WO2013168724A1 - 光ファイバの製造方法 - Google Patents

光ファイバの製造方法 Download PDF

Info

Publication number
WO2013168724A1
WO2013168724A1 PCT/JP2013/062882 JP2013062882W WO2013168724A1 WO 2013168724 A1 WO2013168724 A1 WO 2013168724A1 JP 2013062882 W JP2013062882 W JP 2013062882W WO 2013168724 A1 WO2013168724 A1 WO 2013168724A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
longitudinal direction
sample
tension
characteristic
Prior art date
Application number
PCT/JP2013/062882
Other languages
English (en)
French (fr)
Inventor
輝彦 伊藤
義典 山本
石原 朋浩
川崎 希一郎
拓史 田村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49550758&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013168724(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201380024478.1A priority Critical patent/CN104284869B/zh
Publication of WO2013168724A1 publication Critical patent/WO2013168724A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/40Monitoring or regulating the draw tension or draw rate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/72Controlling or measuring the draw furnace temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to an optical fiber manufacturing method for drawing an optical fiber while heating and melting an optical fiber preform.
  • An optical fiber used for optical communication or the like is obtained by heating and melting an optical fiber preform in a heating furnace and drawing, and the drawn optical fiber satisfies desired optical fiber characteristics in the entire length in the longitudinal direction, and It is desirable that the characteristics be uniform. For this reason, the refractive index distribution of the optical fiber preform is measured by a preform analyzer, etc., and the optical fiber characteristic values such as the cutoff wavelength are calculated and predicted, and it is determined whether or not these characteristics are desired values. Drawing is performed under a drawing condition that falls within a desired value range.
  • optical fiber characteristics are predicted in advance from the refractive index distribution of an optical fiber preform, and the drawing tension at the time of drawing the optical fiber preform is controlled according to the predicted value.
  • the cut-off wavelength of the optical fiber after drawing is matched with the target cut-off wavelength.
  • this method has no problem as long as the optical fiber preform is drawn with a uniform refractive index distribution in the longitudinal direction.
  • the predicted position is a single point, the optical fiber preform in which the refractive index distribution fluctuates in the longitudinal direction. Is an incomplete method, and the characteristic value of the optical fiber may be out of the desired range.
  • the optical fiber characteristics of the actually drawn optical fiber sample are not confirmed at the time of drawing, for example, when the actual drawing tension varies from lot to lot or calculated from the refractive index distribution of the optical fiber preform.
  • the cut-off wavelength characteristic of the drawn optical fiber will be rejected.
  • the refractive index profile of the optical fiber preform is measured in the longitudinal direction in advance to estimate the variation of the cutoff wavelength in the longitudinal direction of the optical fiber after drawing, and the cutoff wavelength is estimated at the time of drawing. It is described that the drawing is performed by sequentially controlling the drawing tension in the longitudinal direction using a control computer so as to match the target cutoff wavelength according to the value. With this method, it becomes possible to control fluctuations in the characteristics in the longitudinal direction, which was not possible with the method described in Patent Document 1, but, as in Patent Document 1, an optical fiber sample actually drawn is used. Since the optical fiber characteristics have not been confirmed, there is a great possibility that any of the characteristics will be rejected when the actual drawing tension varies between lots.
  • Patent Document 3 the chromatic dispersion and dispersion slope of a sample fiber collected at the start of drawing of an optical fiber preform are measured, and a target chromatic dispersion characteristic is obtained based on the measured chromatic dispersion and dispersion slope. It is described that the target fiber pulling force and the target core diameter are obtained, and the remaining part of the optical fiber preform is drawn so as to obtain the target core pulling force and the target core diameter.
  • this method is effective for an optical fiber preform whose refractive index profile is uniform in the longitudinal direction.
  • Patent Document 1 As with the invention described in, the optical fiber characteristic value may deviate.
  • optical fibers The price of optical fibers has been decreasing year by year, and it has become particularly necessary in recent years to improve the product yield as one means for reducing the cost of optical fibers.
  • a control method is used. In particular, when manufacturing a high-performance fiber having a narrow specification width of each characteristic, it is necessary to predict and control the fluctuation more accurately.
  • the present invention has been made in view of the above circumstances, and aims to improve the product yield of optical fibers obtained by drawing and to reduce the cost of optical fibers.
  • An optical fiber manufacturing method is a method of manufacturing an optical fiber by heating and melting an optical fiber preform in a heating furnace, and drawing the optical fiber preform.
  • An optical fiber characteristic prediction step of measuring at least two points in the longitudinal direction and calculating two or more optical fiber characteristics in the longitudinal direction from the measured refractive index distribution; and a drawing start end, or a drawing start end and a drawing halfway From the sample fiber characteristic measurement step of measuring the two or more optical fiber characteristics of the sample fiber collected, and the optical fiber characteristics of the sample fiber measured in the sample fiber characteristic measurement step, An optical fiber that corrects longitudinal fluctuations of the two or more optical fiber characteristics calculated in the optical fiber characteristic prediction step.
  • a line tension force that adjusts the line tension force by determining a line tension force so that both of the two or more optical fiber characteristics after the sample fiber sampling position are within a good range in the longitudinal direction. And drawing through an adjusting step.
