WO2013168682A1 - 流体機械 - Google Patents

流体機械 Download PDF

Info

Publication number
WO2013168682A1
WO2013168682A1 PCT/JP2013/062786 JP2013062786W WO2013168682A1 WO 2013168682 A1 WO2013168682 A1 WO 2013168682A1 JP 2013062786 W JP2013062786 W JP 2013062786W WO 2013168682 A1 WO2013168682 A1 WO 2013168682A1
Authority
WO
WIPO (PCT)
Prior art keywords
expander
refrigerant
pump
crank chamber
fluid machine
Prior art date
Application number
PCT/JP2013/062786
Other languages
English (en)
French (fr)
Inventor
中村 慎二
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to DE112013002403.9T priority Critical patent/DE112013002403T5/de
Priority to CN201380024200.4A priority patent/CN104271951A/zh
Priority to US14/399,456 priority patent/US20150098845A1/en
Publication of WO2013168682A1 publication Critical patent/WO2013168682A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/18Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/006Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle
    • F01C11/008Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C13/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01C13/04Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby for driving pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/08Combinations of two or more pumps the pumps being of different types
    • F04B23/10Combinations of two or more pumps the pumps being of different types at least one pump being of the reciprocating positive-displacement type
    • F04B23/103Combinations of two or more pumps the pumps being of different types at least one pump being of the reciprocating positive-displacement type being a radial piston pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/08Combinations of two or more pumps the pumps being of different types
    • F04B23/12Combinations of two or more pumps the pumps being of different types at least one pump being of the rotary-piston positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/12Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing

