WO2013168449A1 - Condensing desalination device and condensing desalination method - Google Patents

Condensing desalination device and condensing desalination method Download PDF

Info

Publication number
WO2013168449A1
WO2013168449A1 PCT/JP2013/054522 JP2013054522W WO2013168449A1 WO 2013168449 A1 WO2013168449 A1 WO 2013168449A1 JP 2013054522 W JP2013054522 W JP 2013054522W WO 2013168449 A1 WO2013168449 A1 WO 2013168449A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange resin
resin
tower
condensate
ion exchange
Prior art date
Application number
PCT/JP2013/054522
Other languages
French (fr)
Japanese (ja)
Inventor
響介 山田
崇弘 小菅
潤平 府川
建持 千佳
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Publication of WO2013168449A1 publication Critical patent/WO2013168449A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/022Column or bed processes characterised by the construction of the column or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/08Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic and anionic exchangers in separate beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to a condensate demineralization apparatus and a condensate demineralization method for demineralizing condensate in a power generation facility such as a nuclear power plant or a thermal power plant, particularly a thermal power plant.
  • condensate drainage filled with a mixed ion exchange resin of H-type strongly acidic cation exchange resin and OH-type strongly basic anion exchange resin is used.
  • a salt device is used.
  • This condensate demineralization apparatus regenerates a plurality of condensate demineralization towers for treating condensate and the used mixed ion exchange resin used in the condensate demineralization tower, and the ion exchange resin after the regeneration And a condensate demineralization tower and a resin transfer pipe for taking in and out the ion exchange resin.
  • the used resin is transferred to the regeneration tower and separated into an anion exchange resin and a cation exchange resin, and each resin is chemically regenerated.
  • the ion exchange resin may not be completely regenerated from the viewpoint of regeneration efficiency.
  • the regenerated cation exchange resin and anion exchange resin are mixed to form a mixed resin, and this mixed resin is transferred to a condensate demineralization tower.
  • a resin storage tank is provided separately from the regeneration tower, mixing is performed in the resin storage tank.
  • the regeneration tower also serves as a resin storage tank, mixing is performed in the regeneration tower.
  • the mixing operation is performed in the condensate demineralization tower before the condensate passes through. Then, the cation exchange resin and the anion exchange resin are mixed more uniformly. Thereafter, a preparatory process for water flow, such as filling the condensate demineralization tower with water, is performed, and water flow is resumed.
  • the ion exchange group of the anion exchange resin becomes a sulfuric acid form or a chloride form by sulfuric acid or hydrochloric acid which is a regenerating agent of the cation exchange resin.
  • sulfuric acid or hydrochloric acid which is a regenerating agent of the cation exchange resin.
  • sulfate ions or chloride ions leak.
  • sodium ion leaks because the ion exchange group of the cation exchange resin becomes sodium by the sodium hydroxide that is the regenerant of the anion exchange resin. End up. Therefore, advanced separation techniques and skilled engineers are required for the regeneration operation of the cation exchange resin and the anion exchange resin.
  • Non-patent document 1 a condensate demineralization apparatus composed of multiple beds in which three layers of cation exchange resin layers, anion exchange resin layers, and cation exchange resin layers are alternately combined has been proposed (non-patent document). 1). From the viewpoint of the principle of the ion exchange reaction, a mixed bed system in which cations and anions are simultaneously removed is an optimal system for obtaining high purity. However, according to the method described in Non-Patent Document 1, a predetermined water quality is satisfied. In addition, since it is not necessary to separate the cation exchange resin and the anion exchange resin, the regeneration operation can be simplified.
  • the load on the cation exchange resin is high.
  • a condensate demineralization apparatus in which three or more cation exchange resin layers, anion exchange resin layers, and cation exchange resin layers are alternately combined has a complicated condensate demineralization tower structure.
  • three or more condensate demineralization towers are required, which increases the installation cost.
  • two-layer condensate demineralization towers that combine a cation exchange resin layer and an anion exchange resin layer one by one, especially in power generation facilities that do not completely regenerate the ion exchange resin, are treated compared to mixed bed and three-layer systems.
  • the water quality is low. In particular, when the cooling water such as seawater leaks into the condensate and the salt concentration changes, the water quality tends to deteriorate.
  • both the cation exchange resin layer and the anion exchange resin layer can be composed of one layer, and a good treated water quality can be obtained even when the used ion exchange resin is not completely regenerated. It is an object of the present invention to provide a condensate demineralization apparatus and a condensate demineralization method.
  • the condensate demineralization apparatus of the present invention is a condensate demineralization tower filled with an anion exchange resin or an ion exchange resin that is one of cation exchange resins, and condensate is circulated through the condensate system of a power generation facility.
  • the condensate desalting tower for desalting the condensate with an ion exchange resin
  • the regeneration tower for regenerating used ion exchange resin
  • the regenerated ion exchange And a recycled resin transfer pipe for transferring the resin from the regeneration tower to the condensate demineralization tower.
  • the recycled resin transfer pipe takes out the ion exchange resin in the high regeneration region where the ratio of the regenerated ion exchange resin in the regeneration tower is relatively high, and forms an ion exchange resin lower layer inside the condensate demineralization tower.
  • the first regeneration resin take-out pipe for transferring the ion exchange resin in the high regeneration region and the ion exchange resin in the low regeneration region in which the proportion of the regenerated ion exchange resin in the regeneration tower is relatively low are taken out, and decondensation is performed.
  • a second regeneration resin take-out pipe for transferring the ion exchange resin in the low regeneration region so as to form an ion exchange resin upper layer on the ion exchange resin lower layer inside the tower.
  • the condensate desalination method of the present invention is a high regeneration region in which a ratio of regenerated ion exchange resin is relatively high in a regeneration tower containing an ion exchange resin that is one of anion exchange resin or cation exchange resin.
  • the ion exchange resin is transferred to the condensate demineralization tower, and the ion exchange resin lower layer is formed inside the condensate demineralization tower. After the ion exchange resin lower layer is formed, the regenerated ion exchange in the regeneration tower is performed.
  • an ion exchange resin in a high regeneration region in which the proportion of the regenerated ion exchange resin is relatively high is transferred to the condensate demineralization tower, and the lower layer of the ion exchange resin is disposed inside the condensate demineralization tower. Is formed.
  • the low-regeneration region ion exchange resin in which the proportion of the regenerated ion exchange resin is relatively low is transferred to a condensate demineralization tower, and an ion exchange resin upper layer is formed on the ion exchange resin lower layer.
  • the condensate when the condensate is allowed to flow from the upper part to the lower part of the condensate demineralization tower, the condensate is first desalted in the upper layer of the ion exchange resin, and then the condensate is desalted in the lower layer of the ion exchange resin.
  • the ion selectivity (strength of ion exchange adsorption) of the ion exchange resin the ion component in the condensate is repeatedly ion adsorbed on the ion exchange resin and desorbed from the ion exchange resin. Will be gradually removed from.
  • the proportion of ion components with low ion selectivity increases on the downstream side with respect to the flow direction of the condensate, but by providing an ion exchange resin in the high regeneration region on the downstream side, such ion components with low ion selectivity are provided. Can be removed more efficiently. In this way, by dividing the ion exchange resin of the same type according to the regenerated ratio and distributing it in the vertical direction, the ion component can be more efficiently compared with the case of filling the ion exchange resin uniformly in the vertical direction. Can be removed.
  • both the cation exchange resin layer and the anion exchange resin layer can be composed of a single layer, and even if the used ion exchange resin is not completely regenerated, good treated water quality can be obtained.
  • a condensate demineralization apparatus and a condensate demineralization method that can be obtained can be provided.
  • the ion exchange resin means either or both of an anion exchange resin and a cation exchange resin.
  • the present invention will be described with reference to a cation exchange resin, but the present invention can be similarly applied to an anion exchange resin.
  • FIG. 1 is a schematic diagram showing a condensate demineralization apparatus and a condensate demineralization method according to the first embodiment of the present invention.
  • the condensate demineralizer 41 includes a cation exchange resin tower 1 that is a condensate demineralization tower filled with a cation exchange resin, an anion exchange resin tower 2 that is a condensate demineralization tower filled with an anion exchange resin, It has a cation exchange resin regeneration tower 3 that regenerates a used cation exchange resin, and an anion exchange resin regeneration tower 4 that regenerates a used anion exchange resin.
  • the cation exchange resin tower 1 and the anion exchange resin tower 2 are each provided with a plurality of towers in parallel, but only one is shown in the drawing.
  • the cation exchange resin tower 1 and the anion exchange resin tower 2 are configured as separate towers in this embodiment, but may be a single integrated tower.
  • An inlet pipe 5 and a pipe 6 are connected to the top and bottom of the cation exchange resin tower 1 so that the condensate flowing through the condensate system of the power generation facility passes from the top to the bottom of the cation exchange resin tower 1. .
  • the cation exchange resin tower 1 may include separation means such as a net 39 that partitions an ion exchange resin lower layer 16 and an ion exchange resin upper layer 17 described later. Thereby, mixing of the ion exchange resin lower layer 16 and the ion exchange resin upper layer 17 can be prevented.
  • the condensate demineralizer 41 exchanges the regenerated cation exchange resin from the cation exchange resin regeneration tower 3 to the cation exchange resin tower 1, and regenerated resin transfer pipes 12, 13, and 14 and cation exchange of the used cation exchange resin. And a used resin transfer pipe 8 for transferring from the resin tower 1 to the cation exchange resin regeneration tower 3. Therefore, the cation exchange resin is periodically regenerated in the cation exchange resin regeneration tower 3 and can be used repeatedly.
  • the cation exchange resin regeneration tower 3 is provided with a supply port 35 for a regeneration chemical solution above the resin filling portion 37 filled with the cation exchange resin.
  • the chemical solution for regeneration supplied from the supply port 35 flows downward while regenerating the cation exchange resin, and is discharged from the drain pipe 36 connected to the lower part of the cation exchange resin regeneration tower 3. For this reason, the resin filled in the resin filling portion 37 of the cation exchange resin regeneration tower 3 is regenerated at a higher rate at the upper part and at a lower rate at the lower part.
  • the ratio of the regenerated cation exchange resin in the high regeneration region 37a and the ratio of the regenerated cation exchange resin is relatively low.
  • the cation exchange resin in the regeneration region 37b has a higher H-shaped volume ratio than the cation exchange resin in the low regeneration region 37b.
  • the high regeneration region 37 a constitutes the upper part of the resin filling part 37 of the cation exchange resin regeneration tower 3
  • the low regeneration region 37 b constitutes the lower part of the resin filling part 37 of the cation exchange resin regeneration tower 3.
  • the high reproduction area 37a is an area in which the H shape occupies 95% or more by volume ratio.
  • the high regeneration region 37a may be defined as 5 to 50% of the total volume of the resin packed in the cation exchange resin regeneration tower 3. In this case, 5 to 50% is accumulated downward from the top of the resin packed portion 37 of the cation exchange resin regeneration tower 3.
  • all (or part) of the cation exchange resin in the high regeneration region 37a is packed as the cation exchange resin lower layer 16 in the lower part of the cation exchange resin tower 1, and the cation exchange resin (and the high regeneration region in the low regeneration region 37b).
  • the remaining cation exchange resin 37a is packed as the cation exchange resin upper layer 17 on the top of the cation exchange resin tower 1.
  • the recycled resin transfer pipes 12, 13, and 14 take out the cation exchange resin in the high regeneration area 37a and transfer the first recycled resin extraction pipe 12 and the low regeneration area 37b.
  • a second recycled resin take-out pipe 13 for taking out and transferring the cation exchange resin.
  • the first recycled resin take-out pipe 12 is higher than the second reclaimed resin take-out pipe 13, preferably at the boundary between the high regeneration area 37a and the low regeneration area 37b or on the side of the high regeneration area 37a. It is connected to the regeneration tower 3.
  • a first valve 32 and a second valve 33 are provided on the first recycled resin take-out pipe 12 and the second recycled resin take-out pipe 13 respectively.
  • the first recycled resin take-out pipe 12 and the second reclaimed resin take-out pipe 13 are merged, and one regenerated resin transfer pipe 14 is provided from the junction to the cation exchange resin tower 1.
  • the regenerated resin transfer pipe 14 may be omitted, and the first regenerated resin take-out pipe 12 and the second regenerated resin take-out pipe 13 may extend from the cation exchange resin recycle tower 3 to the cation exchange resin tower 1, respectively.
  • the first and second valves 32 and 33 open the first valve 32 first to take out the cation exchange resin in the high regeneration region 37a, then close the first valve 32 as necessary, and then The valve 33 is opened and the cation exchange resin in the low regeneration region 37b is taken out.
  • These valves 32 and 33 are controlled by a control unit 34 provided on a control panel (not shown) of the condensate demineralizer 41.
  • the used resin transfer pipe 8 connects the bottom of the cation exchange resin tower 1 and the top of the cation exchange resin regeneration tower 3, and the used cation exchange resin is sequentially cation from the resin below the cation exchange resin tower 1. It is transferred to the exchange resin regeneration tower 3. Therefore, in this embodiment, the vertical relationship between the resin charged in the cation exchange resin tower 1 and the resin charged in the cation exchange resin regeneration tower 3 is substantially maintained. That is, the resin below the cation exchange resin tower 1 is filled below the cation exchange resin regeneration tower 3, and the resin above the cation exchange resin tower 1 is filled above the cation exchange resin regeneration tower 3. .
  • the anion exchange resin tower 2 and the anion exchange resin regeneration tower 4 have almost the same configuration as the cation exchange resin tower 1 and the cation exchange resin regeneration tower 3.
  • the recycled resin transfer pipe 15 connects the bottom part of the anion exchange resin regeneration tower 4 and the upper part of the anion exchange resin tower 2.
  • the used resin transfer pipe 9 connects the bottom of the anion exchange resin tower 2 and the top of the anion exchange resin regeneration tower 4, and the anion exchange resin is successively regenerated from the resin below the anion exchange resin tower 2. It is transferred to the tower 4.
  • the regenerated resin transfer pipe 9 is composed of only one pipe connecting the bottom of the anion exchange resin tower 2 and the top of the anion exchange resin regeneration tower 4.
  • the condensate flowing through the condensate system of the power generation facility is supplied to the cation exchange resin tower 1 through the inlet pipe 5, and the cations in the condensate are removed.
  • the condensate from which the cations have been removed is then supplied to the anion exchange resin tower 2 through the pipe 6 to remove the anions.
  • the condensate from which cations and anions have been removed is sent to the downstream equipment such as a steam generator through the outlet pipe 7.
  • the valve (not shown) of the inlet pipe 5 is closed, and water flow to the cation exchange resin tower 1 and the anion exchange resin tower 2 is stopped. Thereafter, the cation exchange resin filled in the cation exchange resin tower 1 is transferred to the cation exchange resin regeneration tower 3 through the used resin transfer pipe 8. The anion exchange resin filled in the anion exchange resin tower 2 is transferred to the anion exchange resin regeneration tower 4 through the regeneration resin transfer pipe 9.
  • the cation exchange resin regeneration tower 3 In the cation exchange resin regeneration tower 3, about 4 to 12% sulfuric acid or about 4 to 12% hydrochloric acid is supplied from the regeneration chemical supply port 35 to regenerate the cation exchange resin.
  • an aqueous 4 to 12% sodium hydroxide aqueous solution is supplied from the regeneration chemical supply port 38 to regenerate the anion exchange resin.
  • the used cation exchange resin and anion exchange resin are not completely regenerated but only partially regenerated.
  • the chemical solution for regeneration is supplied from above, the regeneration efficiency is higher in the upper resin, and the ratio of H type (in the case of cation exchange resin) or OH type (in the case of anion exchange resin) becomes higher.
  • the control unit 34 closes the second valve 33 and opens the first valve 32. Subsequently, the cation exchange resin in the high regeneration region 37 a in the cation exchange resin regeneration tower 3 is transferred to the cation exchange resin tower 1 through the regeneration resin transfer pipes 12 and 14. Through the above steps, the cation exchange resin lower layer 16 having a high H-type ratio is formed inside the cation exchange resin tower 1.
  • the cation exchange resin lower layer 16 After forming the cation exchange resin lower layer 16 and before forming the cation exchange resin upper layer 17, it is preferable to supply water to the interior of the cation exchange resin tower 1 to a higher water level than the cation exchange resin lower layer 16.
  • a small amount of water is taken into the cation exchange resin tower 1, but immediately after the resin forming the cation exchange resin upper layer 17 is transferred, it is formed first by water hammer or the like.
  • the cation exchange resin lower layer 16 may be deformed so that the surface of the cation exchange resin lower layer 16 undulates.
  • the layer height of the cation exchange resin lower layer 16 may become uneven, or the cation exchange resin lower layer 16 having a desired shape may not be formed.