  • the fluctuation tendency of the optical fiber characteristics in the longitudinal direction of the optical fiber to be drawn is accurately predicted, the actual optical fiber characteristics are measured, and two or more optical fiber characteristics are both in the good range in the longitudinal direction. Since drawing is performed while determining and adjusting the drawing tension so as to enter, the product yield of the optical fiber to be manufactured can be improved, and the cost of the optical fiber can be reduced.
  • Example 1 shows a schematic configuration of an optical fiber manufacturing apparatus according to the present invention. It is a graph showing the relationship between a drawing tension and a cutoff wavelength. It is a graph showing the relationship between a cutoff wavelength and chromatic dispersion, and the relationship between a cutoff wavelength and a mode field diameter. In Example 1, it is a graph which shows the cut-off wavelength estimated value of the optical fiber preform, the cut-off wavelength measured value of the sample fiber, and the cut-off wavelength measured value of the actual optical fiber drawn by adjusting the drawing tension. .
  • FIG. 1 100 is a drawing apparatus (optical fiber manufacturing apparatus), 1 is an optical fiber preform, 2 is an optical fiber, 11 is a heating furnace, 12 is a furnace core tube, 13 and 15 are outer diameter measuring instruments, and 14 is a resin.
  • the coating unit, 16 is a capstan, 17 to 19 are rollers, 20 is a bobbin, and 21 is a control unit.
  • the optical fiber preform 1 is fixed to a preform feeder (not shown), inserted into the core tube 12 in the heating furnace 11, and heated and melted by the heating furnace 11.
  • An inert gas such as N 2 , Ar, or He is supplied into the core tube 12.
  • the optical fiber 2 drawn from the lower part of the molten optical fiber preform 1 comes out from below the furnace core tube 12.
  • the glass diameter of the optical fiber 2 is measured by the outer diameter measuring device 13, the surface is coated with the resin by the resin coating portion 14, and then cured.
  • the optical fiber 2 coated and cured with the resin is measured for the coating diameter by the outer diameter measuring device 15 and is wound around the bobbin 20 through the capstan 16 and the rollers 17 to 19 in order.
  • the glass diameter of the optical fiber 2 measured by the outer diameter measuring device 13 and the coating diameter of the optical fiber 2 measured by the outer diameter measuring device 15 are input to the control unit 21.
  • the controller 21 controls the heating temperature (drawing temperature) of the optical fiber preform 1 by the heating furnace 11 and the rotation speed of the capstan 16, and also controls the supply speed of the optical fiber preform 1.
  • the drawing tension (glass part tension) changes. That is, the higher the temperature, the smaller the drawing tension, and the lower the temperature, the larger the drawing tension.
  • the drawing tension may be monitored on-line with, for example, a tension meter (not shown) attached in front of the resin coating portion 14, but if a contact-type tension measuring device is used, the glass is damaged and the optical fiber 2 is damaged. Since the strength of the wire deteriorates, the wire tension force (glass portion tension) is indirectly measured by measuring the tension after coating before the capstan 16 and during drawing.
  • optical Fiber characteristic prediction process the refractive index profile in the longitudinal direction of the optical fiber preform before drawing is measured with a preform analyzer, and the optical characteristics of the optical fiber in the longitudinal direction after drawing are estimated based on this refractive index profile (optical Fiber characteristic prediction process).
  • Optical characteristics include cutoff wavelength, chromatic dispersion, mode field diameter, and the like.
  • the optical fiber preform 1 is set in the drawing apparatus 100 of FIG. 1, the drawing tension is roughly adjusted to start drawing, and the sample fiber is sampled at the start of drawing or during drawing.
  • the two or more optical fiber characteristics are measured (sample fiber characteristic measurement step). From the deviation between the characteristic value of this sample fiber and the estimated value of the optical fiber characteristic obtained from the refractive index profile in the vicinity of the sampling position of the sample fiber, the estimated value in the longitudinal direction of each optical fiber characteristic is translated by this deviation.
  • the optical fiber characteristic in the longitudinal direction obtained in the optical fiber characteristic prediction step is corrected (optical fiber characteristic correction step).
  • the drawing tension is determined so that each optical fiber characteristic falls within the target range in the longitudinal direction.
  • drawing it is adjusted so as to have the drawing tension (drawing force adjustment step).
  • the optical fiber characteristic correction process is performed so that the length entering the target range becomes the longest.
  • the drawing tension is adjusted while considering the variation tendency of each characteristic in the longitudinal direction obtained in (1).
  • the drawing tension is controlled by adjusting the power supplied to the heating furnace 11. As described above, when the supplied power is reduced, the melting temperature at the melting point of the optical fiber preform is lowered, the viscosity is increased, and the drawing tension is increased. Conversely, when the supplied power is increased, the drawing tension decreases.
  • the relationship between the drawing tension and the cutoff wavelength is as shown in FIG. 2, and the cutoff wavelength increases as the drawing tension increases, and the cutoff wavelength decreases as the drawing tension decreases. That is, the cutoff wavelength can be adjusted by adjusting the drawing tension.
  • the cut-off wavelength value measured with the sample fiber matched the estimated value of the optical fiber preform as much as possible, and the fluctuation tendency of the optical fiber characteristics in the longitudinal direction was considered.
  • an appropriate drawing tension is calculated from the relationship between the drawing tension and the cutoff wavelength shown in FIG. 2 so that the characteristic value falls within the target range at the full length, and the drawing tension is calculated by the method described above. adjust.
