WO2013168747A1 - 複合発熱体並びにそれを用いた薄膜を備える成形体の製造方法及び発熱体cvd装置 - Google Patents

複合発熱体並びにそれを用いた薄膜を備える成形体の製造方法及び発熱体cvd装置 Download PDF

Info

Publication number
WO2013168747A1
WO2013168747A1 PCT/JP2013/062964 JP2013062964W WO2013168747A1 WO 2013168747 A1 WO2013168747 A1 WO 2013168747A1 JP 2013062964 W JP2013062964 W JP 2013062964W WO 2013168747 A1 WO2013168747 A1 WO 2013168747A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
source gas
composite
composite heating
contact portion
Prior art date
Application number
PCT/JP2013/062964
Other languages
English (en)
French (fr)
Inventor
博康 田渕
栄太朗 松井
中谷 正樹
Original Assignee
麒麟麦酒株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 麒麟麦酒株式会社 filed Critical 麒麟麦酒株式会社
Priority to JP2014514736A priority Critical patent/JP6043346B2/ja
Publication of WO2013168747A1 publication Critical patent/WO2013168747A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon

Definitions

  • the present invention relates to a composite heating element with improved durability, a method for producing a molded body including a thin film using the composite heating element, and a heating element CVD (chemical vapor deposition) apparatus.
  • the heating element CVD method is also referred to as a Cat-CVD method or a hot wire CVD method, which decomposes the heated heating element by contacting the raw material gas directly and after undergoing a reaction process directly or in the gas phase. And a method of depositing as a thin film on a substrate (see, for example, Patent Document 1 or 2).
  • Patent Document 1 proposes a technique for forming, for example, a hydrogen-containing SiNx thin film, a hydrogen-containing DLC thin film, a hydrogen-containing SiOx thin film, or a hydrogen-containing SiCxNy thin film by combining a plurality of gases as source gases.
  • Patent Document 2 discloses a method of forming a silicon carbonitride film using a gas containing at least silicon, carbon, and nitrogen atoms.
  • Patent Document 3 provides information on a technique in which at least the surface of the heating element is platinum as a technique for preventing the heating element from reacting with the cleaning gas in the in-situ cleaning method and thinning.
  • Patent Document 4 discloses a technique for forming a carbon film on the surface of a catalyst body as a heating element as a technique for preventing the heating element from reacting with a silane gas used when forming a silicon-based film. .
  • Patent Document 5 as a result of continuing to use after heating the heating element, the high temperature strength is reduced due to a change in the structure of the internal structure such as a change in the crystal grain size of the metal that is the material of the heating element.
  • a technique for preventing, or as a technique for preventing the deterioration of toughness due to deterioration of the material of the heating element as a result of oxidation by oxygen atoms remaining in the processing space there is a technique for containing phosphorus atoms in the base material of the heating element. It is disclosed.
  • Patent Document 6 as a technique for preventing an increase in the electric resistance of the heating element due to the gradual carbonization of the heating element as a result of increasing the temperature of the heating element and continuing the use, the surface of the tantalum heating element is previously carbonized. A technique has been disclosed in which carbonization is less likely to proceed.
  • the heating element CVD method when a gas containing carbon is used as a source gas, there is a problem that a carbonization reaction occurs on the surface layer of the heating element and the catalytic activity of the heating element is impaired (hereinafter, this catalytic activity is impaired) Is sometimes referred to as “carbonization degradation”.)
  • the heating element is required to satisfy the requirements of (1) having a high melting point exceeding 2000 ° C., (2) no carbonization deterioration, and (3) being capable of conducting heating. No heating element has been disclosed so far. Since the carbonization inside the heating element cannot be stopped even by the technique disclosed in Patent Document 6, the problem that the toughness of the heating element is lowered and the practical performance is impaired cannot be solved sooner or later.
  • An object of the present invention is to provide a composite heating element with improved durability capable of reliably generating heat up to a predetermined temperature and exhibiting catalytic activity even if a carbonization reaction occurs on the surface layer of the heating element.
  • Another object of the present invention is to produce a molded body having a thin film, which can stably form a film on the surface of each molded body for a long period of time by a heating element CVD method using a source gas containing carbon. It is to provide a method and a heating element CVD apparatus.
  • the composite heating element according to the present invention includes a linear resistance heating element mainly composed of carbon, rhenium, iridium, rhodium, silicon carbide, or molybdenum disilicide, and a raw material disposed on the outer surface of the resistance heating element. And a gas contact part, wherein the source gas contact part is a decomposition part for decomposing the source gas of the heating element CVD method.
  • the source gas contact portion is mainly composed of at least one of tantalum, tungsten, molybdenum, tantalum-based alloy, tungsten-based alloy, molybdenum-based alloy, tantalum carbide, tungsten carbide, and molybdenum carbide. It is preferable to do.
  • the decomposition of the gas containing carbon can be performed more efficiently.
  • the source gas contact portion is a wire and is wound around the outer surface of the resistance heating element in a spiral shape. Assembly and replacement of the source gas contact portion can be performed easily.
  • the source gas contact portion has a layer structure in which the outer surface of the resistance heating element is covered.
  • the resistance heating element and the source gas contact portion can be integrated.
  • the source gas contact portion has a grain shape and is fixed to the outer surface of the resistance heating element. Durability can be improved regardless of the difference in thermal expansion coefficient between the resistance heating element and the source gas contact portion.
  • the source gas contact portion is a foil material and is wound around the outer surface of the resistance heating element. Assembly and replacement of the source gas contact portion can be performed easily.
  • the resistance heating element preferably has a flat cross-sectional shape. Since the surface area of the resistance heating element can be increased, the surface area of the source gas contact portion disposed on the outer surface of the resistance heating element can be increased.
  • the outer surface of the resistance heating element is a surface that is coated with rhenium oxide, zirconium oxide, magnesium oxide, silicon dioxide, tantalum carbide, or tungsten carbide. Durability can be further improved by coating treatment according to the use atmosphere or application.
  • a raw material gas is brought into contact with an exothermic heating element, the raw material gas is decomposed to generate chemical species, and the chemical species reach the surface of the molded body.
  • the raw material gas contains carbon
  • the heating element is the composite heating element according to the present invention, and the composite heating element is 1800 ° C. or higher. It is characterized by heating.
  • a heating element CVD apparatus includes a vacuum chamber, an exhaust pump for evacuating the internal gas in the vacuum chamber, a source gas supply pipe disposed in the vacuum chamber and having a gas blowing hole, and the present invention. And a composite heating element according to the present invention.
  • the gas blowing hole is provided at least at a tip of the source gas supply pipe, and the source gas supply pipe is fitted with a center hole that is fitted around the tip of the gas blowing hole side. It is preferable that a lotus root type member having a plurality of guide holes provided around the center hole is provided, and the composite heating element is supported through the guide holes. The composite heating element is stably supported, and the composite heating element does not disturb the flow of the source gas. Furthermore, the source gas can be more efficiently brought into contact with the composite heating element.
  • the composite heating element has a return portion in front of the gas blowing hole.
  • the raw material gas can be brought into contact with the composite heating element more efficiently.
  • the present invention can provide a composite heating element with improved durability capable of reliably generating heat up to a predetermined temperature and exhibiting catalytic activity even if a carbonization reaction occurs on the surface layer of the heating element. Further, the present invention provides a method for producing a molded body having a thin film, which can stably form a film on the surface of each molded body over a long period of time by a heating element CVD method using a source gas containing carbon, and A heating element CVD apparatus can be provided.
  • FIG. 1 is a partially enlarged front view showing an example of a composite heating element according to the first embodiment.
  • a composite heating element 1A according to the first embodiment includes a linear resistance heating element 2A mainly composed of carbon, rhenium, iridium, rhodium, silicon carbide, or molybdenum disilicide, and an outer surface of the resistance heating element 2A.
  • the material gas contact portion 3A is a decomposition portion that decomposes the material gas of the heating element CVD method.
  • the resistance heating element 2A generates heat when energized, for example, and mainly has a role of supplying heat to the raw material gas contact portion 3A.
  • the resistance heating element 2A is a linear member mainly composed of carbon, rhenium, iridium, rhodium, silicon carbide, or molybdenum disilicide. Even if a carbonization reaction occurs in the surface layer of these materials, since the change in electric resistance is small, the material gas contact portion 3A can be heated by stably generating heat to a predetermined temperature.
  • the term “linear” refers to a shape having an elongated outer shape.
  • a wire means a linear member.
  • the cross-sectional shape of the resistance heating element 2A may be a circle, a square, a regular polygon, or a flat shape.
  • the flat shape means that the flatness expressed by the ratio (a / b) of the long side length (a) and the short side length (b) of the cross-sectional shape is 1.5 to 100.
  • the shape of the side surface on the long side of the resistance heating element 2A is not particularly limited, and is, for example, a flat surface, a convex curved surface, or a concave curved surface.
  • the surface area of the resistance heating element 2A can be increased compared to a circle or the like. And the surface area of 3 A of source gas contact parts arrange
  • the wire diameter of the resistance heating element 2A is preferably 0.05 to 5 mm, more preferably 0.1 to 1.5 mm, and still more preferably 0.5 to 1.0 mm.
  • the wire diameter is a diameter when the cross-sectional shape is circular, and when the cross-sectional shape is a square or regular polygon, it is a diameter of a circle circumscribing the square or regular polygon, or the cross-sectional shape is In the case of a flat shape, it is the diameter of a perfect circle having the same area as the cross-sectional area.
  • the material of the resistance heating element 2A may be a single material or a composite material.
  • the carbon-based material include a carbon fiber reinforced carbon composite material (C / C composite), a carbon fiber reinforced metal composite material, a carbon sintered body, and graphite.
  • the electrical resistance may be reduced by using a composite material containing carbon as a main component and tungsten or tantalum added.
  • the material mainly composed of rhenium is, for example, a rhenium-based alloy such as metal rhenium, rhenium-tungsten alloy, rhenium-tantalum alloy.
  • the iridium-based material examples include iridium-based alloys such as metal iridium, iridium-tantalum alloy, and iridium-platinum alloy.
  • the rhodium-based material examples include rhodium-based alloys such as metal rhodium, rhodium-tantalum alloy, and rhodium-platinum alloy.
  • the material mainly composed of silicon carbide is, for example, silicon carbide or a composite material of silicon carbide and tungsten.
  • the material mainly composed of molybdenum disilicide is, for example, molybdenum disilicide, a composite material of molybdenum disilicide and tungsten.
  • the main component means a component having the largest content (% by mass) among all the components of the material, preferably 50% by mass or more, more preferably 80% by mass or more.
  • the raw material gas contact part 3A is a decomposition part that decomposes the raw material gas of the heating element CVD method, and has a role as a catalyst in the heating element CVD method.
  • the raw material gas contact portion 3A is mainly composed of tantalum, tungsten, molybdenum, tantalum-based alloy, tungsten-based alloy, molybdenum-based alloy, tantalum carbide, tungsten carbide in that the carbon-containing gas can be decomposed more efficiently. Or it is preferable to consist of at least 1 sort (s) of molybdenum carbide.
  • the material of the source gas contact portion 3A may be a single material or a composite material.
  • the tantalum-based alloy is an alloy containing 50% by mass or more of tantalum, for example, a tantalum-silicon alloy or a tantalum-iridium alloy.
  • the tungsten-based alloy is an alloy containing 50% by mass or more of tungsten, for example, a tungsten-rhenium alloy or a tungsten-thorium alloy.
  • the molybdenum-based alloy is an alloy containing 50% by mass or more of molybdenum, for example, a molybdenum-silicon alloy or a molybdenum-gold alloy.
  • the first embodiment to the fifth embodiment will be described as examples of disposing the source gas contact portion 3A on the outer surface of the resistance heating element 2A.
  • the source gas contact portion 3A is a wire, and is wound spirally around the outer surface of the resistance heating element 2A.
  • the winding pitch may be equal intervals as shown in FIG. 1 or may be unequal intervals provided with relatively sparse and dense portions.
  • the wire diameter of the raw material gas contact portion 3A is preferably 0.05 to 1.5 mm, more preferably 0.2 to 1.2 mm, and still more preferably 0.5 to 1.0 mm. .
  • the ratio of the area covered by the source gas contact portion 3A to the area of the outer surface of the resistance heating element 2A (hereinafter also referred to as the coverage) is preferably 25 to 100%, and more preferably 50 to 100%. It is more preferable.
  • FIG. 2 is a cross-sectional view showing an example of a composite heating element according to the second embodiment.
  • the source gas contact portion 3B has a layer structure covering the outer surface of the resistance heating element 2B.
  • Examples of the method of coating the source gas contact portion 3B on the outer surface of the resistance heating element 2B include a wet coating method, a cladding method, and a sputtering method.
  • the thickness of the layer of the source gas contact portion 3B is preferably 0.0001 to 1 mm, and more preferably 0.01 to 0.1 mm.
  • the resistance heating element 2B and the source gas contact portion 3B are joined and integrated, so the composite heating element 1B is processed into a coil spring shape, a zigzag shape, etc. The chance of contact with the source gas can be increased.
  • FIG. 3 is a partially enlarged front view showing an example of the composite heating element according to the third embodiment.
  • the material gas contact portion 3C has a grain shape and is fixed to the outer surface of the resistance heating element 2C.
  • the resistance heating element 2C is made of a material mainly composed of carbon
  • the coefficient of thermal expansion of the material mainly composed of carbon is relatively smaller than the coefficient of thermal expansion of the material mainly composed of metal.
  • the raw material gas contact portion 3C is formed into a grain shape, so that the raw material gas contact portion 3C can be placed on the outer surface of the resistance heat generator 2C even if the difference in thermal expansion coefficient between the resistance heat generator 2C and the raw material gas contact portion 3C is large. Can be fixed to.
  • the source gas contact portion 3C may be in contact with the outer surface of the resistance heating element 2C, but is more preferably fixed.