  • the first valve 32 is closed and the second valve 33 is opened by the control unit 34, and the remaining cation exchange resin in the cation exchange resin regeneration tower 3, that is, the cation exchange resin in the low regeneration region 37b, It is transferred to the cation exchange resin tower 1 through the recycled resin transfer pipes 13 and 14. A part of the remaining resin can be transferred to the cation exchange resin tower 1 through the recycled resin transfer pipes 12 and 14 while the first valve 32 is kept open.
  • the transferred cation exchange resin forms a cation exchange resin upper layer 17 on the cation exchange resin lower layer 16 in the cation exchange resin tower 1.
  • the anion exchange resin regenerated in the anion exchange resin regeneration tower 4 is transferred to the anion exchange resin tower 2 through the regeneration resin transfer pipe 15 to form an anion exchange resin layer 18 in the anion exchange resin tower 2.
  • the demineralization treatment of the condensate is resumed. That is, the condensate flowing through the condensate system of the power generation facility is passed through the cation exchange resin tower 1 formed with the cation exchange resin lower layer 16 and the cation exchange resin upper layer 17 from the upper part to the lower part of the cation exchange resin tower 1. To remove cations. The anion is removed by further passing condensate through the anion exchange resin tower 3 on which the anion exchange resin layer 18 is formed.
  • FIG. 2 is a schematic diagram showing a condensate demineralization apparatus and a condensate demineralization method according to the second embodiment of the present invention.
  • a cation exchange resin storage tank 19 is provided to store the regenerated cation exchange resin for refilling.
  • an anion exchange resin storage tank 20 is provided to store the regenerated anion exchange resin for refilling.
  • the cation exchange resin storage tank 19 is divided into a first recycled resin storage tank 19a and a second recycled resin storage tank 19b by a separation wall 23 provided inside.
  • the first recycled resin storage tank 19a and the second recycled resin storage tank 19b can be configured as separate tanks.
  • the first recycled resin storage tank 19a is located on the first recycled resin take-out pipes 21a and 21b, and stores the cation exchange resin taken out from the first recycled resin take-out pipe 21a.
  • the second recycled resin storage tank 19b is located on the second recycled resin take-out pipes 22a and 22b, and stores the cation exchange resin taken out from the second reclaimed resin take-out pipe 22a. Therefore, the cation exchange resin in the high regeneration region 37a and the cation exchange resin in the low regeneration region 37b are stored separately.
  • the condensate demineralization process using the condensate demineralization equipment 41 of this embodiment is performed as follows. First, among the cation exchange resins regenerated in the cation exchange resin regeneration tower 3, the cation exchange resin in the high regeneration region 37a is transferred to the first regenerated resin storage tank 19a through the first regenerated resin take-out pipe 21a. Specifically, a cation exchange resin having an H form of 95% or more or a cation exchange resin in an amount of 5 to 50% of the total volume is transferred to the first regenerated resin storage tank 19a through the first regenerated resin take-out pipe 21a. Is done. The remaining cation exchange resin is transferred to the second recycled resin storage tank 19b through the second recycled resin take-out pipe 22a.
  • the cation exchange resin transferred from the extraction pipes 21a and 22a can be separately stored in the first recycled resin storage tank 19a and the second recycled resin storage tank 19b.
  • the anion exchange resin regenerated in the anion exchange resin regeneration tower 4 is transferred to the anion exchange resin storage tank 20 through the regeneration resin transfer pipe 24 and stored for refilling.
  • the cation exchange resin tower 1 and the anion exchange resin tower 2 are filled with another cation exchange resin and an anion exchange resin. These towers are undergoing desalination treatment of condensate. After passing the specified amount of condensate, the water flow to the cation exchange resin tower 1 and the anion exchange resin tower 2 is stopped, and the filled resin becomes the cation exchange resin regeneration tower 3 and the anion exchange resin regeneration tower. 4 is transferred.
  • the resin that has been waiting in the cation exchange resin storage tank 19 and the anion exchange resin storage tank 20 is transferred.
  • the cation exchange resin in the high regeneration region 37 a is transferred from the cation exchange resin storage tank 19 through the first regeneration resin take-out pipe 21 b and the resin transfer pipe 27, and the cation exchange resin lower layer 16 is formed in the cation exchange resin tower 1.
  • the cation exchange resin in the low regeneration region 37 b is transferred through the second regeneration resin take-out pipe 22 b and the resin transfer pipe 27, and the cation exchange resin upper layer 17 is formed in the cation exchange resin tower 1.
  • the anion exchange resin is transferred from the anion exchange resin storage tank 20 through the resin transfer pipe 28, and the anion exchange resin layer 18 is formed in the anion exchange resin tower 2.
  • the regenerated cation exchange resin and the anion exchange resin are once stored in the regenerated resin storage tanks 19 and 20 before being transferred to the cation exchange resin tower 1 and the anion exchange resin tower 2. Therefore, after the used resin is transferred from the cation exchange resin tower 1 and the anion exchange resin tower 2, another regenerated cation exchange resin and anion exchange resin are immediately charged into the cation exchange resin tower 1 and the anion exchange resin tower 2. can do. Therefore, it is not necessary to wait for the condensate demineralizer 41 until the regeneration of the transferred resin is completed, and the condensate treatment can be resumed in a short time.
  • FIG. 3 is a schematic diagram showing a condensate demineralization apparatus and a condensate demineralization method according to a third embodiment of the present invention.
  • the cation exchange resin upper layer 17 and the cation exchange resin lower layer 16 in the cation exchange resin tower 1 can be separately transferred to the cation exchange resin regeneration tower 3.
  • the used resin transfer pipes 29 and 30 have two used resin take-out pipes, that is, a first used resin take-out pipe 29 and a second used resin take-out pipe 30.
  • the first used resin outlet pipe 29 is connected to the bottom of the cation exchange resin tower 1 so that the entire amount of the cation exchange resin in the cation exchange resin tower 1 can be taken out.
  • This pipe 29 is the same pipe as the pipe 8 of the first embodiment.
  • the second used resin take-out pipe 30 is connected to the cation exchange resin tower 1 at a position higher than the first used resin take-out pipe 29 and the cation exchange resin lower layer 16, and is at least one of the cation exchange resin upper layer 17. The part can be taken out.
  • the condensate demineralization process using the condensate demineralization equipment 41 of this embodiment is performed as follows. After desalting the condensate, at least a part of the cation exchange resin upper layer 17 is transferred to the cation exchange resin regeneration tower 3 through the used resin transfer pipes 30 and 31 and used cation exchange resin regeneration tower 3 inside. An exchange resin lower layer 46 is formed. Next, the remaining cation exchange resin in the cation exchange resin tower 1 is transferred to the cation exchange resin regeneration tower 3 through the used resin transfer pipes 29 and 31, and the cation exchange resin lower layer 46 inside the cation exchange resin regeneration tower 3 is transferred. A cation exchange resin upper layer 47 is formed thereon.
  • the cation exchange resin upper layer 47 includes the cation exchange resin lower layer 16 (and the cation exchange resin upper layer 17 that has not been transferred in the first stage).
  • a chemical solution for regeneration is supplied from the supply port 35 above the used cation exchange resin upper layer 47 to regenerate the cation exchange resin in the cation exchange resin regeneration tower 3.
  • the cation exchange resin upper layer 47 in which the H form remains relatively is disposed on the top of the cation exchange resin regeneration tower 3 and comes into contact with a fresh chemical solution for regeneration. be able to.
  • the resin disposed in the upper part of the cation exchange resin regeneration tower 3 constitutes the cation exchange resin lower layer 16 in the cation exchange resin tower 1, and therefore is a cation exchange resin regenerated at a higher rate.
  • the cation exchange resin lower layer 16 can be constituted.
  • FIG. 4 is a schematic diagram showing a condensate demineralization apparatus and a condensate demineralization method according to a fourth embodiment of the present invention.
  • the used cation exchange resin is not immediately sent to the cation exchange resin regeneration tower 3 but temporarily stored in the used resin storage tank 48.
  • the used resin storage tank 48 is located on the used resin transfer pipe 8 and temporarily stores the used cation exchange resin taken out from the cation exchange resin tower 1.
  • the used anion exchange resin is not immediately sent to the anion exchange resin regeneration tower 4 but temporarily stored in the used resin storage tank 49.
  • the used resin storage tank 48 is located on the used resin transfer pipe 9 and temporarily stores the used anion exchange resin taken out from the anion exchange resin tower 2.
  • the condensate demineralization process using the condensate demineralization equipment of this embodiment is performed as follows. After desalting the condensate, the used cation exchange resin is temporarily stored in the used resin storage tank 48 before being transferred to the cation exchange resin regeneration tower 3. At this time, the regenerated cation exchange resin is stored in the cation exchange resin regeneration tower 3. Similarly, the used anion exchange resin is temporarily stored in the used resin storage tank 49 before being transferred to the anion exchange resin regeneration tower 4. At this time, the regenerated anion exchange resin is stored in the anion exchange resin regeneration tower 3.
  • the resin stored in the cation exchange resin regeneration tower 3 and the anion exchange resin regeneration tower 4 is replaced with the cation exchange resin tower 1 and the anion exchange resin tower. 2 is transferred.
  • the cation exchange resin in the high regeneration region 37 a is transferred from the cation exchange resin regeneration tower 3 through the resin transfer pipes 12 and 14, and the cation exchange resin lower layer 16 is formed in the cation exchange resin tower 1.
  • the cation exchange resin in the low regeneration region 37 b is transferred through the resin transfer pipes 13 and 14, and the cation exchange resin upper layer 17 is formed in the cation exchange resin tower 1.
  • the anion exchange resin is transferred from the anion exchange resin regeneration tower 4 through the regeneration resin transfer pipe 15, and an anion exchange resin layer 18 is formed on the anion exchange resin tower 2.
  • the used cation exchange resin stored in the used resin storage tank 48 is transferred to the cation exchange resin regeneration tower 3 and regenerated.
  • the used anion exchange resin stored in the used resin storage tank 49 is transferred to the anion exchange resin regeneration tower 4 and regenerated.
  • FIG. 5 is a schematic diagram showing a condensate demineralization apparatus and a condensate demineralization method according to a fifth embodiment of the present invention.
  • the used anion exchange resin second ion exchange resin
  • a part of the upper layer is stored in the non-regenerated resin storage tank, and the remaining anion exchange resin is regenerated in the regeneration tower.
  • the other configuration is the same as that of the third embodiment.
  • the anion exchange resin tower 2 (second condensate demineralization tower) is provided with an upper resin outlet pipe 52 for taking out the upper part (upper part) 50 of the anion exchange resin layer 18 (anion exchange resin packed layer). ing.
  • the upper resin extraction pipe 52 is connected to the anion exchange resin tower 2 at the upper layer portion of the anion exchange resin layer 18 and the other end is connected to the non-regenerated resin storage tank 51.
  • the non-regenerated resin storage tank 51 temporarily stores the upper portion 50 of the extracted anion exchange resin layer 18.
  • the upper packed bed storage tank 51 is connected to the resin transfer pipe 28 via the upper resin return pipe 53, and the stored upper part 50 of the anion exchange resin layer 18 can be returned to the anion exchange resin tower 2.
  • the condensate demineralization process using the condensate demineralization equipment of this embodiment is performed as follows. After the condensed water is desalted by the cation exchange resin tower 1 and the anion exchange resin tower 2, the upper part 50 of the anion exchange resin layer 18 is taken out and transferred to the non-regenerated resin storage tank 51. Thereafter, the remainder of the anion exchange resin layer 18 is taken out and transferred to the anion exchange resin regeneration tower 4 through the regeneration resin transfer pipe 9. The anion exchange resin already regenerated and stored in the anion resin storage tank 20 is transferred to the anion exchange resin tower 2 to form an anion exchange resin layer. During this time, the extracted upper portion 50 of the anion exchange resin layer 18 is stored in the non-regenerated resin storage tank 51 without being regenerated.
  • the upper portion 50 of the anion exchange resin layer 18 stored in the non-regenerated resin storage tank 51 is returned to the anion exchange resin tower 2.
  • the anion exchange resin stored in the non-regenerated resin storage tank 51 is disposed on the anion exchange resin layer.
  • the remainder of the anion exchange resin layer 18 transferred to the anion exchange resin regeneration tower 4 is then regenerated and transferred to the anion resin storage tank 20.
  • fine cation exchange resin (such as crushed resin strips) flowing out from the cation exchange resin tower 1 is an anion.
  • the exchange resin tower 2 and mixing into the upper portion 50 of the packed bed of anion exchange resin.
  • the cation exchange resin may be reversely regenerated by the regenerant of the anion exchange resin, and the treated water quality may be deteriorated. There is. In this embodiment, the deterioration of the treated water quality due to such a cause can be prevented.
  • the cation exchange resin tower 1 since the cation exchange resin tower 1 is provided at the front stage and the anion exchange resin tower 2 is provided at the rear stage, the cation exchange resin may be mixed into the anion exchange resin.
  • the anion exchange resin may be mixed into the cation exchange resin. In the latter case, the same effect can be obtained by providing a non-regenerated resin storage tank similar to that of the present embodiment and temporarily storing the upper portion of the cation exchange resin packed bed of the cation exchange resin tower 1 without regenerating. be able to.
  • FIG. 6 shows an example of such an embodiment.
  • the configurations of the non-regenerated resin storage tank 51, the upper resin take-out pipe 52, and the upper resin return pipe 53 are the same as those in FIG.
  • the anion exchange resin is regenerated, the upper portion 50 of the anion exchange resin layer 18 is taken out and transferred to the non-regenerated resin storage tank 51. Thereafter, the remainder of the anion exchange resin layer 18 is taken out and temporarily transferred to the used resin storage tank 49.
  • the regenerated anion exchange resin stored in the anion exchange resin regeneration tower 4 is transferred to the anion exchange resin tower 2 through the resin transfer pipe 15 and then stored in the non-regeneration resin storage tank 51. Is transferred to the anion exchange resin tower 2. Thereafter, the used anion resin stored in the used resin storage tank 49 is transferred to the anion exchange resin regeneration tower 4 and regenerated.
  • the non-regenerated resin storage tank 51, the upper resin take-out pipe 52, and the upper resin return pipe 53 can be similarly provided in the second embodiment. Furthermore, also in the first embodiment, the non-regenerated resin storage tank 51, the upper resin take-out pipe 52, and the upper resin return pipe 53 can be similarly provided. In this case, while the remainder of the anion exchange resin layer 18 is regenerated in the anion exchange resin regeneration tower 4, the upper portion 50 of the anion exchange resin layer 18 is stored in the non-regeneration resin storage tank 51.
  • the cation exchange resin used for the lower layer of the cation exchange resin was adjusted to be 99.9% in the H form and 0.1% in the Na form.
  • the anion exchange resin used in the anion resin layer was adjusted so as to be 98% OH form, 1% Cl form, and 1% SO 4 form.
  • the total amount of the cation exchange resin was 24.9% NH 3 , 0.1% Na, and 75% H.
  • the simulated condensate was passed through the cation exchange resin layer and the anion exchange resin layer in a downward flow at a water flow temperature of 40 ° C. and a water flow velocity of 92 m / h.
  • the simulated condensate contains 1330 ppb NH 3 , 23800 ppb NaCl, and 2900 ppb Na 2 SO 4 .
  • a cation exchange resin layer for acid conductivity measurement was installed after the anion exchange resin layer, and the acid conductivity was measured.
  • the concentrations of Na ions, Cl ions, and SO 4 ions were measured using an ion chromatograph ICS-2000 manufactured by Dionex (see Table 1).
  • a cation exchange resin layer and an anion exchange resin layer having the following specifications and quantities are used, and simulated condensate of the same component is passed through the cation exchange resin and anion exchange resin under the same water flow conditions.
  • the cation exchange resin layer was 74.9% H-form, 0.1% Na-form, and 25% NH 3 form.
  • the anion exchange resin layer was the same as in the example.
  • the acid conductivity, Na ion, Cl ion, and SO 4 ion concentration were measured in the same manner as in the examples (see Table 1).
  • the concentration of Na ions was 30 ⁇ g / L, and it was not possible to obtain sufficient water quality as the quality of the treated water for condensate.
  • the Na ion concentration was 1 ⁇ g / L or less, and sufficient water quality could be obtained.
  • the concentration of Cl ions and SO 4 ions was 1 ⁇ g / L or less, and sufficient water quality could be obtained.
  • an ion exchange resin having a high regeneration rate is provided at the lower part of the condensate demineralization tower (downstream in the flow direction of the condensate). Even if the salt concentration of the condensate changes due to leakage of seawater, etc., it is possible to obtain a treated water quality that is superior to the conventional double bed type and inferior to the mixed bed type or three layer type. . Further, the separation operation required in the mixed bed type is not required, and the burden of operation management can be reduced, and the apparatus can be simplified as compared with the three-layer type.
  • the condensate demineralization apparatus and the condensate demineralization method of the present invention can be suitably used under use conditions where the ion exchange resin is not completely regenerated, such as a thermal power plant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

The purpose of the present invention is to obtain treated water with good quality using a simple configuration. A condensing desalination device (41) has a condensing desalination tower (1) filled with an ion-exchange resin, a regeneration tower (3) for regenerating used ion-exchange resin, and regenerated-resin transfer pipes (12, 13, 14) for transferring regenerated ion-exchange resin from the regeneration tower (3) to the condensing desalination tower (1). The regenerated-resin transfer pipes have a first regenerated-resin removal tube (12) for removing ion-exchange resin from a high-regeneration area (37a) in which the ratio of the regenerated ion-exchange resin in the regeneration tower is relatively high, and a second regenerated-resin removal tube (13) for removing ion-exchange resin from a low-regeneration area (37b) in which the ratio of the regenerated ion-exchange resin in the regeneration tower is relatively low.