Definitions

  • the present invention relates to a fluid machine that is used in a Rankine cycle or the like, and more particularly, to a fluid machine including an expander that generates power by expansion of a refrigerant and a piston pump that pumps the refrigerant.
  • Patent Document 2 discloses a liquid phase in which a lubricating oil is separated from a gas-phase refrigerant in a fluid machine incorporated in a Rankine cycle, and the separated lubricating oil is sucked into a refrigerant pump.
  • a technique for sufficiently lubricating the mechanical sliding portion of the pump for pumping the refrigerant by supplying the refrigerant is disclosed.
  • JP 2010-077827 A Japanese Patent No. 4725344
  • the lubricating oil separated from the gas-phase refrigerant is hotter than the refrigerant sucked by the pump, the lubricating oil separated from the gas-phase refrigerant is sucked into the refrigerant pressure-feeding pump as in the prior art. If supplied to the liquid phase refrigerant, a part of the refrigerant sucked by the pump is gasified (evaporated), and the volumetric efficiency of the pump may be reduced.
  • the present invention provides a fluid machine including an expander that generates power by expansion of a refrigerant and a piston pump that pumps the refrigerant, and reduces the lubrication performance of the mechanical sliding portion in the crank chamber of the piston pump. It aims at reducing the possibility that the volumetric efficiency of a piston pump will fall, suppressing.
  • a fluid machine includes an expander that generates power by expansion of a refrigerant, and a piston pump that pumps the refrigerant, and a refrigerant outlet chamber that discharges the expanded refrigerant from the expander,
  • the piston pump is connected to the crank chamber.
  • the crank chamber is in a state in which the liquid refrigerant is easily gasified.
  • the amount of liquid-phase refrigerant that flows into the crank chamber and / or stores in the crank chamber can be reduced.
  • the possibility that the volumetric efficiency of the piston pump may be reduced can be reduced while suppressing a decrease in the lubrication performance of the mechanical sliding portion of the piston pump.
  • FIG. 1st Embodiment of this invention It is a figure which shows schematic structure of the waste heat recovery apparatus in 1st Embodiment of this invention. It is sectional drawing of the fluid machine (pump integrated expander) in the said 1st Embodiment. It is a figure which shows an example of the distribution path
  • FIG. 1 shows a schematic configuration of an exhaust heat recovery apparatus 1A to which a fluid machine according to the present invention is applied in the first embodiment.
  • the exhaust heat recovery apparatus 1A is mounted on a vehicle and recovers and uses the exhaust heat of the engine 10 of the vehicle.
  • the exhaust heat recovery apparatus 1A includes a Rankine cycle 2A that recovers exhaust heat of the engine 10 and converts it into power, a transmission mechanism 3 that transmits power between the Rankine cycle 2A and the engine 10, and an exhaust heat recovery apparatus 1 And a control unit 4A for controlling the entire operation.
  • the engine 10 is a water-cooled internal combustion engine, and is cooled by engine cooling water that circulates in the cooling water passage 11.
  • a heater 22 of a Rankine cycle 2A which will be described later, is disposed in the cooling water flow path 11, and engine cooling water that has absorbed heat from the engine 10 flows through the heater 22.
  • Rankine cycle 2A collects exhaust heat of engine 10 as an external heat source (here, heat of engine cooling water), converts it into power, and outputs it.
  • a heater 22, an expander 23, a condenser 24, and a pump 25 are arranged in this order in the refrigerant circuit 21 of the Rankine cycle 2A.
  • a bypass path 26 is provided between the heater 22 and the condenser 24 to bypass the expander 23 and distribute the refrigerant.
  • the bypass path 26 is a bypass that opens and closes the bypass path 26.
  • a valve 27 is provided.
  • the heater 22 is a heat exchanger that heats the refrigerant into superheated steam by causing heat exchange between the engine coolant that has absorbed heat from the engine 10 and the refrigerant of the Rankine cycle 2A.
  • the heater 22 may be configured to perform heat exchange between the exhaust of the engine 10 and the refrigerant instead of the engine cooling water.
  • the expander 23 is a scroll expander that generates power (driving force) by expanding the refrigerant (gas-phase refrigerant) that has been heated by the heater 22 into superheated steam and converting it into rotational energy.
  • the condenser 24 is a heat exchanger that cools and condenses (liquefies) the refrigerant by causing heat exchange between the refrigerant that passes through the expander 23 and the outside air.
  • the pump 25 is a mechanical piston pump that pumps the refrigerant (liquid phase refrigerant) liquefied by the condenser 24.
  • the pump 25 sucks and discharges the refrigerant (liquid phase refrigerant) liquefied by the condenser 24, so that the refrigerant circulates through each of the elements of the Rankine cycle 2A.
  • the expander (scroll expander) 23 and the pump (piston pump) 25 are integrally connected and configured as a “pump-integrated expander” 29A having a common rotating shaft 28. That is, the rotary shaft 28 of the pump-integrated expander 29A has a function as an output shaft of the expander 23 and a function as a drive shaft of the pump 25.
  • the transmission mechanism 3 includes a pulley 32 attached to the rotary shaft 28 of the pump-integrated expander 29A via an electromagnetic clutch 31, a crank pulley 33 attached to the crankshaft 12 of the engine 10, a pulley 32, and a crank pulley 33. And a belt 34 wound around the belt.
  • the control unit 4A controls the operation of the bypass valve 27 and the electromagnetic clutch 31.
  • the control unit 4A opens the bypass valve 27, the refrigerant circulates around the expander 23.
  • the control unit 4 controls the electromagnetic clutch 31 to be ON (engaged) / OFF (released)
  • the transmission mechanism 3 is connected to the engine 10 and Rankine cycle 2A (more specifically, the pump-integrated expander 29A). Power can be transmitted / interrupted between them.
  • the control unit 4A When starting the Rankine cycle 2A, the control unit 4A opens the bypass valve 27 and turns on (engages) the electromagnetic clutch 31 to drive the pump 25 by the engine 10. Thereby, the refrigerant is circulated around the expander 23. For example, when the pressure difference before and after the expander 23 becomes a predetermined value or more, the bypass valve 27 is closed and the refrigerant is circulated through the expander 23. Thereafter, when the expander 23 generates a sufficient driving force, a part of the driving force generated by the expander 23 drives the pump 25, and the remaining driving force is transmitted to the engine 10 via the transmission mechanism 3. This is transmitted to assist the output (driving force) of the engine 10.
  • the control unit 4A can stop the Rankine cycle 2A by turning off (releasing) the electromagnetic clutch 31, for example.
  • FIG. 2 is a sectional view of the pump-integrated expander 29A.
  • the pump-integrated expander 29A is a fluid machine in which the expander 23 that generates power by expansion of the refrigerant and the pump 25 that pumps the refrigerant are integrally connected, and is incorporated in the Rankine cycle 2A. Used.
  • the pump-integrated expander 29A includes a pump unit 50A constituting the pump (piston pump) 25, an expansion mechanism 60A constituting the expander (scroll expander) 23, and a function and expansion as a drive shaft of the pump unit 50A.
  • a rotary shaft 28 having a function as an output shaft of the machine part 60A and a housing 70 for housing them are provided.
  • the pump-integrated expander 29 ⁇ / b> A includes an electromagnetic clutch 31 and a pulley 32 that constitute the transmission mechanism 3.
  • the rotary shaft 28 extends in the axial direction of the housing 70 (left-right direction in the figure), and has a crank portion 28a whose axis is offset (offset) from the rotation center of the rotary shaft 28, and a large-diameter end portion 28b. have.
  • bearings 71a and 71b for rotatably supporting the rotary shaft 28 are disposed in the housing 70.
  • the bearing 71a is disposed in a cylindrical portion 70a that is formed so as to protrude from one end side (here, the left end side) of the housing 70, and can rotate in the vicinity of the end opposite to the large-diameter end portion 28b of the rotary shaft 28.
  • the bearing 71b is disposed substantially at the center of the housing 70 in the axial direction, and rotatably supports the large-diameter portion 28b of the rotary shaft 28.
  • crank portion 28 a of the rotary shaft 28 is accommodated in a crank chamber 72 A formed in the housing 70. Further, a shaft seal 73 that seals between the outer peripheral surface of the rotating shaft 28 and the inner peripheral surface of the cylindrical portion 70a is provided at a position closer to the crank chamber 72A than the bearing 71a in the cylindrical portion 70a of the housing 70. It has been.
  • An armature plate 81 is attached to an end portion (tip portion) of the rotating shaft 28 protruding outside from the cylindrical portion 70a, and the pulley 32 can be rotated via a bearing 82 on the outer peripheral surface of the cylindrical portion 70a. Is attached.
  • a clutch coil 83 is accommodated in an annular groove 32 a formed on the end surface of the pulley 32.
  • the electromagnetic clutch 31 includes an armature plate 81 and a clutch coil 83. When the clutch coil 83 is energized, the armature plate 81 is magnetically attracted to the end face of the pulley 32, and the electromagnetic clutch 31 is fastened.
  • the pump portion 50A is rotated by a piston 51 housed in a pump cylinder 74A formed in communication with the crank chamber 72A, one end connected to the piston 51 and the other end connected to the crank portion 28a of the rotary shaft 28. And a connecting rod 52 that converts the rotational motion of the shaft 28 into the reciprocating linear motion of the piston 51.
  • the open end of the pump cylinder 74A is covered with a cylinder cover 75.
  • the cylinder cover 75 is formed with a suction port 75a for sucking the refrigerant (liquid phase refrigerant) liquefied by the condenser 24 into the pump cylinder 74A and a discharge port 75b for discharging the sucked refrigerant.
  • the intake port 75a is provided with a check valve 76a that allows only refrigerant to be sucked
  • the discharge port 75b is provided with a check valve 76b that allows only refrigerant to be discharged.
  • the pump unit 50A repeatedly sucks and discharges the refrigerant (liquid phase refrigerant) as the piston 51 reciprocates in the pump cylinder 74A as the rotary shaft 28 rotates, thereby pumping the refrigerant.
  • the expander portion 60A includes a fixed scroll 61 fixed to an end portion (right end portion in the drawing) opposite to the tubular portion 70a of the housing 70, and a turning scroll 62.
  • the fixed scroll 61 has a disk-shaped base 61a and a spiral wrap 61b erected on one surface (the left surface in the figure) of the base 61a.
  • a refrigerant inlet 61c is formed through the substantially central portion of the base 61a of the fixed scroll 61.
  • the orbiting scroll 62 has a substantially disc-shaped base portion 62a and a spiral wrap 62b erected on the surface of the base portion 62a on the fixed scroll 61 side.
