WO2013168428A1 - 力率計測装置 - Google Patents

力率計測装置 Download PDF

Info

Publication number
WO2013168428A1
WO2013168428A1 PCT/JP2013/002975 JP2013002975W WO2013168428A1 WO 2013168428 A1 WO2013168428 A1 WO 2013168428A1 JP 2013002975 W JP2013002975 W JP 2013002975W WO 2013168428 A1 WO2013168428 A1 WO 2013168428A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
power factor
magnetic element
power
terminals
Prior art date
Application number
PCT/JP2013/002975
Other languages
English (en)
French (fr)
Inventor
浩章 辻本
Original Assignee
公立大学法人大阪市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪市立大学 filed Critical 公立大学法人大阪市立大学
Priority to CN201380036790.2A priority Critical patent/CN104508501B/zh
Priority to US14/400,023 priority patent/US10120001B2/en
Priority to EP13788379.9A priority patent/EP2848948B1/en
Publication of WO2013168428A1 publication Critical patent/WO2013168428A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/006Measuring power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/08Arrangements for measuring electric power or power factor by using galvanomagnetic-effect devices, e.g. Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors

Definitions

  • the present invention relates to a device for measuring the power factor of power consumption placed in an electric circuit having an inductive load, and more particularly to a power factor measuring device using the magnetoresistive effect of a magnetic film.
  • the ratio of the active power to the power supplied from the power source is called the power factor and is usually expressed as cos ⁇ .
  • is a current-voltage phase difference.
  • the display of the power factor directly displays the current operating efficiency, and it is desired to increase the power factor for efficient operation and to directly measure the power factor.
  • the power factor of power consumed by the circuit is often measured by measuring reactive power. This is obtained by taking the product of voltage and current signals that are 90 ° out of phase with each other. For this 90 ° phase shift, elements such as a transformer and an integration circuit have been used. However, such a method has a problem that the calculation of reactive power becomes complicated when the load fluctuates.
  • sampling means for sampling the voltage and current of an AC circuit
  • memory means for storing voltage data and current data sampled by the sampling means for each sampling point
  • the memory Pseudo reactive power computing means for computing reactive power from the voltage data and current data stored by the means, wherein the memory means stores the voltage data and current data for one cycle in the same phase, and calculates the pseudo reactive power computation.
  • the means cyclically multiplies the voltage data and current data for a predetermined period stored by the memory means with the current data at each sampling point and the voltage data at the sampling point that is 90 ° out of phase. Reactive power is calculated from the average of.
  • ⁇ Power factor measurement at various locations is required when energy is used and when electric power is used to drive a moving body such as an automobile.
  • a power factor measuring device having a small sensor and a simple measuring unit is required.
  • the power factor measurement device disclosed in Patent Document 1 is capable of calculating reactive power with a relatively simple configuration, but requires sampling means for sampling the voltage and current of the AC circuit, The size of the device, in particular the sensor part, cannot be reduced. Also, if the current sampling means is arranged after the circuit connection, it is necessary to clamp the connection line, and it is easy to arrange the sampling means for the connection line embedded in a groove such as a wall. The problem is not. Furthermore, the method of Patent Document 1 has a problem that the power factor cannot be measured directly.
  • the present invention has been conceived in view of the above-described problems, and is a power factor measurement device that utilizes the magnetoresistive effect of a magnetic film. More specifically, the power factor measurement device of the present invention is: A power factor measurement device that measures the power factor of power consumed in a load connected to a power source via a connection line, A pair of connecting ends for connecting the power supply in parallel with the load; Two magnetic elements with different electrical resistance changes due to the same external magnetic field; A pair of measurement terminals for outputting a differential voltage of the two magnetic elements; A power factor sensor unit including a pair of sensor terminals connected to the pair of coupling ends; A voltage detector for measuring a voltage between the measurement terminals; A low pass filter connected to the output of the voltage detector; A high pass filter connected to the output of the voltage detector; A rectifier connected to the high pass filter; It has a dividing means for dividing the output of the low-pass filter and the output of the rectifier.
  • the power factor measurement device takes advantage of magnetic thin film power sensors such as non-contact (principle), easy installation (ultra-small and thin), energy saving (low energy consumption during measurement), , Power factor can be measured directly. Therefore, the power consumption status can be visualized, and energy-saving drive control according to the driving status and load status is possible by applying to a circuit having a reactance element such as an induction motor.
