル基またはエチル基がより好ましい。
 一般式(3)においてR10~R13で表される「酸性基」としては具体的に、カルボキシル基、スルホン酸基、リン酸基、ヒドロキサム酸基、ホスホン酸基、ホウ酸基、ホスフィン酸基、シラノール基などをあげることができる。これらの中でも、カルボキシル基またはホスホン酸基が好ましく、カルボキシル基がより好ましい。
 一般式(3)において、少なくともR~R13のいずれか1つは、酸性基を置換基として有する炭素原子数1~6のアルキル基(Rの場合)もしくは酸性基(R10~R13の場合)である。ここで、Rが炭素原子数1~6の無置換アルキル基である場合、少なくともR10~R13のいずれか1つが酸性基であり、R10~R13の全てが酸性基でない場合、Rが酸性基を置換基として有する炭素原子数1~6のアルキル基である。
 一般式(3)においてR10~R13で表される、「ハロゲン原子」としては具体的に、フッ素原子、塩素原子、臭素原子などをあげることができる。一般式(3)においてR10~R13で表される、「置換基を有していてもよい炭素原子数1~6のアルキル基」または「置換基を有していてもよい炭素原子数2~6のアルケニル基」における「炭素原子数1~6のアルキル基」および「炭素原子数2~6のアルケニル基」としては具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキル基;およびビニル基、アリル基、イソプロペニル基、2-ブテニル基、1-ヘキセニル基などの炭素原子数2~6の直鎖状もしくは分岐状のアルケニル基を、それぞれあげることができる。R10~R13は、隣り合う基同士で単結合を介して互いに結合し、環を形成してもよい。
 一般式(3)においてR10~R13で表される、「置換基を有していてもよい炭素原子数1~6のアルキル基」または「置換基を有していてもよい炭素原子数2~6のアルケニル基」における「置換基」としては具体的に、フッ素原子、塩素原子、臭素原子などのハロゲン原子;メトキシ基、エトキシ基、プロポキシ基などのアルコキシ基;フェニル基、ナフチル基、アントリル基、ピレニル基などのアリール基;ジメチルアミノ基、ジエチルアミノ基、ジ-t-ブチルアミノ基、ジフェニルアミノ基などの、炭素原子数1~6の直鎖状もしくは分岐状のアルキル基、芳香族炭化水素基、縮合多環芳香族基、から選択される置換基を有する二置換アミノ基などをあげることができる。これら置換基の数は、1つでも複数でもよいが、R10~R13は、置換基を有さない基であるのが好ましい。
 一般式(3)において、Xは、硫黄原子、酸素原子、またはC(CHを表す。これらの中でも、硫黄原子またはC(CHが好ましい。また、一般式(3)においてYで表される「陰イオン」としては具体的に、ヨウ化物イオン、臭化物イオン、塩化物イオン、六フッ化リン酸イオン、四フッ化ホウ酸イオン、過塩素酸イオンなどをあげることができる。これらの中でも、ヨウ化物イオン、臭化物イオン、六フッ化リン酸イオンまたは過塩素酸イオンが好ましく、ヨウ化物イオンまたは臭化物イオンがより好ましい。
 一般式(4)においてR14またはR15で表される、「少なくとも2つの酸性基を置換基として有する炭素原子数1~6のアルキル基」における「炭素原子数1~6のアルキル基」としては具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基などの、炭素原子数1~6の直鎖状もしくは分岐状のアルキル基をあげることができる。これらの中でも、炭素原子数1~3の直鎖状もしくは分岐状のアルキル基が好ましく、エチル基またはn-プロピル基がより好ましく、エチル基が特に好ましい。
 一般式(4)においてR14またはR15で表される、「少なくとも2つの酸性基を置換基として有する炭素原子数1~6のアルキル基」における「酸性基」としては具体的に、カルボキシル基、スルホン酸基、リン酸基、ヒドロキサム酸基、ホスホン酸基、ホウ酸基、ホスフィン酸基などをあげることができる。これらの中でも、カルボキシル基またはホスホン酸基が好ましく、カルボキシル基がより好ましい。「酸性基」の数は2つ以上であるが、2つであるのが好ましい。また、複数の酸性基は、それぞれ同一でも異なっていてもよい。
 一般式(4)においてR14またはR15で表される、「少なくとも2つの酸性基を置換基として有する炭素原子数1~6のアルキル基」としては、カルボキシル基またはホスホン酸基を有する炭素原子数1~3の直鎖状もしくは分岐状のアルキル基が好ましく、カルボキシル基またはホスホン酸基を有するエチル基またはn-プロピル基がさらに好ましい。具体的には、1,2-ジカルボキシエチル基または1,3-ジカルボキシプロピル基がより好ましく、1,2-ジカルボキシエチル基が特に好ましい。
 一般式(4)においてR14またはR15で表される、「炭素原子数1~6の無置換アルキル基」としては具体的に、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキル基をあげることができる。これらの中でも、炭素原子数2~4の直鎖状もしくは分岐状のアルキル基が好ましく、炭素原子数2~4の直鎖状のアルキル基がより好ましく、エチル基またはn-プロピル基がさらに好ましく、エチル基が特に好ましい。
 一般式(4)において、少なくともR14またはR15のいずれか一つは、少なくとも2つの酸性基を置換基として有する炭素原子数1~6のアルキル基であるものとする。pが0の場合、R14が存在しないため、R15が、少なくとも2つの酸性基を置換基として有する炭素原子数1~6のアルキル基となる。また、pが2の場合は、2個存在するR14およびR15のうちのいずれか一つが、少なくとも2つの酸性基を置換基として有する炭素原子数1~6のアルキル基であればよい。
 一般式(1)において、Rは、置換もしくは無置換のアリール基が好ましく、置換もしくは無置換のフェニル基がより好ましい。Rは、炭素原子数1~6の無置換アルキル基または無置換アリール基が好ましく、炭素原子数1~3の無置換アルキル基または無置換フェニル基がより好ましく、メチル基が特に好ましい。Rは、炭素原子数1~3の無置換アルキル基が好ましく、メチル基がより好ましい。R~Rは水素原子またはヘキシル基が好ましく、水素原子がより好ましい。
 一般式(1)において、mは2~8の整数を表し、(CHを含む環は、m個のCH(メチレン基)とインドリン環上の2個の炭素原子から形成される環状構造を表す。mは2~6の整数が好ましく、3(5員環)または4(6員環)がより好ましい。一般式(1)において、nは1~3の整数を表し、1または2が好ましく、1がより好ましい。
 一般式(3)において、Rは、酸性基を置換基として有する炭素原子数1~3のアルキル基が好ましく、カルボキシル基またはホスホン酸基を有する、メチル基またはエチル基がより好ましい。R10~R13は、水素原子、酸性基、または置換基を有していてもよい炭素原子数2~6のアルケニル基が好ましく、水素原子、カルボキシル基、または置換基を有していてもよい炭素原子数2~6のアルケニル基がより好ましい。
 一般式(4)において、pは0~2の整数であり、0または1が好ましい。
 一般式(1)で表される本発明の光電変換用増感色素の中でも、mが3または4、かつ、RおよびRがメチル基である光電変換用増感色素は、特に効率の高い光電変換素子が得られるため好ましい。さらに、一般式(1)で表される本発明の光電変換用増感色素は、カルボキシル基またはホスホン酸基を有することにより、該増感色素を半導体層の表面上に容易に吸着させることができ、光電変換特性の向上につながる。
 一般式(1)で表される本発明の光電変換用増感色素は、取り得る全ての立体異性体を包含するものとする。いずれの異性体も本発明における光電変換用増感色素として好適に使用することができる。例えば前記一般式(1)において、Aが前記一般式(2)で示される1価基である場合の本発明の光電変換用増感色素は、下記一般式(5)または(6)で表される化合物を包含するものとする。また、前記一般式(1)において、Aが前記一般式(4)で示される1価基であり、かつpが0である場合の本発明の光電変換用増感色素は、下記一般式(7)または(8)で表される化合物を包含するものとする。なお、これらの立体異性体から選ばれる2種以上の混合物であってもよい。
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
 一般式(1)で表される本発明の光電変換用増感色素の具体例を以下に示すが、本発明はこれらに限定されるものではない。以下の例示化合物は、取り得る立体異性体のうちの一例を示したものであり、その他全ての立体異性体を包含するものとする。また、それぞれ2種以上の立体異性体の混合物であってもよい。
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000044
 