Description

復水脱塩装置および復水脱塩方法Condensate demineralization apparatus and condensate demineralization method
 本発明は、原子力発電所や火力発電所等の発電施設、特に火力発電所において復水を脱塩処理するための復水脱塩装置および復水脱塩方法に関する。 The present invention relates to a condensate demineralization apparatus and a condensate demineralization method for demineralizing condensate in a power generation facility such as a nuclear power plant or a thermal power plant, particularly a thermal power plant.
 従来、原子力発電所や火力発電所等の発電施設における復水の処理には、H形強酸性カチオン交換樹脂とOH形強塩基性アニオン交換樹脂との混合イオン交換樹脂が充填された復水脱塩装置が用いられている。 Conventionally, for condensate treatment in power generation facilities such as nuclear power plants and thermal power plants, condensate drainage filled with a mixed ion exchange resin of H-type strongly acidic cation exchange resin and OH-type strongly basic anion exchange resin is used. A salt device is used.
 この復水脱塩装置は、復水を処理するための複数の復水脱塩塔と、復水脱塩塔において使用された使用済みの混合イオン交換樹脂を再生し、再生後のイオン交換樹脂を貯蔵する再生塔と、復水脱塩塔および再生塔にイオン交換樹脂を出し入れする樹脂移送配管等から構成されている。 This condensate demineralization apparatus regenerates a plurality of condensate demineralization towers for treating condensate and the used mixed ion exchange resin used in the condensate demineralization tower, and the ion exchange resin after the regeneration And a condensate demineralization tower and a resin transfer pipe for taking in and out the ion exchange resin.
 復水脱塩塔内のイオン交換樹脂が再生時期に至ると、使用済みの樹脂が再生塔に移送され、アニオン交換樹脂とカチオン交換樹脂とに分離され、それぞれの樹脂が薬品再生される。発電設備によっては再生効率の観点からイオン交換樹脂が完全に再生されないこともある。その後、再生されたカチオン交換樹脂とアニオン交換樹脂とが混合されて混合樹脂とされ、この混合樹脂が復水脱塩塔に移送される。再生塔とは別に樹脂貯槽を備えている場合には、その樹脂貯槽内において混合が行われる。再生塔が樹脂貯槽を兼ねている場合には、その再生塔内において混合が行われる。処理される復水の水質をより向上させるために、復水脱塩塔内に混合樹脂が受け入れられた後、復水が通水する前に、復水脱塩塔内にて混合操作が実施され、カチオン交換樹脂とアニオン交換樹脂がさらに均一に混合される。その後、復水脱塩塔内を水で満たす等の、通水のための準備工程が行われ、通水が再開される。 When the ion exchange resin in the condensate demineralization tower reaches the regeneration period, the used resin is transferred to the regeneration tower and separated into an anion exchange resin and a cation exchange resin, and each resin is chemically regenerated. Depending on the power generation equipment, the ion exchange resin may not be completely regenerated from the viewpoint of regeneration efficiency. Thereafter, the regenerated cation exchange resin and anion exchange resin are mixed to form a mixed resin, and this mixed resin is transferred to a condensate demineralization tower. When a resin storage tank is provided separately from the regeneration tower, mixing is performed in the resin storage tank. When the regeneration tower also serves as a resin storage tank, mixing is performed in the regeneration tower. In order to further improve the quality of the condensate to be treated, after the mixed resin is received in the condensate demineralization tower, the mixing operation is performed in the condensate demineralization tower before the condensate passes through. Then, the cation exchange resin and the anion exchange resin are mixed more uniformly. Thereafter, a preparatory process for water flow, such as filling the condensate demineralization tower with water, is performed, and water flow is resumed.
 このような通常のイオン交換樹脂の再生操作において、カチオン交換樹脂とアニオン交換樹脂の分離はその比重差および粒径差によって生じる沈降速度の差を利用して行われる。しかしカチオン交換樹脂とアニオン交換樹脂を完全に分離することは難しく、混合層が処理のために復水脱塩塔から取出される場合もある(特許文献1)。 In such a normal ion exchange resin regeneration operation, the separation of the cation exchange resin and the anion exchange resin is performed by utilizing the difference in sedimentation speed caused by the difference in specific gravity and the difference in particle size. However, it is difficult to completely separate the cation exchange resin and the anion exchange resin, and the mixed layer may be removed from the condensate demineralizer for treatment (Patent Document 1).
 また、カチオン交換樹脂にアニオン交換樹脂が混入した場合には、カチオン交換樹脂の再生剤である硫酸または塩酸によってアニオン交換樹脂のイオン交換基が硫酸形または塩化物形になってしまうため、復水を脱塩する際に硫酸イオンまたは塩化物イオンがリークしてしまう。同様に、アニオン交換樹脂にカチオン交換樹脂が混入した場合も、アニオン交換樹脂の再生剤である水酸化ナトリウムによってカチオン交換樹脂のイオン交換基がナトリウム形になってしまうため、ナトリウムイオンがリークしてしまう。そのため、カチオン交換樹脂とアニオン交換樹脂の再生操作には高度な分離技術と熟練技術者が必要になる。 In addition, when an anion exchange resin is mixed into the cation exchange resin, the ion exchange group of the anion exchange resin becomes a sulfuric acid form or a chloride form by sulfuric acid or hydrochloric acid which is a regenerating agent of the cation exchange resin. When desalting the salt, sulfate ions or chloride ions leak. Similarly, when a cation exchange resin is mixed into the anion exchange resin, sodium ion leaks because the ion exchange group of the cation exchange resin becomes sodium by the sodium hydroxide that is the regenerant of the anion exchange resin. End up. Therefore, advanced separation techniques and skilled engineers are required for the regeneration operation of the cation exchange resin and the anion exchange resin.
 このような状況に対応するために、カチオン交換樹脂層とアニオン交換樹脂層とカチオン交換樹脂層とを交互に3層組合せた複床からなる復水脱塩装置が提案されている(非特許文献1)。イオン交換反応の原理の点からはカチオンとアニオンが同時に除去される混床式が高純度化を得る最適のシステムであるが、非特許文献1に記載の方法によれば、所定の水質を満たし、かつカチオン交換樹脂とアニオン交換樹脂の分離が不要となるため再生操作の簡素化が可能となる。 In order to cope with such a situation, a condensate demineralization apparatus composed of multiple beds in which three layers of cation exchange resin layers, anion exchange resin layers, and cation exchange resin layers are alternately combined has been proposed (non-patent document). 1). From the viewpoint of the principle of the ion exchange reaction, a mixed bed system in which cations and anions are simultaneously removed is an optimal system for obtaining high purity. However, according to the method described in Non-Patent Document 1, a predetermined water quality is satisfied. In addition, since it is not necessary to separate the cation exchange resin and the anion exchange resin, the regeneration operation can be simplified.
 また、火力発電所や加圧水型原子力発電所の復水にはNaイオン、Clイオン、SO4イオンなどの不純物の他、アンモニア、エタノールアミン(ETA)といったpH調整剤や、場合によって還元剤としてヒドラジンが含まれており、カチオン交換樹脂への負荷が高いのが一般的である。 In addition, in the condensate of thermal power plants and pressurized water nuclear power plants, in addition to impurities such as Na ions, Cl ions, SO 4 ions, pH adjusting agents such as ammonia and ethanolamine (ETA), and hydrazine as a reducing agent in some cases In general, the load on the cation exchange resin is high.
特開昭54-41277号公報JP 54-41277 A
 カチオン交換樹脂層とアニオン交換樹脂層とカチオン交換樹脂層とを交互に3層以上組合せた復水脱塩装置は、復水脱塩塔の構造が複雑になる。それぞれのイオン交換樹脂層を別々の樹脂塔に充填した場合は、3塔以上の復水脱塩塔が必要になり設置費が高くなる。 A condensate demineralization apparatus in which three or more cation exchange resin layers, anion exchange resin layers, and cation exchange resin layers are alternately combined has a complicated condensate demineralization tower structure. When each ion exchange resin layer is packed in separate resin towers, three or more condensate demineralization towers are required, which increases the installation cost.
 一方、カチオン交換樹脂層、アニオン交換樹脂層を1層ずつ組み合わせた2層方式の復水脱塩塔は、特にイオン交換樹脂を完全に再生しない発電設備において混床式や3層方式に比べ処理水質が低い。特に海水等の冷却水が復水に漏洩し塩濃度が変化した場合に、水質が悪化する傾向にある。 On the other hand, two-layer condensate demineralization towers that combine a cation exchange resin layer and an anion exchange resin layer one by one, especially in power generation facilities that do not completely regenerate the ion exchange resin, are treated compared to mixed bed and three-layer systems. The water quality is low. In particular, when the cooling water such as seawater leaks into the condensate and the salt concentration changes, the water quality tends to deteriorate.
 本発明は、カチオン交換樹脂層、アニオン交換樹脂層のいずれも1層で構成可能であり、かつ使用済みのイオン交換樹脂を完全に再生しない場合であっても良好な処理水質を得ることのできる復水脱塩装置および復水脱塩方法を提供することを課題とする。 In the present invention, both the cation exchange resin layer and the anion exchange resin layer can be composed of one layer, and a good treated water quality can be obtained even when the used ion exchange resin is not completely regenerated. It is an object of the present invention to provide a condensate demineralization apparatus and a condensate demineralization method.
 本発明の復水脱塩装置は、アニオン交換樹脂またはカチオン交換樹脂の一方であるイオン交換樹脂が充填される復水脱塩塔であって、発電施設の復水系を流通する復水を復水脱塩塔の上部から下部へと通水させることによって、復水をイオン交換樹脂で脱塩する復水脱塩塔と、使用済みのイオン交換樹脂を再生する再生塔と、再生されたイオン交換樹脂を再生塔から復水脱塩塔に移送する再生樹脂移送配管と、を有している。再生樹脂移送配管は、再生塔中の再生されたイオン交換樹脂の割合が相対的に高い高再生領域のイオン交換樹脂を取出し、復水脱塩塔の内部にイオン交換樹脂下層を形成するように高再生領域のイオン交換樹脂を移送する第1の再生樹脂取出し配管と、再生塔中の再生されたイオン交換樹脂の割合が相対的に低い低再生領域のイオン交換樹脂を取出し、復水脱塩塔の内部のイオン交換樹脂下層の上にイオン交換樹脂上層を形成するように低再生領域のイオン交換樹脂を移送する第2の再生樹脂取出し配管と、を有している。 The condensate demineralization apparatus of the present invention is a condensate demineralization tower filled with an anion exchange resin or an ion exchange resin that is one of cation exchange resins, and condensate is circulated through the condensate system of a power generation facility. By passing water from the top to the bottom of the desalting tower, the condensate desalting tower for desalting the condensate with an ion exchange resin, the regeneration tower for regenerating used ion exchange resin, and the regenerated ion exchange And a recycled resin transfer pipe for transferring the resin from the regeneration tower to the condensate demineralization tower. The recycled resin transfer pipe takes out the ion exchange resin in the high regeneration region where the ratio of the regenerated ion exchange resin in the regeneration tower is relatively high, and forms an ion exchange resin lower layer inside the condensate demineralization tower. The first regeneration resin take-out pipe for transferring the ion exchange resin in the high regeneration region and the ion exchange resin in the low regeneration region in which the proportion of the regenerated ion exchange resin in the regeneration tower is relatively low are taken out, and decondensation is performed. A second regeneration resin take-out pipe for transferring the ion exchange resin in the low regeneration region so as to form an ion exchange resin upper layer on the ion exchange resin lower layer inside the tower.
 本発明の復水脱塩方法は、アニオン交換樹脂またはカチオン交換樹脂の一方であるイオン交換樹脂を収容している再生塔中の、再生されたイオン交換樹脂の割合が相対的に高い高再生領域のイオン交換樹脂を復水脱塩塔に移送し、復水脱塩塔の内部にイオン交換樹脂下層を形成することと、イオン交換樹脂下層を形成した後、再生塔中の再生されたイオン交換樹脂の割合が相対的に低い低再生領域のイオン交換樹脂を復水脱塩塔に移送し、復水脱塩塔の内部のイオン交換樹脂下層の上にイオン交換樹脂上層を形成することと、イオン交換樹脂下層とイオン交換樹脂上層とが形成された復水脱塩塔に、発電施設の復水系を流通する復水を、復水脱塩塔の上部から下部へと通水させることによって、復水を脱塩することと、を有している。 The condensate desalination method of the present invention is a high regeneration region in which a ratio of regenerated ion exchange resin is relatively high in a regeneration tower containing an ion exchange resin that is one of anion exchange resin or cation exchange resin. The ion exchange resin is transferred to the condensate demineralization tower, and the ion exchange resin lower layer is formed inside the condensate demineralization tower. After the ion exchange resin lower layer is formed, the regenerated ion exchange in the regeneration tower is performed. Transferring the ion exchange resin in the low regeneration region having a relatively low resin ratio to the condensate demineralization tower, and forming an ion exchange resin upper layer on the ion exchange resin lower layer inside the condensate demineralization tower; By passing the condensate flowing through the condensate system of the power generation facility from the upper part to the lower part of the condensate demineralization tower through the condensate demineralization tower in which the ion exchange resin lower layer and the ion exchange resin upper layer are formed, Desalting the condensate.
 本発明によれば、まず、再生されたイオン交換樹脂の割合が相対的に高い高再生領域のイオン交換樹脂が復水脱塩塔に移送され、復水脱塩塔の内部にイオン交換樹脂下層が形成される。次に、再生されたイオン交換樹脂の割合が相対的に低い低再生領域のイオン交換樹脂が復水脱塩塔に移送され、イオン交換樹脂下層の上にイオン交換樹脂上層が形成される。この結果、復水脱塩塔の上部から下部へと復水を通水させると、まず、イオン交換樹脂上層で復水が脱塩され、引き続きイオン交換樹脂下層で復水が脱塩される。復水中のイオン成分はイオン交換樹脂のイオン選択性(イオンを交換吸着する強さ)に応じて、イオン交換樹脂への吸着とイオン交換樹脂からの脱離を繰り返し、イオン選択性の高いイオン成分から徐々に除去されていく。従って、復水の流通方向に関して下流側ではイオン選択性の低いイオン成分の割合が増加するが、下流側に高再生領域のイオン交換樹脂を設けることで、このようなイオン選択性の低いイオン成分もより効率よく除去することができる。このように、同種のイオン交換樹脂を再生された割合に応じて区分し、上下方向に分布させることで、上下方向に均一なイオン交換樹脂を充填する場合と比べて、イオン成分を効率的に除去することができる。 According to the present invention, first, an ion exchange resin in a high regeneration region in which the proportion of the regenerated ion exchange resin is relatively high is transferred to the condensate demineralization tower, and the lower layer of the ion exchange resin is disposed inside the condensate demineralization tower. Is formed. Next, the low-regeneration region ion exchange resin in which the proportion of the regenerated ion exchange resin is relatively low is transferred to a condensate demineralization tower, and an ion exchange resin upper layer is formed on the ion exchange resin lower layer. As a result, when the condensate is allowed to flow from the upper part to the lower part of the condensate demineralization tower, the condensate is first desalted in the upper layer of the ion exchange resin, and then the condensate is desalted in the lower layer of the ion exchange resin. Depending on the ion selectivity (strength of ion exchange adsorption) of the ion exchange resin, the ion component in the condensate is repeatedly ion adsorbed on the ion exchange resin and desorbed from the ion exchange resin. Will be gradually removed from. Therefore, the proportion of ion components with low ion selectivity increases on the downstream side with respect to the flow direction of the condensate, but by providing an ion exchange resin in the high regeneration region on the downstream side, such ion components with low ion selectivity are provided. Can be removed more efficiently. In this way, by dividing the ion exchange resin of the same type according to the regenerated ratio and distributing it in the vertical direction, the ion component can be more efficiently compared with the case of filling the ion exchange resin uniformly in the vertical direction. Can be removed.
 従って、本発明によれば、カチオン交換樹脂層、アニオン交換樹脂層のいずれも1層で構成可能であり、かつ使用済みのイオン交換樹脂を完全に再生しない場合であっても良好な処理水質を得ることのできる復水脱塩装置および復水脱塩方法を提供することができる。 Therefore, according to the present invention, both the cation exchange resin layer and the anion exchange resin layer can be composed of a single layer, and even if the used ion exchange resin is not completely regenerated, good treated water quality can be obtained. A condensate demineralization apparatus and a condensate demineralization method that can be obtained can be provided.
本発明の第1の実施形態に係る復水脱塩装置および復水脱塩方法を示す模式図である。It is a schematic diagram which shows the condensate demineralization apparatus and condensate demineralization method which concern on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る復水脱塩装置および復水脱塩方法を示す模式図である。It is a schematic diagram which shows the condensate demineralization apparatus and condensate demineralization method which concern on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る復水脱塩装置および復水脱塩方法を示す模式図である。It is a schematic diagram which shows the condensate demineralization apparatus and condensate demineralization method which concern on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る復水脱塩装置および復水脱塩方法を示す模式図である。It is a schematic diagram which shows the condensate demineralization apparatus and condensate demineralization method which concern on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る復水脱塩装置および復水脱塩方法を示す模式図である。It is a schematic diagram which shows the condensate demineralization apparatus and condensate demineralization method which concern on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る復水脱塩装置および復水脱塩方法を示す模式図である。It is a schematic diagram which shows the condensate demineralization apparatus and condensate demineralization method which concern on the 5th Embodiment of this invention.
 本発明の望ましい実施の形態を、図面を参照して説明する。本発明において、イオン交換樹脂はアニオン交換樹脂とカチオン交換樹脂のいずれかまたは双方を意味する。以下では、カチオン交換樹脂を対象に本発明を説明するが、アニオン交換樹脂についても本発明を同様に適用することができる。 Preferred embodiments of the present invention will be described with reference to the drawings. In the present invention, the ion exchange resin means either or both of an anion exchange resin and a cation exchange resin. Hereinafter, the present invention will be described with reference to a cation exchange resin, but the present invention can be similarly applied to an anion exchange resin.