  • the fixing method is, for example, a method (spraying method) in which the material of the source gas contact portion 3C heated to a molten or semi-molten state is solidified and adhered by spraying the outer surface of the wire to be the resistance heating element 2C, A method of applying and sintering a paste containing particles to be the source gas contact portion 3C on the outer surface of the resistance heating element 2C (sintering method), or kneading the particles to be the source gas contact portion 3C to the material of the resistance heating element 2C This is a method (kneading method) in which a wire is formed from the squeezed composition.
  • the resistance heating element 2C is in the form of a fiber such as a C / C composite or a carbon fiber reinforced metal composite material
  • the source gas contact portion 3C and the outer surface of the wire The particles that become the source gas contact portion 3C are fixed between the fibers by colliding with each other (shot peening), or the source gas contact portion 3C is formed between the fibers forming the resistance heating element 2C. After fixing the particles, a wire may be formed.
  • FIG. 4 is a cross-sectional view showing an example of a composite heating element according to the fourth embodiment.
  • the source gas contact portion 3D is a foil material and is wound around the outer surface of the resistance heating element 2D.
  • the composite heating element 1D according to the fourth embodiment differs from the composite heating element 1B according to the second embodiment in that, in the composite heating element 1B according to the second embodiment, the resistance heating element 2B and the source gas contact portion 3B.
  • the resistance heating element 2D and the source gas contact portion 3D are separate members that can be separated.
  • the source gas contact portion 3D can be easily assembled and replaced. Moreover, recyclability becomes easy.
  • the resistance heating elements 2A to 2D have been shown to be in the form of a wire having a circular cross section, but the present invention is not limited to these forms. Next, an example of a modification will be described.
  • FIG. 5 is a sectional view showing a modified example of the composite heating element according to the second embodiment.
  • a wire having an elliptical cross section is used as the resistance heating element 2E, and the outer surface of the resistance heating element 2E is covered with the source gas contact portion 3E.
  • the cross-sectional shape of the resistance heating element 2E By making the cross-sectional shape of the resistance heating element 2E flat, the surface area of the source gas contact portion 3E can be increased, so that opportunities for contact with the source gas can be increased.
  • the source gas contact portion 3E can be formed in the same manner as the source gas contact portion 3B of the second embodiment.
  • the resistance heating element 2E and the source gas contact portion 3E are integrated in the same manner as the composite heating element according to the second embodiment. Processing into a zigzag shape can further increase the chance of contact with the source gas.
  • FIG. 6 is a cross-sectional view showing a modified embodiment of the composite heating element according to the fourth embodiment.
  • the resistance heating element 2F is a wire having a rectangular cross-sectional shape
  • the source gas contact portion 3F is a foil material
  • the source gas contact portion is placed on the side surfaces 2F1 and 2F2 of the resistance heating element 2F. It has a laminated structure in which 3F is arranged.
  • the end surface 2F3, 2F4 is not disposed with the source gas contact portion 3F, and the end surfaces 2F3, 2F4 are exposed, or the source gas contact portion 3F extends to the end surfaces 2F3, 2F4. It is good also as a form which coat
  • the resistance heating elements 2 ⁇ / b> A, 2 ⁇ / b> D, 2 ⁇ / b> F and the source gas contact portions 3 ⁇ / b> A, 3 ⁇ / b> D, 3 ⁇ / b> F are shown in contact with each other without gaps. There may be a portion where the resistance heating elements 2A, 2D, 2F and the source gas contact portions 3A, 3D, 3F are not in contact with each other.
  • the outer surface of the resistance heating elements 2A to 2F is coated with rhenium oxide, zirconium oxide, magnesium oxide, silicon dioxide, tantalum carbide or tungsten carbide. It is preferable that the surface has been rubbed. Durability can be further improved by coating the outer surfaces of the resistance heating elements 2A to 2F according to the use atmosphere or application. For example, when the use atmosphere is an oxidizing atmosphere, the resistance heating elements 2A to 2F are oxidized by coating the outer surfaces of the resistance heating elements 2A to 2F with rhenium oxide, zirconium oxide or molybdenum disilicide as a coating process. It can prevent and generate stable heat.
  • the outer surfaces of the resistance heating elements 2A to 2F are coated with tantalum carbide as a coating process, and the resistance heating elements 2A to 2F volatilize undesired components for food contact. It is possible to generate stable heat by preventing distribution on the surface.
  • FIG. 7 is a schematic view showing an example of a heating element CVD apparatus according to this embodiment.
  • a heating element CVD apparatus 100 shown in FIG. 7 is an apparatus that uses a plastic container 11 as a molded body and forms a thin film on the inner surface of the plastic container 11.
  • the heating element CVD apparatus 100 according to this embodiment includes a vacuum chamber 6, an exhaust pump (not shown) that evacuates the internal gas in the vacuum chamber 6, and a gas blowout hole 17 x that is disposed in the vacuum chamber 6.
  • a raw material gas supply pipe 23 and a composite heating element 18 according to the first to fifth embodiments are provided.
  • the vacuum chamber 6 has a space for accommodating a plastic container 11 as a molded body therein, and the space serves as a reaction chamber 12 for forming a thin film.
  • the vacuum chamber 6 includes a lower chamber 13 and an upper chamber 15 that is detachably attached to the upper portion of the lower chamber 13 and seals the inside of the lower chamber 13 with an O-ring 14.
  • the upper chamber 15 has an upper and lower drive mechanism (not shown) and moves up and down as the plastic container 11 is carried in and out.
  • the internal space of the lower chamber 13 is formed to be slightly larger than the outer shape of the molded body (the plastic container 11 in FIG. 7) accommodated therein.
  • An exhaust pipe 22 communicates with the internal space of the upper chamber 15 via a vacuum valve 8 so that air in the reaction chamber 12 inside the vacuum chamber 6 is exhausted by an exhaust pump (not shown).
  • the source gas supply pipe 23 is supported so as to hang downward at the center of the inner ceiling surface of the upper chamber 15.
  • a raw material gas 33 flows into the raw material gas supply pipe 23 through gas flow rate adjusters 24a and 24b and valves 25a to 25c.
  • the source gas 33 can be supplied by a bubbling method when the starting material is liquid. That is, the bubbling gas is supplied to the starting material 41a accommodated in the material tank 40a while the flow rate is controlled by the gas flow rate regulator 24a, and the vapor of the starting material 41a is generated and supplied as the material gas 33.
  • the source gas supply pipe 23 has the source gas channel 17 inside, and a gas blowing hole 17 x communicating with the source gas channel 17 is provided at least at the tip of the source gas supply tube 23.
  • the end of the source gas supply pipe 23 opposite to the side where the gas blowing holes 17 x are provided is connected to a gas supply port 16 provided in the upper chamber 15. As a result, the source gas passes through the source gas flow path 17 connected to the gas supply port 16 and is blown out from the gas outlet hole 17x.
  • the material of the source gas supply pipe 23 may be an insulator or a conductor.
  • the material of the source gas supply pipe 23 is, for example, a ceramic pipe formed of a material mainly composed of aluminum nitride, silicon carbide, silicon nitride, or aluminum oxide, mainly composed of aluminum nitride, silicon carbide, silicon nitride, or aluminum oxide.
  • the source gas supply pipe 23 is made a part of the energization path or a separate It is necessary to secure an energization path.
  • the lotus root type member 35 for fixing the relative position of the resistance heating element to the source gas supply pipe 23 is made of an insulator.
  • the composite heating element 18 can be energized stably, is durable, and the heat generated by the composite heating element 18 can be efficiently exhausted by heat conduction.
  • the composite heating element 18 is disposed along the side wall of the source gas supply pipe 23 and is connected to the wiring 19 by connection portions 26a and 26b.
  • a heater power source 20 is connected to the wiring 19.
  • FIG. 8 is a schematic view showing an example of a state in which the composite heating element is supported on the source gas supply pipe.
  • FIG. 8 shows an example in which two composite heating elements 1A according to the first embodiment are provided as an example.
  • the gas blowing hole 17x is provided at least at the tip of the source gas supply pipe 23, and the source gas supply pipe 23 is fitted around the tip of the gas blowing hole 17x. It is preferable that a lotus root-type member 35 having a hole 51 and a plurality of guide holes 52 provided around the center hole 51 is provided, and the composite heating element 1 ⁇ / b> A is supported through the guide holes 52.
  • the central hole 51 of the lotus root type member 35 is a through hole provided in the central portion of the lotus root type member 35, and has a role of fixing the lotus root type member 35 to the side wall of the source gas supply pipe 23.
  • the method of fixing the lotus root type member 35 to the raw material gas supply pipe 23 is not particularly limited.
  • the physical diameter is set by fitting the inner diameter of the center hole 51 and the outer diameter of the raw material gas supply pipe 23 to dimensions that fit each other.
  • a fixing method a fixing method using an adhesive. Moreover, you may fix so that attachment or detachment is possible or not so that attachment or detachment is impossible.
  • the guide hole 52 of the lotus root type member 35 is a through hole arranged radially with the center hole 51 as the center, and has a role of supporting the composite heating element 1A.
  • the guide holes 52 are preferably arranged in the same circle.
  • the guide hole 52 preferably supports the composite heating element 1A in a non-fixed manner and more preferably supports the composite heating element 1A in a non-contact manner in that the deformation due to thermal expansion of the composite heating element 1A is not hindered.
  • the composite heating element 1 ⁇ / b> A can be disposed slightly away from the side wall surface of the source gas supply pipe 23. As a result, it is possible to prevent a rapid temperature rise of the source gas supply pipe 23.
  • the contact opportunity with the source gas blown out from the gas blowing hole 17x and the source gas in the reaction chamber 12 can be increased.
  • the composite heating element 1A preferably has a return portion 4A in front of the gas blowing hole 17x.
  • the shape of the return portion 4A is, for example, an arch shape obtained by bending the composite heating element 1A into an arc shape as shown in FIG. 8, a convex shape obtained by bending the composite heating element 1A into a square shape as shown in FIG. It is a polygonal shape (not shown) obtained by bending 1A into a coil spring shape and a zigzag shape.
  • the front of the gas blowing hole 17x refers to a portion protruding in the length direction of the source gas supply pipe 23, and the return portion 4A is disposed across the front of the gas blowing hole 17x or the gas blowing. You may arrange
  • the material of the lotus root type member 35 may be an insulator or a conductor.
  • the material of the lotus root type member 35 is, for example, a ceramic, aluminum nitride, silicon carbide, silicon nitride, or aluminum oxide as a main component formed of a material mainly composed of aluminum nitride, silicon carbide, silicon nitride, or aluminum oxide. It is a metal, stainless steel tube whose surface is coated with. In particular, an insulator having a high thermal conductivity is preferable.
  • the material of the lotus root type member 35 is selected depending on whether the source gas supply pipe 23 is insulative or conductive.
  • the material of the lotus root type member 35 may be either an insulator or a conductor. Further, when the material of the source gas supply pipe 23 is conductive, the material of the lotus root type member 35 is preferably an insulator.
  • only one lotus root type member 35 may be provided at the distal end portion on the gas blowing hole 17 x side.
  • a plurality of lotus root type members 35 are provided. It is more preferable that the guide holes 52 of the lotus root type members 35 are arranged so that the positions of the lotus root type members 35 face each other.
  • the composite heating element 2A is supported at two or more points along the side wall of the source gas supply pipe 23, and the composite heating element 1A can be more reliably prevented from contacting the side wall of the source gas supply pipe 23.
  • the composite heating element 18 Since the composite heating element 18 has conductivity, it can be heated by energization, for example. By causing electricity to flow through the composite heating element 18 by the heater power source 20, the composite heating element 18 generates heat. Note that the present invention is not limited to the heating method of the composite heating element 18. In addition, although one composite heating element 18 is shown in FIG. 7, two composite heating elements 18 may be provided as shown in FIG. 8, or three or more may be provided although not shown.
  • a method for manufacturing a molded body including the thin film according to the present embodiment will be described by taking as an example a case where a thin film is formed on the inner surface of the plastic container 11 as a molded body.
  • a gas containing carbon as a source gas is brought into contact with the composite heating element 18 that generates heat at 1800 ° C. or more, and the source gas is decomposed to generate a chemical species 34.
  • the thin film is formed by allowing the chemical species 34 to reach the surface of the molded body (in FIG. 7, the plastic container 11).
  • a vent (not shown) is opened to open the vacuum chamber 6 to the atmosphere.
  • a plastic container 11 as a molded body is inserted into the reaction chamber 12 from the upper opening of the lower chamber 13 with the upper chamber 15 removed.
  • the positioned upper chamber 15 is lowered, and the source gas supply pipe 23 attached to the upper chamber 15 and the composite heating element 18 fixed thereto are inserted into the plastic container 11 from the mouth portion 21 of the plastic container.
  • the upper chamber 15 is brought into contact with the lower chamber 13 via the O-ring 14, whereby the reaction chamber 12 is made a sealed space.
  • the distance between the inner wall surface of the lower chamber 13 and the outer wall surface of the plastic container 11 is kept substantially uniform, and the distance between the inner wall surface of the plastic container 11 and the composite heating element 18 is also substantially equal. It is kept uniform.
  • the composite heating element 18 is heated by, for example, energization.
  • the heating temperature of the composite heating element 18 is 1800 ° C. or higher. More preferably, it is 1900 degreeC. If it is less than 1800 degreeC, source gas cannot be decomposed
  • the upper limit value of the heating temperature of the composite heating element 18 varies depending on the material of the resistance heating element 2A and the source gas contact portion 3A.
  • the material of the resistance heating element 2A is rhenium, and the material of the source gas contact portion 3A is tantalum.
  • the upper limit of the heat generation temperature of the composite heating element 18 is preferably 2300 ° C, and more preferably 2200 ° C.
  • a gas containing carbon is supplied as the source gas 33.
  • the gas containing carbon is, for example, an organosilane compound.
  • the organic silane compound include vinyl silane (H 3 SiC 2 H 3 ), disilabutane (H 3 SiC 2 H 4 SiH 3 ), disilylacetylene (H 3 SiC 2 SiH 3 ), 2-aminoethylsilane (H 3). SiC 2 H 4 NH 2 ). Of these, vinylsilane, disilabutane, or disilylacetylene is preferable.