  • FIG. 1 shows a configuration of a power factor measuring apparatus according to the present invention.
  • the power factor measurement device 1 of the present invention includes a connecting end 12, a power factor sensor unit 10, a voltage detection unit 15, a low pass filter 16, a high pass filter 17, a rectifier 18, and a dividing means 19.
  • the power factor measuring apparatus 1 of the present invention measures the power factor of power consumed by the load 9 (resistance value is R1) connected to the power source 7.
  • the power source 7 is an alternating current.
  • the power supply 7 and the load 9 are connected by a connection line 8 (resistance value is Rcu).
  • the connecting end 12 is a terminal for connecting the power factor sensor unit 10 of the power factor measuring device 1 in parallel with the load 9 to the power source 7 of the circuit to be measured. Accordingly, there is a pair of the connecting ends 12 and they are called connecting ends 12a and 12b when distinguished from each other.
  • FIG. 2 shows only the power factor sensor unit 10 and the connecting end 12.
  • the power factor sensor unit 10 is provided with terminals (measuring terminals 13: 13a and 13b, respectively) for combining two elements utilizing the magnetoresistive effect of the magnetic film and taking out the differential outputs.
  • sensor terminals 10t (10ta, 10tb) connected to the connecting end 12 are provided.
  • As a configuration of the power factor sensor unit 10 a configuration in which measuring resistors 23 and 24 (each having a resistance value R2) are connected in series to each of the first magnetic element 21 and the second magnetic element 22 is arranged in parallel. It is connected.
  • element terminals 21a and 21b are formed at both ends of a magnetic film 21j formed in a strip shape, and a bias means 21c is disposed.
  • Biasing means 21c is magnetized to be formed in the magnetic film 21j of the first magnetic element 21, element terminal 21a, with respect to the direction of the current I 2 flowing between 21b, changing to the operating point (rotated) for Means.
  • the first magnetic element 21 in FIG. 2 is a permanent magnet that applies a magnetic field in the direction of the arrow MF. This arrow MF is applied in the in-plane direction of the magnetic film 21j.
  • biasing means 22c includes an element terminal 22a, with respect to the current I 2 flowing between 22b, the biasing means 21c for applying a bias in the reverse direction (arrow MF ').
  • the bias means 21c and 22c change not only the means for applying a magnetic field to the magnetic films 21j and 22j like a permanent magnet in this way, but also the magnetization of the magnetic film and the direction of the current flowing through the magnetic film. Any configuration can be used.
  • the direction from the element terminal 21a (22a) toward the element terminal 21b (22b) is referred to as the longitudinal direction of the magnetic element 21 (22).
  • the first magnetic element 21 and the second magnetic element 22 are arranged with their longitudinal directions aligned in the direction of current I 1 (see FIG. 1) of the connection line 8. This is because the magnetic field H generated by the current I 1 of the connection line 8 is applied to the surface of the magnetic film.
  • the magnetic elements 21 and 22 are preferably arranged at an equal distance from the surface of the connection line 8. This is because the magnetic field H generated by the current I 1 flowing through the connection line 8 is determined by the distance from the center of the connection line 8. On the contrary, if the cross section of the connection line 8 is circular and the distance from the center of the connection line 8 is equal, the first magnetic element 21 and the second magnetic element 22 are not necessarily arranged in one straight line. Good.
  • the one end 21a of the first magnetic element 21 is connected to the sensor terminal 10ta of the power factor sensor unit 10.
  • the other end 21 b of the first magnetic element 21 is connected in series with the first measurement resistor 23.
  • One end 22 a of the second magnetic element 22 is also connected to the sensor terminal 10 ta of the power factor sensor unit 10.
  • the other end 22 b of the second magnetic element 22 is connected in series with the second measurement resistor 24.
  • the first measurement resistor 23 and the second measurement resistor 24 are also connected to the sensor terminal 10tb of the power factor sensor unit 10. That is, between the one end 10ta and the other end 10tb of the power factor sensor unit 10, the first magnetic element 21 and the first measurement resistor 23, and the second magnetic element 22 and the second measurement resistor 24 form a bridge circuit. Constitute.