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る復水脱塩装置および復水脱塩方法を示す模式図である。復水脱塩装置41は、カチオン交換樹脂が充填された復水脱塩塔であるカチオン交換樹脂塔1と、アニオン交換樹脂が充填された復水脱塩塔であるアニオン交換樹脂塔2と、使用済みのカチオン交換樹脂を再生するカチオン交換樹脂再生塔3と、使用済みのアニオン交換樹脂を再生するアニオン交換樹脂再生塔4と、を有している。カチオン交換樹脂塔1とアニオン交換樹脂塔2は、それぞれ複数の塔が並列に設けられているが、図面ではそれぞれ1つだけを図示している。カチオン交換樹脂塔1とアニオン交換樹脂塔2は、本実施形態では別々の塔として構成されているが、一体化された単一の塔であってもよい。
(First embodiment)
FIG. 1 is a schematic diagram showing a condensate demineralization apparatus and a condensate demineralization method according to the first embodiment of the present invention. The condensate demineralizer 41 includes a cation exchange resin tower 1 that is a condensate demineralization tower filled with a cation exchange resin, an anion exchange resin tower 2 that is a condensate demineralization tower filled with an anion exchange resin, It has a cation exchange resin regeneration tower 3 that regenerates a used cation exchange resin, and an anion exchange resin regeneration tower 4 that regenerates a used anion exchange resin. The cation exchange resin tower 1 and the anion exchange resin tower 2 are each provided with a plurality of towers in parallel, but only one is shown in the drawing. The cation exchange resin tower 1 and the anion exchange resin tower 2 are configured as separate towers in this embodiment, but may be a single integrated tower.
 カチオン交換樹脂塔1の頂部と底部には、発電施設の復水系を流通する復水がカチオン交換樹脂塔1の上部から下部へと通水するように入口配管5と配管6が接続されている。復水はカチオン交換樹脂塔1内を流通する際、充填されているイオン交換樹脂(カチオン交換樹脂)と接触することによって脱塩される。カチオン交換樹脂塔1は、後述するイオン交換樹脂下層16とイオン交換樹脂上層17とを仕切る、網39などの分離手段を備えていてもよい。これによって、イオン交換樹脂下層16とイオン交換樹脂上層17との混合を防止することができる。 An inlet pipe 5 and a pipe 6 are connected to the top and bottom of the cation exchange resin tower 1 so that the condensate flowing through the condensate system of the power generation facility passes from the top to the bottom of the cation exchange resin tower 1. . When the condensate flows through the cation exchange resin tower 1, it is desalted by contacting with the packed ion exchange resin (cation exchange resin). The cation exchange resin tower 1 may include separation means such as a net 39 that partitions an ion exchange resin lower layer 16 and an ion exchange resin upper layer 17 described later. Thereby, mixing of the ion exchange resin lower layer 16 and the ion exchange resin upper layer 17 can be prevented.
 復水脱塩装置41は、再生されたカチオン交換樹脂をカチオン交換樹脂再生塔3からカチオン交換樹脂塔1に移送する再生樹脂移送配管12,13,14と、使用済みのカチオン交換樹脂をカチオン交換樹脂塔1からカチオン交換樹脂再生塔3に移送する使用済み樹脂移送配管8と、を有している。従って、カチオン交換樹脂は定期的にカチオン交換樹脂再生塔3で再生され、繰り返し使用することができる。 The condensate demineralizer 41 exchanges the regenerated cation exchange resin from the cation exchange resin regeneration tower 3 to the cation exchange resin tower 1, and regenerated resin transfer pipes 12, 13, and 14 and cation exchange of the used cation exchange resin. And a used resin transfer pipe 8 for transferring from the resin tower 1 to the cation exchange resin regeneration tower 3. Therefore, the cation exchange resin is periodically regenerated in the cation exchange resin regeneration tower 3 and can be used repeatedly.
 カチオン交換樹脂再生塔3は、カチオン交換樹脂が充填される樹脂充填部37よりも上方に再生用薬液の供給口35を備えている。供給口35から供給された再生用薬液はカチオン交換樹脂を再生しながら下方へ流れ、カチオン交換樹脂再生塔3の下部に接続された排水配管36から排出される。このため、カチオン交換樹脂再生塔3の樹脂充填部37に充填される樹脂は、上部ほど高い割合で再生され、下部ほど低い割合で再生される。 The cation exchange resin regeneration tower 3 is provided with a supply port 35 for a regeneration chemical solution above the resin filling portion 37 filled with the cation exchange resin. The chemical solution for regeneration supplied from the supply port 35 flows downward while regenerating the cation exchange resin, and is discharged from the drain pipe 36 connected to the lower part of the cation exchange resin regeneration tower 3. For this reason, the resin filled in the resin filling portion 37 of the cation exchange resin regeneration tower 3 is regenerated at a higher rate at the upper part and at a lower rate at the lower part.
 こうして、カチオン交換樹脂再生塔3の中には、再生されたカチオン交換樹脂の割合が相対的に高い高再生領域37aのカチオン交換樹脂と、再生されたカチオン交換樹脂の割合が相対的に低い低再生領域37bのカチオン交換樹脂と、が存在する。具体的には高再生領域37aのカチオン交換樹脂は、低再生領域37bのカチオン交換樹脂よりもH形の体積割合が高い。高再生領域37aはカチオン交換樹脂再生塔3の樹脂充填部37の上側部分を、低再生領域37bはカチオン交換樹脂再生塔3の樹脂充填部37の下側部分を構成している。 Thus, in the cation exchange resin regeneration tower 3, the ratio of the regenerated cation exchange resin in the high regeneration region 37a and the ratio of the regenerated cation exchange resin is relatively low. And the cation exchange resin in the regeneration region 37b. Specifically, the cation exchange resin in the high regeneration region 37a has a higher H-shaped volume ratio than the cation exchange resin in the low regeneration region 37b. The high regeneration region 37 a constitutes the upper part of the resin filling part 37 of the cation exchange resin regeneration tower 3, and the low regeneration region 37 b constitutes the lower part of the resin filling part 37 of the cation exchange resin regeneration tower 3.
 高再生領域37aの具体的な定義は適宜定めることができる。一例では、高再生領域37aは、H形が体積割合で95%以上を占める領域である。また、再生条件にもよるが、高再生領域37aは、カチオン交換樹脂再生塔3に充填されている樹脂の総体積の5~50%と定義することもできる。この場合、5~50%はカチオン交換樹脂再生塔3の樹脂充填部37の頂部から下方に向けて積算される。 The specific definition of the high reproduction area 37a can be determined as appropriate. In one example, the high reproduction area 37a is an area in which the H shape occupies 95% or more by volume ratio. Depending on the regeneration conditions, the high regeneration region 37a may be defined as 5 to 50% of the total volume of the resin packed in the cation exchange resin regeneration tower 3. In this case, 5 to 50% is accumulated downward from the top of the resin packed portion 37 of the cation exchange resin regeneration tower 3.
 本発明では、高再生領域37aのカチオン交換樹脂の全部(または一部)がカチオン交換樹脂塔1の下部にカチオン交換樹脂下層16として充填され、低再生領域37bのカチオン交換樹脂(および高再生領域37aの残りのカチオン交換樹脂)がカチオン交換樹脂塔1の上部にカチオン交換樹脂上層17として充填される。このような充填方法を可能とするため、再生樹脂移送配管12,13,14は、高再生領域37aのカチオン交換樹脂を取出し、移送する第1の再生樹脂取出し配管12と、低再生領域37bのカチオン交換樹脂を取出し、移送する第2の再生樹脂取出し配管13と、を有している。第1の再生樹脂取出し配管12は、第2の再生樹脂取出し配管13よりも高い位置、好ましくは高再生領域37aと低再生領域37bの境界部または高再生領域37aの側方で、カチオン交換樹脂再生塔3に接続されている。 In the present invention, all (or part) of the cation exchange resin in the high regeneration region 37a is packed as the cation exchange resin lower layer 16 in the lower part of the cation exchange resin tower 1, and the cation exchange resin (and the high regeneration region in the low regeneration region 37b). The remaining cation exchange resin 37a is packed as the cation exchange resin upper layer 17 on the top of the cation exchange resin tower 1. In order to enable such a filling method, the recycled resin transfer pipes 12, 13, and 14 take out the cation exchange resin in the high regeneration area 37a and transfer the first recycled resin extraction pipe 12 and the low regeneration area 37b. And a second recycled resin take-out pipe 13 for taking out and transferring the cation exchange resin. The first recycled resin take-out pipe 12 is higher than the second reclaimed resin take-out pipe 13, preferably at the boundary between the high regeneration area 37a and the low regeneration area 37b or on the side of the high regeneration area 37a. It is connected to the regeneration tower 3.
 第1の再生樹脂取出し配管12上と、第2の再生樹脂取出し配管13上には、それぞれ第1の弁32と第2の弁33が設けられている。第1の再生樹脂取出し配管12と、第2の再生樹脂取出し配管13は合流しており、合流点からカチオン交換樹脂塔1までは1本の再生樹脂移送配管14が設けられている。再生樹脂移送配管14を省き、第1の再生樹脂取出し配管12と第2の再生樹脂取出し配管13がそれぞれ、カチオン交換樹脂再生塔3からカチオン交換樹脂塔1まで延びていてもよい。 A first valve 32 and a second valve 33 are provided on the first recycled resin take-out pipe 12 and the second recycled resin take-out pipe 13 respectively. The first recycled resin take-out pipe 12 and the second reclaimed resin take-out pipe 13 are merged, and one regenerated resin transfer pipe 14 is provided from the junction to the cation exchange resin tower 1. The regenerated resin transfer pipe 14 may be omitted, and the first regenerated resin take-out pipe 12 and the second regenerated resin take-out pipe 13 may extend from the cation exchange resin recycle tower 3 to the cation exchange resin tower 1, respectively.
 第1および第2の弁32,33は、第1の弁32を先に開いて高再生領域37aのカチオン交換樹脂を取出し、次に、必要に応じ第1の弁32を閉じ、さらに第2の弁33を開いて低再生領域37bのカチオン交換樹脂を取出すように制御される。これらの弁32,33は、復水脱塩装置41の制御盤(図示せず)に設けられた制御部34によって制御される。 The first and second valves 32 and 33 open the first valve 32 first to take out the cation exchange resin in the high regeneration region 37a, then close the first valve 32 as necessary, and then The valve 33 is opened and the cation exchange resin in the low regeneration region 37b is taken out. These valves 32 and 33 are controlled by a control unit 34 provided on a control panel (not shown) of the condensate demineralizer 41.
 使用済み樹脂移送配管8は、カチオン交換樹脂塔1の底部とカチオン交換樹脂再生塔3の上部とをつないでおり、使用済みのカチオン交換樹脂は、カチオン交換樹脂塔1の下方の樹脂から順次カチオン交換樹脂再生塔3に移送される。従って、本実施形態では、カチオン交換樹脂塔1に充填されていた樹脂とカチオン交換樹脂再生塔3に充填される樹脂の上下方向の関係はほぼ維持される。つまり、カチオン交換樹脂塔1の下方にあった樹脂はカチオン交換樹脂再生塔3の下方に充填され、カチオン交換樹脂塔1の上方にあった樹脂はカチオン交換樹脂再生塔3の上方に充填される。 The used resin transfer pipe 8 connects the bottom of the cation exchange resin tower 1 and the top of the cation exchange resin regeneration tower 3, and the used cation exchange resin is sequentially cation from the resin below the cation exchange resin tower 1. It is transferred to the exchange resin regeneration tower 3. Therefore, in this embodiment, the vertical relationship between the resin charged in the cation exchange resin tower 1 and the resin charged in the cation exchange resin regeneration tower 3 is substantially maintained. That is, the resin below the cation exchange resin tower 1 is filled below the cation exchange resin regeneration tower 3, and the resin above the cation exchange resin tower 1 is filled above the cation exchange resin regeneration tower 3. .
 アニオン交換樹脂塔2およびアニオン交換樹脂再生塔4も、カチオン交換樹脂塔1およびカチオン交換樹脂再生塔3とほぼ同様の構成を有している。再生樹脂移送配管15は、アニオン交換樹脂再生塔4の底部とアニオン交換樹脂塔2の上部とをつないでいる。使用済み樹脂移送配管9は、アニオン交換樹脂塔2の底部とアニオン交換樹脂再生塔4の上部とをつないでおり、アニオン交換樹脂は、アニオン交換樹脂塔2の下方の樹脂から順次アニオン交換樹脂再生塔4に移送される。再生樹脂移送配管9はアニオン交換樹脂塔2の底部とアニオン交換樹脂再生塔4の上部を結ぶ1本の配管だけで構成されている。 The anion exchange resin tower 2 and the anion exchange resin regeneration tower 4 have almost the same configuration as the cation exchange resin tower 1 and the cation exchange resin regeneration tower 3. The recycled resin transfer pipe 15 connects the bottom part of the anion exchange resin regeneration tower 4 and the upper part of the anion exchange resin tower 2. The used resin transfer pipe 9 connects the bottom of the anion exchange resin tower 2 and the top of the anion exchange resin regeneration tower 4, and the anion exchange resin is successively regenerated from the resin below the anion exchange resin tower 2. It is transferred to the tower 4. The regenerated resin transfer pipe 9 is composed of only one pipe connecting the bottom of the anion exchange resin tower 2 and the top of the anion exchange resin regeneration tower 4.
 次に、以上説明した復水脱塩装置41を用いた復水脱塩方法を説明する。 Next, a condensate demineralization method using the condensate demineralizer 41 described above will be described.
 まず、発電施設の復水系を流通する復水が、入口配管5を通してカチオン交換樹脂塔1に供給され、復水中のカチオンが除去される。カチオンが除去された復水は、次に配管6を通してアニオン交換樹脂塔2に供給され、アニオンが除去される。カチオンとアニオンが除去された復水は、出口配管7を通して、蒸気発生器などの後段の設備に送られる。 First, the condensate flowing through the condensate system of the power generation facility is supplied to the cation exchange resin tower 1 through the inlet pipe 5, and the cations in the condensate are removed. The condensate from which the cations have been removed is then supplied to the anion exchange resin tower 2 through the pipe 6 to remove the anions. The condensate from which cations and anions have been removed is sent to the downstream equipment such as a steam generator through the outlet pipe 7.
 カチオン交換樹脂の再生のため、入口配管5の弁(図示せず)が閉じられ、カチオン交換樹脂塔1およびアニオン交換樹脂塔2への通水が停止される。その後、カチオン交換樹脂塔1に充填されているカチオン交換樹脂が、使用済み樹脂移送配管8を通してカチオン交換樹脂再生塔3へ移送される。アニオン交換樹脂塔2に充填されているアニオン交換樹脂は、再生樹脂移送配管9を通してアニオン交換樹脂再生塔4へ移送される。 In order to regenerate the cation exchange resin, the valve (not shown) of the inlet pipe 5 is closed, and water flow to the cation exchange resin tower 1 and the anion exchange resin tower 2 is stopped. Thereafter, the cation exchange resin filled in the cation exchange resin tower 1 is transferred to the cation exchange resin regeneration tower 3 through the used resin transfer pipe 8. The anion exchange resin filled in the anion exchange resin tower 2 is transferred to the anion exchange resin regeneration tower 4 through the regeneration resin transfer pipe 9.
 カチオン交換樹脂再生塔3では、再生用薬液の供給口35から4~12%程度の硫酸、あるいは4~12%程度の塩酸が供給され、カチオン交換樹脂が再生される。アニオン交換樹脂再生塔4では、再生用薬液の供給口38から4~12%程度の水酸化ナトリウム水溶液が供給され、アニオン交換樹脂が再生される。本実施形態では使用済みのカチオン交換樹脂及びアニオン交換樹脂は完全に再生されず、部分的に再生されるだけである。再生用薬液を上方から供給した場合、上方の樹脂ほど再生効率が高く、H形(カチオン交換樹脂の場合)あるいはOH形(アニオン交換樹脂の場合)の比率が高くなる。 In the cation exchange resin regeneration tower 3, about 4 to 12% sulfuric acid or about 4 to 12% hydrochloric acid is supplied from the regeneration chemical supply port 35 to regenerate the cation exchange resin. In the anion exchange resin regeneration tower 4, an aqueous 4 to 12% sodium hydroxide aqueous solution is supplied from the regeneration chemical supply port 38 to regenerate the anion exchange resin. In the present embodiment, the used cation exchange resin and anion exchange resin are not completely regenerated but only partially regenerated. When the chemical solution for regeneration is supplied from above, the regeneration efficiency is higher in the upper resin, and the ratio of H type (in the case of cation exchange resin) or OH type (in the case of anion exchange resin) becomes higher.
 再生処理の終了後、制御部34で第2の弁33が閉じられ、第1の弁32が開かれる。引き続き、カチオン交換樹脂再生塔3内の高再生領域37aのカチオン交換樹脂が、再生樹脂移送配管12,14を通してカチオン交換樹脂塔1に移送される。以上の工程によって、カチオン交換樹脂塔1の内部にH形の比率が高いカチオン交換樹脂下層16が形成される。 After completion of the regeneration process, the control unit 34 closes the second valve 33 and opens the first valve 32. Subsequently, the cation exchange resin in the high regeneration region 37 a in the cation exchange resin regeneration tower 3 is transferred to the cation exchange resin tower 1 through the regeneration resin transfer pipes 12 and 14. Through the above steps, the cation exchange resin lower layer 16 having a high H-type ratio is formed inside the cation exchange resin tower 1.
 カチオン交換樹脂下層16を形成した後、カチオン交換樹脂上層17を形成する前に、カチオン交換樹脂塔1の内部に、カチオン交換樹脂下層16よりも高い水位まで水を供給することが好ましい。カチオン交換樹脂下層16が形成される際、少量の水がカチオン交換樹脂塔1内に連行されるが、その後ただちにカチオン交換樹脂上層17を形成する樹脂を移送すると、水撃などにより、先に形成したカチオン交換樹脂下層16の表面が波打つように変形することがある。それによって、カチオン交換樹脂下層16の層高が不均一になり、あるいは所望の形状のカチオン交換樹脂下層16を形成できなくなることがある。水を供給しカチオン交換樹脂下層16の上部に水の層を形成することで、水撃による衝撃力を弱め、上述した不具合を防止することができる。 After forming the cation exchange resin lower layer 16 and before forming the cation exchange resin upper layer 17, it is preferable to supply water to the interior of the cation exchange resin tower 1 to a higher water level than the cation exchange resin lower layer 16. When the cation exchange resin lower layer 16 is formed, a small amount of water is taken into the cation exchange resin tower 1, but immediately after the resin forming the cation exchange resin upper layer 17 is transferred, it is formed first by water hammer or the like. The cation exchange resin lower layer 16 may be deformed so that the surface of the cation exchange resin lower layer 16 undulates. Accordingly, the layer height of the cation exchange resin lower layer 16 may become uneven, or the cation exchange resin lower layer 16 having a desired shape may not be formed. By supplying water and forming a water layer on top of the cation exchange resin lower layer 16, the impact force due to water hammer can be weakened and the above-mentioned problems can be prevented.
 その後、制御部34で第1の弁32が閉じられ、第2の弁33が開かれて、カチオン交換樹脂再生塔3内の残りのカチオン交換樹脂、すなわち低再生領域37bのカチオン交換樹脂が、再生樹脂移送配管13,14を通してカチオン交換樹脂塔1に移送される。第1の弁32を開いたままにして、残りの樹脂の一部を、再生樹脂移送配管12,14を通してカチオン交換樹脂塔1に移送することもできる。移送されたカチオン交換樹脂は、カチオン交換樹脂塔1内で、カチオン交換樹脂下層16の上にカチオン交換樹脂上層17を形成する。 Thereafter, the first valve 32 is closed and the second valve 33 is opened by the control unit 34, and the remaining cation exchange resin in the cation exchange resin regeneration tower 3, that is, the cation exchange resin in the low regeneration region 37b, It is transferred to the cation exchange resin tower 1 through the recycled resin transfer pipes 13 and 14. A part of the remaining resin can be transferred to the cation exchange resin tower 1 through the recycled resin transfer pipes 12 and 14 while the first valve 32 is kept open. The transferred cation exchange resin forms a cation exchange resin upper layer 17 on the cation exchange resin lower layer 16 in the cation exchange resin tower 1.