  • the obtained SiOC thin film can have a barrier property improvement rate (Barrier Improvement Factor, hereinafter referred to as BIF) obtained by (Equation 1) of 6 or more.
  • BIF Barrier Improvement Factor
  • a 500 ml PET bottle (a bottle made of polyethylene terephthalate, hereinafter also referred to as a PET bottle) (height 133 mm, trunk outer diameter 64 mm, mouth outer diameter 24.9 mm, mouth inner diameter 21.4 mm)
  • the oxygen permeability can be 0.0058 cc / container / day or less at a wall thickness of 300 ⁇ m and a resin amount of 29 g).
  • the oxygen permeability can be 0.0082 cc / container / day or less.
  • BIF [Oxygen permeability of molded body without thin film] / [Oxygen permeability of molded body with thin film]
  • the raw material gas 33 is supplied after the flow rate is controlled by the gas flow rate regulator 24a. Further, the carrier gas is mixed with the source gas 33 before the valve 25c while the flow rate of the carrier gas is controlled by the gas flow rate regulator 24b as necessary.
  • the carrier gas is an inert gas such as argon, helium or nitrogen. Then, the source gas 33 is supplied to the source gas supply pipe 23 in the plastic container 11 whose pressure is reduced to a predetermined pressure in a state where the flow rate is controlled by the gas flow rate regulator 24a or in a state where the flow rate is controlled by the carrier gas. The gas is blown out toward the composite heating element 18 that has generated heat from the gas blowing holes 17x.
  • the chemical species 34 sufficiently activated by the composite heating element 18 can be generated, and a film having a high gas barrier property can be obtained.
  • the source gas 33 When the source gas 33 is liquid, it can be supplied by a bubbling method.
  • the bubbling gas used for the bubbling method is, for example, an inert gas such as nitrogen, argon, or helium, and nitrogen gas is more preferable. That is, when the starting material 41a in the material tank 40a is bubbled using a bubbling gas while controlling the flow rate with the gas flow rate regulator 24a, the starting material 41a is vaporized and taken into the bubbles. Thus, the source gas 33 is supplied in a state of being mixed with the bubbling gas. Further, the carrier gas is mixed with the raw material gas 33 in front of the valve 25c while controlling the flow rate with the gas flow rate regulator 24b.
  • the raw material gas 33 is directed toward the composite heating element 18 that generates heat from the gas blowing hole 17x of the raw material gas supply pipe 23 in the plastic container 11 whose pressure is reduced to a predetermined pressure while the flow rate is controlled by the carrier gas. And blown out.
  • the flow rate of the bubbling gas is preferably 3 to 50 sccm, and more preferably 5 to 15 sccm.
  • the flow rate of the carrier gas is not particularly limited, but is preferably 0 to 80 sccm. More preferably, it is 5 to 50 sccm.
  • the pressure in the plastic container 11 can be adjusted to 20 to 80 Pa depending on the flow rate of the carrier gas.
  • the time during which the composite heating element 18 is heated in the film forming step and the source gas is sprayed onto the composite heating element 18 (hereinafter sometimes referred to as film forming time) is preferably 1.0 to 20 seconds, and more preferably. Is 1.0 to 8.5 seconds.
  • the pressure in the vacuum chamber during film formation is preferably reduced until it reaches, for example, 1.0 to 100 Pa. More preferably, it is 1.4 to 50 Pa.
  • the thickness of the thin film is not particularly limited.
  • the thin film is a SiOC thin film, it is preferably 5 to 200 nm and more preferably 10 to 100 nm in order to obtain an effect of improving gas barrier properties. .
  • the resistance heating element and the raw material gas contact portion are not separately formed, but the heating element integrally formed of the same material (for example, a tantalum wire having a diameter of 0.5 mm) is used.
  • the heating element integrally formed of the same material for example, a tantalum wire having a diameter of 0.5 mm.
  • a thin film was formed using vinylsilane as a source gas, sufficient catalytic activity was not exhibited when continuous film formation was performed 30 times. As a result, the gas barrier thin film could not be deposited.
  • XPS analysis X-ray electron spectroscopy analysis
  • the composite heating element 1A according to the first embodiment is a composite heating element in which the resistance heating element 2A is a rhenium wire having a diameter of 0.5 mm and the source gas contact portion 3A is a tantalum wire having a diameter of 0.1 mm.
  • the continuous film formation of 10,000 times or more means that the film formation apparatus for forming the film one by one on the formed body as shown in FIG.
  • a series of film forming operations up to “end” is defined as one time and is repeated 10,000 times or more.
  • the number of formed bodies that have passed in front of an arbitrary source gas supply pipe is 10,000 or more. It means that.
  • the thin film can be formed on the outer surface of the plastic container using, for example, a film forming apparatus shown in FIG. .
  • the present invention is not limited to this, and the molded body can be a film or a sheet.
  • FIG. 7 shows the inner surface of a 500 ml plastic bottle (height 133 mm, body outer diameter 64 mm, mouth outer diameter 24.9 mm, mouth inner diameter 21.4 mm, wall thickness 300 ⁇ m, resin amount 29 g) as a molded body.
  • the SiOC thin film was formed using the film-forming apparatus.
  • the PET bottle was accommodated in the vacuum chamber 6 and decompressed until it reached 1.0 Pa.
  • two composite heating elements 18 were used, and 24 V of direct current was applied to the composite heating element 18 to generate heat at 2000 ° C.
  • the composite heating element 18 the composite heating element 1A according to the first embodiment shown in FIG. 1 was used.
  • the resistance heating element 2A is a rhenium wire having a diameter of 0.5 mm and a length of 44 cm
  • the source gas contact portion 3A is a tantalum wire having a diameter of 0.1 mm and a length of 5000 mm
  • the source gas contact portion 3A is formed on the outer surface of the resistance heating element 2A.
  • vinylsilane was supplied as a source gas 33 from the gas flow controller 24a so that the flow rate was 50 sccm, and a gas barrier thin film was deposited on the inner surface of the PET bottle. Thereafter, the supply of the raw material gas 33 was stopped, and the reaction chamber 12 was evacuated again.
  • the film thickness was 20 nm.
  • the film thickness is a value measured using a stylus type step meter (model: ⁇ -step, manufactured by KLA-Eten).
  • the piping from the gas flow rate regulators 24a and 24b to the gas supply port 16 was composed of 1/4 inch piping made of alumina.
  • the pressure during film formation was 5.0 Pa.
  • the film formation time was 6 seconds.
  • the resistance heating element 2A is a C / C composite wire having a diameter of 0.5 mm and a length of 44 cm
  • the source gas contact portion 3A is a tantalum wire having a diameter of 0.1 mm and a length of 5000 mm.
  • a film forming operation was performed in the same manner as in Example 1 except that the surface was changed to a material gas contact portion 3A spirally wound around the surface.
  • the resistance heating element 2A is made of iridium wire having a diameter of 0.5 mm and a length of 44 cm
  • the source gas contact portion 3A is made of tungsten wire having a diameter of 0.1 mm and a length of 5000 mm
  • the raw material is formed on the outer surface of the resistance heating element 2A.
  • the film forming operation was performed in the same manner as in Example 1 except that the gas contact part 3A was changed to a spirally wound one.
  • the resistance heating element 2A is a rhodium wire having a diameter of 0.5 mm and a length of 44 cm
  • the source gas contact portion 3A is a molybdenum wire having a diameter of 0.1 mm and a length of 5000 mm
  • the raw material is formed on the outer surface of the resistance heating element 2A.
  • the film forming operation was performed in the same manner as in Example 1 except that the gas contact part 3A was changed to a spirally wound one.
  • the resistance heating element 2A is a silicon carbide wire having a diameter of 0.5 mm and a length of 44 cm
  • the source gas contact portion 3A is a tantalum-iridium alloy having a diameter of 0.1 mm and a length of 5000 mm (tantalum content 95% by mass).
  • the film forming operation was performed in the same manner as in Example 1 except that the line was changed to a spirally wound material gas contact portion 3A around the outer surface of the resistance heating element 2A.
  • the resistance heating element 2 A is a molybdenum disilicide wire having a diameter of 0.5 mm and a length of 44 cm
  • the source gas contact portion 3 A is a tungsten-rhenium alloy having a diameter of 0.1 mm and a length of 5000 mm (tungsten content 95 mass%).
  • the film forming operation was performed in the same manner as in Example 1 except that the line was changed to a spirally wound source gas contact portion 3A around the outer surface of the resistance heating element 2A.
  • the resistance heating element 2A is a rhenium wire having a diameter of 0.5 mm and a length of 44 cm
  • the source gas contact portion 3A is a molybdenum-gold alloy (molybdenum content 95 mass%) wire having a diameter of 0.1 mm and a length of 5000 mm.
  • the film forming operation was performed in the same manner as in Example 1 except that the material gas contact portion 3A was spirally wound around the outer surface of the resistance heating element 2A.
  • the resistance heating element 2A is a rhenium wire having a diameter of 0.5 mm and a length of 44 cm
  • the source gas contact portion 3A is a tantalum carbide wire having a diameter of 0.1 mm and a length of 5000 mm on the outer surface of the resistance heating element 2A.
  • the film forming operation was performed in the same manner as in Example 1 except that the source gas contact portion 3A was changed to a spirally wound one.
  • the tantalum carbide was produced by winding a resistance heating element 2A in a propane gas atmosphere after winding a tantalum wire around the resistance heating element 2A.
  • the resistance heating element 2A is a rhenium wire having a diameter of 0.5 mm and a length of 44 cm
  • the source gas contact portion 3A is a tungsten carbide wire having a diameter of 0.1 mm and a length of 5000 mm on the outer surface of the resistance heating element 2A.
  • the film forming operation was performed in the same manner as in Example 1 except that the source gas contact portion 3A was changed to a spirally wound one.
  • Tungsten carbide was produced by winding a resistance wire 2A in a propane gas atmosphere after winding a tungsten wire around the resistance heater 2A.
  • the resistance heating element 2A is made of rhenium wire having a diameter of 0.5 mm and a length of 44 cm
  • the source gas contact portion 3A is made of molybdenum carbide wire having a diameter of 0.1 mm and a length of 5000 mm on the outer surface of the resistance heating element 2A.
  • the film forming operation was performed in the same manner as in Example 1 except that the source gas contact portion 3A was changed to a spirally wound one.
  • Molybdenum carbide was prepared by winding a resistance wire 2A in a propane gas atmosphere after winding a molybdenum wire around the resistance heater 2A.
  • Example 11 The film forming operation was performed in the same manner as in Example 1 except that the composite heating element 18 was changed to the composite heating element 1B according to the second embodiment shown in FIG.
  • the resistance heating element 2B is made of rhenium wire having a diameter of 0.5 mm and a length of 44 cm
  • the source gas contact part 3B is made of a tantalum film having a thickness of 0.1 mm. What coat
  • the tantalum film was formed by a clad wire method.
  • Example 12 The film forming operation was performed in the same manner as in Example 1 except that the composite heating element 18 was changed to the composite heating element 1C according to the third embodiment shown in FIG.
  • the composite heating element 1C according to the third embodiment is a resistance heating element in which the resistance heating element 2C is a C / C composite wire having a diameter of 0.5 mm and a length of 44 cm, and the source gas contact portion 3C is tantalum particles having an average particle diameter of 50 nm. What fixed the particle
  • the tantalum particles were fixed as follows.
  • the tantalum particles are collided with the outer surface of the resistance heating element 2C by a shot peening machine (model FDD-11RBDT-20-701, manufactured by Fuji Seisakusho), and the particles of the source gas contact portion 3C are contacted with the outer surface of the resistance heating element 2B.
  • a shot peening machine model FDD-11RBDT-20-701, manufactured by Fuji Seisakusho
  • Example 13 The film forming operation was performed in the same manner as in Example 1 except that the composite heating element 18 was changed to the composite heating element 1D according to the fourth embodiment shown in FIG.
  • the resistance heating element 2D is a rhenium wire having a diameter of 0.5 mm and a length of 44 cm
  • the source gas contact portion 3D is 0.01 mm in thickness, 10 mm in width, and 120 cm in length.
  • a material in which the source gas contact portion 3D is wound around the outer surface of the resistance heating element 2D is used.
  • Example 14 The film forming operation was performed in the same manner as in Example 1 except that the composite heating element 18 was changed to the composite heating element 1E according to the modification of the second embodiment shown in FIG.
  • a composite heating element 1E according to a modification of the second embodiment is the same as in Example 11 except that the resistance heating element 2E has an elliptical cross-sectional shape, an elliptical average major axis of 1.0 mm, an average minor axis of 0.25 mm, and a side surface. This was formed in the same manner as in Example 11 except that a rhenium wire having a length of 44 cm was used.
  • Example 15 The film forming operation was performed in the same manner as in Example 1 except that the composite heating element 18 was changed to the composite heating element 1F according to the modification of the fourth embodiment shown in FIG.
  • a composite heating element 1F according to a modification of the fourth embodiment is the same as that of Example 13 except that the resistance heating element 2F has a rectangular cross-sectional shape, an elliptical long side of 0.6 mm, a short side of 0.3 mm, and a side length. It was formed in the same manner as Example 13 except that a rhenium wire having a thickness of 44 cm was used.
  • Example 1 The film forming operation was carried out in the same manner as in Example 1 except that instead of the composite heating element 18, a resistance heating element and a source gas contact portion were integrally formed of the same material.
  • a tantalum wire having a diameter of 0.5 mm and a length of 44 mm was used as the heating element.
  • Example 2 The film forming operation was performed in the same manner as in Example 1 except that a tungsten wire having a diameter of 0.5 mm and a length of 44 mm was used as the heating element instead of the composite heating element 18.
  • Example 3 A film forming operation was performed in the same manner as in Example 1 except that a molybdenum wire having a diameter of 0.5 mm and a length of 44 mm was used as the heating element instead of the composite heating element 18.
  • Example 1 Numberer of times of continuous film formation
  • the film forming operation described in Example 1 was repeatedly performed under the same conditions, and the oxygen permeability of the PET bottle with the film formed was a half of the reference value with the oxygen permeability of the PET bottle with no thin film formed as a reference value.
  • Oxygen permeability was measured under the conditions of 23 ° C. and 90% RH using an oxygen permeability measuring device (model: Oxtran 2/20, manufactured by Modern Control), conditioned for 24 hours from the start of measurement, and then started measurement. The value after 72 hours had passed.
  • the PET bottles formed by the film forming operations of Examples 1 to 15 and Comparative Examples 1 to 3 all decreased to 1/10 or less of the reference value at the first film forming operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本発明の目的は、発熱体の表層で炭化反応が起こっても、所定の温度まで確実に発熱して、触媒活性を発揮できる耐久性が向上した複合発熱体を提供することである。また、本発明の目的は、炭素を含有する原料ガスを用いた発熱体CVD法で長期間、安定して各成形体の表面に成膜を行うことが可能な、薄膜を備える成形体の製造方法及び発熱体CVD装置を提供することである。本発明に係る複合発熱体1Aは、炭素、レニウム、イリジウム、ロジウム、炭化珪素又は二珪化モリブデンのいずれかを主成分とする線状の抵抗発熱体2Aと、抵抗発熱体2Aの外表面に配置した原料ガス接触部3Aと、を備え、原料ガス接触部3Aが、発熱体CVD法の原料ガスを分解する分解部である。