  • the characteristics other than the cutoff wavelength are correlated with the cutoff wavelength as shown in the example of the relationship between the cutoff wavelength and the chromatic dispersion in FIG. 3A and the relationship between the cutoff wavelength and the mode field diameter in FIG. Therefore, by adjusting the cut-off wavelength so as to fall within an appropriate range, other characteristics can satisfy the target value.
  • these relationships vary, in order to confirm the relationship between the cutoff wavelength, the mode field diameter, and the chromatic dispersion, it is necessary to measure these characteristics together in the sample fiber.
  • optical fiber characteristics change due to the drawing tension can be explained as follows. Since the optical fiber preform has a viscosity distribution according to the composition (refractive index distribution) in the radial direction, this distribution remains in the fiber as a residual stress distribution by drawing. When the drawing force is changed, the distribution of residual stress in the fiber changes, and the refractive index distribution of the optical fiber changes due to the photoelastic effect, so that the optical fiber characteristics change. As described above, since the optical fiber characteristics change by adjusting the drawing tension, the desired optical fiber characteristics can be obtained.
  • the relationship between the cutoff wavelength and the mode field diameter and the relationship between the cutoff wavelength and chromatic dispersion varies. This depends on manufacturing variations in the refractive index profile and core diameter of the optical fiber preform, but this is a major problem in the manufacture of some high-performance fibers with narrow characteristic specifications. This variation state can be confirmed by measuring another characteristic other than the cutoff wavelength. Due to these variations, it is possible that the characteristics of the optical fiber may be out of the good range in all or part of the longitudinal direction only by adjusting the drawing tension. In such a case, drawing is interrupted in the middle. By doing so, an optical fiber can be manufactured without producing a useless defective product.
  • Example 1 The optical fiber is drawn using the apparatus shown in FIG.
  • the prepared optical fiber preform is a dispersion-shifted fiber preform composed of a SiO 2 core portion doped with Ge and a SiO 2 cladding portion, with a target cutoff wavelength of 1380 ⁇ 40 nm and a target wavelength dispersion ⁇ 5.8 ps / nm / km.
  • Table 1 shows the estimated cutoff wavelength and chromatic dispersion at each position in the longitudinal direction obtained from the measurement results of the optical fiber preform by the preform analyzer, and the sampling position from each characteristic of the sample fiber sampled at the drawing start end.
  • Table 2 shows the estimated cut-off wavelength and chromatic dispersion obtained by calculating the deviation from the estimated value at, and changing the value in Table 1 by the deviation.
  • the estimated cutoff wavelength values A3 to A4 deviate from the target cutoff wavelength range. Therefore, the estimated values of the cutoff wavelength and the chromatic dispersion when the drawing tension corresponding to the deviation from the cutoff wavelength of the base material in Table 1 is calculated and the drawing tension is adjusted again are shown in Table 3. .
  • Table 3 since an estimated value that satisfies the target value is obtained over the entire length in the longitudinal direction, the subsequent drawing is continued.
  • Table 4 shows the cut-off wavelength and chromatic dispersion values measured on the optical fiber after drawing, but it is possible to obtain a good fiber close to the estimated value in Table 3 over the entire length of the base material. Recognize.
  • FIG. 4 shows an estimated cutoff wavelength value of the optical fiber preform, a measured cutoff wavelength value of the sample fiber, and a measured cutoff wavelength value of the fiber drawn by adjusting the tension.
  • Example 2 The optical fiber is drawn using the apparatus shown in FIG.
  • the optical fiber preform is a dispersion-shifted fiber preform composed of an SiO 2 core portion doped with Ge and an SiO 2 clad portion, with a target cutoff wavelength of 1360 ⁇ 60 nm and a target wavelength dispersion ⁇ 5. 8 ps / nm / km.
  • the refractive index profiles at five locations (A1 to A5) of this optical fiber preform are measured in advance with a preform analyzer, and the drawing tension is such that the estimated cutoff wavelength at all measurement points is 1360 ⁇ 60 nm. Using the relationship, the drawing is performed with the obtained drawing tension.
  • Table 5 shows the estimated cutoff wavelength and chromatic dispersion at each position in the longitudinal direction obtained from the measurement results of the optical fiber preform by the preform analyzer, and the sampling position from each characteristic of the sample fiber sampled at the drawing start end.
  • Table 6 shows the estimated cut-off wavelength and chromatic dispersion obtained by calculating the deviation at, and changing the values in Table 5 by the deviation. In this case, it can be seen from Table 6 that the estimated chromatic dispersion value of A5 deviates from the target value. For this reason, when the drawing tension corresponding to the deviation from the estimated cutoff wavelength of the base material in Table 5 is calculated and the drawing tension is adjusted again, the estimated cutoff wavelength and chromatic dispersion are shown in Table 7.
  • FIG. 5 shows an estimated cutoff wavelength value of the optical fiber preform, a measured cutoff wavelength value of the sample fiber, and a measured cutoff wavelength value of the fiber drawn by adjusting the tension.
  • the drawing is performed with the drawing tension constant in the longitudinal direction.
  • the drawing may be performed by changing a plurality of drawing tensions in the longitudinal direction. From the trend in the longitudinal direction of the estimated value of the optical fiber characteristics obtained from the measurement result of the optical fiber preform, by changing the drawing tension in the longitudinal direction so that this fluctuation is reduced, the fluctuation in the characteristics of the optical fiber is It can be kept smaller.
  • the sample fiber may be sampled even during drawing, the deviation from the estimated value at the sampling position may be obtained again from each characteristic of the sample fiber sampled, and the drawing tension may be adjusted again. By doing in this way, the prediction precision of an optical fiber characteristic can be raised further and the fluctuation