 アニオン交換樹脂再生塔4で再生されたアニオン交換樹脂は、再生樹脂移送配管15を通してアニオン交換樹脂塔2へ移送され、アニオン交換樹脂塔2内でアニオン交換樹脂層18を形成する。 The anion exchange resin regenerated in the anion exchange resin regeneration tower 4 is transferred to the anion exchange resin tower 2 through the regeneration resin transfer pipe 15 to form an anion exchange resin layer 18 in the anion exchange resin tower 2.
 再生されたカチオン交換樹脂とアニオン交換樹脂がカチオン交換樹脂塔1とアニオン交換樹脂塔2にそれぞれ再充填されると、復水の脱塩処理が再開される。すなわち、カチオン交換樹脂下層16とカチオン交換樹脂上層17とが形成されたカチオン交換樹脂塔1に、発電施設の復水系を流通する復水を、カチオン交換樹脂塔1の上部から下部へと通水させることによって、カチオンが除去される。アニオン交換樹脂層18が形成されたアニオン交換樹脂塔3にさらに復水を通水させることによって、アニオンが除去される。 When the regenerated cation exchange resin and anion exchange resin are refilled in the cation exchange resin tower 1 and the anion exchange resin tower 2, respectively, the demineralization treatment of the condensate is resumed. That is, the condensate flowing through the condensate system of the power generation facility is passed through the cation exchange resin tower 1 formed with the cation exchange resin lower layer 16 and the cation exchange resin upper layer 17 from the upper part to the lower part of the cation exchange resin tower 1. To remove cations. The anion is removed by further passing condensate through the anion exchange resin tower 3 on which the anion exchange resin layer 18 is formed.
 このように、再生されたカチオン交換樹脂のうちH形の割合が多い樹脂をカチオン交換樹脂塔1の下部に配置することにより、復水中の塩濃度が変化した場合にも対処することができ、所望の水質を得ることができる。復水中のカチオン(Naイオン、Caイオン等)はカチオン交換樹脂のイオン選択性(イオンを交換吸着する強さ)に応じて、カチオン交換樹脂への吸着とカチオン交換樹脂からの脱離を繰り返し、イオン選択性の高いイオン成分から徐々に除去(吸着)されていく。従って、復水の流通方向に関して下流側ではイオン選択性の低いイオン成分の割合が増加するが、下流側にイオン選択性の低いH形のカチオン交換樹脂を設けることで、Hイオンよりもイオン選択性の高いイオン成分を効率よく除去することができる。 Thus, by arranging a resin having a high H-type ratio among the regenerated cation exchange resins in the lower part of the cation exchange resin tower 1, it is possible to cope with a change in the salt concentration in the condensate, Desired water quality can be obtained. Cations (Na ions, Ca ions, etc.) in the condensate are repeatedly adsorbed on the cation exchange resin and desorbed from the cation exchange resin, depending on the ion selectivity of the cation exchange resin (strength for ion exchange adsorption). Gradually removed (adsorbed) from ion components with high ion selectivity. Therefore, the proportion of ion components with low ion selectivity increases on the downstream side with respect to the condensate flow direction. However, by providing an H-type cation exchange resin with low ion selectivity on the downstream side, ion selection over H ions is possible. Highly ionic components can be efficiently removed.
 (第2の実施形態)
 図2は、本発明の第2の実施形態に係る復水脱塩装置および復水脱塩方法を示す模式図である。本実施形態では、再生されたカチオン交換樹脂を再充填のために貯留するために、カチオン交換樹脂貯槽19が設けられている。同様に、再生されたアニオン交換樹脂を再充填のために貯留するために、アニオン交換樹脂貯槽20が設けられている。
(Second Embodiment)
FIG. 2 is a schematic diagram showing a condensate demineralization apparatus and a condensate demineralization method according to the second embodiment of the present invention. In the present embodiment, a cation exchange resin storage tank 19 is provided to store the regenerated cation exchange resin for refilling. Similarly, an anion exchange resin storage tank 20 is provided to store the regenerated anion exchange resin for refilling.
 カチオン交換樹脂貯槽19は、内部に設けられた分離壁23によって、第1の再生樹脂貯槽19aと、第2の再生樹脂貯槽19bと、に分割されている。第1の再生樹脂貯槽19aと、第2の再生樹脂貯槽19bは別々の槽として構成することもできる。第1の再生樹脂貯槽19aは、第1の再生樹脂取出し配管21a,21b上に位置し、第1の再生樹脂取出し配管21aから取出されたカチオン交換樹脂を貯留する。第2の再生樹脂貯槽19bは、第2の再生樹脂取出し配管22a,22b上に位置し、第2の再生樹脂取出し配管22aから取出されたカチオン交換樹脂を貯留する。従って、高再生領域37aのカチオン交換樹脂と、低再生領域37bのカチオン交換樹脂は別々に貯留される。 The cation exchange resin storage tank 19 is divided into a first recycled resin storage tank 19a and a second recycled resin storage tank 19b by a separation wall 23 provided inside. The first recycled resin storage tank 19a and the second recycled resin storage tank 19b can be configured as separate tanks. The first recycled resin storage tank 19a is located on the first recycled resin take-out pipes 21a and 21b, and stores the cation exchange resin taken out from the first recycled resin take-out pipe 21a. The second recycled resin storage tank 19b is located on the second recycled resin take-out pipes 22a and 22b, and stores the cation exchange resin taken out from the second reclaimed resin take-out pipe 22a. Therefore, the cation exchange resin in the high regeneration region 37a and the cation exchange resin in the low regeneration region 37b are stored separately.
 本実施形態の復水脱塩設備41を用いた復水脱塩処理は以下のように行われる。まず、カチオン交換樹脂再生塔3で再生されたカチオン交換樹脂のうち、高再生領域37aのカチオン交換樹脂が、第1の再生樹脂取出し配管21aを通して第1の再生樹脂貯槽19aに移送される。具体的には、H形が95%以上のカチオン交換樹脂、あるいは総体積の5~50%の量のカチオン交換樹脂が、第1の再生樹脂取出し配管21aを通して第1の再生樹脂貯槽19aに移送される。残りのカチオン交換樹脂は、第2の再生樹脂取出し配管22aを通して第2の再生樹脂貯槽19bに移送される。従って、取出し配管21a,22aから移送されたカチオン交換樹脂は、第1の再生樹脂貯槽19aと、第2の再生樹脂貯槽19bと、に別々に貯留することができる。アニオン交換樹脂再生塔4で再生されたアニオン交換樹脂は、再生樹脂移送配管24を通してアニオン交換樹脂貯槽20に移送され、再充填のために貯留される。 The condensate demineralization process using the condensate demineralization equipment 41 of this embodiment is performed as follows. First, among the cation exchange resins regenerated in the cation exchange resin regeneration tower 3, the cation exchange resin in the high regeneration region 37a is transferred to the first regenerated resin storage tank 19a through the first regenerated resin take-out pipe 21a. Specifically, a cation exchange resin having an H form of 95% or more or a cation exchange resin in an amount of 5 to 50% of the total volume is transferred to the first regenerated resin storage tank 19a through the first regenerated resin take-out pipe 21a. Is done. The remaining cation exchange resin is transferred to the second recycled resin storage tank 19b through the second recycled resin take-out pipe 22a. Therefore, the cation exchange resin transferred from the extraction pipes 21a and 22a can be separately stored in the first recycled resin storage tank 19a and the second recycled resin storage tank 19b. The anion exchange resin regenerated in the anion exchange resin regeneration tower 4 is transferred to the anion exchange resin storage tank 20 through the regeneration resin transfer pipe 24 and stored for refilling.
 カチオン交換樹脂貯槽19およびアニオン交換樹脂貯槽20に再生された樹脂が貯留されているとき、カチオン交換樹脂塔1とアニオン交換樹脂塔2には別のカチオン交換樹脂とアニオン交換樹脂が充填されており、これらの塔では復水の脱塩処理が行われている。規定の処理量の復水を通水した後、カチオン交換樹脂塔1およびアニオン交換樹脂塔2への通水が停止され、充填されている樹脂がカチオン交換樹脂再生塔3とアニオン交換樹脂再生塔4に移送される。 When the regenerated resin is stored in the cation exchange resin reservoir 19 and the anion exchange resin reservoir 20, the cation exchange resin tower 1 and the anion exchange resin tower 2 are filled with another cation exchange resin and an anion exchange resin. These towers are undergoing desalination treatment of condensate. After passing the specified amount of condensate, the water flow to the cation exchange resin tower 1 and the anion exchange resin tower 2 is stopped, and the filled resin becomes the cation exchange resin regeneration tower 3 and the anion exchange resin regeneration tower. 4 is transferred.
 カチオン交換樹脂塔1とアニオン交換樹脂塔2の使用済み樹脂が移送された後、カチオン交換樹脂貯槽19とアニオン交換樹脂貯槽20で待機していた樹脂が移送される。カチオン交換樹脂貯槽19からまず第1の再生樹脂取出し配管21bおよび樹脂移送配管27を通して高再生領域37aのカチオン交換樹脂が移送され、カチオン交換樹脂塔1内にカチオン交換樹脂下層16が形成される。次に第2の再生樹脂取出し配管22bおよび樹脂移送配管27を通して低再生領域37bのカチオン交換樹脂が移送され、カチオン交換樹脂塔1内にカチオン交換樹脂上層17が形成される。アニオン交換樹脂貯槽20からは、樹脂移送配管28を通してアニオン交換樹脂が移送され、アニオン交換樹脂塔2にアニオン交換樹脂層18が形成される。 After the used resins of the cation exchange resin tower 1 and the anion exchange resin tower 2 are transferred, the resin that has been waiting in the cation exchange resin storage tank 19 and the anion exchange resin storage tank 20 is transferred. First, the cation exchange resin in the high regeneration region 37 a is transferred from the cation exchange resin storage tank 19 through the first regeneration resin take-out pipe 21 b and the resin transfer pipe 27, and the cation exchange resin lower layer 16 is formed in the cation exchange resin tower 1. Next, the cation exchange resin in the low regeneration region 37 b is transferred through the second regeneration resin take-out pipe 22 b and the resin transfer pipe 27, and the cation exchange resin upper layer 17 is formed in the cation exchange resin tower 1. The anion exchange resin is transferred from the anion exchange resin storage tank 20 through the resin transfer pipe 28, and the anion exchange resin layer 18 is formed in the anion exchange resin tower 2.
 このように本実施形態では、再生されたカチオン交換樹脂およびアニオン交換樹脂が、カチオン交換樹脂塔1およびアニオン交換樹脂塔2に移送される前に、一旦再生樹脂貯槽19,20に貯留される。従って、カチオン交換樹脂塔1およびアニオン交換樹脂塔2から使用済みの樹脂を移送した後、再生された別のカチオン交換樹脂およびアニオン交換樹脂を直ちにカチオン交換樹脂塔1およびアニオン交換樹脂塔2に充填することができる。従って、移送した樹脂の再生が終わるまでの間、復水脱塩装置41を待機させる必要がなく、復水の処理を短時間で再開することができる。 Thus, in the present embodiment, the regenerated cation exchange resin and the anion exchange resin are once stored in the regenerated resin storage tanks 19 and 20 before being transferred to the cation exchange resin tower 1 and the anion exchange resin tower 2. Therefore, after the used resin is transferred from the cation exchange resin tower 1 and the anion exchange resin tower 2, another regenerated cation exchange resin and anion exchange resin are immediately charged into the cation exchange resin tower 1 and the anion exchange resin tower 2. can do. Therefore, it is not necessary to wait for the condensate demineralizer 41 until the regeneration of the transferred resin is completed, and the condensate treatment can be resumed in a short time.
 (第3の実施形態)
 図3は、本発明の第3の実施形態に係る復水脱塩装置および復水脱塩方法を示す模式図である。本実施形態では、カチオン交換樹脂塔1内のカチオン交換樹脂上層17とカチオン交換樹脂下層16を、カチオン交換樹脂再生塔3に別々に移送することができる。
(Third embodiment)
FIG. 3 is a schematic diagram showing a condensate demineralization apparatus and a condensate demineralization method according to a third embodiment of the present invention. In this embodiment, the cation exchange resin upper layer 17 and the cation exchange resin lower layer 16 in the cation exchange resin tower 1 can be separately transferred to the cation exchange resin regeneration tower 3.
 使用済み樹脂移送配管29,30は、2つの使用済み樹脂取出し配管、すなわち第1の使用済み樹脂取出し配管29と、第2の使用済み樹脂取出し配管30と、を有している。第1の使用済み樹脂取出し配管29はカチオン交換樹脂塔1の底部に接続され、カチオン交換樹脂塔1中のカチオン交換樹脂の全量を取出すことができる。この配管29は、第1の実施形態の配管8と同様の配管である。第2の使用済み樹脂取出し配管30は、第1の使用済み樹脂取出し配管29およびカチオン交換樹脂下層16よりも高い位置でカチオン交換樹脂塔1に接続されており、カチオン交換樹脂上層17の少なくとも一部を取出すことができる。 The used resin transfer pipes 29 and 30 have two used resin take-out pipes, that is, a first used resin take-out pipe 29 and a second used resin take-out pipe 30. The first used resin outlet pipe 29 is connected to the bottom of the cation exchange resin tower 1 so that the entire amount of the cation exchange resin in the cation exchange resin tower 1 can be taken out. This pipe 29 is the same pipe as the pipe 8 of the first embodiment. The second used resin take-out pipe 30 is connected to the cation exchange resin tower 1 at a position higher than the first used resin take-out pipe 29 and the cation exchange resin lower layer 16, and is at least one of the cation exchange resin upper layer 17. The part can be taken out.
 本実施形態の復水脱塩設備41を用いた復水脱塩処理は以下のように行われる。復水を脱塩した後、カチオン交換樹脂上層17の少なくとも一部が使用済み樹脂移送配管30,31を通してカチオン交換樹脂再生塔3に移送されて、カチオン交換樹脂再生塔3の内部に使用済みカチオン交換樹脂下層46が形成される。次に、カチオン交換樹脂塔1中の残りのカチオン交換樹脂が使用済み樹脂移送配管29,31を通してカチオン交換樹脂再生塔3に移送され、カチオン交換樹脂再生塔3の内部のカチオン交換樹脂下層46の上にカチオン交換樹脂上層47が形成される。カチオン交換樹脂上層47は、カチオン交換樹脂下層16(および最初の段階で移送されなかったカチオン交換樹脂上層17)からなる。次に、再生用薬液が、使用済みカチオン交換樹脂上層47の上方の供給口35から供給されて、カチオン交換樹脂再生塔3中のカチオン交換樹脂が再生される。 The condensate demineralization process using the condensate demineralization equipment 41 of this embodiment is performed as follows. After desalting the condensate, at least a part of the cation exchange resin upper layer 17 is transferred to the cation exchange resin regeneration tower 3 through the used resin transfer pipes 30 and 31 and used cation exchange resin regeneration tower 3 inside. An exchange resin lower layer 46 is formed. Next, the remaining cation exchange resin in the cation exchange resin tower 1 is transferred to the cation exchange resin regeneration tower 3 through the used resin transfer pipes 29 and 31, and the cation exchange resin lower layer 46 inside the cation exchange resin regeneration tower 3 is transferred. A cation exchange resin upper layer 47 is formed thereon. The cation exchange resin upper layer 47 includes the cation exchange resin lower layer 16 (and the cation exchange resin upper layer 17 that has not been transferred in the first stage). Next, a chemical solution for regeneration is supplied from the supply port 35 above the used cation exchange resin upper layer 47 to regenerate the cation exchange resin in the cation exchange resin regeneration tower 3.
 このようにして使用済みのカチオン交換樹脂を移送する結果、比較的H形が残存しているカチオン交換樹脂上層47はカチオン交換樹脂再生塔3の上部に配置され、新鮮な再生用薬液と接触することができる。他の実施形態と同様、カチオン交換樹脂再生塔3の上部に配置された樹脂は、カチオン交換樹脂塔1内のカチオン交換樹脂下層16を構成するため、より高い割合で再生されたカチオン交換樹脂でカチオン交換樹脂下層16を構成することができる。 As a result of transferring the used cation exchange resin in this way, the cation exchange resin upper layer 47 in which the H form remains relatively is disposed on the top of the cation exchange resin regeneration tower 3 and comes into contact with a fresh chemical solution for regeneration. be able to. As in the other embodiments, the resin disposed in the upper part of the cation exchange resin regeneration tower 3 constitutes the cation exchange resin lower layer 16 in the cation exchange resin tower 1, and therefore is a cation exchange resin regenerated at a higher rate. The cation exchange resin lower layer 16 can be constituted.
 (第4の実施形態)
 図4は、本発明の第4の実施形態に係る復水脱塩装置および復水脱塩方法を示す模式図である。本実施形態では、使用済みのカチオン交換樹脂は、ただちにカチオン交換樹脂再生塔3に送られず、一時的に使用済み樹脂貯槽48に貯留される。使用済み樹脂貯槽48は使用済み樹脂移送配管8上に位置しており、カチオン交換樹脂塔1から取出された使用済みのカチオン交換樹脂を一時的に貯留する。同様に、使用済みのアニオン交換樹脂は、ただちにアニオン交換樹脂再生塔4に送られず、一時的に使用済み樹脂貯槽49に貯留される。使用済み樹脂貯槽48は使用済み樹脂移送配管9上に位置しており、アニオン交換樹脂塔2から取出された使用済みのアニオン交換樹脂を一時的に貯留する。
(Fourth embodiment)
FIG. 4 is a schematic diagram showing a condensate demineralization apparatus and a condensate demineralization method according to a fourth embodiment of the present invention. In the present embodiment, the used cation exchange resin is not immediately sent to the cation exchange resin regeneration tower 3 but temporarily stored in the used resin storage tank 48. The used resin storage tank 48 is located on the used resin transfer pipe 8 and temporarily stores the used cation exchange resin taken out from the cation exchange resin tower 1. Similarly, the used anion exchange resin is not immediately sent to the anion exchange resin regeneration tower 4 but temporarily stored in the used resin storage tank 49. The used resin storage tank 48 is located on the used resin transfer pipe 9 and temporarily stores the used anion exchange resin taken out from the anion exchange resin tower 2.
 本実施形態の復水脱塩設備を用いた復水脱塩処理は以下のように行われる。復水を脱塩した後、使用済みのカチオン交換樹脂は、カチオン交換樹脂再生塔3に移送される前に、一時的に使用済み樹脂貯槽48に貯留される。このとき、カチオン交換樹脂再生塔3には再生されたカチオン交換樹脂が貯留されている。同様に、使用済みのアニオン交換樹脂は、アニオン交換樹脂再生塔4に移送される前に、一時的に使用済み樹脂貯槽49に貯留される。このとき、アニオン交換樹脂再生塔3には再生されたアニオン交換樹脂が貯留されている。 The condensate demineralization process using the condensate demineralization equipment of this embodiment is performed as follows. After desalting the condensate, the used cation exchange resin is temporarily stored in the used resin storage tank 48 before being transferred to the cation exchange resin regeneration tower 3. At this time, the regenerated cation exchange resin is stored in the cation exchange resin regeneration tower 3. Similarly, the used anion exchange resin is temporarily stored in the used resin storage tank 49 before being transferred to the anion exchange resin regeneration tower 4. At this time, the regenerated anion exchange resin is stored in the anion exchange resin regeneration tower 3.