Description

複合発熱体並びにそれを用いた薄膜を備える成形体の製造方法及び発熱体CVD装置
 本発明は、耐久性が向上した複合発熱体並びにそれを用いた薄膜を備える成形体の製造方法及び発熱体CVD(chemical vapor deposition)装置に関する。
 発熱体CVD法は、Cat‐CVD法又はホットワイヤーCVD法とも呼ばれ、発熱させた発熱体に原料ガスを接触させて分解し、生成した化学種を直接又は気相中で反応過程を経た後に、基材上に薄膜として堆積させる方法である(例えば、特許文献1又は2を参照。)。特許文献1では、原料ガスとして複数のガスを組み合わせることで、例えば、水素含有SiNx薄膜、水素含有DLC薄膜、水素含有SiOx薄膜又は水素含有SiCxNy薄膜を形成する技術を提案している。特許文献2には、少なくとも珪素、炭素、窒素原子を含むガスを用いて、炭化窒化珪素膜を形成する方法が開示されている。
 発熱体は、原料ガスなどと反応して消耗すると、触媒活性等が損なわれ、その結果、原料ガスの分解能力が損なわれる問題がある。そこで、発熱体の耐久性を向上させる技術が提案されている(例えば、特許文献3~5を参照。)。特許文献3では、発熱体がin situクリーニング法におけるクリーニングガスと反応して細線化することを防止する技術として、発熱体の少なくとも表面を白金とする技術が情報提供されている。特許文献4では、発熱体がシリコン系の膜を形成するときに使用するシランガスと反応することを防止する技術として、発熱体としての触媒体の表面に炭素皮膜を形成する技術が開示されている。また、特許文献5では、発熱体を昇温させて使用を続けた結果、発熱体の材質である金属の結晶粒径が変化するなどの内部組織の構造が変移することによる高温強度の低下を防止する技術、又は処理空間内に残存する酸素原子による酸化の結果、発熱体の材質が変質を起こすことによる靭性の低下を防止する技術として、発熱体の母体材料にリン原子を含有させる技術が開示されている。特許文献6では、発熱体を昇温させて使用を継続した結果、発熱体内部が徐々に炭化することによる発熱体の電気抵抗の増大を防止する技術として、タンタル発熱体の表面をあらかじめ炭化しておくことで炭化が進行しにくくなるという技術が開示されている。
WO2006/126677号公報 特開2005-310861号公報 特開2001-49437号公報 特開2009-215618号公報 特開2000-303183号公報 特開2012-41576号公報
 発熱体CVD法には、原料ガスとして炭素を含有するガスを用いると、発熱体の表層で炭化反応が起こって発熱体の触媒活性が損なわれる問題がある(以降、この触媒活性が損なわれる現象を「炭化劣化」ということもある。)。発熱体は、例えば、(1)2000℃を超える高融点を有すること、(2)炭化劣化しないこと及び(3)通電加熱が可能であることの要件を満たすことが求められるが、これらを満たす発熱体はこれまで開示されていない。特許文献6に開示されている技術によっても発熱体内部の炭化を止めることはできないため、遅かれ早かれ、発熱体の靭性が低下し、実用上の性能が損なわれる問題が解決できない。
 本発明の目的は、発熱体の表層で炭化反応が起こっても、所定の温度まで確実に発熱して、触媒活性を発揮できる耐久性が向上した複合発熱体を提供することである。また、本発明の目的は、炭素を含有する原料ガスを用いた発熱体CVD法で長期間、安定して各成形体の表面に成膜を行うことが可能な、薄膜を備える成形体の製造方法及び発熱体CVD装置を提供することである。
 本発明に係る複合発熱体は、炭素、レニウム、イリジウム、ロジウム、炭化珪素又は二珪化モリブデンのいずれかを主成分とする線状の抵抗発熱体と、該抵抗発熱体の外表面に配置した原料ガス接触部と、を備え、該原料ガス接触部が、発熱体CVD法の原料ガスを分解する分解部であることを特徴とする。
 本発明に係る複合発熱体では、前記原料ガス接触部は、タンタル、タングステン、モリブデン、タンタル基合金、タングステン基合金、モリブデン基合金、炭化タンタル、炭化タングステン又は炭化モリブデンの少なくとも1種を主成分とすることが好ましい。炭素を含有するガスの分解をより効率的に行うことができる。
 本発明に係る複合発熱体では、前記原料ガス接触部が線材であり、前記抵抗発熱体の外表面に螺旋状に巻き付いていることが好ましい。原料ガス接触部の組みつけ及び交換を容易に行うことができる。
 本発明に係る複合発熱体では、前記原料ガス接触部が、前記抵抗発熱体の外表面を被覆した層構造をなしていることが好ましい。抵抗発熱体と原料ガス接触部とを一体化することができる。
 本発明に係る複合発熱体では、前記原料ガス接触部が粒形状であり、前記抵抗発熱体の外表面に固定されていることが好ましい。抵抗発熱体と原料ガス接触部との熱膨張率の違いにかかわらず耐久性を向上することができる。
 本発明に係る複合発熱体では、前記原料ガス接触部が箔材であり、前記抵抗発熱体の外表面に巻き付いていることが好ましい。原料ガス接触部の組みつけ及び交換を容易に行うことができる。
 本発明に係る複合発熱体では、前記抵抗発熱体の断面形状が扁平形状であることが好ましい。抵抗発熱体の表面積を広くすることができるため、抵抗発熱体の外表面に配置する原料ガス接触部の表面積を広くすることができる。
 本発明に係る複合発熱体では、前記抵抗発熱体の外表面が、酸化レニウム、酸化ジルコニウム、酸化マグネシウム、二酸化珪素、炭化タンタル又は炭化タングステンのコーティング処理がされた表面であることが好ましい。使用雰囲気又は用途に応じたコーティング処理によって、耐久性の更なる向上ができる。
 本発明に係る薄膜を備える成形体の製造方法は、発熱した発熱体に原料ガスを接触させて、該原料ガスを分解して化学種を生成させ、成形体の表面に前記化学種を到達させることによって薄膜を形成した薄膜を備える成形体の製造方法において、前記原料ガスが、炭素を含有し、前記発熱体が、本発明に係る複合発熱体であり、該複合発熱体を、1800℃以上に加熱することを特徴とする。
 本発明に係る発熱体CVD装置は、真空チャンバと、該真空チャンバ内の内部ガスを真空引きする排気ポンプと、前記真空チャンバ内に配置され、ガス吹出し孔を有する原料ガス供給管と、本発明に係る複合発熱体と、を備えることを特徴とする。
 本発明に係る発熱体CVD装置では、前記ガス吹出し孔が、前記原料ガス供給管の少なくとも先端に設けられ、前記原料ガス供給管が、前記ガス吹出し孔側の先端部に外嵌する中心孔と該中心孔の周りに設けられた複数個のガイド孔とを有する蓮根型部材を備え、前記複合発熱体が、前記ガイド孔を通って支持されることが好ましい。複合発熱体を安定して支持し、かつ、その複合発熱体が原料ガスの流れを乱さない。さらに、複合発熱体に原料ガスをより効率的に接触させることができる。
 本発明に係る発熱体CVD装置では、前記複合発熱体が、前記ガス吹出し孔の前方に返し部を有することが好ましい。複合発熱体に原料ガスを更に効率的に接触させることができる。
 本発明は、発熱体の表層で炭化反応が起こっても、所定の温度まで確実に発熱して、触媒活性を発揮できる耐久性が向上した複合発熱体を提供することができる。また、本発明は、炭素を含有する原料ガスを用いた発熱体CVD法で長期間、安定して各成形体の表面に成膜を行うことが可能な、薄膜を備える成形体の製造方法及び発熱体CVD装置を提供することができる。
第一実施形態に係る複合発熱体の一例を示す部分拡大正面図である。 第二実施形態に係る複合発熱体の一例を示す断面図である。 第三実施形態に係る複合発熱体の一例を示す部分拡大正面図である。 第四実施形態に係る複合発熱体の一例を示す断面図である。 第二実施形態に係る複合発熱体の変形形態例を示す断面図である。 第四実施形態に係る複合発熱体の変形形態例を示す断面図である。 本実施形態に係る発熱体CVD装置の一例を示す概略図である。 複合発熱体の原料ガス供給管への支持状態の一例を示す概略図である。
 次に、本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。
 図1は、第一実施形態に係る複合発熱体の一例を示す部分拡大正面図である。第一実施形態に係る複合発熱体1Aは、炭素、レニウム、イリジウム、ロジウム、炭化珪素又は二珪化モリブデンのいずれかを主成分とする線状の抵抗発熱体2Aと、抵抗発熱体2Aの外表面に配置した原料ガス接触部3Aと、を備え、原料ガス接触部3Aが、発熱体CVD法の原料ガスを分解する分解部である。
 抵抗発熱体2Aは、例えば通電することで発熱し、主として原料ガス接触部3Aに熱を供給する役割をもつ。抵抗発熱体2Aは、炭素、レニウム、イリジウム、ロジウム、炭化珪素又は二珪化モリブデンのいずれかを主成分とする線状の部材である。これらの材料は、表層で炭化反応が起こっても、電気抵抗の変化が小さいため、安定して所定の温度に発熱して原料ガス接触部3Aを加熱することができる。本明細書では、線状とは、外形が細長い形状をいう。また、線材とは、線状の部材をいう。
 抵抗発熱体2Aの断面形状は、円形、正方形若しくは正多角形であるか、又は扁平形状であってもよい。扁平形状とは、断面形状の長辺の長さ(a)と短辺の長さ(b)との比(a/b)で表される扁平率が1.5~100であることをいい、例えば、楕円形、長方形、半円形又はこれらの変形形状である。抵抗発熱体2Aの長辺側の側面の形状は、特に制限はなく、例えば、平坦面、凸曲面、凹曲面である。抵抗発熱体2Aの断面形状を扁平形状とすることで、抵抗発熱体2Aの表面積を円形などと比較して広くすることができる。そして、抵抗発熱体2Aの外表面に配置する原料ガス接触部3Aの表面積を広くすることができる。
 抵抗発熱体2Aの線径は、0.05~5mmであることが好ましく、0.1~1.5mmであることがより好ましく、0.5~1.0mmであることが更に好ましい。本明細書において、線径とは、断面形状が円形のときは直径であり、断面形状が正方形若しくは正多角形のときは正方形若しくは正多角形に外接する円の直径であり、又は断面形状が扁平形状のときは断面積と同一の面積を有する真円の直径である。
 抵抗発熱体2Aの材質は、単体であっても複合材であってもよい。炭素を主成分とする材料は、例えば、炭素繊維強化炭素複合材料(C/Cコンポジット)、炭素繊維強化金属複合材料、炭素焼結体、グラファイトである。また、例えば、炭素を主成分としてタングステンやタンタル等を添加した複合材とすることで電気抵抗を低減させてもよい。レニウムを主成分とする材料は、例えば、金属レニウム、レニウム-タングステン合金、レニウム-タンタル合金などのレニウム基合金である。イリジウムを主成分とする材料は、例えば、金属イリジウム、イリジウム-タンタル合金、イリジウム-プラチナ合金などのイリジウム基合金である。ロジウムを主成分とする材料は、例えば、金属ロジウム、ロジウム-タンタル合金、ロジウム-プラチナ合金などのロジウム基合金である。炭化珪素を主成分とする材料は、例えば、炭化珪素、炭化珪素とタングステンとの複合材料である。二珪化モリブデンを主成分とする材料は、例えば、二珪化モリブデン、二珪化モリブデンとタングステンとの複合材料である。本明細書では、主成分とは、材料の全成分中で最も含有量(質量%)が多い成分をいい、好ましくは50質量%以上、より好ましくは80質量%以上含有する成分をいう。