Abstract

 線引き前の光ファイバ母材の断面径方向の屈折率分布を長手方向に少なくとも2箇所以上測定し、測定された屈折率分布から長手方向の2つ以上の光ファイバ特性を計算して予測する光ファイバ特性予測工程と、線引き開始端、または線引開始端及び線引き途中にてサンプルファイバを採取し、採取したサンプルファイバの2つ以上の光ファイバ特性を測定するサンプルファイバ特性測定工程と、サンプルファイバ特性測定工程で測定されたサンプルファイバの光ファイバ特性から、光ファイバ特性予測工程で計算された2つ以上の光ファイバ特性の長手方向変動を補正する光ファイバ特性補正工程と、サンプルファイバ採取位置以降の2つ以上の光ファイバ特性がいずれも長手方向で良好範囲に入るように線引張力を決定し、線引張力を調整する線引張力調整工程と、からなる工程を経て線引きすることにより、光ファイバを製造する。

Description

光ファイバの製造方法
 本発明は、光ファイバ母材を加熱溶融しながら光ファイバを線引きする光ファイバの製造方法に関する。
 光通信などに用いられる光ファイバは、加熱炉で光ファイバ母材を加熱溶融して線引きすることによって得られるが、線引きされた光ファイバは、長手方向全長で所望の光ファイバ特性を満たし、且つその特性が均一であることが望ましい。このため、プリフォームアナライザなどにより光ファイバ母材の屈折率分布を測定してカットオフ波長などの光ファイバの特性値を計算・予測し、これらの特性が所望の値になるかどうかを見極め、所望の値の範囲内に入るような線引き条件で線引きすることが行われる。
 例えば、特許文献1には、光ファイバ母材の屈折率分布から予め光ファイバ特性(カットオフ波長)を予測し、予測値に応じて光ファイバ母材の線引き時の線引張力を制御することで、線引き後の光ファイバのカットオフ波長を目標とするカットオフ波長に合致するようにすることが記載されている。
 しかしこの方法は、屈折率分布が長手方向に均一な光ファイバ母材の線引きであれば問題ないが、予測箇所が一点であるため、長手方向に屈折率分布が変動している光ファイバ母材を線引きする場合には不完全な方法であり、光ファイバの特性値が所望の範囲から外れる場合があった。また、実際に線引きした光ファイバサンプルの光ファイバ特性を線引き時に確認することはしていないため、例えば実際の線引張力がロット間で変動する場合や、光ファイバ母材の屈折率分布から計算される光ファイバ特性値と実際の光ファイバでの特性値とに誤差がある場合などに、線引きした光ファイバのカットオフ波長特性が不合格となる可能性が大いにあった。
 また、特許文献2には、予め光ファイバ母材の屈折率プロファイルを長手方向で測定して線引き後の光ファイバの長手方向のカットオフ波長の変動を推定しておき、線引き時にカットオフ波長推定値に応じて目標のカットオフ波長に合致するよう、制御コンピュータを用いて長手方向に順次線引張力を制御して線引きを行なうことが記載されている。
 この方法であれば、特許文献1に記載されている方法ではできなかった長手方向の特性の変動を制御することができるようになるが、特許文献1と同様に実際に線引きした光ファイバサンプルの光ファイバ特性を確認していないため、実際の線引張力がロット間で変動する場合などに、いずれかの特性が不合格となってしまう可能性が大いにあった。
 特許文献3では、光ファイバ母材の線引き開始の際に採取したサンプルファイバの波長分散および分散スロープを測定し、この測定された波長分散および分散スロープに基づいて目標とする波長分散特性を得る為の目標線引張力および目標コア径を求め、求められた目標線引張力で、且つ目標コア径となるように、光ファイバ母材残部の線引きを行なうことが記載されている。
 しかしこの方法は、屈折率プロファイルが長手方向に均一である光ファイバ母材に対しては有効であるが、長手方向で光ファイバ特性が変動している光ファイバ母材の場合は、特許文献1に記載された発明同様、光ファイバ特性値が外れる可能性がある。
日本国特開平2-289441号公報 日本国特開平8-217481号公報 日本国特開2001-220167号公報
 光ファイバの価格は年々低下してきており、光ファイバのコスト低減を図るための一つの手段として、製品歩留まりを向上させることが、近年特に必要となってきている。そのためには、線引きされた光ファイバの全長において、光ファイバ特性が仕様の範囲内にあることが望ましく、線引きされる光ファイバの長手方向の特性変動を予測し、全長で仕様の範囲内に入るように制御する方法が用いられている。各特性の仕様幅が狭い高機能ファイバなどを製造する場合には特に、より正確に変動を予測、制御する必要がある。