  • the fixed scroll 61 and the orbiting scroll 62 are arranged so that the spiral wraps 61b and 62b mesh with each other, and an expansion chamber that expands the introduced refrigerant (gas phase refrigerant) between the wraps 61b and 62b. 63 is formed. Further, between the surface opposite to the fixed scroll 61 side of the base portion 62a of the orbiting scroll 62 and the opposing surface of the housing 70 facing this, rotation such as ball coupling that prevents the orbiting scroll 62 from rotating is provided. A blocking member 77 is arranged.
  • the refrigerant (gas-phase refrigerant) introduced into the expansion chamber 63 through the inlet 61c expands in the expansion chamber 63, so that the orbiting scroll 62 performs an orbiting motion with respect to the fixed scroll 61. .
  • the expansion chamber 63 moves from the central portion to the peripheral portion with the turning motion of the orbiting scroll 62, and the expanded refrigerant (gas phase refrigerant) is discharged to the refrigerant outlet chamber 78A in the housing 70.
  • the refrigerant outlet chamber 78A is a space formed on the radially outer side of the orbiting scroll 62 in the housing 70, for example.
  • the pump unit 50 ⁇ / b> A and the expander unit 60 ⁇ / b> A are connected via a driven crank mechanism 80.
  • the large-diameter portion 28 b of the rotating shaft 28 is connected to the orbiting scroll 62 via the driven crank mechanism 80.
  • the driven crank mechanism 80 includes a flange 81 fixed to the end surface of the large-diameter portion 28 b of the rotary shaft 28, and a rotary shaft 28 erected at a position shifted from the rotation center of the rotary shaft 28 on the end surface of the flange 81. And an eccentric bush 83 provided on the orbiting scroll 62 side.
  • the eccentric bush 83 is disposed via a bearing 84 in a hollow boss portion 62 c formed on a surface of the base portion 62 a of the orbiting scroll 62 opposite to the fixed scroll 61 side.
  • the crankpin 82 is inserted through an insertion hole 83 a formed in the eccentric bush 83.
  • the insertion hole 83 a is formed at a position shifted from the center of the bush, and the eccentric bush 83 is configured to be swingable around the crank pin 82.
  • the driven crank mechanism 80 converts the rotational motion of the rotary shaft 28 into the rotational motion of the orbiting scroll 62, or converts the rotational motion of the orbiting scroll 62 into the rotational motion of the rotary shaft 28. And as above-mentioned, the pump part 50 is driven by rotation of the rotating shaft 28, and a liquid phase refrigerant is pumped.
  • a counterweight (balance weight) 85 is fixed to the eccentric bush 83 in order to balance the eccentric bush 83 and the orbiting scroll 62 and suppress the occurrence of vibrations in the expander unit 60A. Further, the swing range of the eccentric bush 83 around the crankpin 82 is restricted by the engagement between the restriction hole 81 a provided in the flange portion 81 and the restriction protrusion 83 b provided in the eccentric bush 83.
  • the crank chamber 72 ⁇ / b> A on the pump unit 50 ⁇ / b> A side and the refrigerant outlet chamber 78 ⁇ / b> A on the expander unit 60 ⁇ / b> A side accommodate the bearing 71 b that supports the large-diameter portion 28 b of the rotary shaft 28 and the driven crank mechanism 80.
  • the housing 70 communicates with the rotation preventing member 77 through a gap space between the pump unit 50A and the expander unit 60A.
  • an outlet port 79A through which the expanded refrigerant discharged from the expander unit 60A to the refrigerant outlet chamber 78A flows out to the condenser 24 side is open to the crank chamber 72A.
  • the outlet port 79A is preferably formed so as to open to the bottom of the crank chamber 72A (the lower part in the vertical direction of the pump-integrated expander 29A).
  • the high-temperature gas phase refrigerant discharged from the expander portion 60A to the refrigerant outlet chamber 78A (the high temperature after expansion) is prevented from rotating. Then, it passes through the accommodation space of the driven crank mechanism 80 and the bearing 71b, enters the crank chamber 72A, and then flows out from the outlet port 79A that opens to the crank chamber 72A (that is, flows out through the crank chamber 72). .
  • the gas-phase refrigerant flowing out from the outlet port 79A is liquefied by the condenser 24 and then pumped by the pump unit 50A.
  • the refrigerant outlet chamber 78A from which the expanded gas-phase refrigerant is discharged from the expander section 60A (expander) and the crank of the pump section 50A (piston pump). Since the chamber 72A communicates with the chamber 72A, the liquid phase refrigerant can be easily gasified in the crank chamber 72A, and the liquid phase refrigerant flowing into the crank chamber 72A and / or stored in the crank chamber 72A is stored. The amount can be reduced.
  • the outlet port 79A is opened at the bottom (lower part) of the crank chamber 72A, and even when the liquid phase refrigerant flows into the crank chamber 72A, the flowing liquid phase refrigerant is discharged from the outlet port 79A. Storage of the crank chamber 72A is suppressed. Further, since the vapor-phase refrigerant after expansion at a relatively high temperature flows out to the outside (condenser 24 side) via the crank chamber 72A, the liquid-phase refrigerant is stored in the crank chamber 72A. Even if it exists, most of the said liquid phase refrigerant
  • crank chamber 72A and the refrigerant outlet chamber 78A are communicated with each other in the housing 70 through a bearing 71b that rotatably supports the rotary shaft 28 and a rotation prevention member 77 that prevents rotation of the orbiting scroll 62.
  • a dedicated communication path or the like for communicating the crank chamber 72A and the refrigerant outlet chamber 78A.
  • the outlet port 79A through which the expanded refrigerant flows out to the condenser 24 side is opened in the crank chamber 72A, and the expanded gas phase discharged from the expander unit 60 is discharged.
  • the refrigerant is configured to flow outside (on the condenser 24 side) via the crank chamber 72A.
  • the crank chamber 72A and the refrigerant outlet chamber 78A only need to communicate with each other, and the position where the outlet port 79A is formed is not limited to the configuration according to the above embodiment.
  • an outlet port 79A may open in the refrigerant outlet chamber 72A.
  • a communication passage 91 that allows the crank chamber 72 ⁇ / b> A to communicate with the space on the expander unit 60 ⁇ / b> A side such as the accommodation space of the driven crank mechanism 80 may be formed in the housing 70.
  • the expanded refrigerant that has passed through the accommodating space of the rotation prevention member 77 and the driven crank mechanism 80 enters the crank chamber 72A via the bearing 71b and the communication passage 91, and then flows out from the outlet port 79A that opens to the crank chamber 72A. .
  • a communication path for directly communicating the crank chamber 72A and the refrigerant outlet chamber 78A may be formed in the housing 70, or a communication path for communicating the outlet port 79A and the refrigerant outlet chamber 78A in the configuration shown in FIGS. May be formed in the housing 70. Further, these communication paths may be provided outside the housing 70. Even in this case, since the liquid phase refrigerant can be easily gasified in the crank chamber 72A, the amount of the liquid phase refrigerant flowing into the crank chamber 72A and / or stored in the crank chamber 72A is reduced. can do.
  • FIG. 5 shows a schematic configuration of an exhaust heat recovery apparatus 1B to which the fluid machine according to the present invention is applied in the second embodiment.
  • the exhaust heat recovery apparatus 1A in the first embodiment drives the pump 25 that circulates the refrigerant of the Rankine cycle 2A by the driving force generated by the expander 23, and assists the output of the engine 10.
  • the Rankine cycle 2A incorporates a pump-integrated expander 29A.
  • the exhaust heat recovery apparatus 1B includes the generator motor 100 and drives the generator motor 100 with the driving force generated by the expander 23, thereby converting the exhaust heat of the engine 10 into electric energy. And use it.
  • the Rankine cycle 2B incorporates an expander, a pump and a generator motor integrated fluid machine 29B.
  • the transmission mechanism 3 in the first embodiment is not provided, and the pump 25 is driven by the generator motor 100.
  • FIG. 5 the same elements as those in FIG. 1 are denoted by the same reference numerals, and the functions thereof are also the same.
  • the exhaust heat recovery apparatus 1B includes a Rankine cycle 2B, a generator motor 100, and a control unit 4B.
  • a heater 22, an expander 23, a condenser 24, and a pump 25 are arranged in this order.
  • a bypass path 26 is provided between the heater 22 and the condenser 24 to bypass the expander 23 and distribute the refrigerant.
  • the bypass path 26 is a bypass that opens and closes the bypass path 26.
  • a valve 27 is provided.
  • the generator motor 100 is connected to the power storage device 102 via a power conversion unit (rectifier, inverter, etc.) 101.
  • the generator motor 100 is disposed between the expander 23 and the pump 25 and is driven by electric power supplied from the power storage device 102 or driven by the driving force generated by the expander 23.
  • the control unit 4B controls the operation of the bypass valve 27 and the power supply / power supply stop from the power storage device 102 to the generator motor 100.
  • the generator motor 100 operates as an electric motor to drive the pump 25.
  • the generator motor 100 operates as a generator and is driven by the driving force generated by the expander 23 to generate power.
  • the control unit 4B When starting the Rankine cycle 2B, the control unit 4B opens the bypass valve 27 and supplies power from the power storage device 102 to the generator motor 100 to operate the generator motor 100 as a motor to drive the pump 25. Thereby, the refrigerant is circulated around the expander 23.
  • the control unit 4B closes the bypass valve 27 and circulates the refrigerant via the expander 23, for example, when the pressure difference across the expander 23 reaches or exceeds a predetermined value. Thereafter, when the expander 23 generates a sufficient driving force, the control unit 4B stops the power supply from the power storage device 102 to the generator motor 100 and operates the generator motor 100 as a generator. As a result, the driving force generated by the expander 23 drives the pump 25 and the generator motor 100 to generate power. The power generated by the generator motor 100 is supplied to the power storage device 102 via the power converter 101.
  • the expander 23, the pump (piston pump) 25, and the generator motor 100 are integrally connected and configured as a fluid machine 29B having a common rotating shaft 105. That is, the rotating shaft 105 of the fluid machine 29B has a function as an output shaft of the expander 23, a function as a drive shaft of the pump 25, and a function as a drive shaft of the generator motor 100.
  • FIG. 6 is a cross-sectional view of the fluid machine 29B.
  • the fluid machine 29 ⁇ / b> B includes a pump unit 50 ⁇ / b> B constituting a pump (piston pump) 25, a generator motor unit 110 constituting a generator motor 100, and an expansion constituting a expander (scroll expander) 23.
  • the housing 120 includes a first housing 121 that houses the pump unit 50B and the generator motor unit 110, a second housing 122 that houses the expander unit 60B, and a connecting member 123 that connects the first housing 121 and the second housing 122.
  • a connecting member 123 that connects the first housing 121 and the second housing 122.
  • the first housing 121 is fitted and fixed to one side (left side in the figure) of the connecting member 123
  • the second housing 122 is fitted and fixed to the other side (right side in the figure) of the connecting member 123.