 原料ガス接触部3Aは、発熱体CVD法の原料ガスを分解する分解部であり、発熱体CVD法において触媒としての役割をもつ。原料ガス接触部3Aは、炭素含有ガスの分解をより効率的に行うことができる点で、主成分がタンタル、タングステン、モリブデン、タンタル基合金、タングステン基合金、モリブデン基合金、炭化タンタル、炭化タングステン又は炭化モリブデンの少なくとも1種からなることが好ましい。原料ガス接触部3Aの材質は、単体であっても複合材であってもよい。タンタル基合金は、タンタルを50質量%以上含有する合金であり、例えば、タンタル-珪素合金、タンタル-イリジウム合金である。タングステン基合金は、タングステンを50質量%以上含有する合金であり、例えば、タングステン-レニウム合金、タングステン-トリウム合金である。モリブデン基合金は、モリブデンを50質量%以上含有する合金であり、例えば、モリブデン-珪素合金、モリブデン-金合金である。
 次に、抵抗発熱体2Aの外表面に原料ガス接触部3Aを配置する形態例として第一実施形態~第五実施形態について説明する。
(第一実施形態)
 第一実施形態に係る複合発熱体1Aでは、図1に示すように、原料ガス接触部3Aが線材であり、抵抗発熱体2Aの外表面に螺旋状に巻き付いていることが好ましい。原料ガス接触部3Aを抵抗発熱体2Aの外表面に螺旋状に巻きつけることで、原料ガス接触部3Aの組みつけ及び交換を容易に行うことができる。また、リサイクルが容易になる。巻き付けのピッチは、図1に示すように等間隔とするか、又は相対的に疎の部分と密の部分とを設けた不等間隔であってもよい。原料ガス接触部3Aの線径は、0.05~1.5mmであることが好ましく、0.2~1.2mmであることがより好ましく、0.5~1.0mmであることが更に好ましい。抵抗発熱体2Aの外表面の面積に対する原料ガス接触部3Aが被覆した面積の割合(以降、被覆率ということもある。)は、25~100%であることが好ましく、50~100%であることがより好ましい。
(第二実施形態)
 図2は、第二実施形態に係る複合発熱体の一例を示す断面図である。第二実施形態に係る複合発熱体1Bでは、図2に示すように、原料ガス接触部3Bが、抵抗発熱体2Bの外表面を被覆した層構造をなしていることが好ましい。原料ガス接触部3Bを抵抗発熱体2Bの外表面に被覆する方法は、例えば、湿式コーティング法、クラッド法、スパッタリング法である。原料ガス接触部3Bの層の厚さは、0.0001~1mmであることが好ましく、0.01~0.1mmであることがより好ましい。第二実施形態に係る複合発熱体1Bは、抵抗発熱体2Bと原料ガス接触部3Bとが接合して一体化しているため、複合発熱体1Bをコイルばね形状、ジグザグ形状などに加工して、原料ガスとの接触の機会を増大させることができる。
(第三実施形態)
 図3は、第三実施形態に係る複合発熱体の一例を示す部分拡大正面図である。第三実施形態に係る複合発熱体1Cでは、原料ガス接触部3Cが粒形状であり、抵抗発熱体2Cの外表面に固定されていることが好ましい。例えば、抵抗発熱体2Cが炭素を主成分とする材料からなるとき、炭素を主成分とする材料の熱膨張率は、金属を主成分とする材料の熱膨張率に比べて相対的に小さいため、第二実施形態に係る複合発熱体1Bのように、抵抗発熱体2Bと原料ガス接触部3Bとを層構造で密着させることが難しい場合がある。このとき、原料ガス接触部3Cを粒形状とすることで、抵抗発熱体2Cと原料ガス接触部3Cとの熱膨張率の差が大きくても原料ガス接触部3Cを抵抗発熱体2Cの外表面に固定することができる。
 第三実施形態に係る複合発熱体1Cでは、原料ガス接触部3Cが抵抗発熱体2Cの外表面に接触していればよいが、固着していることがより好ましい。固着方法は、例えば、加熱して溶融状態又は半溶融状態となった原料ガス接触部3Cの材料を、抵抗発熱体2Cとなる線材の外表面に吹き付けて凝固及び密着させる方法(溶射法)、抵抗発熱体2Cの外表面に原料ガス接触部3Cとなる粒子を含むペーストを塗布して焼結する方法(焼結法)又は抵抗発熱体2Cの材料に原料ガス接触部3Cとなる粒子を練りこんだ組成物で線材を形成する方法(混練法)である。また、抵抗発熱体2CがC/Cコンポジット若しくは炭素繊維強化金属複合材料などの繊維状であるときは、抵抗発熱体2Cとして線材を形成した後、該線材の外表面に原料ガス接触部3Cとなる粒子を衝突(ショットピーニング)させて各繊維同士の間に原料ガス接触部3Cとなる粒子を固着させるか、又は抵抗発熱体2Cを形成する各繊維同士の間に原料ガス接触部3Cとなる粒子を固着させた後、線材を形成してもよい。
(第四実施形態)
 図4は、第四実施形態に係る複合発熱体の一例を示す断面図である。第四実施形態に係る複合発熱体1Dでは、原料ガス接触部3Dが箔材であり、抵抗発熱体2Dの外表面に巻き付いていることが好ましい。第四実施形態に係る複合発熱体1Dが、第二実施形態に係る複合発熱体1Bと相違する点は、第二実施形態に係る複合発熱体1Bでは、抵抗発熱体2Bと原料ガス接触部3Bとが接合して一体化しているのに対して、第四実施形態に係る複合発熱体1Dでは、抵抗発熱体2Dと原料ガス接触部3Dとが分離可能な別部材である点である。第四実施形態に係る複合発熱体1Dでは、原料ガス接触部3Dの組みつけ及び交換を容易に行うことができる。また、リサイクル性が容易になる。
 図1~図4では、抵抗発熱体2A~2Dとして断面形状が円形の線材である形態を示したが、本発明はこれらの形態に限定されない。次に、変形形態の一例について説明する。
 図5は、第二実施形態に係る複合発熱体の変形形態例を示す断面図である。図5に示す変形形態例では、抵抗発熱体2Eとして断面形状が楕円形の線材を使用し、この抵抗発熱体2Eの外表面を原料ガス接触部3Eで被覆している。抵抗発熱体2Eの断面形状を扁平形状とすることで、原料ガス接触部3Eの表面積を大きくできるので、原料ガスとの接触の機会を増すことができる。原料ガス接触部3Eは、第二実施形態の原料ガス接触部3Bと同様に形成することができる。第二実施形態に係る複合発熱体の変形形態例では、第二実施形態に係る複合発熱体と同様に抵抗発熱体2Eと原料ガス接触部3Eとが一体化しているため、複合発熱体1Eをジグザグ形状に加工して、原料ガスとの接触の機会を更に増大することができる。
 図6は、第四実施形態に係る複合発熱体の変形形態例を示す断面図である。図6に示す変形形態例では、抵抗発熱体2Fは断面形状が長方形の線材であり、かつ、原料ガス接触部3Fが箔材であり、抵抗発熱体2Fの側面2F1,2F2に原料ガス接触部3Fを配置した積層構造を有する。抵抗発熱体2Fの断面形状を扁平形状とすることで、原料ガス接触部3Fの表面積を大きくできるので、原料ガスとの接触の機会を増すことができる。原料ガス接触部3Fが箔材であるため、原料ガス接触部3Fの組みつけ及び交換を容易に行うことができる。また、リサイクル性が容易になる。図6に示すように端面2F3,2F4に原料ガス接触部3Fを配置せず、端面2F3,2F4を露出した形態とするか、又は原料ガス接触部3Fを端面2F3,2F4まで延在させて端面2F3,2F4を被覆した形態としてもよい。
 図1、図4及び図6では、抵抗発熱体2A,2D,2Fと原料ガス接触部3A,3D,3Fとが隙間なく接触している形態を示したが、触媒活性を損なわない限りにおいて、抵抗発熱体2A,2D,2Fと原料ガス接触部3A,3D,3Fとが非接触となる部分があってもよい。
 第一実施形態~第五実施形態に係る複合発熱体1A~1Fでは、抵抗発熱体2A~2Fの外表面が、酸化レニウム、酸化ジルコニウム、酸化マグネシウム、二酸化珪素、炭化タンタル又は炭化タングステンのコーティング処理がされた表面であることが好ましい。抵抗発熱体2A~2Fの外表面に使用雰囲気又は用途に応じてコーティング処理を施すことで、耐久性の更なる向上ができる。例えば、使用雰囲気が酸化雰囲気であるとき、抵抗発熱体2A~2Fの外表面をコーティング処理として酸化レニウム、酸化ジルコニウム又は二珪化モリブデンで被覆することで、抵抗発熱体2A~2Fが酸化することを防止して安定した発熱をすることができる。また、用途が食品容器用であるとき、抵抗発熱体2A~2Fの外表面をコーティング処理として炭化タンタルで被覆することで、抵抗発熱体2A~2Fが食品接触上好ましくない成分が揮発して薄膜表面に分布することを防止して安定した発熱をすることができる。
 図7は、本実施形態に係る発熱体CVD装置の一例を示す概略図である。図7に示す発熱体CVD装置100は、成形体としてプラスチック容器11を用い、プラスチック容器11の内表面に薄膜を形成する装置である。本実施形態に係る発熱体CVD装置100は、真空チャンバ6と、真空チャンバ6内の内部ガスを真空引きする排気ポンプ(不図示)と、真空チャンバ6内に配置され、ガス吹出し孔17xを有する原料ガス供給管23と、第一実施形態~第五実施形態に係る複合発熱体18と、を備える。
 真空チャンバ6は、その内部に成形体としてプラスチック容器11を収容する空間が形成されており、その空間は薄膜形成のための反応室12となる。真空チャンバ6は、下部チャンバ13と、この下部チャンバ13の上部に着脱自在に取り付けられて下部チャンバ13の内部をOリング14で密閉するようになっている上部チャンバ15とから構成されている。上部チャンバ15には図示していない上下の駆動機構があり、プラスチック容器11の搬入・搬出に伴い上下する。下部チャンバ13の内部空間は、そこに収容される成形体(図7ではプラスチック容器11)の外形よりも僅かに大きくなるように形成されている。
 上部チャンバ15の内部空間には、排気管22が真空バルブ8を介して連通されており、図示しない排気ポンプによって真空チャンバ6の内部の反応室12の空気が排気されるようになっている。
 原料ガス供給管23は、上部チャンバ15の内側天井面の中央において下方に垂下するように支持されている。原料ガス供給管23には、ガス流量調整器24a,24bとバルブ25a~25cを介して原料ガス33が流入される。原料ガス33の供給は、出発原料が液体である場合には、バブリング法によって供給することができる。すなわち、原料タンク40a内に収容された出発原料41aに、ガス流量調整器24aで流量制御しながらバブリングガスを供給し、出発原料41aの蒸気を発生させて原料ガス33として供給する。
 原料ガス供給管23は、内部に原料ガス流路17を有し、原料ガス流路17に通じるガス吹出し孔17xが、原料ガス供給管23の少なくとも先端に設けられることが好ましい。原料ガス供給管23のガス吹出し孔17xを設けた側とは反対側の端部は、上部チャンバ15に設けられたガス供給口16に接続される。これにより原料ガスはガス供給口16に接続された原料ガス流路17を通り、ガス吹出し孔17xから吹き出される。
 原料ガス供給管23の材質は、絶縁体であっても導電体であってもよい。原料ガス供給管23の材質は、例えば、窒化アルミニウム、炭化珪素、窒化珪素若しくは酸化アルミニウムを主成分とする材料で形成されたセラミック管、窒化アルミニウム、炭化珪素、窒化珪素若しくは酸化アルミニウムを主成分とする材料で表面が被覆された金属管、ステンレス管等の金属管である。ただし、原料ガス供給管23の材質がステンレス管などの導電体である場合は、抵抗発熱体に安定して通電するには、原料ガス供給管23を通電経路の一部とするか、別個の通電経路を確保する必要がある。これらの目的のために、抵抗発熱体の原料ガス供給管23に対する相対位置を固定するための蓮根型部材35を絶縁体で構成することが望ましい。複合発熱体18に安定して通電することができ、耐久性があり、かつ、複合発熱体18で発生した熱を熱伝導によって効率よく排熱させることができる。また、原料ガス供給管23の側壁には、複数のガス吹出し孔を設けること好ましい。原料ガス供給管の側壁に沿って配置した複合発熱体18の原料ガス接触部が原料ガスに接触する機会を増大させ、効率よく化学種を生成させることができる。
 複合発熱体18は、原料ガス供給管23の側壁に沿って配置され、配線19に接続部26a,26bで接続する。配線19には、ヒータ電源20が接続されている。