 カチオン交換樹脂塔1とアニオン交換樹脂塔2内の樹脂が移送された後、カチオン交換樹脂再生塔3とアニオン交換樹脂再生塔4で貯留されていた樹脂がカチオン交換樹脂塔1とアニオン交換樹脂塔2に移送される。カチオン交換樹脂再生塔3からは、まず樹脂移送配管12,14を通して、高再生領域37aのカチオン交換樹脂が移送され、カチオン交換樹脂塔1内にカチオン交換樹脂下層16が形成される。次に樹脂移送配管13,14を通して低再生領域37bのカチオン交換樹脂が移送され、カチオン交換樹脂塔1内にカチオン交換樹脂上層17が形成される。アニオン交換樹脂再生塔4からは、再生樹脂移送配管15を通してアニオン交換樹脂が移送され、アニオン交換樹脂塔2にアニオン交換樹脂層18が形成される。 After the resins in the cation exchange resin tower 1 and the anion exchange resin tower 2 are transferred, the resin stored in the cation exchange resin regeneration tower 3 and the anion exchange resin regeneration tower 4 is replaced with the cation exchange resin tower 1 and the anion exchange resin tower. 2 is transferred. First, the cation exchange resin in the high regeneration region 37 a is transferred from the cation exchange resin regeneration tower 3 through the resin transfer pipes 12 and 14, and the cation exchange resin lower layer 16 is formed in the cation exchange resin tower 1. Next, the cation exchange resin in the low regeneration region 37 b is transferred through the resin transfer pipes 13 and 14, and the cation exchange resin upper layer 17 is formed in the cation exchange resin tower 1. The anion exchange resin is transferred from the anion exchange resin regeneration tower 4 through the regeneration resin transfer pipe 15, and an anion exchange resin layer 18 is formed on the anion exchange resin tower 2.
 その後、使用済み樹脂貯槽48に貯留されていた使用済みのカチオン交換樹脂がカチオン交換樹脂再生塔3に移送され、再生される。同様に、使用済み樹脂貯槽49に貯留されていた使用済みのアニオン交換樹脂がアニオン交換樹脂再生塔4に移送され、再生される。これらの処理は、カチオン交換樹脂塔1およびアニオン交換樹脂塔2での復水脱塩処理と並行して行うことができる。 Thereafter, the used cation exchange resin stored in the used resin storage tank 48 is transferred to the cation exchange resin regeneration tower 3 and regenerated. Similarly, the used anion exchange resin stored in the used resin storage tank 49 is transferred to the anion exchange resin regeneration tower 4 and regenerated. These treatments can be performed in parallel with the condensate demineralization treatment in the cation exchange resin tower 1 and the anion exchange resin tower 2.
 このように本実施形態においても、第2の実施形態と同様、移送した樹脂の再生が終わるまでの間、復水脱塩装置41を待機させる必要がなく、復水の処理を短時間で再開することができる。 Thus, in this embodiment as well, as in the second embodiment, it is not necessary to wait for the condensate demineralizer 41 until regeneration of the transferred resin is completed, and the condensate treatment is resumed in a short time. can do.
 (第5の実施形態)
 図5は、本発明の第5の実施形態に係る復水脱塩装置および復水脱塩方法を示す模式図である。本実施形態では、使用済みのアニオン交換樹脂(第2のイオン交換樹脂)のうち、上層の一部が非再生樹脂貯槽で貯留され、残りのアニオン交換樹脂は再生塔で再生される。それ以外の構成は第3の実施形態と同様である。
(Fifth embodiment)
FIG. 5 is a schematic diagram showing a condensate demineralization apparatus and a condensate demineralization method according to a fifth embodiment of the present invention. In the present embodiment, among the used anion exchange resin (second ion exchange resin), a part of the upper layer is stored in the non-regenerated resin storage tank, and the remaining anion exchange resin is regenerated in the regeneration tower. The other configuration is the same as that of the third embodiment.
 アニオン交換樹脂塔2(第2の復水脱塩塔)には、アニオン交換樹脂層18(アニオン交換樹脂充填層)の上部部分(上層部分)50を取出すための上部樹脂取出し配管52が設けられている。上部樹脂取出し配管52は、アニオン交換樹脂層18の上層部でアニオン交換樹脂塔2に接続され、他端が非再生樹脂貯槽51に接続されている。非再生樹脂貯槽51は、取出されたアニオン交換樹脂層18の上部部分50を一時的に貯留する。上部充填層貯槽51は上部樹脂戻し配管53を介して樹脂移送配管28に接続されており、貯留されているアニオン交換樹脂層18の上部部分50をアニオン交換樹脂塔2に戻すことができる。 The anion exchange resin tower 2 (second condensate demineralization tower) is provided with an upper resin outlet pipe 52 for taking out the upper part (upper part) 50 of the anion exchange resin layer 18 (anion exchange resin packed layer). ing. The upper resin extraction pipe 52 is connected to the anion exchange resin tower 2 at the upper layer portion of the anion exchange resin layer 18 and the other end is connected to the non-regenerated resin storage tank 51. The non-regenerated resin storage tank 51 temporarily stores the upper portion 50 of the extracted anion exchange resin layer 18. The upper packed bed storage tank 51 is connected to the resin transfer pipe 28 via the upper resin return pipe 53, and the stored upper part 50 of the anion exchange resin layer 18 can be returned to the anion exchange resin tower 2.
 本実施形態の復水脱塩設備を用いた復水脱塩処理は以下のように行われる。復水をカチオン交換樹脂塔1及びアニオン交換樹脂塔2で脱塩した後、アニオン交換樹脂層18の上部部分50を取出し、非再生樹脂貯槽51に移送する。その後、アニオン交換樹脂層18の残部を取出し、再生樹脂移送配管9でアニオン交換樹脂再生塔4に移送する。既に再生され、アニオン樹脂貯槽20に貯留されているアニオン交換樹脂をアニオン交換樹脂塔2に移送し、アニオン交換樹脂層を形成する。この間、取出されたアニオン交換樹脂層18の上部部分50は、非再生樹脂貯槽51で、再生されることなく貯留されている。その後、非再生樹脂貯槽51に貯留されているアニオン交換樹脂層18の上部部分50がアニオン交換樹脂塔2に戻される。非再生樹脂貯槽51に貯留されているアニオン交換樹脂は、アニオン交換樹脂層の上に配置される。アニオン交換樹脂再生塔4に移送されたアニオン交換樹脂層18の残部は、その後再生され、アニオン樹脂貯槽20に移送される。 The condensate demineralization process using the condensate demineralization equipment of this embodiment is performed as follows. After the condensed water is desalted by the cation exchange resin tower 1 and the anion exchange resin tower 2, the upper part 50 of the anion exchange resin layer 18 is taken out and transferred to the non-regenerated resin storage tank 51. Thereafter, the remainder of the anion exchange resin layer 18 is taken out and transferred to the anion exchange resin regeneration tower 4 through the regeneration resin transfer pipe 9. The anion exchange resin already regenerated and stored in the anion resin storage tank 20 is transferred to the anion exchange resin tower 2 to form an anion exchange resin layer. During this time, the extracted upper portion 50 of the anion exchange resin layer 18 is stored in the non-regenerated resin storage tank 51 without being regenerated. Thereafter, the upper portion 50 of the anion exchange resin layer 18 stored in the non-regenerated resin storage tank 51 is returned to the anion exchange resin tower 2. The anion exchange resin stored in the non-regenerated resin storage tank 51 is disposed on the anion exchange resin layer. The remainder of the anion exchange resin layer 18 transferred to the anion exchange resin regeneration tower 4 is then regenerated and transferred to the anion resin storage tank 20.
 カチオン交換樹脂塔1とアニオン交換樹脂塔2からなる2層式の復水脱塩装置の場合、カチオン交換樹脂塔1から流出した微細なカチオン交換樹脂(破砕された樹脂の細片など)がアニオン交換樹脂塔2に混入し、アニオン交換樹脂の充填層の上部部分50に混入する可能性がある。上部部分50、すなわち微細なカチオン交換樹脂を含むアニオン交換樹脂がアニオン交換樹脂再生塔4に移送されると、アニオン交換樹脂の再生剤によりカチオン交換樹脂が逆再生され、処理水質が悪化する可能性がある。本実施形態ではこのような原因による処理水質の悪化を防ぐことができる。 In the case of a two-layer condensate demineralizer comprising a cation exchange resin tower 1 and an anion exchange resin tower 2, fine cation exchange resin (such as crushed resin strips) flowing out from the cation exchange resin tower 1 is an anion. There is a possibility of mixing into the exchange resin tower 2 and mixing into the upper portion 50 of the packed bed of anion exchange resin. When the upper portion 50, that is, the anion exchange resin containing a fine cation exchange resin is transferred to the anion exchange resin regeneration tower 4, the cation exchange resin may be reversely regenerated by the regenerant of the anion exchange resin, and the treated water quality may be deteriorated. There is. In this embodiment, the deterioration of the treated water quality due to such a cause can be prevented.
 本実施形態では、カチオン交換樹脂塔1が前段に、アニオン交換樹脂塔2が後段に設けられているため、カチオン交換樹脂がアニオン交換樹脂へ混入する可能性がある。しかし、アニオン交換樹脂塔2が前段に、カチオン交換樹脂塔1が後段に設けられている実施形態でも、アニオン交換樹脂がカチオン交換樹脂に混入する可能性がある。後者の場合も、本実施形態と同様の非再生樹脂貯槽を設け、カチオン交換樹脂塔1のカチオン交換樹脂充填層の上部部分を再生せずに一時的に貯留することによって、同様の効果を得ることができる。 In the present embodiment, since the cation exchange resin tower 1 is provided at the front stage and the anion exchange resin tower 2 is provided at the rear stage, the cation exchange resin may be mixed into the anion exchange resin. However, even in an embodiment in which the anion exchange resin tower 2 is provided at the front stage and the cation exchange resin tower 1 is provided at the rear stage, the anion exchange resin may be mixed into the cation exchange resin. In the latter case, the same effect can be obtained by providing a non-regenerated resin storage tank similar to that of the present embodiment and temporarily storing the upper portion of the cation exchange resin packed bed of the cation exchange resin tower 1 without regenerating. be able to.
 第4の実施形態においても本実施形態と同様の非再生樹脂貯槽を設けることができる。図6はそのような実施形態の一例を示しており、同図からわかるように、非再生樹脂貯槽51、上部樹脂取出し配管52及び上部樹脂戻し配管53の構成は、図5と同じである。アニオン交換樹脂を再生する際は、アニオン交換樹脂層18の上部部分50を取出し、非再生樹脂貯槽51に移送する。その後、アニオン交換樹脂層18の残部を取出し、一時的に使用済み樹脂貯槽49に移送する。アニオン交換樹脂再生塔4に貯蔵されている再生されたアニオン交換樹脂が、樹脂移送配管15でアニオン交換樹脂塔2に移送され、その後、非再生樹脂貯槽51に貯蔵されているアニオン交換樹脂層18の上部部分50がアニオン交換樹脂塔2に移送される。その後、使用済み樹脂貯槽49に貯留されている使用済みのアニオン樹脂がアニオン交換樹脂再生塔4に移送され、再生される。 Also in the fourth embodiment, the same non-recycled resin storage tank as in this embodiment can be provided. FIG. 6 shows an example of such an embodiment. As can be seen from FIG. 6, the configurations of the non-regenerated resin storage tank 51, the upper resin take-out pipe 52, and the upper resin return pipe 53 are the same as those in FIG. When the anion exchange resin is regenerated, the upper portion 50 of the anion exchange resin layer 18 is taken out and transferred to the non-regenerated resin storage tank 51. Thereafter, the remainder of the anion exchange resin layer 18 is taken out and temporarily transferred to the used resin storage tank 49. The regenerated anion exchange resin stored in the anion exchange resin regeneration tower 4 is transferred to the anion exchange resin tower 2 through the resin transfer pipe 15 and then stored in the non-regeneration resin storage tank 51. Is transferred to the anion exchange resin tower 2. Thereafter, the used anion resin stored in the used resin storage tank 49 is transferred to the anion exchange resin regeneration tower 4 and regenerated.
 図示は省略するが、第2の実施形態においても非再生樹脂貯槽51、上部樹脂取出し配管52及び上部樹脂戻し配管53を同様に設けることができる。さらに、第1の実施形態においても、非再生樹脂貯槽51、上部樹脂取出し配管52及び上部樹脂戻し配管53を同様に設けることができる。この場合、アニオン交換樹脂層18の残部がアニオン交換樹脂再生塔4で再生されている間、アニオン交換樹脂層18の上部部分50が非再生樹脂貯槽51に貯留される。 Although illustration is omitted, the non-regenerated resin storage tank 51, the upper resin take-out pipe 52, and the upper resin return pipe 53 can be similarly provided in the second embodiment. Furthermore, also in the first embodiment, the non-regenerated resin storage tank 51, the upper resin take-out pipe 52, and the upper resin return pipe 53 can be similarly provided. In this case, while the remainder of the anion exchange resin layer 18 is regenerated in the anion exchange resin regeneration tower 4, the upper portion 50 of the anion exchange resin layer 18 is stored in the non-regeneration resin storage tank 51.
 復水器に海水が漏洩し塩分の濃度が高くなった復水を模擬した模擬復水を作成し、イオン交換樹脂を充填したカラムへの通水試験を実施した。実施例で使用したイオン交換樹脂の仕様および量は以下の通りとした。
・カチオン交換樹脂上層 アンバージェット1006F 274ml
         下層 アンバージェット1006F 30ml
・アニオン交換樹脂層  アンバージェット9000  242ml
 カチオン交換樹脂上層に使用したカチオン交換樹脂はH形71.9%、Na形0.1%、NH3形28%になるように調整した。カチオン交換樹脂下層に使用したカチオン交換樹脂はH形99.9%、Na形0.1%になるように調整した。アニオン樹脂層に使用したアニオン交換樹脂はOH形98%、Cl形1%、SO4形1%になるように調整した。カチオン交換樹脂全体でNH3形24.9%、Na形0.1%、H形75%とした。
Simulated condensate simulating the condensate with high salinity due to leakage of seawater into the condenser, and a water flow test to a column packed with ion exchange resin was conducted. The specifications and amounts of the ion exchange resins used in the examples were as follows.
・ Cation exchange resin upper layer Amberjet 1006F 274ml
Lower layer Amberjet 1006F 30ml
・ Anion exchange resin layer Amberjet 242 ml
The cation exchange resin used for the upper layer of the cation exchange resin was adjusted to be 71.9% in H form, 0.1% in Na form, and 28% in NH 3 form. The cation exchange resin used for the lower layer of the cation exchange resin was adjusted to be 99.9% in the H form and 0.1% in the Na form. The anion exchange resin used in the anion resin layer was adjusted so as to be 98% OH form, 1% Cl form, and 1% SO 4 form. The total amount of the cation exchange resin was 24.9% NH 3 , 0.1% Na, and 75% H.
 模擬復水を通水温度40℃、通水流速92m/hで、カチオン交換樹脂層およびアニオン交換樹脂層に下向流で通水した。模擬復水はNH3を1330ppb、NaClを23800ppb、Na2SO4を2900ppb含んでいる。 The simulated condensate was passed through the cation exchange resin layer and the anion exchange resin layer in a downward flow at a water flow temperature of 40 ° C. and a water flow velocity of 92 m / h. The simulated condensate contains 1330 ppb NH 3 , 23800 ppb NaCl, and 2900 ppb Na 2 SO 4 .
 アニオン交換樹脂層の後段に酸導電率測定用のカチオン交換樹脂層を設置し、酸導電率を測定した。Naイオン、Clイオン、SO4イオンの濃度はダイオネクス社製イオンクロマトグラフICS-2000を用いて測定した(表1参照)。 A cation exchange resin layer for acid conductivity measurement was installed after the anion exchange resin layer, and the acid conductivity was measured. The concentrations of Na ions, Cl ions, and SO 4 ions were measured using an ion chromatograph ICS-2000 manufactured by Dionex (see Table 1).
 次に比較例として、以下の仕様および量のカチオン交換樹脂層、アニオン交換樹脂層を使用し、同じ成分の模擬復水を、同一の通水条件で、カチオン交換樹脂およびアニオン交換樹脂に通水した。
・カチオン交換樹脂層 アンバージェット1006F 304ml
・アニオン交換樹脂層 アンバージェット9000  242ml
 カチオン交換樹脂層はH形74.9%、Na形0.1%、NH3形25%とした。アニオン交換樹脂層は実施例と同じものを使用した。実施例と同様に酸導電率、Naイオン、Clイオン、SO4イオンの濃度を測定した(表1参照)。
Next, as a comparative example, a cation exchange resin layer and an anion exchange resin layer having the following specifications and quantities are used, and simulated condensate of the same component is passed through the cation exchange resin and anion exchange resin under the same water flow conditions. did.
・ Cation exchange resin layer Amberjet 1006F 304ml
・ Anion exchange resin layer Amberjet 242 ml
The cation exchange resin layer was 74.9% H-form, 0.1% Na-form, and 25% NH 3 form. The anion exchange resin layer was the same as in the example. The acid conductivity, Na ion, Cl ion, and SO 4 ion concentration were measured in the same manner as in the examples (see Table 1).
Figure JPOXMLDOC01-appb-T000001
 このように比較例においてはNaイオンの濃度が30μg/Lとなり、復水の処理水質として十分な水質を得ることができなかった。一方、実施例においてはNaイオンの濃度が1μg/L以下となり、十分な水質を得ることができた。またClイオン、SO4イオンの濃度も1μg/L以下となり、十分な水質を得ることができた。
Figure JPOXMLDOC01-appb-T000001
Thus, in the comparative example, the concentration of Na ions was 30 μg / L, and it was not possible to obtain sufficient water quality as the quality of the treated water for condensate. On the other hand, in the examples, the Na ion concentration was 1 μg / L or less, and sufficient water quality could be obtained. Also, the concentration of Cl ions and SO 4 ions was 1 μg / L or less, and sufficient water quality could be obtained.
 以上説明したように、本発明の復水脱塩装置および復水脱塩方法によれば、復水脱塩塔の下部(復水の流通方向における下流側)に再生割合の高いイオン交換樹脂が充填されるため万一の海水漏洩などにより復水の塩濃度が変化した場合であっても、従来の複床式より優れ、混床式や3層式に劣らない処理水質を得ることができる。また、混床式において必要であった分離操作が不要となり運転管理の負担を減らすことができ、3層式に比べ簡素な装置とすることができる。特に火力発電所のようにイオン交換樹脂を完全に再生しない使用条件下では、本発明の復水脱塩装置および復水脱塩方法を好適に使用することができる。 As described above, according to the condensate demineralization apparatus and the condensate demineralization method of the present invention, an ion exchange resin having a high regeneration rate is provided at the lower part of the condensate demineralization tower (downstream in the flow direction of the condensate). Even if the salt concentration of the condensate changes due to leakage of seawater, etc., it is possible to obtain a treated water quality that is superior to the conventional double bed type and inferior to the mixed bed type or three layer type. . Further, the separation operation required in the mixed bed type is not required, and the burden of operation management can be reduced, and the apparatus can be simplified as compared with the three-layer type. In particular, the condensate demineralization apparatus and the condensate demineralization method of the present invention can be suitably used under use conditions where the ion exchange resin is not completely regenerated, such as a thermal power plant.
 1 カチオン交換樹脂塔
 2 アニオン交換樹脂塔
 3 カチオン交換樹脂再生塔
 4 アニオン交換樹脂再生塔
 12 第1の再生樹脂取出し配管(再生樹脂移送配管)
 13 第2の再生樹脂取出し配管(再生樹脂移送配管)
 16 カチオン交換樹脂下層
 17 カチオン交換樹脂上層
 18 アニオン交換樹脂層
 19 カチオン交換樹脂貯槽
 20 アニオン交換樹脂貯槽
 37 樹脂充填部
 37a 高再生領域
 37b 低再生領域
DESCRIPTION OF SYMBOLS 1 Cation exchange resin tower 2 Anion exchange resin tower 3 Cation exchange resin regeneration tower 4 Anion exchange resin regeneration tower 12 1st regeneration resin extraction piping (regeneration resin transfer piping)
13 Second recycled resin take-out pipe (recycled resin transfer pipe)
16 Cation exchange resin lower layer 17 Cation exchange resin upper layer 18 Anion exchange resin layer 19 Cation exchange resin storage tank 20 Anion exchange resin storage tank 37 Resin filling part 37a High regeneration area 37b Low regeneration area