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000047
 
Figure JPOXMLDOC01-appb-C000048
 
Figure JPOXMLDOC01-appb-C000049
 
Figure JPOXMLDOC01-appb-C000050
 
Figure JPOXMLDOC01-appb-C000051
 
Figure JPOXMLDOC01-appb-C000052
 
Figure JPOXMLDOC01-appb-C000053
 
Figure JPOXMLDOC01-appb-C000054
 
Figure JPOXMLDOC01-appb-C000055
 
Figure JPOXMLDOC01-appb-C000056
 
Figure JPOXMLDOC01-appb-C000057
 
Figure JPOXMLDOC01-appb-C000058
 
Figure JPOXMLDOC01-appb-C000059
 
Figure JPOXMLDOC01-appb-C000060
 
Figure JPOXMLDOC01-appb-C000061
 
Figure JPOXMLDOC01-appb-C000062
 
Figure JPOXMLDOC01-appb-C000063
 
Figure JPOXMLDOC01-appb-C000064
 
Figure JPOXMLDOC01-appb-C000065
 
Figure JPOXMLDOC01-appb-C000066
 
 これらの化合物の精製はカラムクロマトグラフィーによる精製、シリカゲル、活性炭、活性白土等による吸着精製、溶媒による再結晶や晶析法などによって行った。また、これらの化合物の同定は、NMR分析によって行った。
 本発明の光電変換用増感色素は、公知の方法を用いて合成することができる。例えば、一般式(1)においてAが一般式(2)で示される光電変換用増感色素の場合は、以下のようにして合成できる。下記一般式(B-1)で表されるブロモ体(B-1)と、4-ホルミルフェニルボロン酸等のホルミル基を有する、下記一般式(B-2)で表されるボロン酸(B-2)を用いて、Suzukiカップリング等のクロスカップリング反応を行うことにより、下記一般式(B-3)で表されるホルミル体(B-3)を得ることができる。続いて、得られたホルミル体(B-3)とシアノ酢酸等との縮合反応を行うことにより、本発明の光電変換用増感色素を合成できる。また、一般式(1)においてAが一般式(3)、または(4)で示される光電変換用増感色素についても同様の方法により合成することができる。なお、一般式(B-1)で表されるブロモ体(B-1)についても、公知の方法を用いて合成することができる。例えば、相当する9位がアリール基で置換されたヘキサヒドロカルバゾールに対し、臭素またはN-ブロモスクシンイミドなどによるブロモ化を行うことによって合成できる。
Figure JPOXMLDOC01-appb-C000067
 