  • a through hole 123 a is formed in the connecting member 123, and the internal space of the first housing 121 and the internal space of the second housing 122 communicate with each other through the through hole 123 a.
  • the rotation shaft 105 extends in the first housing 121 in the axial direction (left-right direction in the drawing), and the shaft center is shifted (offset) from the rotation center of the rotation shaft 105 on one end side (left-end side in the drawing).
  • It has a crank portion 105a.
  • the rotating shaft 105 is rotatably supported by a bearing 131 a disposed in the first housing 121 and a bearing 131 b held by the connecting member 123.
  • the crank portion 105 a of the rotating shaft 105 is accommodated in a crank chamber 72 ⁇ / b> B formed in the first housing 121.
  • the pump part 50B is rotated by a piston 51 housed in a pump cylinder 74B formed in communication with the crank chamber 72B, one end connected to the piston 51 and the other end connected to the crank part 105a of the rotary shaft 105. And a connecting rod 52 that converts the rotational movement of the shaft 105 into the reciprocating linear movement of the piston 51.
  • the open end of the pump cylinder 74B is covered with a cylinder cover 75 in which a suction port 75a and a discharge port 75b are formed, as in the first embodiment.
  • the intake port 75a and the discharge port 75b are provided with check valves 76a and 76b, respectively.
  • the pump unit 50B repeatedly sucks and discharges the refrigerant (liquid phase refrigerant) as the piston 51 reciprocates in the pump cylinder 74B as the rotating shaft 105 rotates, thereby pumping the refrigerant.
  • the generator motor unit 110 is disposed in a space (accommodating space) adjacent to the crank chamber 72B in the first housing 121 via a bearing 131a.
  • the generator motor unit 110 includes a rotor (rotor) 111 made of, for example, a permanent magnet fixed to the rotation shaft 105, and a stator 112 fixed to the inner peripheral surface of the first housing 121 so as to surround the rotor 111.
  • the stator 112 includes a yoke 112a and, for example, three sets of coils 112b wound around the yoke 112a.
  • the coil 112b generates a magnetic field that rotates the rotor 111 when a three-phase alternating current is supplied from the power storage device 102 via the power conversion unit 101, whereby the rotating shaft 105 rotates and the pump unit 50B is driven. Is done.
  • the coil unit 112 b generates a three-phase alternating current along with the rotation of the rotor 111, and the generated three-phase alternating current is supplied to the power storage device 102 via the power conversion unit 101. Thereby, the power storage device 102 is charged.
  • the expander unit 60B includes a fixed scroll 61 and a turning scroll 62, as in the first embodiment.
  • the fixed scroll 61 is fixed in the second housing 122, and an introduction hole 122 a for introducing the refrigerant into the second housing 122 is formed in the second housing 122.
  • the fixed scroll 61 has a disc-shaped base 61a and a spiral wrap 61b erected on one surface of the base 61a (the left surface in the figure).
  • a refrigerant inlet 61c is formed through the substantially central portion of the base 61a of the fixed scroll 61.
  • the orbiting scroll 62 has a substantially disc-shaped base portion 62a and a spiral wrap 62b erected on the surface of the base portion 62a on the fixed scroll 61 side.
  • the fixed scroll 61 and the orbiting scroll 62 are arranged so that the spiral wraps 61b and 62b mesh with each other, and an expansion chamber 63 for expanding the introduced gas-phase refrigerant is formed between the wraps 61b and 62b. Is done.
  • a space 122b having a relatively large volume is formed on the back side of the fixed scroll 61 in the second housing 122 (the side opposite to the orbiting scroll 61).
  • the refrigerant introduced from 122a includes a liquid-phase refrigerant (that is, in a gas-liquid mixed state)
  • the liquid-phase refrigerant is introduced into the inlet 61c formed in the base 61a of the fixed scroll 61 and thus into the expansion chamber 63. Is suppressed.
  • a blocking member 77 is arranged between the surface opposite to the fixed scroll 61 side of the base 62a of the orbiting scroll 62 and the opposing surface of the connecting member 123 facing this.
  • the gas-phase refrigerant expands through an introduction hole 122a formed in the second housing 122, a space 122b on the back side of the fixed scroll 61, and an introduction port 61c formed in the base 61a of the fixed scroll 61. It is introduced into the chamber 63.
  • the introduced gas-phase refrigerant expands in the expansion chamber 63, so that the orbiting scroll 62 performs an orbiting motion with respect to the fixed scroll 61.
  • the expansion chamber 63 moves from the central portion to the peripheral portion in accordance with the orbiting motion of the orbiting scroll 62, and the expanded refrigerant (gas phase refrigerant) enters the refrigerant outlet chamber 78B in the second housing 122. Discharged.
  • the refrigerant outlet chamber 78B is a space formed on the radially outer side of the orbiting scroll 62 in the second housing 122, for example.
  • the rotating shaft 105 extending in the axial direction in the first housing 121 is connected to the orbiting scroll 62 through a driven crank mechanism 80.
  • the driven crank mechanism 80 is erected at a position shifted from the rotation center of the rotary shaft 28 of the flange portion 81 fixed to the end surface of the rotary shaft 105 and the end surface of the flange portion 81, as in the first embodiment.
  • the eccentric bush 83 is disposed via a bearing 84 in a hollow boss portion 62c formed on the surface of the base portion 62a of the orbiting scroll 62 opposite to the fixed scroll 61 side.
  • the crank pin 82 is inserted through an insertion hole 83 a formed in the eccentric bush 83.
  • the insertion hole 83 a is formed at a position shifted from the center of the bush, and the eccentric bush 83 is configured to be swingable around the crank pin 82.
  • a counterweight (balance weight) 85 is fixed to the eccentric bush 83 in order to balance the eccentric bush 83 and the orbiting scroll 62 and suppress the occurrence of vibrations in the expander 60B. Further, the swing range of the eccentric bush 83 around the crank pin 82 is restricted by the engagement of the restriction hole 81 a provided in the flange portion 81 and the restriction protrusion 83 b provided in the eccentric bush 83.
  • the driven crank mechanism 80 converts the rotary motion of the rotary shaft 105 into the rotary motion of the orbiting scroll 62, or converts the rotary motion of the orbiting scroll 62 into the rotary motion of the rotary shaft 105. Then, as described above, the pump unit 50B is driven by the rotation of the rotating shaft 105 to pump the liquid refrigerant, and the generator motor unit 110 is driven to generate power, and the power storage device 102 is charged.
  • the crank chamber 72 ⁇ / b> B on the pump unit 50 ⁇ / b> B side and the refrigerant outlet chamber 78 ⁇ / b> B on the expander unit 60 ⁇ / b> B side include a bearing 131 b that supports the rotating shaft 105, a generator motor unit 110 (particularly the rotor 111 and the stator 112. And the through hole 123a formed in the connecting member 123 and the rotation prevention member 77. Further, an outlet port 79B through which the expanded refrigerant flows out to the condenser 24 side is open to the crank chamber 72B.
  • the outlet port 79B is preferably formed so as to open to the bottom of the crank chamber 72B (the lower part in the vertical direction of the fluid machine 29B).
  • the gas phase refrigerant discharged (after expansion) from the expander unit 60B to the refrigerant outlet chamber 78B is rotated by the rotation prevention member 77, It passes through the through-hole 123a formed in the connecting member 123, the generator motor unit 110 (the gap space between the rotor 111 and the stator 112), and the bearing 131a and enters the crank chamber 72B, and then opens into the crank chamber 72B. Outflow from the exit port 79B. And the gaseous-phase refrigerant
  • the liquid phase refrigerant can be easily gasified in the crank chamber 72B, the amount of the liquid phase refrigerant flowing into the crank chamber 72B and / or stored in the crank chamber 72B can be reduced. . Further, even when the liquid phase refrigerant flows into the crank chamber 72B, the flowing liquid phase refrigerant is prevented from being discharged from the outlet port 79B and stored in the crank chamber 72B. Further, since the vapor-phase refrigerant after expansion at a relatively high temperature flows out to the outside via the crank chamber 72B, the liquid phase refrigerant is stored even when the liquid-phase refrigerant is stored in the crank chamber 72B. Most of the refrigerant can be gasified to flow out (discharge) from the outlet port 79B as a gas-phase refrigerant.
  • the outlet port 79B through which the expanded refrigerant flows out to the condenser 24 side opens in the crank chamber 72B, but is not limited thereto.
  • the crank chamber 72 ⁇ / b> B and the refrigerant outlet chamber 78 ⁇ / b> B only need to communicate with each other.
  • the outlet port 29 ⁇ / b> B may open into the accommodation space of the generator motor unit 110 of the first housing 121.
  • an outlet port 79B may be opened in the refrigerant outlet chamber 72B, and a communication path communicating with the housing space of the generator motor unit 90 and the crank chamber 72B may be formed in the first housing 121.
  • a communication path that directly connects the crank chamber 72B and the refrigerant outlet chamber 78B may be formed in the housing 120 (the first housing 121, the second housing 122, and the connecting member 123), or the outlet in the configuration shown in FIG.
  • a communication path that allows the port 79B and the refrigerant outlet chamber 78B to communicate with each other may be formed in the housing 120. Further, these communication paths may be provided outside the housing 120. Even in this case, since the liquid phase refrigerant can be easily gasified in the crank chamber 72B, the amount of the liquid phase refrigerant flowing into the crank chamber 72A and / or stored in the crank chamber 72B is reduced. can do.
  • the fluid machine 29B in the above embodiment is the one in which the expander 23, the pump (piston pump) 25, and the generator motor 100 are integrally connected, but the generator motor 100 may be used as a generator.
  • the exhaust heat recovery apparatus 1 ⁇ / b> B includes the transmission mechanism 3 as in the exhaust heat recovery apparatus 1 ⁇ / b> A in the first embodiment so that the pump 25 can be driven by the engine 10.
  • the fluid machine which is applied to the Rankine cycle and includes the expander that expands the gas-phase refrigerant to generate power and the piston pump that pumps the liquid-phase refrigerant has been described above.
  • the technical idea of the present invention can also be applied to the case where the expander and the piston pump are configured separately.
  • the crankcase of the piston pump that pumps the liquid phase refrigerant communicates with the outlet side of the expander, for example, the refrigerant flow from the crank chamber of the piston pump and the expander to the condenser. What is necessary is just to provide the communicating path which connects a path
  • crank chamber 77 ... rotation prevention member, 78A, 78B ... refrigerant outlet chamber, 79A 79B ... exit port, 80 ... driven crank mechanism, 91 ... communication path, 100 ... generator motor, 105 ... rotary shaft, 110 ... generator motor part, 11 ... rotor, 112 ... stator, 120 ... housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