 しかしながら、上記したように特許文献1~3に記載されている発明の内容では、長手方向に光ファイバの特性が変動している場合や、光ファイバ母材での予測値と線引き後の実際の光ファイバの特性とがずれている場合などに仕様範囲から外れてしまう可能性があった。また、光ファイバの特性には複数の特性があり、全て仕様の範囲内に入ることが求められるが、これら複数の特性を長手方向でうまく仕様範囲内に入れることは今まで考えられておらず、これらの要因により、製品歩留まりを向上させることができていなかった。
 本発明は、上述の実情を鑑みてなされたもので、線引きすることによって得られる光ファイバの製品歩留まりを向上させ、光ファイバのコスト低減を図ることを目的とする。
 本発明による光ファイバの製造方法は、加熱炉で光ファイバ母材を加熱溶融し、線引きすることにより光ファイバを製造する方法において、線引き前の光ファイバ母材の断面径方向の屈折率分布を長手方向に少なくとも2箇所以上測定し、測定された屈折率分布から長手方向の2つ以上の光ファイバ特性を計算する光ファイバ特性予測工程と、線引き開始端、または線引開始端及び線引き途中にてサンプルファイバを採取し、採取した前記サンプルファイバの前記2つ以上の光ファイバ特性を測定するサンプルファイバ特性測定工程と、前記サンプルファイバ特性測定工程で測定された前記サンプルファイバの光ファイバ特性から、前記光ファイバ特性予測工程で計算された前記2つ以上の光ファイバ特性の長手方向変動を補正する光ファイバ特性補正工程と、前記サンプルファイバ採取位置以降の前記2つ以上の光ファイバ特性がいずれも長手方向で良好範囲に入るように線引張力を決定し、前記線引張力を調整する線引張力調整工程と、を経て線引きすることを特徴とする。
 上記線引張力調整工程は、光ファイバ母材の長手方向で複数回線引張力を調整することが望ましい。
 また、光ファイバ特性補正工程により得られた前記2つ以上の光ファイバ特性から、線引張力調整工程にて線引張力を調整しても前記2つ以上の光ファイバ特性のいずれかが良好とはならない箇所があることが判明した場合には、前記良好とはならない箇所で線引きを中止することが望ましい。
 本発明によれば、線引きする光ファイバの長手方向の光ファイバ特性の変動傾向を正確に予測し、実際の光ファイバ特性を測定して2つ以上の光ファイバ特性がいずれも長手方向で良好範囲に入るように線引張力を決定、調整しながら線引きするので、製造する光ファイバの製品歩留まりを向上させ、光ファイバのコスト低減を図ることができる。
本発明に係る光ファイバの製造装置の概略構成を示すものである。 線引張力とカットオフ波長との関係を表すグラフである。 カットオフ波長と波長分散との関係、カットオフ波長とモードフィールド径との関係を表すグラフである。 実施例1における、光ファイバ母材のカットオフ波長推定値、サンプルファイバのカットオフ波長測定値、及び線引張力を調整して線引きした実際の光ファイバのカットオフ波長測定値を示すグラフである。 実施例2における、光ファイバ母材のカットオフ波長推定値、サンプルファイバのカットオフ波長測定値、及び線引張力を調整して線引きした実際の光ファイバのカットオフ波長測定値を示すグラフである。
 図1により、本発明の光ファイバ製造方法に用いる製造装置(線引き装置)の概要について説明する。図1において、100は線引き装置(光ファイバの製造装置)、1は光ファイバ母材、2は光ファイバ、11は加熱炉、12は炉心管、13、15は外径測定器、14は樹脂コーティング部、16はキャプスタン、17~19はローラ、20はボビン、21は制御部を示す。
 光ファイバ母材1は、プリフォームフィーダ(図示せず)に固定されて、加熱炉11内の炉心管12の内部に挿入され、加熱炉11により加熱・溶融される。この炉心管12の内部には、N、Ar、Heなどの不活性ガスが供給されている。溶融された光ファイバ母材1の下部から線引きされた光ファイバ2は、炉心管12の下方から外部に出てくる。そして、光ファイバ2は、外径測定器13によりガラス径が測定され、樹脂コーティング部14により樹脂で表面が被覆され、その後硬化される。樹脂が被覆・硬化された光ファイバ2は、外径測定器15により被覆径が測定され、キャプスタン16およびローラ17~19を順に経て、ボビン20により巻き取られる。
 外径測定器13により測定された光ファイバ2のガラス径、および、外径測定器15により測定された光ファイバ2の被覆径は、制御部21に入力される。この制御部21により、加熱炉11による光ファイバ母材1の加熱の温度(線引温度)、キャプスタン16の回転速度が制御され、また、光ファイバ母材1の供給速度が制御される。
 加熱炉11の温度(線引温度)により、線引張力(ガラス部張力)は変化する。すなわち、温度が高いほど線引張力は小さく、温度が低いほど線引張力は大きくなる。線引張力は、例えば樹脂コーティング部14の手前に取り付けた張力計(不図示)で、オンラインでモニタしても良いが、接触式の張力測定器を用いると、ガラスに傷が付き光ファイバ2の強度が劣化するため、キャプスタン16の手前で、線引き中は、被覆後の張力を測定することにより、線引張力(ガラス部張力)を間接的に測定する。