 図8は、複合発熱体の原料ガス供給管への支持状態の一例を示す概略図である。図8では、一例として第一実施形態に係る複合発熱体1Aを2本設けた形態を示した。本実施形態に係る発熱体CVD装置100では、ガス吹出し孔17xが、原料ガス供給管23の少なくとも先端に設けられ、原料ガス供給管23が、ガス吹出し孔17x側の先端部に外嵌する中心孔51と中心孔51の周りに設けられた複数個のガイド孔52とを有する蓮根型部材35を備え、複合発熱体1Aが、ガイド孔52を通って支持されることが好ましい。
 蓮根型部材35の中心孔51は、蓮根型部材35の中央部に設けられた貫通孔であり、原料ガス供給管23の側壁に蓮根型部材35を固定する役割をもつ。蓮根型部材35を原料ガス供給管23に固定する方法は、特に制限はなく、例えば、中心孔51の内径と原料ガス供給管23の外径とを相互に嵌合する寸法に設定して物理的に固定する方法、接着剤を介して固定する方法である。また、着脱可能に固定するか、又は着脱できないように固定してもよい。
 蓮根型部材35のガイド孔52は、中心孔51を中心として放射状に配置された貫通孔であり、複合発熱体1Aを支持する役割をもつ。ガイド孔52は、同一円状に配置することが好ましい。ガイド孔52は、複合発熱体1Aの熱膨張による変形を阻害しない点で、複合発熱体1Aを非固定で支持することが好ましく、複合発熱体1Aを非接触で支持することがより好ましい。複合発熱体18を、ガイド孔52を通して支持することで、複合発熱体1Aを原料ガス供給管23の側壁表面から僅かに離して配置することができる。結果として、原料ガス供給管23の急激な温度上昇を防止することができる。また、ガス吹出し孔17xから吹き出た原料ガス及び反応室12にある原料ガスとの接触機会を増やすことができる。
 複合発熱体1Aは、ガス吹出し孔17xの前方に返し部4Aを有することが好ましい。これによって、ガス吹出し孔17xから吹き出た原料ガスは複合発熱体1Aと接触しやすくなるため、原料ガスを効率よく活性化させることができる。返し部4Aの形状は、例えば、図8に示すように複合発熱体1Aを円弧状に曲げたアーチ形状、図7に示すように複合発熱体1Aを四角状に曲げた凸形状、複合発熱体1Aをコイルばね形状、ジグザグ形状に曲げた多角形状(不図示)である。ここで、ガス吹出し孔17xの前方とは、原料ガス供給管23の長さ方向に対して突出した部分をいい、返し部4Aはガス吹出し穴17xの前方を横切って配置するか、又はガス吹出し穴17xの前方を横切らずに配置してもよい。
 蓮根型部材35の材質は、絶縁体であっても導電体であってもよい。蓮根型部材35の材質は、例えば、窒化アルミニウム、炭化珪素、窒化珪素若しくは酸化アルミニウムを主成分とする材料で形成されたセラミック、窒化アルミニウム、炭化珪素、窒化珪素若しくは酸化アルミニウムを主成分とする材料で表面が被覆された金属、ステンレス管である。特に、絶縁体で熱伝導率が大きいものが好ましい。蓮根型部材35の材質は原料ガス供給管23が絶縁性か導電性かによって選択する。すなわち、原料ガス供給管23の材質が絶縁性であるとき、蓮根型部材35の材質は、絶縁体又は導電体のいずれであってもよい。また、原料ガス供給管23の材質が導電性であるとき、蓮根型部材35の材質は、絶縁体であることが好ましい。
 蓮根型部材35は、図7に示すように、ガス吹出し孔17x側の先端部に1個だけ設けてもよいが、図8に示すように、複数個設け、各蓮根型部材35は、相互に間隔をあけ、かつ、各蓮根型部材35のガイド孔52同士の位置を対向させて配置することがより好ましい。これによって、複合発熱体2Aを原料ガス供給管23の側壁に沿って2点以上で支持することとなり、複合発熱体1Aが原料ガス供給管23の側壁への接触をより確実に防止できる。
 複合発熱体18は、導電性を有するため、例えば、通電することで発熱させることができる。ヒータ電源20によって複合発熱体18に電気を流すことで、複合発熱体18が発熱する。なお、本発明は、複合発熱体18の発熱方法に限定されない。また、複合発熱体18は、図7では1本設けた形態を示したが、図8に示すように2本設けてもよく、図示しないが3本以上設けてもよい。
 次に、図7を参照しながら、成形体としてプラスチック容器11の内表面に薄膜を形成する場合を例にとって、本実施形態に係る薄膜を備える成形体の製造方法を説明する。本実施形態に係る薄膜を備える成形体の製造方法は、1800℃以上に発熱した複合発熱体18に原料ガスとして炭素を含有するガスを接触させて、原料ガスを分解して化学種34を生成させ、成形体(図7では、プラスチック容器11)の表面に化学種34を到達させることによって薄膜を形成する。
(成膜装置への成形体の装着)
 まず、ベント(不図示)を開いて真空チャンバ6内を大気開放する。反応室12には、上部チャンバ15を外した状態で、下部チャンバ13の上部開口部から成形体としてのプラスチック容器11が差し込まれて、収容される。この後、位置決めされた上部チャンバ15が降下し、上部チャンバ15につけられた原料ガス供給管23とそれに固定された複合発熱体18がプラスチック容器の口部21からプラスチック容器11内に挿入される。そして、上部チャンバ15が下部チャンバ13にOリング14を介して当接することで、反応室12が密閉空間とされる。このとき、下部チャンバ13の内壁面とプラスチック容器11の外壁面との間隔は、ほぼ均一に保たれており、かつ、プラスチック容器11の内壁面と複合発熱体18との間の間隔も、ほぼ均一に保たれている。
(圧力調整工程)
 次いでベント(不図示)を閉じたのち、排気ポンプ(不図示)を作動させ、真空バルブ8を開とすることにより、反応室12内の空気が排気される。このとき、プラスチック容器11の内部空間のみならずプラスチック容器11の外壁面と下部チャンバ13の内壁面との間の空間も排気されて、真空にされる。すなわち、反応室12全体が排気される。そして反応室12内が必要な圧力、例えば1.0~100Paに到達するまで減圧することが好ましい。より好ましくは、1.4~50Paである。1.0Pa未満では、排気時間がかかる場合がある。また、100Paを超えると、プラスチック容器11内に不純物が多くなり、バリア性の高い容器を得ることができない場合がある。大気圧から、1.4~50Paに到達するように減圧すると、適度な真空圧とともに、大気、装置及び容器に由来する適度な残留水蒸気圧を得ることができ、簡易にバリア性のある薄膜を形成できる。
(成膜工程‐複合発熱体への通電)
 次に複合発熱体18を、例えば通電することで発熱させる。複合発熱体18の発熱温度は、1800℃以上である。より好ましくは、1900℃である。1800℃未満では、原料ガスを効率的に分解することができず、成膜に時間がかかり作業効率に劣る。複合発熱体18の発熱温度の上限値は、抵抗発熱体2A及び原料ガス接触部3Aの材料によって異なり、例えば、抵抗発熱体2Aの材料がレニウムであり、原料ガス接触部3Aの材料がタンタルであるとき、複合発熱体18の発熱温度の上限は、2300℃であることが好ましく、2200℃であることがより好ましい。
(成膜工程‐原料ガスの導入)
 この後、原料ガス33として、炭素を含有するガスを供給する。炭素を含有するガスは、例えば、有機シラン系化合物である。有機シラン系化合物は、例えば、ビニルシラン(HSiC)、ジシラブタン(HSiCSiH)、ジシリルアセチレン(HSiCSiH)、2‐アミノエチルシラン(HSiCNH)である。この中で、ビニルシラン、ジシラブタン又はジシリルアセチレンであることが好ましい。原料ガス33としてこれらの有機シラン系化合物を用いることで、薄膜としてガスバリア性を有するSiOC薄膜を形成できる。得られるSiOC薄膜は、(数1)で求める、バリア性改良率(Barrier Improvement Factor,以降、BIFという。)を6以上とすることができる。具体例としては、500mlのペットボトル(polyethylene terephthalate製のボトル、以降、PETボトルということもある。)(高さ133mm、胴外径64mm、口部外径24.9mm、口部内径21.4mm、肉厚300μm及び樹脂量29g)において、酸素透過度を0.0058cc/容器/日以下とすることができる。720mlのペットボトルにおいて、酸素透過度を0.0082cc/容器/日以下とすることができる。
(数1)BIF=[薄膜未形成の成形体の酸素透過度]/[薄膜を備える成形体の酸素透過度]
 原料ガス33は、ガス流量調整器24aで流量制御して供給する。さらに、必要に応じてキャリアガスをガス流量調整器24bで流量制御しながら、バルブ25cの手前で原料ガス33に混合する。キャリアガスは、例えば、アルゴン、ヘリウム、窒素などの不活性ガスである。すると、原料ガス33は、ガス流量調整器24aで流量制御された状態で、又はキャリアガスによって流量が制御された状態で、所定の圧力に減圧されたプラスチック容器11内において、原料ガス供給管23のガス吹出し孔17xから発熱した複合発熱体18に向けて吹き出される。このように複合発熱体18を昇温完了後、原料ガス33の吹き付けを開始することが好ましい。成膜初期から、複合発熱体18によって十分に活性化された化学種34を生成させることができ、ガスバリア性の高い膜を得ることができる。
 原料ガス33が液体である場合には、バブリング法で供給することができる。バブリング法に用いるバブリングガスは、例えば、窒素、アルゴン、ヘリウムなどの不活性ガスであり、窒素ガスがより好ましい。すなわち、原料タンク40a内の出発原料41aを、バブリングガスを用いてガス流量調整器24aで流量制御しながらバブリングすると、出発原料41aが気化してバブル中に取り込まれる。こうして、原料ガス33は、バブリングガスと混合した状態で供給される。さらに、キャリアガスをガス流量調整器24bで流量制御しながら、バルブ25cの手前で原料ガス33に混合する。すると、原料ガス33は、キャリアガスによって流量が制御された状態で、所定の圧力に減圧されたプラスチック容器11内において、原料ガス供給管23のガス吹出し孔17xから発熱した複合発熱体18に向けて吹き出される。ここで、バブリングガスの流量は、3~50sccmであることが好ましく、より好ましくは、5~15sccmである。キャリアガスの流量は、特に限定されないが、0~80sccmであることが好ましい。より好ましくは、5~50sccmである。キャリアガスの流量によって、プラスチック容器11内の圧力を20~80Paに調整することができる。
(成膜工程‐成膜)
 原料ガス33が複合発熱体18と接触すると化学種34が生成される。この化学種34が、プラスチック容器11の内壁に到達することで、薄膜を堆積することになる。成膜工程において複合発熱体18を発熱させて原料ガスを複合発熱体18に吹き付ける時間(以降、成膜時間ということもある。)は、1.0~20秒であることが好ましく、より好ましくは、1.0~8.5秒である。成膜時の真空チャンバ内の圧力は、例えば1.0~100Paに到達するまで減圧することが好ましい。より好ましくは、1.4~50Paである。
 薄膜の膜厚は、特に制限はないが、例えば、薄膜がSiOC薄膜であるときは、ガスバリア性の向上効果を得るため、5~200nmであることが好ましく、10~100nmであることがより好ましい。
(成膜の終了)
 薄膜が所定の厚さに達したところで、原料ガス33の供給を止め、反応室12内を再度排気した後、図示していないリークガスを導入して、反応室12を大気圧にする。この後、上部チャンバ15を開けてプラスチック容器11を取り出す。