Figure JPOXMLDOC01-appb-C000068
 
Figure JPOXMLDOC01-appb-C000069
 
 本発明の光電変換用増感色素は単独で用いてもよく、2種以上を併用してもよい。また、本発明の光電変換用増感色素は、本発明に属さない他の増感色素と併用することができる。他の増感色素の具体例としては、ルテニウム錯体、クマリン系色素、シアニン系色素、メロシアニン系色素、ロダシアニン系色素、フタロシアニン系色素、ポルフィリン系色素、キサンテン系色素、前記一般式(1)で表される光電変換用増感色素以外の増感色素をあげることができる。本発明の光電変換用増感色素と、これら他の増感色素とを組み合わせて用いる場合は、本発明の光電変換用増感色素に対する他の増感色素の使用量を10~200質量%とするのが好ましく、20~100質量%とするのがより好ましい。
 本発明において色素増感型の光電変換素子を作製する方法は特に限定されないが、導電性支持体(電極)上に半導体層を形成し、該半導体層に本発明の光電変換用増感色素を吸着させる方法が好ましい。色素を吸着させる方法としては、色素を溶媒に溶解して得られた溶液中に半導体層を長時間浸漬する方法が一般的である。本発明の光電変換用増感色素を2種以上併用する場合、あるいは本発明の光電変換用増感色素を他の増感色素と併用する場合は、使用する全ての色素の混合溶液を調製して半導体層を浸漬してもよく、また、それぞれの色素について別々の溶液を調製し、各溶液に半導体層を順に浸漬してもよい。
 本発明では、導電性支持体として金属板の他に、表面に導電性材料を有する導電層を設けたガラス基板やプラスチック基板を用いることができる。導電性材料の具体例としては、金、銀、銅、アルミニウム、白金等の金属、フッ素ドープの酸化スズ、インジウム-スズ複合酸化物等の導電性透明酸化物半導体、炭素等をあげることができるが、フッ素ドープの酸化スズ薄膜をコートしたガラス基板を用いるのが好ましい。
 本発明において半導体層を形成する半導体の具体例としては、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム、酸化ジルコニウム、酸化タングステン、酸化タンタル、酸化鉄、酸化ガリウム、酸化ニッケル、酸化イットリウム等の金属酸化物;硫化チタン、硫化亜鉛、硫化ジルコニウム、硫化銅、硫化スズ、硫化インジウム、硫化タングステン、硫化カドミウム、硫化銀等の金属硫化物;セレン化チタン、セレン化ジルコニウム、セレン化インジウム、セレン化タングステン等の金属セレン化物;シリコン、ゲルマニウム等の単体半導体等をあげることができる。これらの半導体は単独で用いるだけでなく、2種類以上を混合して用いることもできる。本発明においては、半導体として酸化チタン、酸化亜鉛、酸化スズを用いるのが好ましい。
 本発明における半導体層の態様は特に限定されないが、微粒子からなる多孔質構造を有する薄膜であることが好ましい。多孔質構造等により、半導体層の実質的な表面積が大きくなり、半導体層への色素吸着量が増大すると、高効率の光電変換素子を得ることができる。半導体粒子径は5~500nmが好ましく、10~100nmがより好ましい。半導体層の膜厚は通常2~100μmであるが、5~20μmがより好ましい。半導体層を形成する方法としては、半導体微粒子を含むペーストをスピンコート法、ドクターブレード法、スキージ法、スクリーン印刷法等の湿式塗布法で導電性基板上に塗布した後、焼成により溶媒や添加物を除去して製膜する方法や、スパッタリング法、蒸着法、電着法、電析法、マイクロ波照射法等により製膜する方法をあげることができるが、これらに限定されない。
 本発明において、半導体微粒子を含むペーストは市販品を用いてもよく、市販の半導体微粉末を溶媒中に分散させることによって調製したペースト等を用いてもよい。ペーストを調製する際に使用する溶媒の具体例としては、水、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、n-ヘキサン、シクロヘキサン、ベンゼン、トルエン等の炭化水素系溶媒をあげることができるが、これらに限定されない。また、これらの溶媒は単独あるいは2種以上の混合溶媒として使用することができる。
 本発明において半導体微粉末を溶媒中に分散させる際は、乳鉢等ですりつぶしてもよく、ボールミル、ペイントコンディショナー、縦型ビーズミル、水平型ビーズミル、アトライター等の分散機を用いてもよい。ペーストを調製する際には、半導体微粒子の凝集を防ぐために界面活性剤等を添加するのが好ましく、増粘させるためにポリエチレングリコール等の増粘剤を添加するのが好ましい。
 本発明の光電変換用増感色素の半導体層表面上への吸着は、該色素溶液中に半導体層を浸し、室温で30分~100時間放置、あるいは加熱条件下で10分~24時間放置することにより行うが、室温で10~20時間放置するのが好ましい。また、該色素溶液中の色素濃度は10~2000μMが好ましく、50~500μMがより好ましい。
 本発明の光電変換用増感色素を、半導体層表面上に吸着させる際に用いる溶媒の具体例としては、メタノール、エタノール、イソプロピルアルコール、tert-ブチルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、ギ酸エチル、酢酸エチル、酢酸n-ブチル等のエステル系溶媒、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、1,3-ジオキソラン等のエーテル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒、アセトニトリル、メトキシアセトニトリル、プロピオニトリル等のニトリル系溶媒、ジクロロメタン、クロロホルム、ブロモホルム、o-ジクロロベンゼン等のハロゲン化炭化水素系溶媒、n-ヘキサン、シクロヘキサン、ベンゼン、トルエン等の炭化水素系溶媒をあげることができるが、これらに限定されない。これらの溶媒は単独あるいは2種以上の混合溶媒として使用される。これらの溶媒の中で、メタノール、エタノール、tert-ブチルアルコール、アセトン、メチルエチルケトン、テトラヒドロフラン、アセトニトリルが好ましい。
 本発明の光電変換用増感色素を半導体層表面上に吸着する際には、コール酸またはデオキシコール酸、ケノデオキシコール酸、リソコール酸、デヒドロコール酸等のコール酸誘導体を色素溶液中に溶解し、色素と共吸着させてもよい。コール酸またはコール酸誘導体を用いることにより色素同士の会合が抑制され、光電変換素子において色素から半導体層へ効率よく電子注入できるようになる。コール酸またはコール酸誘導体を用いる場合、色素溶液中におけるそれらの濃度は0.1~100mMが好ましく、1~10mMがより好ましい。