 次に、本発明における光ファイバ製造方法について説明する。
 本発明では、まず、線引き前の光ファイバ母材の長手方向の屈折率プロファイルをプリフォームアナライザで測定し、この屈折率プロファイルにより、線引き後の長手方向の光ファイバの光学特性を推定する(光ファイバ特性予測工程)。光学特性としては、カットオフ波長、波長分散、モードフィールド径などが挙げられる。この光ファイバ特性予測工程により、長手方向の光ファイバ特性の変動傾向も予測できる。
 次に、図1の線引き装置100に光ファイバ母材1をセットし、線引張力を粗調整して線引きを開始し、線引き開始時、若しくは線引き中にサンプルファイバを採取して、このサンプルファイバの2つ以上の光ファイバ特性を測定する(サンプルファイバ特性測定工程)。このサンプルファイバの特性値と、このサンプルファイバ採取位置近傍における屈折率プロファイルから求めた光ファイバ特性の推定値との偏差から、各光ファイバ特性の長手方向の推定値をこの偏差分だけ平行移動させることにより、光ファイバ特性予測工程で得られた長手方向の光ファイバ特性を補正する(光ファイバ特性補正工程)。
 次に、光ファイバ特性補正工程にて得られた2つ以上の光ファイバ特性から、各光ファイバ特性がいずれも長手方向で目標の範囲内に入るように線引張力を決定し、実際に線引する際にはその線引張力になるように調整する(線引張力調整工程)。この際、各光ファイバ特性がいずれも長手方向で目標の範囲に入るように、全長が目標の範囲に入らない場合は、目標範囲に入る長さが最も長くなるように、光ファイバ特性補正工程にて得られた長手方向の各特性の変動傾向を考えながら、線引張力を調整する。
 線引張力の制御は加熱炉11の供給電力の調整により行う。上記したように、供給電力を減少させると光ファイバ母材の溶融点の溶融温度が低下して粘度が上昇し、線引張力は増大する。逆に供給電力を増加させると線引張力は減少する。
 線引張力とカットオフ波長との関係は、図2に示すような関係にあり、線引張力を上げればカットオフ波長は大きく、線引張力を下げればカットオフ波長は小さくなる。すなわち、線引張力を調整することにより、カットオフ波長を調整することができる。
 このように線引張力を調整して、サンプルファイバで測定したカットオフ波長の値が光ファイバ母材の推定値とできるだけ一致するように、また、長手方向の光ファイバ特性の変動傾向を考えた場合に、全長で特性値が目標の範囲内に入るように、図2に示した線引張力とカットオフ波長の関係から適当な線引張力を計算し、上記した方法で、線引張力を調整する。
 カットオフ波長以外の特性については、図3(A)のカットオフ波長と波長分散、および図3(B)のカットオフ波長とモードフィールド径の関係の例に示すように、カットオフ波長と相関があるため、カットオフ波長を適当な範囲に入れるように調整することにより、他の特性も目標値を満たすようにすることができる。しかし、これらの関係にはばらつきがあるため、カットオフ波長とこれらモードフィールド径、波長分散との関係を確認するためには、これら特性も合わせて、サンプルファイバにおいて測定する必要がある。
 なお、線引張力によって光ファイバ特性が変化するメカニズムについては以下の様に説明できる。
 光ファイバ母材は径方向の組成(屈折率分布)に応じた粘性分布を持つため、線引きすることによりこの分布が、残留応力の分布としてファイバに残る。線引張力を変えるとファイバ内の残留応力の分布が変化し、光弾性効果により光ファイバの屈折率分布が変化するため、光ファイバ特性は変化する。このように、線引張力を調整することで光ファイバ特性は変化するので、所望する光ファイバ特性を得ることができる。
 一方、図3に示したように、カットオフ波長とモードフィールド径およびカットオフ波長と波長分散の関係にはばらつきがある。これは光ファイバ母材の屈折率プロファイルやコア径の製造ばらつきに依るものであるが、特性仕様の狭い一部の高機能ファイバの製造においては、これが大きな問題となる。このばらつきの状態は、カットオフ波長以外の別の特性を測定することにより確認することができる。
 なお、これらばらつきなどにより、線引張力の調整だけでは長手方向の全部、若しくは一部で光ファイバの特性が良好範囲を外れることも考えられるが、そのような場合には、途中で線引きを中止することにより、無駄な不良品を出さずに光ファイバを製造することができる。
(実施例1)