  • the measurement terminal 13 is connected to one of the element terminals 21 b and 22 b of the first magnetic element 21 and the second magnetic element 22.
  • the first measurement resistor 23 and the second measurement resistor 24 have the same resistance value, and the resistance Rmr between the element terminals (21a and 21b and 22a and 22b) of the magnetic elements 21 and 22 Compared to a sufficiently large resistance.
  • the differential output of the bridge circuit is provided between the measurement terminals 13a and 13b. Further, since the measurement resistors 23 and 24 are sufficiently larger than the resistance Rmr between the element terminals of the magnetic elements 21 and 22, a constant current flows regardless of the voltage applied between the connection ends 12 of the power factor measurement device 1. Can be considered.
  • FIG. 3A shows only the first magnetic element 21.
  • the easy axis of magnetization of the magnetic film 21j is formed in the direction of the axis 21EA between the element terminals 21a and 21b. In other words, the easy axis is guided in the longitudinal direction.
  • FIG. 3B shows the relationship between the resistance Rmr between the element terminals 21a and 21b at this time and the magnetic field H applied in the in-plane perpendicular direction of the magnetic film 21j.
  • the horizontal axis represents the magnetic field H in the in-plane perpendicular direction
  • the vertical axis represents the resistance value Rmr ( ⁇ ) in the longitudinal direction of the magnetic film 21j.
  • the in-plane perpendicular direction means that a magnetic field is applied from the outside in the direction perpendicular to the magnetic film 21j with respect to the direction of the axis 21EA.
  • the curve MRC representing the magnetoresistive characteristic is an even function with the point of zero external magnetic field as the axis of symmetry.
  • a bias magnetic field MF is applied in a direction perpendicular to the axis 21EA by the bias means 21c. Due to this bias magnetic field MF, the magnetization M of the magnetic film 21j is tilted from the axis 21EA by an angle ⁇ (see FIG. 3A).
  • the operating point changes by the amount Hbais along the curve MRC.
  • the current flowing through the first magnetic element 21 is applied between the element terminals 21a and 21b, and therefore flows substantially along the axis 21EA (longitudinal direction).
  • the resistance value of the magnetic film 21j is lowered to Rm0 by this inclination ⁇ . This point is the operating point of the first magnetic element 21. In other words, the resistance value at the operating point is Rm0.
  • FIG. 4 shows only the second magnetic element 22 as in FIG.
  • the direction of the biasing means 22c is different directions relative to the bias unit 21c and the current I 2 of the first magnetic element 21 of FIG.
  • the magnetization M is inclined by an angle ⁇ from the direction of the axis 22EA by the bias magnetic field MF ′.
  • the inclination direction of the magnetization M is also opposite to the case of FIG.
  • an external magnetic field H is applied from the same direction as in FIG. Since the magnetization M was originally inclined in the application direction of the external magnetic field H, it is inclined in a direction away from the axis 22EA by the external magnetic field H. As seen in FIG. 4B, the resistance Rmr of the second magnetic element 22 is reduced by ⁇ Rmr ( ⁇ Rmr) by the external magnetic field H applied in the same direction as the bias magnetic field Hbais.
  • these two magnetic elements 21 and 22 are magnetic elements having different resistance changes with respect to the external magnetic field H from the same direction. In other words, it can be said that it has different biasing means.
  • the two magnetic elements 21 and 22 form a bridge circuit together with the measurement resistors 23 and 24, and the measurement terminals 13a and 13b are connected to the two magnetic elements 21 and 22, respectively.
  • This is a terminal that outputs a difference as a change in resistance as a voltage change.
  • the resistance values of the magnetic elements 21 and 22 are changed by the external magnetic field H by (+ ⁇ Rmr) and ( ⁇ Rmr).
  • the resistance values of the measurement resistors 23 and 24 are sufficiently larger than the resistance values of the magnetic elements 21 and 22, and the measurement resistors 23 and 24 are of the same magnitude, so that the same current I 2 is applied to the magnetic elements 21 and 22. It can be regarded as flowing. Then, the measurement terminals 13a, the output voltage between 13b becomes 2 ⁇ ⁇ Rmr ⁇ I 2.
  • the power factor sensor unit 10 is arranged close to the connection line 8 of the circuit to be measured.
  • the magnetic field H generated by the current flowing through the connection line 8 is received.