 冷媒の膨張によって動力を発生する膨張機と、冷媒を圧送するピストンポンプとを備えた流体機械において、ピストンポンプのクランク室内における機械的摺動部の潤滑性能の低下を抑制する。 流体機械29Aは、冷媒の膨張によって動力を発生する膨張機部(スクロール膨張機)60Aと、冷媒を圧送するポンプ部(ピストンポンプ)50Aと、を備える。流体機械29Aの回転軸28は、膨張機部60Aの出力軸及びポンプ部50Aの駆動軸として機能する。回転軸28はクランク部28aを有し、このクランク部28aはクランク室72Aに収容されている。そして、膨張機部60Aから膨張後の冷媒が排出される冷媒出口室78Aとクランク室72Aとが、ベアリング71b、従動クランク機構80の収容空間及び自転阻止部材77を介して連通している。

Description

流体機械
 本発明は、ランキンサイクル等に組み込まれて使用される流体機械に関し、特に、冷媒の膨張によって動力を発生する膨張機と、冷媒を圧送するピストンポンプと、を備えた流体機械に関する。
 ランキンサイクルに組み込まれる流体機械として、冷媒の膨張によって動力を発生する膨張機と、冷媒を圧送するポンプとを一体に連結したポンプ一体型膨張機が知られている(例えば、特許文献1参照)。発明者らは、この種の流体機械における上記ポンプとして、低回転域から高回転域まで容積効率の高いピストンポンプを採用することを検討している。この場合、ピストンポンプに吸入された液相冷媒がクランク室内に流入してしまい、クランク室内における各摺動部の潤滑状態が悪化することが懸念される。
 これに対し、特許文献2には、ランキンサイクルに組み込まれる流体機械において、気相冷媒から潤滑用のオイルを分離し、この分離した潤滑用のオイルを冷媒圧送用のポンプに吸入される液相冷媒に供給することによって、冷媒圧送用のポンプの機械的摺動部を十分に潤滑させる技術が開示されている。
特開2010-077827号公報 特許4725344号明細書
 しかし、気相冷媒から分離した潤滑用のオイルはポンプの吸入冷媒に比べて高温であるため、上記従来技術のように、気相冷媒から分離した潤滑用のオイルを冷媒圧送用のポンプに吸入される液相冷媒に供給すると、ポンプの吸入冷媒の一部をガス化(蒸発)させてしまい、当該ポンプの容積効率が低下するおそれがある。
 そこで、本発明は、冷媒の膨張によって動力を発生する膨張機と、冷媒を圧送するピストンポンプと、を備えた流体機械において、ピストンポンプのクランク室内における機械的摺動部の潤滑性能の低下を抑制しつつ、ピストンポンプの容積効率が低下するおそれを低減することを目的とする。
 本発明の一側面による流体機械は、冷媒の膨張によって動力を発生する膨張機と、冷媒を圧送するピストンポンプと、を備え、前記膨張機から膨張後の冷媒が排出される冷媒出口室と前記ピストンポンプのクランク室とが連通している。
 上記流体機械によれば、膨張機から膨張後の冷媒が排出される冷媒出口部とピストンポンプのクランク室とを連通させることにより、クランク室内を液相冷媒がガス化し易い状態としているので、当該クランク室へと流入し、及び/又は、当該クランク室内に貯留する液相冷媒の量を低減できる。また、上記従来技術のようにポンプの吸入冷媒をガス化させるおそれもほとんどない。これにより、ピストンポンプの機械的摺動部の潤滑性能の低下を抑制しつつ、ピストンポンプの容積効率が低下するおそれを低減できる。
本発明の第1実施形態における排熱回収装置の概略構成を示す図である。 上記第1実施形態における流体機械(ポンプ一体型膨張機)の断面図である。 上記第1実施形態における流体機械(ポンプ一体型膨張機)内の気相冷媒の流通経路の一例を示す図である。 上記第1実施形態における流体機械(ポンプ一体型膨張機)の変形例を示す図である。 本発明の第2実施形態における排熱回収装置の概略構成を示す図である。 上記第2実施形態における流体機械(膨張機・ポンプ・発電電動機一体型流体機械)の断面図である。 上記第2実施形態における流体機械(膨張機・ポンプ・発電電動機一体型流体機械)内の気相冷媒の流通経路の一例を示す図である。 上記第2実施形態における流体機械(膨張機・ポンプ・発電電動機一体型流体機械)の変形例を示す図である。
 以下、添付図面を参照しつつ本発明の実施形態について説明する。
 図1は、第1実施形態において、本発明に係る流体機械が適用された排熱回収装置1Aの概略構成を示している。この排熱回収装置1Aは、車両に搭載され、当該車両のエンジン10の排熱を回収して利用する。
 排熱回収装置1Aは、エンジン10の排熱を回収して動力に変換するランキンサイクル2Aと、ランキンサイクル2Aとエンジン10との間で動力の伝達を行う伝達機構3と、排熱回収装置1全体の作動を制御する制御ユニット4Aと、を含む。
 エンジン10は、水冷式の内燃機関であり、冷却水流路11を循環するエンジン冷却水によって冷却される。冷却水流路11には、後述するランキンサイクル2Aの加熱器22が配置され、エンジン10から熱を吸収したエンジン冷却水が加熱器22内を流通するようになっている。
 ランキンサイクル2Aは、外部熱源としてのエンジン10の排熱(ここではエンジン冷却水の熱)を回収して動力に変換して出力する。
 ランキンサイクル2Aの冷媒循環路21には、加熱器22、膨張機23、凝縮器24、及びポンプ25がこの順に配設されている。また、加熱器22と凝縮器24との間には、膨張機23を迂回して冷媒を流通させるバイパス路26が設けられており、このバイパス路26には、このバイパス路26を開閉するバイパス弁27が設けられている。
 加熱器22は、エンジン10から熱を吸収したエンジン冷却水とランキンサイクル2Aの冷媒との間で熱交換を行わせることによって当該冷媒を加熱して過熱蒸気とする熱交換器である。なお、図示省略するが、エンジン冷却水に代えてエンジン10の排気と冷媒との間で熱交換を行わせるように加熱器22を構成してもよい。
 膨張機23は、加熱器22で加熱されて過熱蒸気となった冷媒(気相冷媒)を膨張させて回転エネルギーに変換することによって動力(駆動力)を発生するスクロール膨張機である。
 凝縮器24は、膨張機23を経由した冷媒と外気との間で熱交換を行わせることによって冷媒を冷却して凝縮(液化)させる熱交換器である。
 ポンプ25は、凝縮器24で液化された冷媒(液相冷媒)を圧送する機械式のピストンポンプである。このポンプ25が、凝縮器24で液化された冷媒(液相冷媒)を吸入して吐出することにより、冷媒がランキンサイクル2Aの上記各要素を循環することになる。
 ここで、膨張機(スクロール膨張機)23とポンプ(ピストンポンプ)25とは一体に連結されて共通の回転軸28を有する「ポンプ一体型膨張機」29Aとして構成されている。すなわち、ポンプ一体型膨張機29Aの回転軸28は、膨張機23の出力軸としての機能及びポンプ25の駆動軸としての機能を有している。
 伝達機構3は、ポンプ一体型膨張機29Aの回転軸28に電磁クラッチ31を介して取り付けられたプーリ32と、エンジン10のクランクシャフト12に取り付けられたクランクプーリ33と、プーリ32及びクランクプーリ33に巻回されたベルト34と、を有する。
 制御ユニット4Aは、バイパス弁27及び電磁クラッチ31の作動を制御する。
 制御ユニット4Aがバイパス弁27を開くことにより、冷媒が膨張機23を迂回して循環する。また、制御ユニット4が電磁クラッチ31をON(締結)/OFF(解放)制御することにより、伝達機構3は、エンジン10とランキンサイクル2A(より具体的にはポンプ一体型膨張機29A)との間で動力を伝達/遮断できるようになっている。
 制御ユニット4Aは、ランキンサイクル2Aを起動させる際には、バイパス弁27を開くと共に電磁クラッチ31をON(締結)してエンジン10によってポンプ25を駆動する。これにより、膨張機23を迂回して冷媒を循環させる。そして、例えば膨張機23前後の圧力差が所定値以上となると、バイパス弁27を閉じて膨張機23を経由して冷媒を循環させる。その後、膨張機23が十分な駆動力を発生するようになると、膨張機23で発生した駆動力の一部がポンプ25を駆動し、その余の駆動力が伝達機構3を介してエンジン10に伝達されてエンジン10の出力(駆動力)をアシストする。
 また、制御ユニット4Aは、例えば電磁クラッチ31をOFF(解放)することによって、ランキンサイクル2Aを停止させることができる。
 次に、ポンプ一体型膨張機29A(流体機械)の構造を説明する。
 図2は、ポンプ一体型膨張機29Aの断面図である。上述したように、ポンプ一体型膨張機29Aは、冷媒の膨張によって動力を発生する膨張機23と、冷媒を圧送するポンプ25とが一体に連結された流体機械であり、ランキンサイクル2Aに組み込まれて使用される。
 ポンプ一体型膨張機29Aは、ポンプ(ピストンポンプ)25を構成するポンプ部50Aと、膨張機(スクロール膨張機)23を構成する膨張構部60Aと、ポンプ部50Aの駆動軸としての機能及び膨張機部60Aの出力軸としての機能を有する回転軸28と、これらを収容するハウジング70と、を備える。また、ポンプ一体型膨張機29Aは、伝達機構3を構成する電磁クラッチ31及びプーリ32を備えている。
 回転軸28は、ハウジング70の軸方向(図では左右方向)に延びており、軸心が回転軸28の回転中心からずれている(オフセットされた)クランク部28aと、大径端部28bとを有している。
 また、ハウジング70内には、回転軸28を回転可能に支持するベアリング71a,71bが配置されている。ベアリング71aは、ハウジング70の一端側(ここでは左端側)に突出形成された筒状部70a内に配置されて回転軸28の大径端部28bとは反対側の端部近傍を回転可能に支持する。ベアリング71bは、ハウジング70の上記軸方向のほぼ中央に配置されて回転軸28の大径部28bを回転可能に支持する。
 回転軸28のクランク部28aは、ハウジング70内に形成されたクランク室72Aに収容されている。また、ハウジング70の筒状部70a内におけるベアリング71aよりもクランク室72A側の位置には、回転軸28の外周面と筒状部70aの内周面との間をシールする軸シール73が設けられている。
 筒状部70aから外部に突出した回転軸28の端部(先端部)には、アーマチュア板81が取り付けられており、筒状部70aの外周面にはベアリング82を介してプーリ32が回転可能に取り付けられている。また、プーリ32の端面に形成された環状溝32aにはクラッチコイル83が収容されている。電磁クラッチ31は、アーマチュア板81及びクラッチコイル83を含み、クラッチコイル83に通電することによってアーマチュア板81がプーリ32の端面に磁気吸着されて電磁クラッチ31が締結される。
 次に、ポンプ部50Aについて説明する。
 ポンプ部50Aは、クランク室72Aに連通して形成されたポンプシリンダ74Aに収容されたピストン51と、一端がピストン51に連結されると共に他端が回転軸28のクランク部28aに連結されて回転軸28の回転運動をピストン51の往復直線運動に変換するコネクティングロッド52と、を含む。
 ポンプシリンダ74Aの開口端は、シリンダカバー75によって覆われている。シリンダカバー75には、凝縮器24で液化された冷媒(液相冷媒)をポンプシリンダ74A内に吸入する吸入ポート75aと、吸入した冷媒を吐出する吐出ポート75bが形成されている。吸入ポート75aには、冷媒の吸入のみを許容する逆止弁76aが設けられ、吐出ポート75bには、冷媒の吐出のみを許容する逆止弁76bが設けられている。
 ポンプ部50Aは、回転軸28の回転に伴ってピストン51がポンプシリンダ74A内で往復運動することによって冷媒(液相冷媒)の吸入と吐出とを繰り返し、これにより、冷媒を圧送する。
 次に、膨張機部60Aについて説明する。
 膨張機部60Aは、ハウジング70の筒状部70aとは反対側の端部(図では右端部)に固定された固定スクロール61と、旋回スクロール62と、を含む。
 固定スクロール61は、円盤状の基部61aと、この基部61aの一方の面(図では左側の面)に立設された渦巻きラップ61bと、を有する。固定スクロール61の基部61aの略中央部には冷媒の導入口61cが貫通形成されている。また、旋回スクロール62は、略円盤状の基部62aと、この基部62aの固定スクロール61側の面に立設された渦巻きラップ62bと、を有する。