 図1に示す装置を用いて光ファイバの線引きを行なう。用意した光ファイバ母材は、GeがドープされたSiOコア部、及びSiOクラッド部からなる分散シフトファイバ母材で、目標カットオフ波長1380±40nm、目標波長分散≦5.8ps/nm/kmである。予めプリフォームアナライザにて、この光ファイバ母材の5カ所 (A1~A5)の屈折率プロファイルを測定し、全測定点におけるカットオフ波長推定値が1380±40nmとなるような線引張力を図2の関係を用いて求め、求めた線引張力にて線引きを行う。
 光ファイバ母材のプリフォームアナライザによる測定結果から求めた長手方向の各位置におけるカットオフ波長と波長分散の推定値を表1に、線引き開始端にて採取されたサンプルファイバの各特性から採取位置における推定値との偏差を求め、表1の値を偏差分変化させて求めたカットオフ波長と波長分散の推定値を表2に示す。この場合、表2においてA3~A4のカットオフ波長推定値が目標カットオフ波長の範囲を逸脱していることがわかる。このため、表1の母材のカットオフ波長との偏差に相当する線引張力を計算し、再度線引張力の調整を行なった場合のカットオフ波長と波長分散の推定値を表3に示す。表3に示すように長手方向全長で目標値を満たす推定値が得られるため、以降の線引きを継続する。表4には線引き後の光ファイバで測定されるカットオフ波長と波長分散の値を示すが、表3の推定値に近い良好ファイバを母材の全長に渡って得ることができていることがわかる。
 図4には、光ファイバ母材のカットオフ波長推定値、サンプルファイバのカットオフ波長測定値、及び張力調整して線引きしたファイバのカットオフ波長測定値を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(実施例2)
 図1に示す装置を用いて光ファイバの線引きを行なう。光ファイバ母材は、実施例1と同様、GeがドープされたSiOコア部、及びSiOクラッド部からなる分散シフトファイバ母材で、目標カットオフ波長1360±60nm、目標波長分散≦5.8ps/nm/kmである。予めプリフォームアナライザにてこの光ファイバ母材の5カ所(A1~A5)の屈折率プロファイルを測定し、全測定点におけるカットオフ波長推定値が1360±60nmとなるような線引張力を図2の関係を用いて求め、求めた線引張力にて線引きを行う。
 光ファイバ母材のプリフォームアナライザによる測定結果から求めた長手方向の各位置におけるカットオフ波長と波長分散の推定値を表5に、線引き開始端にて採取されたサンプルファイバの各特性から採取位置における偏差を求め、表5の値を偏差分変化させて求めたカットオフ波長と波長分散の推定値を表6に示す。この場合、表6においてA5の波長分散推定値が目標値を逸脱していることが分かる。このため、表5の母材のカットオフ波長推定値との偏差に相当する線引張力を計算し、再度線引張力の調整を行なった場合のカットオフ波長と波長分散の推定値を表7に示す。表5の母材のカットオフ波長推定値との偏差に相当する線引張力を計算して調整したにも関わらず、表7のように再びA5の波長分散推定値が目標値を逸脱する。ここで表7においてA5のカットオフ波長の値が≦1420nmに対し1418nmと既に上限に近い値を示しており、波長分散についても上限を超えていることから、図3のカットオフ波長と波長分散の関係からこれ以上の線引張力調整はできないと判断し、A5以降の線引きを中止する。表8には線引き後の光ファイバで測定されるカットオフ波長と波長分散の値を示すが、表3の推定値に近い良好ファイバをA4の位置まで得られていることが分かる。
 図5には、光ファイバ母材のカットオフ波長推定値、サンプルファイバのカットオフ波長測定値、及び張力調整して線引きしたファイバのカットオフ波長測定値を示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 なお、上記実施例では、線引張力を長手方向で一定にして線引きを行なっているが、長手方向に複数回線引張力を変化させて線引きしても良い。光ファイバ母材の測定結果から求まる光ファイバ特性の推定値の長手方向の変化傾向から、この変動が小さくなるように長手方向で線引張力を変化させることにより、光ファイバの特性の変動を、より小さく抑えることができる。
 また、サンプルファイバを線引き途中でも採取し、採取されたサンプルファイバの各特性から採取位置における推定値との偏差を再度求め、再度線引張力を調整しても良い。このようにすることにより、さらに光ファイバ特性の予測精度を上げることができ、光ファイバの特性の変動を、より小さく抑えることができる。
 本出願は、2012年5月9日出願の日本特許出願(特願2012-107418)に基づくものであり、その内容はここに参照として取り込まれる。
 100:線引き装置(光ファイバの製造装置)、1:光ファイバ母材、2:光ファイバ、11:加熱炉、12:炉心管、13,15:外径測定器、14:樹脂コーティング部、16:キャプスタン部、17~19:ローラ、20:巻き取りドラム、21:制御部