Claims (16)

  1.  アニオン交換樹脂またはカチオン交換樹脂の一方であるイオン交換樹脂が充填される復水脱塩塔であって、発電施設の復水系を流通する復水を前記復水脱塩塔の上部から下部へと通水させることによって、前記復水を前記イオン交換樹脂で脱塩する復水脱塩塔と、
     使用済みの前記イオン交換樹脂を再生する再生塔と、
     再生された前記イオン交換樹脂を前記再生塔から前記復水脱塩塔に移送する再生樹脂移送配管と、を有し、
     前記再生樹脂移送配管は、
     前記再生塔中の再生された前記イオン交換樹脂の割合が相対的に高い高再生領域のイオン交換樹脂を取出し、前記復水脱塩塔の内部にイオン交換樹脂下層を形成するように前記高再生領域のイオン交換樹脂を移送する第1の再生樹脂取出し配管と、
     前記再生塔中の再生された前記イオン交換樹脂の割合が相対的に低い低再生領域のイオン交換樹脂を取出し、前記復水脱塩塔の内部の前記イオン交換樹脂下層の上にイオン交換樹脂上層を形成するように前記低再生領域のイオン交換樹脂を移送する第2の再生樹脂取出し配管と、
     を有している、復水脱塩装置。
    A condensate demineralization tower filled with an ion exchange resin that is one of an anion exchange resin or a cation exchange resin, and the condensate flowing through the condensate system of a power generation facility is moved from the upper part to the lower part of the condensate demineralization tower. A condensate demineralization tower for desalting the condensate with the ion exchange resin by passing water;
    A regeneration tower for regenerating the used ion exchange resin;
    Regenerated resin transfer piping for transferring the regenerated ion exchange resin from the regeneration tower to the condensate demineralization tower,
    The recycled resin transfer pipe is
    Taking out the ion exchange resin in the high regeneration region in which the proportion of the regenerated ion exchange resin in the regeneration tower is relatively high, and forming the ion exchange resin lower layer inside the condensate demineralization tower A first recycled resin take-out pipe for transferring the ion exchange resin in the region;
    Taking out an ion exchange resin in a low regeneration region in which the proportion of the regenerated ion exchange resin in the regeneration tower is relatively low, and an ion exchange resin upper layer on the ion exchange resin lower layer in the condensate demineralization tower A second recycled resin take-out pipe for transferring the low-regeneration region ion exchange resin so as to form:
    A condensate demineralizer.
  2.  前記再生塔は、前記再生塔内の前記イオン交換樹脂が充填される樹脂充填部よりも上方に再生用薬液の供給口を備え、前記第1の再生樹脂取出し配管は前記第2の再生樹脂取出し配管よりも高い位置で前記再生塔に接続されている、請求項1に記載の復水脱塩装置。 The regeneration tower is provided with a supply port for a chemical solution for regeneration above a resin filling portion filled with the ion exchange resin in the regeneration tower, and the first regeneration resin take-out pipe is the second regeneration resin take-out pipe. The condensate demineralizer according to claim 1, which is connected to the regeneration tower at a position higher than the pipe.
  3.  前記第1および第2の再生樹脂取出し配管上にそれぞれ設けられた第1および第2の弁と、
     前記第1の弁を先に開いて前記高再生領域のイオン交換樹脂を取出し、次に、前記第2の弁を開いて前記低再生領域のイオン交換樹脂を取出すように、前記第1および第2の弁を制御する制御部と、
     を有する、請求項1または2に記載の復水脱塩装置。
    First and second valves respectively provided on the first and second recycled resin take-out pipes;
    Opening the first valve first to remove the ion exchange resin in the high regeneration region, and then opening the second valve to remove the ion exchange resin in the low regeneration region. A control unit for controlling the two valves;
    The condensate demineralizer according to claim 1 or 2, comprising:
  4.  前記制御部は、前記再生塔に収容されている前記イオン交換樹脂の総重量の5%以上、50%以下の量を前記第1の再生樹脂取出し配管から取出し、残りの量を前記第2の再生樹脂取出し配管から取出すように、前記第1および第2の弁を制御する、請求項3に記載の復水脱塩装置。 The control unit takes out an amount of 5% or more and 50% or less of the total weight of the ion exchange resin accommodated in the regeneration tower from the first regeneration resin takeout pipe, and the remaining amount of the second exchange resin. The condensate demineralizer according to claim 3, wherein the first and second valves are controlled so as to be taken out from the recycled resin take-out pipe.
  5.  前記第1の再生樹脂取出し配管上に位置し、前記第1の再生樹脂取出し配管で取出された前記イオン交換樹脂を貯留する第1の再生樹脂貯槽と、
     前記第2の再生樹脂取出し配管上に位置し、前記第2の再生樹脂取出し配管で取出された前記イオン交換樹脂を貯留する第2の再生樹脂貯槽と、
     を有する、請求項1から4のいずれか1項に記載の復水脱塩装置。
    A first recycled resin storage tank which is located on the first recycled resin take-out pipe and stores the ion exchange resin taken out by the first recycled resin take-out pipe;
    A second recycled resin storage tank which is located on the second recycled resin take-out pipe and stores the ion exchange resin taken out by the second recycled resin take-out pipe;
    The condensate demineralizer according to any one of claims 1 to 4, comprising:
  6.  使用済みの前記イオン交換樹脂を前記復水脱塩塔から前記再生塔に移送する使用済み樹脂移送配管を有し、
     前記使用済み樹脂移送配管は、前記復水脱塩塔に接続され、前記復水脱塩塔中の前記イオン交換樹脂の全量を取出し可能な第1の使用済み樹脂取出し配管と、前記第1の使用済み樹脂取出し配管および前記イオン交換樹脂下層よりも高い位置で前記復水脱塩塔に接続され、前記イオン交換樹脂上層の少なくとも一部を取出し可能な第2の使用済み樹脂取出し配管と、を有している、請求項1から5のいずれか1項に記載の復水脱塩装置。
    A used resin transfer pipe for transferring the used ion exchange resin from the condensate demineralization tower to the regeneration tower;
    The used resin transfer pipe is connected to the condensate demineralization tower, and is capable of taking out the entire amount of the ion exchange resin in the condensate demineralization tower. A second used resin take-out pipe connected to the condensate demineralizer at a position higher than the used resin take-out pipe and the ion exchange resin lower layer, and capable of taking out at least a part of the upper ion exchange resin layer; The condensate demineralizer according to any one of claims 1 to 5, comprising:
  7.  使用済みの前記イオン交換樹脂を前記復水脱塩塔から前記再生塔に移送する使用済み樹脂移送配管と、
     前記使用済み樹脂移送配管上に位置し、前記復水脱塩塔から取出された使用済みの前記イオン交換樹脂を貯留する使用済み樹脂貯槽と、
     を有する、請求項1から5のいずれか1項に記載の復水脱塩装置。
    A used resin transfer pipe for transferring the used ion exchange resin from the condensate demineralization tower to the regeneration tower;
    A used resin storage tank that is located on the used resin transfer pipe and stores the used ion exchange resin taken out from the condensate demineralizer,
    The condensate demineralizer according to any one of claims 1 to 5, comprising:
  8.  前記復水脱塩塔の後段に位置し、前記アニオン交換樹脂または前記カチオン交換樹脂の他方である第2のイオン交換樹脂が充填され、前記復水脱塩塔で脱塩された復水をさらに脱塩する第2の復水脱塩塔と、
     前記第2のイオン交換樹脂の充填層の上層部で前記第2の復水脱塩塔に接続された上部樹脂取出し配管と、
     前記上部樹脂取出し配管に接続され、取出された前記充填層の上部部分を貯留する非再生樹脂貯槽と、
     前記非再生樹脂貯槽に接続され、貯留されている前記充填層の前記上部部分を前記第2の復水脱塩塔に戻す上部樹脂戻し配管と、
     を有する、請求項1から7のいずれか1項に記載の復水脱塩装置。
    The condensate located after the condensate demineralization tower and filled with a second ion exchange resin which is the other of the anion exchange resin or the cation exchange resin and demineralized in the condensate demineralization tower A second condensate demineralization tower for desalting;
    An upper resin outlet pipe connected to the second condensate demineralizer at the upper layer of the packed bed of the second ion exchange resin;
    A non-regenerative resin storage tank that is connected to the upper resin extraction pipe and stores the extracted upper part of the packed bed;
    An upper resin return pipe connected to the non-regenerated resin storage tank and returning the stored upper part of the packed bed to the second condensate demineralization tower;
    The condensate demineralizer according to any one of claims 1 to 7, comprising:
  9.  アニオン交換樹脂またはカチオン交換樹脂の一方であるイオン交換樹脂を収容している再生塔中の、再生された前記イオン交換樹脂の割合が相対的に高い高再生領域のイオン交換樹脂を復水脱塩塔に移送し、前記復水脱塩塔の内部にイオン交換樹脂下層を形成することと、
     前記イオン交換樹脂下層を形成した後、前記再生塔中の再生された前記イオン交換樹脂の割合が相対的に低い低再生領域のイオン交換樹脂を前記復水脱塩塔に移送し、前記復水脱塩塔の内部の前記イオン交換樹脂下層の上にイオン交換樹脂上層を形成することと、
     前記イオン交換樹脂下層と前記イオン交換樹脂上層とが形成された前記復水脱塩塔に、発電施設の復水系を流通する復水を、前記復水脱塩塔の上部から下部へと通水させることによって、前記復水を脱塩することと、
     を有する、復水脱塩方法。
    Condensation desalination of ion exchange resin in a high regeneration region in which the proportion of the regenerated ion exchange resin is relatively high in a regeneration tower containing an ion exchange resin that is one of anion exchange resin or cation exchange resin Transfer to a tower, and form an ion exchange resin lower layer inside the condensate demineralization tower;
    After the formation of the lower layer of the ion exchange resin, the ion exchange resin in a low regeneration region in which the ratio of the regenerated ion exchange resin in the regeneration tower is relatively low is transferred to the condensate demineralization tower, and the condensate Forming an ion exchange resin upper layer on the ion exchange resin lower layer inside the desalting tower;
    Condensate flowing through the condensate system of the power generation facility is passed from the upper part to the lower part of the condensate demineralization tower to the condensate demineralization tower in which the ion exchange resin lower layer and the ion exchange resin upper layer are formed. Demineralizing the condensate,
    A condensate desalination method.
  10.  前記イオン交換樹脂はカチオン交換樹脂であり、前記高再生領域のカチオン交換樹脂は、前記低再生領域のカチオン交換樹脂よりもH形の体積割合が高い、請求項9に記載の復水脱塩方法。 10. The condensate desalination method according to claim 9, wherein the ion exchange resin is a cation exchange resin, and the cation exchange resin in the high regeneration region has a higher volume ratio of H form than the cation exchange resin in the low regeneration region. .
  11.  前記イオン交換樹脂下層を形成した後、前記イオン交換樹脂上層を形成する前に、前記復水脱塩塔の内部に、前記イオン交換樹脂下層よりも高い水位まで水を供給することを含む、請求項9または10に記載の復水脱塩方法。 After forming the ion exchange resin lower layer and before forming the ion exchange resin upper layer, supplying water to the water level higher than the ion exchange resin lower layer inside the condensate demineralization tower, Item 11. The condensate demineralization method according to Item 9 or 10.
  12.  前記再生塔に収容されている前記イオン交換樹脂の総体積の5%以上、50%以下の量が、前記高再生領域のイオン交換樹脂として取出され、残りの量が前記低再生領域のイオン交換樹脂として取出される、請求項9から11のいずれか1項に記載の復水脱塩方法。 An amount of 5% or more and 50% or less of the total volume of the ion exchange resin accommodated in the regeneration tower is taken out as an ion exchange resin in the high regeneration region, and the remaining amount is ion exchange in the low regeneration region. The condensate demineralization method according to any one of claims 9 to 11, which is taken out as a resin.
  13.  前記高再生領域のイオン交換樹脂と前記低再生領域のイオン交換樹脂を、前記復水脱塩塔に移送する前に、それぞれ第1の再生樹脂貯槽と第2の再生樹脂貯槽に貯留することを含む、請求項9から12のいずれか1項に記載の復水脱塩方法。 Storing the ion exchange resin in the high regeneration region and the ion exchange resin in the low regeneration region in the first regeneration resin storage tank and the second regeneration resin storage tank, respectively, before transferring to the condensate demineralization tower. The condensate demineralization method according to any one of claims 9 to 12, further comprising:
  14.  前記復水を脱塩した後、前記イオン交換樹脂上層の少なくとも一部を前記再生塔に移送して、前記再生塔の内部に使用済みイオン交換樹脂下層を形成することと、
     次に、前記復水脱塩塔中の残りの前記イオン交換樹脂を前記再生塔に移送し、前記再生塔の内部の前記イオン交換樹脂下層の上にイオン交換樹脂上層を形成することと、
     次に、再生用薬液を、前記使用済みイオン交換樹脂上層の上方から供給して、前記再生塔中の前記イオン交換樹脂を再生することと、を含む、請求項9から13のいずれか1項に記載の復水脱塩方法。
    After desalting the condensate, transferring at least a portion of the upper layer of the ion exchange resin to the regeneration tower to form a used ion exchange resin lower layer inside the regeneration tower;
    Next, the remaining ion exchange resin in the condensate demineralization tower is transferred to the regeneration tower, and an ion exchange resin upper layer is formed on the ion exchange resin lower layer inside the regeneration tower;
    Next, supplying a chemical solution for regeneration from above the upper layer of the used ion exchange resin to regenerate the ion exchange resin in the regeneration tower. The condensate desalination method according to 1.
  15.  前記復水を脱塩した後、使用済みの前記イオン交換樹脂を、前記再生塔に移送する前に、一時的に使用済み樹脂貯槽に貯留することを含む、請求項9から13のいずれか1項に記載の復水脱塩方法。 After desalting the condensate, the used ion exchange resin is temporarily stored in a used resin storage tank before being transferred to the regeneration tower. The condensate desalination method according to the item.
  16.  前記アニオン交換樹脂または前記カチオン交換樹脂の他方である第2のイオン交換樹脂の充填層が形成された第2の復水脱塩塔に、前記復水脱塩塔で脱塩された復水を移送し、さらに脱塩することと、
     前記復水を前記復水脱塩塔及び前記第2の復水脱塩塔で脱塩した後、前記充填層の上部部分を取出し、非再生樹脂貯槽で貯留することと、
     再生された第2のイオン交換樹脂を前記第2の復水脱塩塔に充填し、その後前記上部充填層貯槽で貯留されている前記充填層の前記上部部分を前記第2の復水脱塩塔に戻すことと、
     を有する、請求項9から15のいずれか1項に記載の復水脱塩方法。
    Condensate demineralized in the condensate demineralization tower is added to a second condensate demineralization tower in which a packed bed of the second ion exchange resin which is the other of the anion exchange resin or the cation exchange resin is formed. Transport and further desalting;
    After desalting the condensate in the condensate demineralization tower and the second condensate demineralization tower, removing the upper part of the packed bed and storing it in a non-regenerated resin storage tank;
    The regenerated second ion exchange resin is charged into the second condensate demineralization tower, and then the upper portion of the packed bed stored in the upper packed bed storage tank is used as the second condensate demineralization. To return to the tower,
    The condensate demineralization method according to claim 9, comprising:
PCT/JP2013/054522 2012-05-11 2013-02-22 Condensing desalination device and condensing desalination method WO2013168449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012109299A JP2013233531A (en) 2012-05-11 2012-05-11 Condensate desalination device and condensate desalination method
JP2012-109299 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013168449A1 true WO2013168449A1 (en) 2013-11-14