 固定スクロール61と旋回スクロール62とは、互いの渦巻きラップ61b、62bが噛み合うように配置されており、両ラップ61b,62bの間には、導入された冷媒(気相冷媒)を膨張させる膨張室63が形成される。また、旋回スクロール62の基部62aの固定スクロール61側とは反対側の面と、これに対向するハウジング70の対向面との間には、旋回スクロール62の自転を阻止するボールカップリング等の自転阻止部材77が配置されている。
 膨張機部60Aにおいて、導入口61cを介して膨張室63に導入された冷媒(気相冷媒)が膨張室63内で膨張することにより、旋回スクロール62が固定スクロール61に対して旋回運動を行う。この旋回スクロール62の旋回運動に伴って膨張室63は中央部から周辺部へと容積を増加させながら移動し、膨張後の冷媒(気相冷媒)はハウジング70内の冷媒出口室78Aに排出される。この冷媒出口室78Aは、例えばハウジング70内における旋回スクロール62の径方向外側に形成される空間である。
 ハウジング70内において、ポンプ部50Aと膨張機部60Aとは従動クランク機構80を介して連結されている。具体的には、回転軸28の大径部28bが従動クランク機構80を介して旋回スクロール62に連結されている。
 従動クランク機構80は、回転軸28の大径部28bの端面に固定されたフランジ部81と、フランジ部81の端面の回転軸28の回転中心からずらした位置に立設された、回転軸28と平行なクランクピン82と、旋回スクロール62側に設けられた偏心ブッシュ83と、を含む。偏心ブッシュ83は、旋回スクロール62の基部62aの固定スクロール61側とは反対側の面に形成された中空ボス部62c内にベアリング84を介して配置されている。
 クランクピン82は、偏心ブッシュ83に形成された挿通孔83aに挿通されている。挿通孔83aはブッシュ中心からずらした位置に形成され、偏心ブッシュ83はクランクピン82回りに揺動可能に構成されている。これにより、従動クランク機構80においては、クランクピン82の旋回運動がそのまま偏心ブッシュ83の旋回運動となり、逆に、偏心ブッシュ83の旋回運動がそのままクランクピン82の旋回運動となる。
 かかる従動クランク機構80によって、回転軸28の回転運動が旋回スクロール62の旋回運動に変換され、又は、旋回スクロール62の旋回運動が回転軸28の回転運動に変換される。そして、上述したように、回転軸28の回転によってポンプ部50が駆動されて液相冷媒が圧送される。
 なお、偏心ブッシュ83及び旋回スクロール62のバランスを取り、膨張機部60Aにおける振動の発生等を抑制するため、偏心ブッシュ83にはカウンタウェイト(バランスウェイト)85が固定されている。また、フランジ部81に設けられた規制穴81aと、偏心ブッシュ83に設けられた規制突起83bとの係合によって、クランクピン82回りの偏心ブッシュ83の揺動範囲が規制されている。
 ここで、ハウジング70内において、ポンプ部50A側のクランク室72Aと膨張機部60A側の冷媒出口室78Aとは、回転軸28の大径部28bを支持するベアリング71b、従動クランク機構80の収容空間及び自転阻止部材77を介して、換言すれば、ハウジング70においてポンプ部50Aと膨張機部60Aとの間にある隙間空間を介して連通している。また、膨張機部60Aから冷媒出口室78Aに排出された膨張後の冷媒を凝縮器24側に流出させる出口ポート79Aが、クランク室72Aに開口している。
 なお、出口ポート79Aは、クランク室72Aの底部(ポンプ一体型膨張機29Aの上下方向における下部)に開口するように形成されるのが好ましい。
 これにより、ポンプ一体型膨張機29Aにおいては、図3に矢印で示すように、膨張機部60Aから冷媒出口室78Aに排出された(膨張後の高温の)気相冷媒は、自転阻止部材77、従動クランク機構80の収容空間及びベアリング71bを通過してクランク室72A内に進入し、その後、クランク室72Aに開口する出口ポート79Aから流出する(すなわち、クランク室72を経由して流出する)。出口ポート79Aから流出した気相冷媒は凝縮器24によって液化され、その後、ポンプ部50Aによって圧送される。
 以上説明したポンプ一体型膨張機29A(流体機械)によると、膨張機部60A(膨張機)から膨張後の気相冷媒が排出される冷媒出口室78Aと、ポンプ部50A(ピストンポンプ)のクランク室72Aとが連通しているので、クランク室72A内を液相冷媒がガス化し易い状態にすることができ、クランク室72Aに流入し、及び/又は、クランク室72Aに貯留する液相冷媒の量を低減することができる。これにより、特にポンプ部50Aのクランク室72A内における機械的摺動部の潤滑性能の低下や回転軸28(クランク部28b)による液相冷媒の攪拌抵抗の増加が抑制され、機械的摺動部の耐久性が向上すると共に機械損失も小さくて済む。
 また、クランク室72Aの底部(下部)に出口ポート79Aが開口しており、クランク室72Aに液相冷媒が流入した場合であっても、流入した液相冷媒が出口ポート79Aから排出されるのでクランク室72Aの貯留することが抑制される。
 さらに、比較的高温の膨張後の気相冷媒がクランク室72Aを経由して外部(凝縮器24側)に流出するように構成されているので、クランク室72Aに液相冷媒が貯留した場合であっても当該液相冷媒の大部分をガス化させて気相冷媒として出口ポート79Aから流出(排出)させることができる。これにより、ポンプ部50Aの機械的摺動部の潤滑性能の低下や回転軸28による液相冷媒の攪拌抵抗の増加をさらに抑制することができる。
 さらにまた、クランク室72Aと冷媒出口室78Aとを、回転軸28を回転可能に支持するベアリング71bや旋回スクロール62の自転を阻止する自転阻止部材77を介して連通させることにより、ハウジング70内にクランク室72Aと冷媒出口室78Aとを連通させるための専用の連通路等を新たに形成する必要がない。これにより、ポンプ一体型膨張機29Aの大型化や製造コストの増加を抑制できる。
 ところで、上記のポンプ一体型膨張機29Aでは、膨張後の冷媒を凝縮器24側に流出させる出口ポート79Aがクランク室72Aに開口しており、膨張機部60から排出された膨張後の気相冷媒がクランク室72Aを経由して外部(凝縮器24側)に流出するように構成されている。しかしながら、クランク室72Aと冷媒出口室78Aとが連通していればよく、出口ポート79Aの形成位置は上記実施形態による構成に限るものではない。
 例えば、図4(a)に示すように、冷媒出口室72Aに出口ポート79Aが開口してもよい。また、図4(b)に示すように、クランク室72Aと従動クランク機構80の収容空間などの膨張機部60A側の空間とを連通させる連通路91をハウジング70に形成してもよい。このようにしても、クランク室72Aを液相冷媒がガス化し易い状態にすることができるので、クランク室72Aに流入し、及び/又は、クランク室72Aに貯留する液相冷媒の量を低減することができる。
 なお、冷媒出口室72Aに出口ポート79Aが開口している場合には、図4(a)中に矢印で示すように、クランク室72A内でガス化された冷媒が、ベアリング71b及び自転阻止部材77の収容空間及び自転阻止部材77を介して冷媒出口部78Aへと供給されて、膨張後の気相冷媒と共に出口ポート79Aから外部(凝縮器24側)に流出する。
 また、クランク室72Aと従動クランク機構80の収容空間などの膨張機部60A側の空間とを連通させる連通路91をハウジング70に形成した場合には、図4(b)中に示すように、自転阻止部材77及び従動クランク機構80の収容空間を通過した膨張後の冷媒がベアリング71b及び連通路91を介してクランク室72Aに進入し、その後、クランク室72Aに開口する出口ポート79Aから流出する。
 また、クランク室72Aと冷媒出口室78Aとを直接連通させる連通路をハウジング70に形成してもよいし、図2,3に示す構成における出口ポート79Aと冷媒出口室78Aとを連通させる連通路をハウジング70に形成してもよい。また、これらの連通路をハウジング70外に設けてもよい。このようにしても、クランク室72A内を液相冷媒がガス化し易い状態にすることができるので、クランク室72Aに流入し、及び/又は、クランク室72Aに貯留する液相冷媒の量を低減することができる。
 次に、本発明の第2実施形態について説明する。
 図5は、第2実施形態において、本発明に係る流体機械が適用された排熱回収装置1Bの概略構成を示している。
 上記第1実施形態における排熱回収装置1Aは、膨張機23の発生する駆動力によって、ランキンサイクル2Aの冷媒を循環させるポンプ25を駆動し、かつ、エンジン10の出力をアシストする。そして、ランキンサイクル2Aには、ポンプ一体型膨張機29Aが組み込まれている。
 これに対し、第2実施形態における排熱回収装置1Bは、発電電動機100を備え、膨張機23が発生する駆動力で発電電動機100を駆動することで、エンジン10の排熱を電気エネルギーに変換して利用する。そして、ランキンサイクル2Bには、膨張機、ポンプ及び発電電動機一体型の流体機械29Bが組み込まれている。なお、本実施形態においては、第1実施形態における伝達機構3を備えておらず、ポンプ25は発電電動機100によって駆動される。また、図5において、図1と同一の要素については同一の符号を付しており、その機能も同様であるものとする。
 図5において、排熱回収装置1Bは、ランキンサイクル2Bと、発電電動機100と、制御ユニット4Bと、を備えている。
 ランキンサイクル2Bの冷媒循環路21には、加熱器22、膨張機23、凝縮器24、及びポンプ25がこの順に配設されている。また、加熱器22と凝縮器24との間には、膨張機23を迂回して冷媒を流通させるバイパス路26が設けられており、このバイパス路26には、このバイパス路26を開閉するバイパス弁27が設けられている。
 発電電動機100は、電力変換部(整流器やインバータ等)101を介して蓄電装置102に接続されている。発電電動機100は、膨張機23とポンプ25の間に配置され、蓄電装置102から供給される電力によって駆動され、又は、膨張機23の発生した駆動力によって駆動される。
 制御ユニット4Bは、バイパス弁27の作動及び蓄電装置102から発電電動機100への給電/給電停止を制御する。蓄電装置102から発電電動機100に給電が行われると、発電電動機100は電動機として作動してポンプ25を駆動する。一方、蓄電装置102から発電電動機100への給電が停止されると、発電電動機100は発電機として作動して膨張機23の発生する駆動力によって駆動されて発電する。
 制御ユニット4Bは、ランキンサイクル2Bを起動させる際には、バイパス弁27を開くと共に蓄電装置102から発電電動機100へと給電を行って発電電動機100を電動機として作動させてポンプ25を駆動する。これにより、膨張機23を迂回して冷媒を循環させる。そして、制御ユニット4Bは、例えば膨張機23前後の圧力差が所定値以上となると、バイパス弁27を閉じて膨張機23を経由して冷媒を循環させる。その後、膨張機23が十分な駆動力を発生するようになると、制御ユニット4Bは、蓄電装置102から発電電動機100への給電を停止させて発電電動機100を発電機として作動させる。これにより、膨張機23で発生した駆動力がポンプ25を駆動すると共に発電電動機100を駆動して発電電動機100が発電する。発電電動機100が発電した電力は上記電力変換部101を介して蓄電装置102に供給される。
 ここで、本実施形態において、膨張機23、ポンプ(ピストンポンプ)25及び発電電動機100は一体に連結されて共通の回転軸105を有する流体機械29Bとして構成されている。すなわち、流体機械29Bの回転軸105は、膨張機23の出力軸としての機能、ポンプ25の駆動軸としての機能及び発電電動機100の駆動軸としての機能を有している。
 次に、膨張機23、ポンプ(ピストンポンプ)25及び発電電動機100が一体に連結された流体機械29Bの構造を説明する。
 図6は、流体機械29Bの断面図である。
 図6に示すように、流体機械29Bは、ポンプ(ピストンポンプ)25を構成するポンプ部50Bと、発電電動機100を構成する発電電動機部110と、膨張機(スクロール膨張機)23を構成する膨張構部60Bと、ポンプ部50Bの駆動軸としての機能、発電電動機部110の駆動軸としての機能及び膨張機部60Bの出力軸としての機能を有する回転軸105と、これらを収容するハウジング120と、を備える。