 本発明の光電変換素子に用いる対極(電極)としては、導電性を有するものであれば特に限定されないが、レドックスイオンの酸化還元反応を促進するために、触媒能を持った導電性材料を使用するのが好ましい。該導電性材料の具体例としては、白金、ロジウム、ルテニウム、炭素等をあげることができるが、これらに限定されない。本発明においては、導電性支持体上に白金の薄膜を形成したものを対極として用いるのが特に好ましい。また、導電性薄膜を形成する方法としては、導電性材料を含むペーストをスピンコート法、ドクターブレード法、スキージ法、スクリーン印刷法等の湿式塗布法により導電性基板上に塗布した後、焼成により溶媒や添加物を除去して製膜する方法や、スパッタリング法、蒸着法、電着法、電析法、マイクロ波照射法等により製膜する方法をあげることができるが、これらに限定されない。
 本発明の光電変換素子においては、一対の対向する電極間に電解質が充填され、電解質層が形成されている。用いる電解質としてはレドックス電解質が好ましい。レドックス電解質としては、ヨウ素、臭素、スズ、鉄、クロム、アントラキノン等のレドックスイオン対をあげることができるが、これらに限定されない。これらの中ではヨウ素系電解質、臭素系電解質が好ましい。ヨウ素系電解質の場合は、例えばヨウ化カリウム、ヨウ化リチウム、ヨウ化ジメチルプロピルイミダゾリウム等とヨウ素の混合物が用いられる。本発明では、これらの電解質を溶媒に溶解させて得られた電解液を用いるのが好ましい。電解液中の電解質の濃度は、0.05~5Mが好ましく、0.2~1Mがより好ましい。
 電解質を溶解させる溶媒としては、アセトニトリル、メトキシアセトニトリル、プロピオニトリル、3-メトキシプロピオニトリル、ベンゾニトリル等のニトリル系溶媒、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶媒をあげることができるが、これらに限定されない。これらの溶媒は単独あるいは2種以上の混合溶媒として使用される。これらの溶媒の中で、ニトリル系溶媒が好ましい。
 本発明では、前記電解液中に4-tert-ブチルピリジン、4-メチルピリジン、2-ビニルピリジン、N,N-ジメチル-4-アミノピリジン、N,N-ジメチルアニリン、N-メチルベンズイミダゾール等のアミン系化合物、特に4-tert-ブチルピリジンを含有させてもよい。電解液中のアミン系化合物の濃度は、0.05~5Mが好ましく、0.2~1Mがより好ましい。アミン系化合物を電解液中に含有させることにより、色素増感型光電変換素子の開放電圧、フィルファクターが高くなるため、特に好ましい。
 本発明では、前記電解液中にゲル化剤、ポリマー等を添加させて得られたゲル状電解質を用いてもよい。また、レドックス電解質を含む電解液の代わりに、ポリエチレンオキシド誘導体等のポリマーを用いた固体電解質を用いてもよい。ゲル状電解質、固体電解質を用いることにより、電解液の揮発を低減させることができる。
 本発明の光電変換素子においては、一対の対向する電極間に電解質の代わりに固体電荷輸送層を形成してもよい。固体電荷輸送層に含まれる電荷輸送物質は、正孔輸送物質であることが好ましい。電荷輸送物質の具体例としては、ヨウ化銅、臭化銅、チオシアン化銅等の無機正孔輸送物質、ポリピロール、ポリチオフェン、ポリ-p-フェニレンビニレン、ポリビニルカルバゾール、ポリアニリン、オキサジアゾール誘導体、トリフェニルアミン誘導体、ピラゾリン誘導体、フルオレノン誘導体、ヒドラゾン化合物、スチルベン化合物等の有機正孔輸送物質があげられるが、これらに限定されない。
 本発明において有機正孔輸送物質を用いて固体電荷輸送層を形成する場合、フィルム形成性結着剤樹脂を併用することが好ましい。フィルム形成性結着剤樹脂の具体例としては、ポリスチレン樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、ポリスルホン樹脂、ポリエステル樹脂、ポリフェニレンオキサイド樹脂、ポリアリレート樹脂、アルキド樹脂、アクリル樹脂、フェノキシ樹脂等があげられるが、これらに限定されない。これらの樹脂は、単独あるいは共重合体として1種または2種以上を混合して用いることができる。これらの結着剤樹脂の有機正孔輸送物質に対する使用量は、20~1000質量%が好ましく、50~500質量%がより好ましい。
 本発明の光電変換素子においては、増感色素が吸着した半導体層が設けられた電極(光電極)が陽極となり、対極が陰極となる。太陽光等の光は光電極側、対極側のどちらから照射してもよいが、光電極側から照射する方が好ましい。太陽光等の照射により、色素が光を吸収して励起状態となって電子を放出する。この電子が半導体層を経由して外部に流れて対極へ移動する。一方、電子を放出して酸化状態になった色素は、対極から供給される電子を電解質中のイオンを経由して受け取ることにより、基底状態に戻る。このサイクルにより電流が流れ、光電変換素子として機能するようになる。
 本発明の光電変換素子の特性を評価する際には、短絡電流、開放電圧、フィルファクター、光電変換効率の測定を行う。短絡電流とは、出力端子を短絡させたときの両端子間に流れる1cmあたりの電流を表し、開放電圧とは、出力端子を開放させたときの両端子間の電圧を表す。また、フィルファクターとは最大出力(電流と電圧の積)を、短絡電流と開放電圧の積で割った値であり、主に内部抵抗に左右される。光電変換効率とは、最大出力(W)を1cmあたりの光強度(W)で割った値に100を乗じてパーセント表示した値として求められる。
 本発明の光電変換素子は、色素増感太陽電池や各種光センサー等に応用できる。本発明の色素増感太陽電池は、前記一般式(1)で表される増感色素を含有する光電変換素子がセルとなり、そのセルを必要枚数配列してモジュール化し、所定の電気配線を設けることによって得られる。
 以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[合成例1] 光電変換用増感色素(A-1)の合成
 反応容器にトルエン100ml、エタノール25ml、水10mlを加え、そこに下記式(C-1)で表される化合物(C-1)4.00g、4-ホルミルフェニルボロン酸2.40g、炭酸カリウム4.70gを加えて攪拌した。攪拌後、テトラキス(トリフェニルホスフィン)パラジウム0.65gを加え、1時間加熱環流した。室温まで冷却した後、抽出操作を行い、有機層を硫酸マグネシウムで乾燥し、溶媒を留去することにより粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製し、減圧乾燥することによって、下記式(C-2)で表される化合物(C-2)1.40g(収率33%)の黄色固体を得た。
Figure JPOXMLDOC01-appb-C000070
 