Family

ID=49550510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054522 WO2013168449A1 (en) 2012-05-11 2013-02-22 Condensing desalination device and condensing desalination method

Country Status (3)

Country Link
JP (1) JP2013233531A (en)
TW (1) TWI628147B (en)
WO (1) WO2013168449A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112588328A (en) * 2020-11-20 2021-04-02 国家能源集团乐东发电有限公司 Method for controlling regeneration dosage and concentration of ion exchange resin

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3075450B1 (en) * 2017-12-15 2019-12-27 Electricite De France METHOD FOR IDENTIFYING THE UNIT ORIGIN OF A CRUDE WATER LEAKAGE IN A CONDENSER OF A THERMAL POWER PLANT
CN113321339B (en) * 2021-05-06 2022-04-29 江南大学 Method for producing fuel ethanol by recycling evaporated condensed water and reusing evaporated condensed water

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107873A (en) * 1978-02-14 1979-08-24 Ebara Corp Method and apparatus for regeneration of ion exchange resin
JPS5528762A (en) * 1978-08-23 1980-02-29 Ebara Infilco Co Ltd Condensed water treating method
JPS5934199A (en) * 1982-08-19 1984-02-24 株式会社東芝 Condensed water cleaning device
JPH0531375A (en) * 1991-07-31 1993-02-09 Fujitsu Ltd Ion exchange resin tower
JPH06226252A (en) * 1993-02-08 1994-08-16 Kawasaki Steel Corp Regenerating treatment of ion exchange resin for demineralizer
JP2004041054A (en) * 2002-07-10 2004-02-12 Nippon Rensui Co Ltd Method for purifying sugar solution
JP2009066525A (en) * 2007-09-13 2009-04-02 Tokyo Electric Power Co Inc:The Filling method for ion exchange resin, and condensate demineralizer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215294A (en) * 1999-11-22 2001-08-10 Japan Organo Co Ltd Condensate demineralizer
CN102548906A (en) * 2009-09-30 2012-07-04 栗田工业株式会社 Ion-exchange device, column therefor, and water treatment device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107873A (en) * 1978-02-14 1979-08-24 Ebara Corp Method and apparatus for regeneration of ion exchange resin
JPS5528762A (en) * 1978-08-23 1980-02-29 Ebara Infilco Co Ltd Condensed water treating method
JPS5934199A (en) * 1982-08-19 1984-02-24 株式会社東芝 Condensed water cleaning device
JPH0531375A (en) * 1991-07-31 1993-02-09 Fujitsu Ltd Ion exchange resin tower
JPH06226252A (en) * 1993-02-08 1994-08-16 Kawasaki Steel Corp Regenerating treatment of ion exchange resin for demineralizer
JP2004041054A (en) * 2002-07-10 2004-02-12 Nippon Rensui Co Ltd Method for purifying sugar solution
JP2009066525A (en) * 2007-09-13 2009-04-02 Tokyo Electric Power Co Inc:The Filling method for ion exchange resin, and condensate demineralizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112588328A (en) * 2020-11-20 2021-04-02 国家能源集团乐东发电有限公司 Method for controlling regeneration dosage and concentration of ion exchange resin

Also Published As

Publication number Publication date
TW201402471A (en) 2014-01-16
JP2013233531A (en) 2013-11-21
TWI628147B (en) 2018-07-01

Similar Documents

Publication Publication Date Title
WO2013168449A1 (en) Condensing desalination device and condensing desalination method
CN104736484B (en) The desalination process of boron-containing solution
WO2011040278A1 (en) Ion-exchange device, column therefor, and water treatment device
US4564455A (en) Three component resin system and method for purifying aqueous solutions
US3414508A (en) Condensate purification process
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
Ramzan et al. Performance analysis of cation and anion exchangers in water treatment plant: an industrial case study
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
CN105130761B (en) A kind of MTBE process units and method for mitigating washing and recovery system corrosion
JP6089888B2 (en) Separation and regeneration method of mixed bed ion exchange resin
JP3610390B2 (en) Filling method of ion exchange resin in condensate demineralizer
GB2085749A (en) Process for the treatment of aqueous media
JPS5966354A (en) Regeneration of ion-exchange resin
JPS58216743A (en) Desalting method of condensate
JP3543389B2 (en) Separation and regeneration method of ion exchange resin
Zabban et al. Conversion of Coal-Mine Drainage to Potable Water by Ion Exchange
JPS5841913B2 (en) Condensate treatment method
JP2005296748A (en) Condensate demineralizer and its regeneration method
TW202106630A (en) Ultrapure water production system and method for producing ultrapure water
JPH11197661A (en) Condensed water desalting apparatus
JPS5813229B2 (en) Condensate treatment method
JPH09122504A (en) Method for regenerating desalter
JPS6265785A (en) Treatment of condensate
Crone Ultra-Low Chloride Content Water Production for Corrosion Control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13787254

Country of ref document: EP

Kind code of ref document: A1