 本発明者らが実験したところによると、抵抗発熱体及び原料ガス接触部を別々の材質とせずに同一の材質(例えば、直径0.5mmのタンタル線)で一体に形成した発熱体を用い、原料ガスとしてビニルシランを用いて薄膜を形成したところ、連続成膜を30回行ったところで十分な触媒活性が発揮されない結果、ガスバリア性薄膜を堆積させることができない状態になった。このとき、発熱体の表面の構成元素をX線電子分光分析(以降、XPS分析ということもある。)したところ、発熱体の表面が炭化していることを確認した。これに対して、第一実施形態に係る複合発熱体1Aであって、抵抗発熱体2Aを直径0.5mmのレニウム線とし、原料ガス接触部3Aを直径0.1mmのタンタル線とした複合発熱体1Aを用い、原料ガスとしてビニルシランを用いて薄膜を形成したところ、1万回以上の連続成膜が可能なことが確認できた。ここで、1万回以上の連続成膜とは、図7に示すような成形体に一つずつ成膜する成膜装置では、「成膜装置への成形体の装着」から「成膜の終了」までの一連の成膜操作を1回としてこれを1万回以上繰り返し行うことをいう。また、特許文献1の図12に示すような、成形体をコンベアで移動させながら逐次成膜する成膜装置では、任意の原料ガス供給管の前を通過した成形体の個数が1万個以上であることをいう。
 薄膜をプラスチック容器の内表面に形成する方法について説明してきたが、薄膜をプラスチック容器の外表面に形成するには、例えば、特許文献1の図3に示す成膜装置を用いて行うことができる。
 成形体が、プラスチック容器である態様について説明してきたが、本発明はこれに限定されず、成形体をフィルム又はシートとすることができる。
 次に、本発明の実施例を挙げて説明するが、本発明はこれらの例に限定されるものではない。
(実施例1)
 成形体として、500mlのペットボトル(高さ133mm、胴外径64mm、口部外径24.9mm、口部内径21.4mm、肉厚300μm及び樹脂量29g)の内表面に、図7に示す成膜装置を用いてSiOC薄膜を形成した。ペットボトルを真空チャンバ6内に収容し、1.0Paに到達するまで減圧した。次いで、複合発熱体18を2本用い、複合発熱体18に直流電流を24V印加し、2000℃に発熱させた。複合発熱体18は、図1に示す第一実施形態に係る複合発熱体1Aを用いた。すなわち、抵抗発熱体2Aをφ0.5mm、長さ44cmのレニウム線とし、原料ガス接触部3Aをφ0.1mm、長さ5000mmのタンタル線として、抵抗発熱体2Aの外表面に原料ガス接触部3Aを螺旋状に巻きつけたものを使用した。次いで、ガス流量調整器24aから原料ガス33としてビニルシランを、流量が50sccmとなるように供給し、ペットボトルの内表面にガスバリア薄膜を堆積させた。その後、原料ガス33の供給を止め、反応室12内を再度排気した後、リークガスを導入して、反応室12を大気圧にし、上部チャンバ15を開けてプラスチック容器11を取り出した。膜厚は、20nmであった。なお、膜厚は、触針式段差計(型式:α‐ステップ、ケーエルエーテン社製)を用いて測定した値である。ここで、ガス流量調整器24a,24bからガス供給口16の配管は、アルミナ製の1/4インチ配管で構成した。成膜時の圧力を5.0Paとした。また、成膜時間は、6秒間とした。
(実施例2)
 複合発熱体18に関し、抵抗発熱体2Aをφ0.5mm、長さ44cmのC/Cコンポジット線とし、原料ガス接触部3Aをφ0.1mm、長さ5000mmのタンタル線として、抵抗発熱体2Aの外表面に原料ガス接触部3Aを螺旋状に巻きつけたものに変更した以外は、実施例1と同様にして成膜操作を行った。
(実施例3)
 複合発熱体18に関し、抵抗発熱体2Aをφ0.5mm、長さ44cmのイリジウム線とし、原料ガス接触部3Aをφ0.1mm、長さ5000mmのタングステン線として、抵抗発熱体2Aの外表面に原料ガス接触部3Aを螺旋状に巻きつけたものに変更した以外は、実施例1と同様にして成膜操作を行った。
(実施例4)
 複合発熱体18に関し、抵抗発熱体2Aをφ0.5mm、長さ44cmのロジウム線とし、原料ガス接触部3Aをφ0.1mm、長さ5000mmのモリブデン線として、抵抗発熱体2Aの外表面に原料ガス接触部3Aを螺旋状に巻きつけたものに変更した以外は、実施例1と同様にして成膜操作を行った。
(実施例5)
 複合発熱体18に関し、抵抗発熱体2Aをφ0.5mm、長さ44cmの炭化珪素線とし、原料ガス接触部3Aをφ0.1mm、長さ5000mmのタンタル‐イリジウム合金(タンタル含有率95質量%)線として、抵抗発熱体2Aの外表面に原料ガス接触部3Aを螺旋状に巻きつけたものに変更した以外は、実施例1と同様にして成膜操作を行った。
(実施例6)
 複合発熱体18に関し、抵抗発熱体2Aをφ0.5mm、長さ44cmの二珪化モリブデン線とし、原料ガス接触部3Aをφ0.1mm、長さ5000mmのタングステン-レニウム合金(タングステン含有率95質量%)線として、抵抗発熱体2Aの外表面に原料ガス接触部3Aを螺旋状に巻きつけたものに変更した以外は、実施例1と同様にして成膜操作を行った。
(実施例7)
 複合発熱体18に関し、抵抗発熱体2Aをφ0.5mm、長さ44cmのレニウム線とし、原料ガス接触部3Aをφ0.1mm、長さ5000mmのモリブデン-金合金(モリブデン含有率95質量%)線として、抵抗発熱体2Aの外表面に原料ガス接触部3Aを螺旋状に巻きつけたものに変更した以外は、実施例1と同様にして成膜操作を行った。
(実施例8)
 複合発熱体18に関し、抵抗発熱体2Aをφ0.5mm、長さ44cmのレニウム線とし、原料ガス接触部3Aをφ0.1mm、長さ5000mmの炭化タンタル線として、抵抗発熱体2Aの外表面に原料ガス接触部3Aを螺旋状に巻きつけたものに変更した以外は、実施例1と同様にして成膜操作を行った。なお、炭化タンタルは、タンタル線を抵抗発熱体2Aに巻きつけたのち、プロパンガス雰囲気下で抵抗発熱体2Aを加熱して作製した。
(実施例9)
 複合発熱体18に関し、抵抗発熱体2Aをφ0.5mm、長さ44cmのレニウム線とし、原料ガス接触部3Aをφ0.1mm、長さ5000mmの炭化タングステン線として、抵抗発熱体2Aの外表面に原料ガス接触部3Aを螺旋状に巻きつけたものに変更した以外は、実施例1と同様にして成膜操作を行った。なお、炭化タングステンは、タングステン線を抵抗発熱体2Aに巻きつけたのち、プロパンガス雰囲気下で抵抗発熱体2Aを加熱して作製した。
(実施例10)
 複合発熱体18に関し、抵抗発熱体2Aをφ0.5mm、長さ44cmのレニウム線とし、原料ガス接触部3Aをφ0.1mm、長さ5000mmの炭化モリブデン線として、抵抗発熱体2Aの外表面に原料ガス接触部3Aを螺旋状に巻きつけたものに変更した以外は、実施例1と同様にして成膜操作を行った。なお、炭化モリブデンは、モリブデン線を抵抗発熱体2Aに巻きつけたのち、プロパンガス雰囲気下で抵抗発熱体2Aを加熱して作製した。
(実施例11)
 複合発熱体18として、図2に示す第二実施形態に係る複合発熱体1Bに変更した以外は、実施例1と同様にして成膜操作を行った。第二実施形態に係る複合発熱体1Bは、抵抗発熱体2Bをφ0.5mm、長さ44cmのレニウム線とし、原料ガス接触部3Bを厚さ0.1mmタンタルの皮膜として、抵抗発熱体2Bの外表面を原料ガス接触部3Bで被覆したものを用いた。タンタルの皮膜の形成は、クラッドワイヤー法により作製した。
(実施例12)
 複合発熱体18として、図3に示す第三実施形態に係る複合発熱体1Cに変更した以外は、実施例1と同様にして成膜操作を行った。第三実施形態に係る複合発熱体1Cは、抵抗発熱体2Cをφ0.5mm、長さ44cmのC/Cコンポジット線とし、原料ガス接触部3Cを平均粒子径50nmのタンタル粒子として、抵抗発熱体2Cの外表面に原料ガス接触部3Cの粒子を固着させたものを用いた。タンタル粒子の固着は、次のとおり行った。すなわち、ショットピーニング機(型式FDD-11RBDT-20-701、フジ製作所製)でタンタル粒子を抵抗発熱体2Cの外表面に衝突させて、抵抗発熱体2Bの外表面に原料ガス接触部3Cの粒子を固着させた。
(実施例13)
 複合発熱体18として、図4に示す第四実施形態に係る複合発熱体1Dに変更した以外は、実施例1と同様にして成膜操作を行った。第四実施形態に係る複合発熱体1Dは、抵抗発熱体2Dをφ0.5mm、長さ44cmのレニウム線とし、原料ガス接触部3Dを厚さ0.01mm、幅10mm、長さ120cmのタンタル箔として、抵抗発熱体2Dの外表面に原料ガス接触部3Dを巻きつけたものを用いた。
(実施例14)
 複合発熱体18として、図5に示す第二実施形態の変形形態に係る複合発熱体1Eに変更した以外は、実施例1と同様にして成膜操作を行った。第二実施形態の変形形態に係る複合発熱体1Eは、実施例11において、抵抗発熱体2Eを断面形状が楕円形であり、楕円形の平均長径1.0mm、平均短径0.25mm、側面の長さ44cmのレニウム線とした以外は、実施例11と同様にして形成した。
(実施例15)
 複合発熱体18として、図6に示す第四実施形態の変形形態に係る複合発熱体1Fに変更した以外は、実施例1と同様にして成膜操作を行った。第四実施形態の変形形態に係る複合発熱体1Fは、実施例13において、抵抗発熱体2Fを断面形状が長方形であり、楕円形の長辺0.6mm、短辺0.3mm、側面の長さ44cmのレニウム線とした以外は、実施例13と同様にして形成した。
(比較例1)
 複合発熱体18に替えて、抵抗発熱体及び原料ガス接触部を同一の材質で一体に形成した発熱体とした以外は、実施例1と同様にして成膜操作を行った。発熱体は、φ0.5mm、長さ44mmのタンタル線を使用した。
(比較例2)
 複合発熱体18に替えて、発熱体としてφ0.5mm、長さ44mmのタングステン線を使用した以外は、実施例1と同様にして成膜操作を行った。
(比較例3)
 複合発熱体18に替えて、発熱体としてφ0.5mm、長さ44mmのモリブデン線を使用した以外は、実施例1と同様にして成膜操作を行った。
(連続成膜可能回数)
 実施例1に記載した成膜操作を、同条件で繰り返して行い、成膜したPETボトルの酸素透過率が薄膜未形成のペットボトルの酸素透過率を基準値として、基準値の2分の1を超える段階に至った時点で、炭化劣化によって電気抵抗が低下し成膜が不能な状態に達した状態と判断し、そのときの繰り返し回数を成膜可能回数として記録した。酸素透過率は、酸素透過度測定装置(型式:Oxtran 2/20、Modern Control社製)を用いて、23℃、90%RHの条件にて測定し、測定開始から24時間コンディションし、測定開始から72時間経過後の値とした。実施例1~15及び比較例1~3の成膜操作で形成したペットボトルは、いずれも成膜操作1回目では、基準値の10分の1以下に低下していた。
 実施例1~15では、いずれも連続成膜可能回数が1万回を超えた。一方、比較例1では、連続成膜可能回数が30回、比較例2では26回、比較例3では23回であり、いずれも実施例1~10よりも連続成膜回数が大きく下回った。
1A~1F 複合発熱体
2A~2F 抵抗発熱体
2F1,2F2 側面
2F3,2F4 端面
3A~3F 原料ガス接触部
4A 返し部
6 真空チャンバ
8 真空バルブ
11 プラスチック容器
12 反応室
13 下部チャンバ
14 Oリング
15 上部チャンバ
16 ガス供給口
17 原料ガス流路
17x ガス吹出し孔
18 複合発熱体
19 配線
20 ヒータ電源
21 プラスチック容器の口部
22 排気管
23 原料ガス供給管
24a,24b ガス流量調整器
25a~25c バルブ
26a,26b 接続部
33 原料ガス
34 化学種
35 蓮根型部材
40a 原料タンク
41a 出発原料
51 中心孔
52 ガイド孔
100 発熱体CVD装置