Figure JPOXMLDOC01-appb-C000071
 
 反応容器にトルエン20ml、化合物(C-2)0.45g、シアノ酢酸0.25g、ピペリジン0.52mlを加え、7時間加熱環流した。室温まで冷却した後、反応液に1M塩酸30ml、クロロホルムを加えて抽出し、得られた有機層に1M塩酸100mlを加えて再度抽出操作を行った。有機層を硫酸マグネシウムで乾燥し、溶媒を留去することにより粗生成物を得た。粗生成物をクロロホルム50mlに溶解させた後、ヘキサン100mlを加えて析出した個体をろ取し、60℃で減圧乾燥することによって、光電変換用増感色素(A-1)0.30g(収率52%)の赤褐色粉末を得た。
 得られた赤褐色粉末についてNMR分析により構造を同定した。
 1H-NMR(CDCl)で以下の27個の水素のシグナルを検出した(カルボキシル基の水素は観測されなかった)。δ(ppm)=1.03-1.13(3H)、1.17-1.26(3H)、1.28-1.66(7H)、1.91-2.01(1H)、6.41-6.48(1H)、7.24-7.32(3H)、7.41-7.48(3H)、7.55-7.60(1H)、7.82-7.88(2H)、8.05-8.12(2H)、8.30-8.35(1H). 
[合成例2] 光電変換用増感色素(A-5)の合成
 反応容器にエタノール20ml、合成例1で得られた化合物(C-2)0.45g、シアノホスホン酸ジエチル0.36g、ピペリジン0.35mlを加え、4時間加熱環流した。室温まで冷却した後、溶媒を留去して得られた固体をトルエンに溶解させ、1M塩酸100mlを加えて分液操作を行った。有機層を無水硫酸マグネシウムで乾燥した後、溶媒を留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィーにより精製することによって、下記式(C-3)で表される化合物(C-3)0.44g(収率69%)の橙色オイルを得た。
Figure JPOXMLDOC01-appb-C000072
 