 

Claims (3)

  1.  加熱炉で光ファイバ母材を加熱溶融し、線引きすることにより光ファイバを製造する方法において、
     線引き前の光ファイバ母材の断面径方向の屈折率分布を長手方向に少なくとも2箇所以上測定し、測定された前記屈折率分布から長手方向の2つ以上の光ファイバ特性を計算して予測する光ファイバ特性予測工程と、
     線引き開始端、または線引開始端及び線引き途中にてサンプルファイバを採取し、採取した前記サンプルファイバの前記2つ以上の光ファイバ特性を測定するサンプルファイバ特性測定工程と、
     前記サンプルファイバ特性測定工程で測定された前記サンプルファイバの光ファイバ特性から、前記光ファイバ特性予測工程で計算された前記2つ以上の光ファイバ特性の長手方向変動を補正する光ファイバ特性補正工程と、
     前記サンプルファイバ採取位置以降の前記2つ以上の光ファイバ特性がいずれも長手方向で良好範囲に入るように線引張力を決定し、前記線引張力を調整する線引張力調整工程と、
    を経て線引きすることを特徴とする、光ファイバの製造方法。
  2.  前記線引張力調整工程は、前記光ファイバ母材の長手方向で複数回線引張力を調整することを特徴とする、請求項1に記載の光ファイバの製造方法。
  3.  前記光ファイバ特性補正工程により得られた前記2つ以上の光ファイバ特性から、前記線引張力調整工程にて線引張力を調整しても前記2つ以上の光ファイバ特性のいずれかが良好とはならない箇所があることが判明した場合には、前記良好とはならない箇所で線引きを中止することを特徴とする請求項1または請求項2に記載の光ファイバの製造方法。
PCT/JP2013/062882 2012-05-09 2013-05-08 光ファイバの製造方法 WO2013168724A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380024478.1A CN104284869B (zh) 2012-05-09 2013-05-08 光纤的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012107418A JP5949117B2 (ja) 2012-05-09 2012-05-09 光ファイバの製造方法
JP2012-107418 2012-05-09

Publications (1)

Publication Number Publication Date
WO2013168724A1 true WO2013168724A1 (ja) 2013-11-14

Family

ID=49550758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062882 WO2013168724A1 (ja) 2012-05-09 2013-05-08 光ファイバの製造方法

Country Status (3)

Country Link
JP (1) JP5949117B2 (ja)
CN (1) CN104284869B (ja)
WO (1) WO2013168724A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012411B2 (ja) * 2018-03-30 2022-02-14 古河電気工業株式会社 コア母材の延伸方法、光ファイバ母材の製造方法、及び光ファイバの製造方法
JP7169912B2 (ja) * 2019-03-12 2022-11-11 株式会社フジクラ 光ファイバの製造方法および光ファイバの製造装置
CN112897874B (zh) * 2021-05-07 2021-11-16 中天科技光纤有限公司 光纤拉丝速度的控制方法、控制装置及光纤拉丝系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217481A (ja) * 1995-02-17 1996-08-27 Fujikura Ltd 光ファイバの製造方法及び線引き装置
JP2001220167A (ja) * 2000-02-01 2001-08-14 Sumitomo Electric Ind Ltd 光ファイバ製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4442493B2 (ja) * 2005-04-07 2010-03-31 住友電気工業株式会社 光ファイバの製造方法。
JP2007297254A (ja) * 2006-05-02 2007-11-15 Hitachi Cable Ltd 光ファイバ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217481A (ja) * 1995-02-17 1996-08-27 Fujikura Ltd 光ファイバの製造方法及び線引き装置
JP2001220167A (ja) * 2000-02-01 2001-08-14 Sumitomo Electric Ind Ltd 光ファイバ製造方法

Also Published As

Publication number Publication date
CN104284869A (zh) 2015-01-14
CN104284869B (zh) 2016-11-02
JP2013234089A (ja) 2013-11-21
JP5949117B2 (ja) 2016-07-06

Similar Documents

Publication Publication Date Title
US8322166B2 (en) Method of manufacturing optical fiber with selected draw tension
WO2013168724A1 (ja) 光ファイバの製造方法
US20110314873A1 (en) Method of manufacturing optical fiber
EP3207352B1 (en) Apparatus and method for preform or tube drawing based on its viscosity
US6502429B1 (en) Optical fiber fabrication method
JP4398634B2 (ja) 光ファイバの製造方法
AU9381798A (en) Draw constant downfeed process
JP4214647B2 (ja) 光ファイバ製造方法
JPH08217481A (ja) 光ファイバの製造方法及び線引き装置
CN1931757B (zh) 光纤抽丝过程及控制的方法
EP3584226B1 (en) Optical fiber production method
US11530157B2 (en) Method of manufacturing an optical fiber using axial tension control to reduce axial variations in optical properties
JP5712848B2 (ja) 光ファイバの製造方法
JP4477536B2 (ja) 光ファイバプリフォームおよび光ファイバの製造方法
JP2009126755A (ja) 光ファイバの線引き方法
JP2007063093A (ja) 光ファイバの製造方法および製造装置
JP5797851B2 (ja) 選択された線引き張力で光ファイバを製造する方法
JP2001163632A (ja) 光ファイバ製造方法および光ファイバ製造装置
JP2023102029A (ja) 光ファイバの製造方法
DK2640672T3 (en) PROCEDURE FOR MANUFACTURING OPTICAL FIBERS WITH SELECTED TENSION TENSION
JP4496012B2 (ja) 光ファイバ用ガラス母材の製造方法
US10359564B2 (en) Method of manufacturing multi-mode optical fiber
JP2003212588A (ja) 光ファイバ素線の製造方法
JP2012171814A (ja) 光ファイバの製造方法および光ファイバ製造装置
JP2005132688A (ja) 光ファイバの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13787304

Country of ref document: EP

Kind code of ref document: A1