Claims (12)

  1.  炭素、レニウム、イリジウム、ロジウム、炭化珪素又は二珪化モリブデンのいずれかを主成分とする線状の抵抗発熱体と、
     該抵抗発熱体の外表面に配置した原料ガス接触部と、を備え、
     該原料ガス接触部が、発熱体CVD法の原料ガスを分解する分解部であることを特徴とする複合発熱体。
  2.  前記原料ガス接触部は、タンタル、タングステン、モリブデン、タンタル基合金、タングステン基合金、モリブデン基合金、炭化タンタル、炭化タングステン又は炭化モリブデンの少なくとも1種を主成分とすることを特徴とする請求項1に記載の複合発熱体。
  3.  前記原料ガス接触部が線材であり、前記抵抗発熱体の外表面に螺旋状に巻き付いていることを特徴とする請求項1又は2に記載の複合発熱体。
  4.  前記原料ガス接触部が、前記抵抗発熱体の外表面を被覆した層構造をなしていることを特徴とする請求項1又は2に記載の複合発熱体。
  5.  前記原料ガス接触部が粒形状であり、前記抵抗発熱体の外表面に固定されていることを特徴とする請求項1又は2に記載の複合発熱体。
  6.  前記原料ガス接触部が箔材であり、前記抵抗発熱体の外表面に巻き付いていることを特徴とする請求項1又は2に記載の複合発熱体。
  7.  前記抵抗発熱体の断面形状が扁平形状であることを特徴とする請求項1~6のいずれか一つに記載の複合発熱体。
  8.  前記抵抗発熱体の外表面が、酸化レニウム、酸化ジルコニウム、酸化マグネシウム、二酸化珪素、炭化タンタル又は炭化タングステンのコーティング処理がされた表面であることを特徴とする請求項1~7のいずれか一つに記載の複合発熱体。
  9.  発熱した発熱体に原料ガスを接触させて、該原料ガスを分解して化学種を生成させ、成形体の表面に前記化学種を到達させることによって薄膜を形成した薄膜を備える成形体の製造方法において、
     前記原料ガスが、炭素を含有し、
     前記発熱体が、請求項1~8のいずれか一つに記載の複合発熱体であり、
     該複合発熱体を、1800℃以上に加熱することを特徴とする薄膜を備える成形体の製造方法。
  10.  真空チャンバと、
     該真空チャンバ内の内部ガスを真空引きする排気ポンプと、
     前記真空チャンバ内に配置され、ガス吹出し孔を有する原料ガス供給管と、
     請求項1~8のいずれか一つに記載の複合発熱体と、を備えることを特徴とする発熱体CVD装置。
  11.  前記ガス吹出し孔が、前記原料ガス供給管の少なくとも先端に設けられ、
     前記原料ガス供給管が、前記ガス吹出し孔側の先端部に外嵌する中心孔と該中心孔の周りに設けられた複数個のガイド孔とを有する蓮根型部材を備え、
     前記複合発熱体が、前記ガイド孔を通って支持されることを特徴とする請求項10に記載の発熱体CVD装置。
  12.  前記複合発熱体が、前記ガス吹出し孔の前方に返し部を有することを特徴とする請求項10又は11に記載の発熱体CVD装置。
PCT/JP2013/062964 2012-05-09 2013-05-08 複合発熱体並びにそれを用いた薄膜を備える成形体の製造方法及び発熱体cvd装置 WO2013168747A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014514736A JP6043346B2 (ja) 2012-05-09 2013-05-08 複合発熱体並びにそれを用いた薄膜を備える成形体の製造方法及び発熱体cvd装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-107930 2012-05-09
JP2012107930 2012-05-09

Publications (1)

Publication Number Publication Date
WO2013168747A1 true WO2013168747A1 (ja) 2013-11-14

Family

ID=49550781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062964 WO2013168747A1 (ja) 2012-05-09 2013-05-08 複合発熱体並びにそれを用いた薄膜を備える成形体の製造方法及び発熱体cvd装置

Country Status (2)

Country Link
JP (1) JP6043346B2 (ja)
WO (1) WO2013168747A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179472A (ja) * 2016-03-30 2017-10-05 株式会社デンソー 部材の製造方法、および、部材の製造装置
EP3366805A1 (en) * 2017-02-24 2018-08-29 Satisloh AG Box coating apparatus for vacuum coating of substrates, in particular spectacle lenses, and heating device for it

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330489A (ja) * 1994-06-13 1995-12-19 Sumitomo Electric Ind Ltd ダイヤモンドの合成方法、合成装置および合成ダイヤモンド
JP2000277502A (ja) * 1999-03-25 2000-10-06 Japan Science & Technology Corp 化学蒸着装置
JP2001358077A (ja) * 2000-06-13 2001-12-26 Sharp Corp 薄膜作製装置
JP2003017422A (ja) * 2002-04-01 2003-01-17 Ftl:Kk 半導体装置の製造方法及び半導体装置の製造装置
JP2004238258A (ja) * 2003-02-06 2004-08-26 Ulvac Japan Ltd カーボン系物質の作製方法
JP2005277133A (ja) * 2004-03-25 2005-10-06 Sanyo Electric Co Ltd 半導体薄膜形成方法およびその方法により形成された半導体薄膜を用いた光起電力装置。
JP2009215618A (ja) * 2008-03-11 2009-09-24 Canon Inc 触媒cvd装置、触媒cvd装置に用いる触媒体の処理方法、及び、触媒cvd装置を用いた成膜方法
JP2011040771A (ja) * 2010-09-27 2011-02-24 Furukawa Electric Co Ltd:The 原料ガス分解機構、薄膜製造装置、薄膜製造方法、および薄膜積層体
JP2012041576A (ja) * 2010-08-16 2012-03-01 Ulvac Japan Ltd 通電加熱線、成膜装置及び通電加熱線の製造方法
JP2012064919A (ja) * 2010-08-16 2012-03-29 Ulvac Japan Ltd 通電加熱線の処理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065192A (ja) * 2008-11-07 2009-03-26 Canon Anelva Corp シリコン膜及びシリコン窒化膜の製造法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330489A (ja) * 1994-06-13 1995-12-19 Sumitomo Electric Ind Ltd ダイヤモンドの合成方法、合成装置および合成ダイヤモンド
JP2000277502A (ja) * 1999-03-25 2000-10-06 Japan Science & Technology Corp 化学蒸着装置
JP2001358077A (ja) * 2000-06-13 2001-12-26 Sharp Corp 薄膜作製装置
JP2003017422A (ja) * 2002-04-01 2003-01-17 Ftl:Kk 半導体装置の製造方法及び半導体装置の製造装置
JP2004238258A (ja) * 2003-02-06 2004-08-26 Ulvac Japan Ltd カーボン系物質の作製方法
JP2005277133A (ja) * 2004-03-25 2005-10-06 Sanyo Electric Co Ltd 半導体薄膜形成方法およびその方法により形成された半導体薄膜を用いた光起電力装置。
JP2009215618A (ja) * 2008-03-11 2009-09-24 Canon Inc 触媒cvd装置、触媒cvd装置に用いる触媒体の処理方法、及び、触媒cvd装置を用いた成膜方法
JP2012041576A (ja) * 2010-08-16 2012-03-01 Ulvac Japan Ltd 通電加熱線、成膜装置及び通電加熱線の製造方法
JP2012064919A (ja) * 2010-08-16 2012-03-29 Ulvac Japan Ltd 通電加熱線の処理方法
JP2011040771A (ja) * 2010-09-27 2011-02-24 Furukawa Electric Co Ltd:The 原料ガス分解機構、薄膜製造装置、薄膜製造方法、および薄膜積層体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179472A (ja) * 2016-03-30 2017-10-05 株式会社デンソー 部材の製造方法、および、部材の製造装置
EP3366805A1 (en) * 2017-02-24 2018-08-29 Satisloh AG Box coating apparatus for vacuum coating of substrates, in particular spectacle lenses, and heating device for it
US10829851B2 (en) 2017-02-24 2020-11-10 Satisloh Ag Box coating apparatus for vacuum coating of substrates, in particular spectacle lenses, and heating device for it

Also Published As

Publication number Publication date
JP6043346B2 (ja) 2016-12-14
JPWO2013168747A1 (ja) 2016-01-07

Similar Documents

Publication Publication Date Title
JP5894303B2 (ja) ガスバリア性プラスチック成形体及びその製造方法
JP5695673B2 (ja) ガスバリア性プラスチック成形体の製造方法
EP2444370A1 (en) Method for producing carbon nanotube assembly having high specific surface area
JP6731397B2 (ja) 発熱体及びその製造方法
US10000850B2 (en) Deposition method and method of manufacturing a catalyst wire for a catalytic chemical vapor deposition apparatus
CN103582609B (zh) 碳纳米管的制造方法和制造装置
JP6043346B2 (ja) 複合発熱体並びにそれを用いた薄膜を備える成形体の製造方法及び発熱体cvd装置
WO2008062730A1 (en) Process for producing plastic container coated with oxide thin film
JP2008201648A (ja) カーボンナノチューブの製造装置およびカーボンナノチューブの製造方法
JPWO2010147191A1 (ja) カーボンナノチューブの製造装置および製造方法
JP4856010B2 (ja) 触媒化学気相成長装置
US20110318490A1 (en) Method for depositing a coating
JP4741430B2 (ja) 成膜装置および成膜方法
US11236419B2 (en) Multilayer stack for the growth of carbon nanotubes by chemical vapor deposition
JP2006335379A (ja) 被膜を備える合成樹脂製容器と、合成樹脂製容器に被膜を形成する方法及び装置
JP5566334B2 (ja) ガスバリア性プラスチック成形体及びその製造方法
JP2016128607A (ja) 触媒体ユニット及びそれを備える発熱体cvd装置
JP2012188700A (ja) ガスバリア性プラスチック成形体及びその製造方法
JP2008103748A (ja) 触媒化学蒸着装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788392

Country of ref document: EP

Kind code of ref document: A1