 反応容器に、上記化合物(C-3)0.34g、アセトニトリル15ml、トリメチルシリルブロミド1.70mlを加え、65℃で4時間加熱撹拌した。室温まで冷却した後、反応液にメタノール/水=2/1の混合液150mlを加え、酢酸エチルを用いて3回抽出した。得られた有機層を無水硫酸マグネシウムで乾燥し、溶媒を留去することにより、光電変換用増感色素(A-5)0.27g(収率90%)の橙色粉末を得た。
 [合成例3] 光電変換用増感色素(A-17)の合成
 反応容器にエタノール10ml、合成例1で得られた化合物(C-2)0.36g、下記式(C-4)で表される化合物(C-4)0.27gを加え、17時間加熱環流した。室温まで冷却した後、溶媒を留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィーにより精製することによって、光電変換用増感色素(A-17)0.47g(収率76%)の紫色粉末を得た。
Figure JPOXMLDOC01-appb-C000073
 
[合成例4] 光電変換用増感色素(A-46)の合成
 反応容器にアセトニトリル30ml、合成例1で得られた化合物(C-2)0.50g、下記式(C-5)で表される化合物(C-5)0.33g、ピペリジン0.22gを加え、2時間加熱環流した。室温まで冷却した後、反応液にクロロホルム30ml、酢酸エチル10mlを加え、1M塩酸50ml、水25mlで洗浄した。有機層を硫酸マグネシウムで乾燥後、溶媒を留去することにより粗生成物を得た。粗生成物を酢酸エチル30mlに溶解し、飽和食塩水30mlで洗浄後、有機層を無水酢酸ナトリウムで乾燥した。溶媒を留去した後、クロロホルム16ml、酢酸エチル0.8ml、n-ヘキサン80mlを用いて晶析することによって、光電変換用増感色素(A-46)0.51g(収率63%)の赤褐色粉末を得た。
Figure JPOXMLDOC01-appb-C000074
 
 得られた赤褐色粉末についてNMR分析により構造を同定した。
 1H-NMR(CDCl)で以下の30個の水素のシグナルを検出した(カルボキシル基の水素は観測されなかった)。δ(ppm)=1.06-1.12(3H)、1.18-1.25(3H)、1.29-1.63(7H)、1.90-2.01(1H)、3.23-3.58(2H)、5.90-6.13(1H)、6.43-6.49(1H)、7.23-7.34(3H)、7.39-7.48(3H)、7.53-7.57(1H)、7.65-7.72(2H)、7.80-7.90(3H). 
[合成例5] 光電変換用増感色素(A-47)の合成
 反応容器にエタノール20ml、合成例1で得られた化合物(C-2)0.50g、下記式(C-6)で表される化合物(C-6)0.35g、ピペリジン0.34gを加え、1時間加熱環流した。室温まで冷却した後、溶媒を留去し、酢酸エチル50mlを加えて溶解させた。1M塩酸50ml、水50ml、飽和食塩水25mlを用いて順次洗浄後、有機層を無水酢酸ナトリウムで乾燥させ、溶媒を留去した。得られた粗生成物をクロロホルム10ml、n-ヘキサン90mlを用いて晶析することによって、光電変換用増感色素(A-47)0.56g(収率69%)の赤褐色粉末を得た。
Figure JPOXMLDOC01-appb-C000075
 