 ハウジング120は、ポンプ部50B及び発電電動機部110を収容する第1ハウジング121と、膨張機部60Bを収容する第2ハウジング122と、第1ハウジング121と第2ハウジング122を連結する連結部材123と、を有する。具体的には、連結部材123の一方の側(図では左側)に第1ハウジング121が嵌合固定され、連結部材123の他方の側(図では右側)に第2ハウジング122が嵌合固定されている。
 連結部材123には貫通孔123aが形成されており、この貫通孔123aにより第1ハウジング121内空間と第2ハウジング122内空間とが連通している。
 回転軸105は、第1ハウジング121内を軸方向(図では左右方向)に延びており、その一端側(図では左端側)に軸心が回転軸105の回転中心からずれている(オフセットされた)クランク部105aを有している。回転軸105は、第1ハウジング121内に配置されたベアリング131a及び連結部材123に保持されたベアリング131bによって回転可能に支持されている。また、回転軸105のクランク部105aは、第1ハウジング121内に形成されたクランク室72Bに収容されている。
 ポンプ部50Bは、クランク室72Bに連通して形成されたポンプシリンダ74Bに収容されたピストン51と、一端がピストン51に連結されると共に他端が回転軸105のクランク部105aに連結されて回転軸105の回転運動をピストン51の往復直線運動に変換するコネクティングロッド52と、を含む。また、ポンプシリンダ74Bの開口端は、第1実施形態と同様に、吸入ポート75a及び吐出ポート75bが形成されたシリンダカバー75によって覆われている。吸入ポート75a及び吐出ポート75bには、それぞれ逆止弁76a,76bが設けられている。
 ポンプ部50Bは、回転軸105の回転に伴ってピストン51がポンプシリンダ74B内で往復運動することによって冷媒(液相冷媒)の吸入と吐出を繰り返し、これにより、冷媒を圧送する。
 発電電動機部110は、第1ハウジング121内においてベアリング131aを介してクランク室72Bと隣接した空間(収容空間)内に配置されている。
 発電電動機部110は、回転軸105に固定された例えば永久磁石からなる回転子(ロータ)111と、このロータ111を囲むように第1ハウジング121の内周面に固定されたステータ112と、を備える。
 ステータ112は、ヨーク112aと、このヨーク112aに巻回された例えば三組のコイル112bとを有する。コイル112bは、蓄電装置102から電力変換部101を介して三相交流電流が供給されることによりロータ111を回転させる磁界を発生し、これにより、回転軸105が回転してポンプ部50Bが駆動される。また、コイル部112bは、ロータ111の回転に伴って三相交流電流を発生し、発生した三相交流電流は電力変換部101を介して蓄電装置102に供給される。これにより、蓄電装置102が充電される。
 膨張機部60Bは、第1実施形態と同様に、固定スクロール61と、旋回スクロール62と、を含む。固定スクロール61は、第2ハウジング122内に固定されており、第2ハウジング122には、冷媒を第2ハウジング122内に導入するための導入孔122aが形成されている。
 固定スクロール61は、円盤状の基部61aと、この基部61aの一方の面(図では左側の面)に立設された渦巻きラップ61bと、を有する。固定スクロール61の基部61aの略中央部には冷媒の導入口61cが貫通形成されている。また、旋回スクロール62は、略円盤状の基部62aと、この基部62aの固定スクロール61側の面に立設された渦巻きラップ62bと、を有する。
 固定スクロール61と旋回スクロール62とは、互いの渦巻きラップ61b、62bが噛み合うように配置されており、両ラップ61b,62bの間には、導入された気相冷媒を膨張させる膨張室63が形成される。ここで、本実施形態では、第2ハウジング122内の固定スクロール61の背面側(旋回スクロール61側とは反対側)に比較的容積の大きな空間122bが形成されており、これにより、例えば導入孔122aから導入された冷媒が液相冷媒を含む場合(すなわち、気液混合状態)であっても、固定スクロール61の基部61aに形成された導入口61cひいては膨張室63に液相冷媒が導入されてしまうことが抑制される。
 また、旋回スクロール62の基部62aの固定スクロール61側とは反対側の面とこれに対向する連結部材123の対向面との間には、旋回スクロール62の自転を阻止するボールカップリング等の自転阻止部材77が配置されている。
 膨張機部60Bにおいて、気相冷媒は、第2ハウジング122に形成された導入孔122a、固定スクロール61の背面側の空間122b及び固定スクロール61の基部61aに形成された導入口61cを介して膨張室63に導入される。そして、導入された気相冷媒が膨張室63内で膨張することにより、旋回スクロール62が固定スクロール61に対して旋回運動を行う。この旋回スクロール62の旋回運動に伴って膨張室63は中央部から周辺部へと容積を増加させながら移動し、膨張後の冷媒(気相冷媒)は第2ハウジング122内の冷媒出口室78Bに排出される。この冷媒出口室78Bは、例えば第2ハウジング122内における旋回スクロール62の径方向外側に形成される空間である。
 また、第1ハウジング121内を軸方向に延びる回転軸105は、従動クランク機構80を介して旋回スクロール62に連結されている。
 従動クランク機構80は、上記第1実施形態と同様、回転軸105の端面に固定されたフランジ部81と、このフランジ部81の端面の回転軸28の回転中心からずらした位置に立設された、回転軸28と平行なクランクピン82と、旋回スクロール62側に設けられた偏心ブッシュ83と、を含む。
 偏心ブッシュ83は、旋回スクロール62の基部62aの固定スクロール61側とは反対側の面に形成された中空ボス部62c内にベアリング84を介して配置されている。クランクピン82は、偏心ブッシュ83に形成された挿通孔83aに挿通されている。挿通孔83aはブッシュ中心からずらした位置に形成され、偏心ブッシュ83はクランクピン82回りに揺動可能に構成されている。
 さらに、偏心ブッシュ83及び旋回スクロール62のバランスを取り、膨張機部60Bにおける振動の発生等を抑制するため、偏心ブッシュ83にはカウンタウェイト(バランスウェイト)85が固定されている。また、フランジ部81に設けられた規制穴81aと、偏心ブッシュ83に設けられた規制突起83bとの係合により、クランクピン82回りの偏心ブッシュ83の揺動範囲が規制されている。
 かかる従動クランク機構80によって、回転軸105の回転運動が旋回スクロール62の旋回運動に変換され、又は、旋回スクロール62の旋回運動が回転軸105の回転運動に変換される。そして、上述のように、回転軸105の回転によってポンプ部50Bが駆動されて液相冷媒が圧送され、また、発電電動機部110が駆動されて発電して、蓄電装置102が充電される。
 ここで、ハウジング120内において、ポンプ部50B側のクランク室72Bと膨張機部60B側の冷媒出口室78Bとは、回転軸105を支持するベアリング131b、発電電動機部110(特にロータ111とステータ112との隙間空間)、連結部材123に形成された貫通孔123a、及び、自転阻止部材77を介して連通している。
 また、膨張後の冷媒を凝縮器24側に流出させる出口ポート79Bはクランク室72Bに開口している。なお、出口ポート79Bは、クランク室72Bの底部(流体機械29Bの上下方向における下部)に開口するように形成されるのが好ましい。
 これにより、本実施形態による流体機械29Bにおいては、図7に矢印で示すように、膨張機部60Bから冷媒出口室78Bに排出された(膨張後の)気相冷媒が、自転阻止部材77、連結部材123に形成された貫通孔123a、発電電動機部110(ロータ111とステータ112との隙間空間)、及び、ベアリング131aを通過してクランク室72Bに進入し、その後、クランク室72Bに開口する出口ポート79Bから流出する。そして、出口ポート79Bから流出した気相冷媒は凝縮器24によって液化され、その後、ポンプ部50Bによって圧送される。
 以上説明した第2実施形態における流体機械29Bにおいても、膨張機部60B(膨張機)から膨張後の冷媒(気相冷媒)が排出される冷媒出口室78Bと、ポンプ部50B(ピストンポンプ)のクランク室72Bとが連通しているので、第1実施形態における流体機械(ポンプ一体型膨張機29A)と同様の効果を得ることができる。
 すなわち、クランク室72B内を液相冷媒がガス化し易い状態にすることができるので、クランク室72Bに流入し、及び/又は、クランク室72Bに貯留する液相冷媒の量を低減することができる。また、クランク室72Bに液相冷媒が流入した場合であっても、流入した液相冷媒が出口ポート79Bから排出されてクランク室72Bの貯留することが抑制される。さらに、比較的高温の膨張後の気相冷媒がクランク室72Bを経由して外部に流出するように構成されているので、クランク室72Bに液相冷媒が貯留した場合であっても当該液相冷媒の大部分をガス化させて気相冷媒として出口ポート79Bから流出(排出)させることができる。
 なお、上記実施形態における流体機械29Bでは膨張後の冷媒を凝縮器24側に流出させる出口ポート79Bがクランク室72Bに開口しているが、これに限るものではない。クランク室72Bと冷媒出口室78Bとが連通していればよく、例えば、図8に示すように、出口ポート29Bが第1ハウジング121の発電電動機部110の収容空間に開口していてもよい。また、冷媒出口室72Bに出口ポート79Bが開口していてもよいし、第1ハウジング121に発電電動機部90の収容空間とクランク室72Bと連通する連通路を形成してもよい。
 さらに、クランク室72Bと冷媒出口室78Bとを直接連通させる連通路をハウジング120(第1ハウジング121、第2ハウジング122、連結部材123)に形成してもよいし、図6に示す構成における出口ポート79Bと冷媒出口室78Bとを連通させる連通路をハウジング120に形成してもよい。また、これらの連通路をハウジング120外に設けてもよい。このようにしても、クランク室72B内を液相冷媒がガス化し易い状態にすることができるので、クランク室72Aに流入し、及び/又は、クランク室72Bに貯留する液相冷媒の量を低減することができる。
 また、上記実施形態における流体機械29Bは、膨張機23、ポンプ(ピストンポンプ)25及び発電電動機100が一体に連結されたものであるが、発電電動機100を発電機としてもよい。この場合、排熱回収装置1Bは、第1実施形態における排熱回収装置1Aと同様に伝達機構3を備え、エンジン10によってポンプ25を駆動できるように構成するのが好ましい。
 ところで、以上では、ランキンサイクルに適用され、気相冷媒を膨張させて動力を発生する膨張機と液相冷媒を圧送するピストンポンプとを備えた流体機械について説明した。しかし、上記膨張機と上記ピストンポンプとが別体で構成された場合についても本発明の技術思想を適用することができる。この場合には、ランキンサイクルにおいて、液相冷媒を圧送するピストンポンプのクランク室を、膨張機の出口側に連通させる連通路、例えば、ピストンポンプのクランク室と膨張機から凝縮器に至る冷媒流路とを連通させる連通路を設ければよい。
 1A,1B…排熱回収装置、2A,2B…ランキンサイクル、10…エンジン、21…冷媒循環路、22…加熱器、23…膨張機、24…凝縮器、25…ポンプ(ピストンポンプ)、28…回転軸、29A…ポンプ一体型膨張機(流体機械)、29B…膨張機・ポンプ・発電電動機一体型流体機械、50A,50B…ポンプ部、51…ピストン、52…コネクティングロッド、60A,60b…膨張機部、61…固定スクロール、62…旋回スクロール、71a,71b…ベアリング(軸受部)、70…ハウジング、72A,72B…クランク室、77…自転阻止部材、78A,78B…冷媒出口室、79A,79B…出口ポート、80…従動クランク機構、91…連通路、100…発電電動機、105…回転軸、110…発電電動機部、111…ロータ、112…ステータ、120…ハウジング