 [実施例1]
 フッ素ドープの酸化スズ薄膜をコートしたガラス基板上に、酸化チタンペースト(Solaronix製、Ti-Nanoxide D)をスキージ法により塗布した。110℃で1時間乾燥後、450℃で30分間焼成し、膜厚5μmの酸化チタン薄膜を得た。次に、合成例1で得られた光電変換用増感色素(A-1)をアセトニトリル/tert-ブチルアルコール=1/1の混合溶媒に溶解して濃度100μMの溶液50mlを調製し、この溶液中に、酸化チタンを塗布焼結したガラス基板を、室温において15時間浸漬して色素を吸着させ、光電極とした。
 フッ素ドープの酸化スズ薄膜をコートしたガラス基板上にオートファインコータ(日本電子(株)製JFC-1600)を用いてスパッタリング法により膜厚15nmの白金薄膜を形成し、対極とした。次に、光電極と対極との間に厚さ60μmのスペーサ(熱融着フィルム)を挟んで熱融着により貼り合わせ、対極に予め形成された孔から電解液を注入した後に孔を封止し、光電変換素子を作製した。電解液としては、ヨウ化リチウム0.1M、ヨウ化ジメチルプロピルイミダゾリウム0.6M、ヨウ素0.05M、4-tert-ブチルピリジン0.5Mの3-メトキシプロピオニトリル溶液を用いた。
 前記光電変換素子の光電極側から、擬似太陽光照射装置(分光計器(株)製OTENTO-SUN III型)で発生させた光を照射し、ソースメータ(KEITHLEY製、Model 2400 General-Purpose SourceMeter)を用いて電流-電圧特性を測定した。光の強度は100mW/cmに調整した。また、光を20時間照射した後についても光電変換効率の測定を行い、特性変化を評価した。測定結果を表1にまとめて示した。
[実施例2~20]
 光電変換用増感色素として、(A-1)の代わりにそれぞれ表1に示す増感色素を用いた以外は、実施例1と同様に光電変換素子を作製し、電流-電圧特性を測定した。また、光を20時間照射した後についても光電変換効率の測定を行い、特性変化を評価した。測定結果を表1にまとめて示した。
[比較例1~4]
 光電変換用増感色素として、(A-1)の代わりに、本発明に属さない以下の(D-1)~(D-4)に示す光電変換用増感色素を用いた以外は、実施例1と同様に光電変換素子を作製し、電流-電圧特性を測定した。また、光を20時間照射した後についても光電変換効率の測定を行い、特性変化を評価した。測定結果を表1にまとめて示した。なお、実施例1~20および比較例1~4で作製した光電変換素子の構成の概略を、図1に示す。
Figure JPOXMLDOC01-appb-C000076
 
Figure JPOXMLDOC01-appb-C000077
 
Figure JPOXMLDOC01-appb-C000078
 
Figure JPOXMLDOC01-appb-C000079
 
Figure JPOXMLDOC01-appb-T000080
 
 表1の結果から、本発明の光電変換用増感色素を用いることにより、光電変換効率が高く、かつ光照射を長時間続けても高い光電変換効率が維持される光電変換素子が得られることが判明した。一方で、比較例の光電変換用増感色素を用いた光電変換素子の光電変換効率は不十分なものであった。
 本出願は、2012年5月15日出願の日本特許出願2012-111120、及び2013年1月24日出願の日本特許出願2013-011391に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の光電変換用増感色素を用いた太陽電池は、太陽光のエネルギーを電気エネルギーに効率よく変換できる色素増感太陽電池として有用であり、クリーンエネルギーを提供することができる。
1 導電性支持体
2 色素担持半導体層
3 電解質層
4 対極
5 導電性支持体

Claims (8)

  1.  下記一般式(1)で表される光電変換用増感色素:
    Figure JPOXMLDOC01-appb-C000001
     式中、RおよびRは、置換基を有していてもよい炭素原子数1~6のアルキル基、または置換もしくは無置換のアリール基を表し;Rは、置換基を有していてもよい炭素原子数1~6のアルキル基を表し;R~Rは同一でも異なっていてもよく、水素原子または置換基を有していてもよい炭素原子数1~6のアルキル基を表し;mは2~8の整数を表し;nは1~3の整数を表し、nが2または3の場合、複数個存在するR~Rは、それぞれ互いに同一でも異なっていてもよく;Aは、下記一般式(2)~(4)のいずれかで示される1価基を表す:
    Figure JPOXMLDOC01-appb-C000002
     式中、Rは酸性基を表す;
    Figure JPOXMLDOC01-appb-C000003
     式中、Rは、酸性基を置換基として有する炭素原子数1~6のアルキル基、または炭素原子数1~6の無置換アルキル基を表し;R10~R13は同一でも異なっていてもよく、水素原子、ハロゲン原子、酸性基、置換基を有していてもよい炭素原子数1~6のアルキル基、または置換基を有していてもよい炭素原子数2~6のアルケニル基を表し;ただし、少なくともR~R13のいずれか1つは、酸性基を置換基として有する炭素原子数1~6のアルキル基(Rの場合)もしくは酸性基(R10~R13の場合)であるものとし;また、R10~R13は、隣り合う基同士で単結合を介して互いに結合し、環を形成してもよく;Xは硫黄原子、酸素原子、またはC(CHを表し;Yは陰イオンを表す;
    Figure JPOXMLDOC01-appb-C000004
     式中、R14、R15は同一でも異なっていてもよく、少なくとも2つの酸性基を置換基として有する炭素原子数1~6のアルキル基、または炭素原子数1~6の無置換アルキル基を表し;ただし、少なくともR14またはR15のいずれか1つは、少なくとも2つの酸性基を置換基として有する炭素原子数1~6のアルキル基であるものとし;pは0~2の整数を表し;pが2の場合、2個存在するR14は、互いに同一でも異なっていてもよい。
  2.  前記一般式(1)において、Rが置換もしくは無置換のアリール基である、請求項1記載の光電変換用増感色素。
  3.  前記一般式(1)において、mが3または4である、請求項1または請求項2に記載の光電変換用増感色素。
  4.  前記一般式(1)において、RおよびRがメチル基である、請求項1~請求項3のいずれか一項に記載の光電変換用増感色素。
  5.  前記一般式(1)において、R~Rが水素原子であり、nが1である、請求項1~請求項4のいずれか一項に記載の光電変換用増感色素。
  6.  一対の対向する電極間に少なくとも半導体層および電解質層が設けられている色素増感型の光電変換素子において、請求項1~請求項5のいずれか一項に記載の光電変換用増感色素が前記半導体層に担持されている、光電変換素子。
  7.  前記光電変換素子において、前記電解質層が4-tert-ブチルピリジンを含有する、請求項6記載の光電変換素子。
  8.  光電変換素子を有する色素増感太陽電池であって、請求項6または請求項7に記載の光電変換素子がモジュール化され、所定の電気配線が設けられた、色素増感太陽電池。
PCT/JP2013/062775 2012-05-15 2013-05-02 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池 WO2013172210A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013529891A JP5363690B1 (ja) 2012-05-15 2013-05-02 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-111120 2012-05-15
JP2012111120 2012-05-15
JP2013-011391 2013-01-24
JP2013011391 2013-01-24