Claims (8)

  1.  冷媒の膨張によって動力を発生する膨張機と、
     冷媒を圧送するピストンポンプと、
     を備え、
     前記膨張機から膨張後の冷媒が排出される冷媒出口室と前記ピストンポンプのクランク室とが連通している、流体機械。
  2.  前記冷媒出口室と前記クランク室とは、前記膨張機及び前記ピストンポンプを収容する筐体内において連通している、請求項1に記載の流体機械。
  3.  前記膨張機から前記冷媒出口室に排出された膨張後の冷媒が前記クランク室を経由して前記筐体外へと排出されるように構成されている、請求項2に記載の流体機械。
  4.  前記冷媒出口室と前記クランク室とは、前記膨張機の出力軸としての機能及び前記ピストンポンプの駆動軸としての機能を有する回転軸を回転可能に支持する軸受部を介して連通している、請求項2に記載の流体機械。
  5.  前記膨張機がスクロール膨張機であり、
     前記冷媒出口室と前記クランク室とは、前記軸受部、及び前記スクロール膨張機における旋回スクロールの自転を阻止する自転阻止部材を介して連通している、請求項4に記載の流体機械。
  6.  前記冷媒出口室と前記クランク室とを連通させる連通路が設けられている、請求項1に記載の流体機械。
  7.  前記膨張機と前記ピストンポンプとの間に発電電動機が設けられている、請求項1に記載の流体機械。
  8.  前記冷媒出口室と前記クランク室とは、前記発電電動機を介して連通している、請求項7に記載の流体機械。
PCT/JP2013/062786 2012-05-08 2013-05-02 流体機械 WO2013168682A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013002403.9T DE112013002403T5 (de) 2012-05-08 2013-05-02 Fluidmaschine
CN201380024200.4A CN104271951A (zh) 2012-05-08 2013-05-02 流体设备
US14/399,456 US20150098845A1 (en) 2012-05-08 2013-05-02 Fluid Machinery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-106428 2012-05-08
JP2012106428A JP5984492B2 (ja) 2012-05-08 2012-05-08 流体機械

Publications (1)

Publication Number Publication Date
WO2013168682A1 true WO2013168682A1 (ja) 2013-11-14

Family

ID=49550719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062786 WO2013168682A1 (ja) 2012-05-08 2013-05-02 流体機械

Country Status (5)

Country Link
US (1) US20150098845A1 (ja)
JP (1) JP5984492B2 (ja)
CN (1) CN104271951A (ja)
DE (1) DE112013002403T5 (ja)
WO (1) WO2013168682A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804879B2 (ja) * 2011-09-30 2015-11-04 日産自動車株式会社 廃熱利用装置
KR102170132B1 (ko) * 2014-11-12 2020-10-27 한온시스템 주식회사 차량의 열원을 이용한 발전 시스템
JP2018115580A (ja) * 2017-01-17 2018-07-26 いすゞ自動車株式会社 ランキンサイクル
JP2019210923A (ja) * 2018-06-08 2019-12-12 サンデン・オートモーティブコンポーネント株式会社 スクロール型膨張機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214104A (ja) * 2002-01-28 2003-07-30 Hitachi Ltd 容積形機械
JP2005030386A (ja) * 2003-06-20 2005-02-03 Denso Corp 流体機械

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE517622C2 (sv) * 1999-12-17 2002-06-25 Ericsson Telefon Ab L M Anordning för att minska en linjedrivares effektförlust
JP2001286112A (ja) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd 冷媒圧縮機
JP2004301092A (ja) * 2003-03-31 2004-10-28 Toyota Industries Corp スクロール圧縮機
JP4561326B2 (ja) * 2004-03-17 2010-10-13 ダイキン工業株式会社 流体機械
DE102006009211B4 (de) * 2005-03-02 2015-06-11 Denso Corporation Fluidpumpe und Fluidmaschine
JP4709016B2 (ja) * 2006-01-12 2011-06-22 アネスト岩田株式会社 複合圧縮機
JP4864689B2 (ja) * 2006-04-17 2012-02-01 株式会社デンソー 流体機械およびランキンサイクル
JP4074886B2 (ja) * 2006-05-17 2008-04-16 松下電器産業株式会社 膨張機一体型圧縮機
CN101583777B (zh) * 2007-01-15 2012-05-30 松下电器产业株式会社 膨胀机一体型压缩机
JP2008175496A (ja) * 2007-01-22 2008-07-31 Matsushita Electric Ind Co Ltd 膨張機一体型圧縮機およびそれを備えた冷凍サイクル装置
JP2008215212A (ja) * 2007-03-05 2008-09-18 Matsushita Electric Ind Co Ltd 膨張機一体型圧縮機および冷凍サイクル装置
JP2009013798A (ja) * 2007-07-02 2009-01-22 Panasonic Corp 膨張機一体型圧縮機
JP2009097485A (ja) * 2007-10-19 2009-05-07 Mitsubishi Heavy Ind Ltd 圧縮機
JP4422208B2 (ja) * 2007-11-21 2010-02-24 パナソニック株式会社 膨張機一体型圧縮機
JP4422209B2 (ja) * 2007-11-21 2010-02-24 パナソニック株式会社 膨張機一体型圧縮機
CN101855422B (zh) * 2007-11-21 2012-05-30 松下电器产业株式会社 膨胀机一体型压缩机
JP5389608B2 (ja) * 2009-11-02 2014-01-15 サンデン株式会社 流体機械及び流体機械を用いた自動車用廃熱利用システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214104A (ja) * 2002-01-28 2003-07-30 Hitachi Ltd 容積形機械
JP2005030386A (ja) * 2003-06-20 2005-02-03 Denso Corp 流体機械

Also Published As

Publication number Publication date
DE112013002403T5 (de) 2015-01-29
JP2013234585A (ja) 2013-11-21
CN104271951A (zh) 2015-01-07
JP5984492B2 (ja) 2016-09-06
US20150098845A1 (en) 2015-04-09

Similar Documents

Publication Publication Date Title
EP2143880B1 (en) Fluid machine, rankine circuit, and system for utilizing waste heat from vehicle
EP2412935A1 (en) Fluid machine
US7735335B2 (en) Fluid pump having expansion device and rankine cycle using the same
JP4014583B2 (ja) 流体機械
US20150033743A1 (en) Fluid Machine
US20150033744A1 (en) Fluid Machine
WO2013168682A1 (ja) 流体機械
EP2719862B1 (en) Fluid machine
JP5291782B2 (ja) ランキン回路及び車両の廃熱利用システム
JP7398289B2 (ja) レシプロ膨張機及びランキンサイクル装置
JP2012026452A (ja) 流体機械、該流体機械を用いたランキン回路及び車両の廃熱利用システム
WO2013118824A1 (ja) スクロール型膨張機及びこれを備えた流体機械
JP2010038120A (ja) 流体機械
WO2014103413A1 (ja) 複合流体機械
JP2008180148A (ja) 流体機械
JP2004340027A (ja) 流体機械
JP4792142B2 (ja) 流体機械
JP2010025027A (ja) 流体機械
JP2005240695A (ja) 横形密閉圧縮機
WO2013042169A1 (ja) 横形スクロール圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788075

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14399456

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130024039

Country of ref document: DE

Ref document number: 112013002403

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788075

Country of ref document: EP

Kind code of ref document: A1