Publications (1)

Publication Number Publication Date
WO2013172210A1 true WO2013172210A1 (ja) 2013-11-21

Family

ID=49583618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062775 WO2013172210A1 (ja) 2012-05-15 2013-05-02 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池

Country Status (3)

Country Link
JP (1) JP5363690B1 (ja)
TW (1) TW201350545A (ja)
WO (1) WO2013172210A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934229A (zh) * 2014-03-17 2015-09-23 常宝公司 柔性染料敏化太阳能电池的制备方法及装置
JP2020015898A (ja) * 2018-07-12 2020-01-30 保土谷化学工業株式会社 増感色素、光電変換用増感色素組成物およびそれを用いた光電変換素子ならびに色素増感太陽電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922392B (zh) * 2019-12-03 2023-04-18 西安近代化学研究所 一种苯基为末端桥链的咔唑共敏剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KHANNA ET AL.: "Applications of NMR Spectroscopy & Mass Spectrometry to Some Problems Concerning Synthetic Dyes: Part XVIII - Action of Potassium Cyanide on Some Cationic Dyes", INDIAN JOURNAL OF CHEMISTRY, SECTION B: ORGANIC CHEMISTRY INCLUDING MEDICINAL CHEMISTRY, vol. 16B, no. 9, 1978, pages 755 - 760 *
MALATESTA ET AL.: "Thermal and Photodegradation of Photochromic Spiroindolinenaphthooxazines and -pyrans: Reaction with Nucleophiles. Trapping of the Merocyanine Zwitterionic Form", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 119, no. 15, 1997, pages 3451 - 3455 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934229A (zh) * 2014-03-17 2015-09-23 常宝公司 柔性染料敏化太阳能电池的制备方法及装置
JP2020015898A (ja) * 2018-07-12 2020-01-30 保土谷化学工業株式会社 増感色素、光電変換用増感色素組成物およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP7429098B2 (ja) 2018-07-12 2024-02-07 保土谷化学工業株式会社 増感色素、光電変換用増感色素組成物およびそれを用いた光電変換素子ならびに色素増感太陽電池

Also Published As

Publication number Publication date
JP5363690B1 (ja) 2013-12-11
TW201350545A (zh) 2013-12-16
JPWO2013172210A1 (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
Gupta et al. Carbazole based A-π-D-π-A dyes with double electron acceptor for dye-sensitized solar cell
JP5981802B2 (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
Lai et al. Multi-carbazole derivatives: new dyes for highly efficient dye-sensitized solar cells
JP7049321B2 (ja) 増感色素、光電変換用増感色素組成物およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP5700937B2 (ja) 光電変換用増感色素及びそれを用いた光電変換素子及び色素増感太陽電池
JP5363690B1 (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP2013122912A (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP6188330B2 (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP6931654B2 (ja) 増感色素、光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP6307298B2 (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP6276626B2 (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP6004808B2 (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP6069022B2 (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP2012214738A (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
Wang et al. Synthesis and photovoltaic properties of new branchlike organic dyes containing benzothiadiazole or triphenylamine-linked consecutive vinylenes units
JP5405811B2 (ja) スチリル系色素及びそれを用いた光電変換素子及び色素増感太陽電池
JP7055292B2 (ja) 増感色素、光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP2013191477A (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP6182046B2 (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP7429098B2 (ja) 増感色素、光電変換用増感色素組成物およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP2014011009A (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
CN113321942B (zh) 增感染料、光电转换用增感染料组合物、光电转换元件及染料增感太阳能电池
JP2023032132A (ja) 増感色素、光電変換用増感色素組成物、光電変換素子および色素増感太陽電池
JP2014205729A (ja) ロタキサン型ビチオフェン誘導体、色素増感酸化物半導体電極及び色素増感太陽電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013529891

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790665

Country of ref document: EP

Kind code of ref document: A1