  • the magnetic field H applied to the magnetic film, as the proportional constant alpha is expressed by the equation (1).
  • H ⁇ I 1 (1)
  • the magnetic film 21j of the power factor sensor unit 10 which is located close to the connection line 8 to the current I 1 flows, has an electrical resistivity characteristics, such as (3).
  • I 2 (Rm0 + ⁇ I 1 ) I 2 (4)
  • the voltage Vin of the power source 7 (see FIG. 1) is expressed as shown in Equation (5), assuming that the amplitude is V 1 and the angular frequency ⁇ .
  • the load 9 is reactance in the circuit to be measured, the current I 1 flowing through the load 9 is out of phase with the power supply voltage Vin. Let this phase shift be ⁇ .
  • the first magnetic element 21 of the power factor sensor unit 10 is a normal resistor, it is in phase with the power supply voltage Vin. Therefore, the currents I 1 and I 2 are expressed as in the expressions (6) and (7).
  • the magnetic elements 21 and 22 are connected so as to be differentially amplified, and output is different for the same magnetic field. That is, assuming that the change in electrical resistance of the first magnetic element 21 with respect to the external magnetic field H is expressed as ⁇ Rmr expressed by the equation (2), the change in electrical resistance with respect to the external magnetic field H in the case of the second magnetic element 22. The minute is ( ⁇ Rmr). Then, the output Vmr ⁇ in the case of the second magnetic element 22 is expressed as shown in Equation (9).
  • A is the direct current component of the differential output of the magnetic elements 21 and 22.
  • B is the AC component of the differential output.
  • A is proportional to the value obtained by multiplying the power consumption I 1 V 1 of the load 9 by cos ⁇ . That is, A is proportional to the effective power consumed by the load 9.
  • B is proportional to the apparent power of the power consumed by the load 9.
  • a voltage proportional to the effective power of the load 9 is obtained as a DC component between the terminals of the measurement terminals 13a and 13b, and a voltage proportional to the apparent power of the load 9 is obtained as an AC component. be able to.
  • the apparent power is represented by a complex number, and the real component is defined as active power and the imaginary component is defined as reactive power.
  • the power factor is defined as the ratio of active power to apparent power. Therefore, the power factor (cos ⁇ ) is expressed by active power / apparent power, that is, A / B, as shown in the equation (13).
  • a voltage (A) proportional to the effective power of the load 9 is generated as a DC component between the measurement terminals 13a and 13b, and a voltage (B) proportional to the apparent power of the load 9 is generated as an AC component. Has occurred. A voltage obtained by dividing A and B is obtained as a voltage proportional to the power factor.
  • the outputs of the measurement terminals 13a and 13b are detected by a voltage detector (amplifier) 15, and a direct current component (A: equivalent to an effective voltage) is extracted by a low-pass filter 16.
  • a direct current component (A: equivalent to an effective voltage) is extracted by a low-pass filter 16.
  • an AC component (B: equivalent to apparent power) is extracted by the high-pass filter 17 and converted into a DC voltage by the rectifier 18.
  • the proportionality constant K in the equation (13) can be regarded as a constant independent of the power supply angular frequency ⁇ .
  • the power factor of power consumed by the inductive load 9 can be obtained by the power factor measuring apparatus 1 having the configuration shown in FIG.
  • FIG. 5 illustrates a variation of the magnetic element.
  • the power factor measurement device 1 is configured to generate a direct current voltage (proportional to active power) from a differential output of a pair of magnetic elements having different rates of change in electric resistance with respect to the same external magnetic field H. And an AC voltage (proportional to the apparent power) is obtained and divided to obtain a voltage proportional to the power factor.
  • the magnetic film itself of the magnetic element is an even function with respect to the magnetic field applied from the outside, and the resistance value proportional to the applied magnetic field is not changed as it is. I can't get it. Therefore, in the magnetic elements 21 and 22, a magnetic field generation source such as a permanent magnet is arranged as the bias means 21c and 22c in the vicinity of the magnetic films 21j and 22j, thereby generating a bias magnetic field and obtaining an operating point.
  • a magnetic field generation source such as a permanent magnet
  • FIG. 5 shows another form of the first magnetic element 21 (first magnetic element 31).
  • a striped conductor 35 is formed on the magnetic film 31j.
  • the magnetic film 31j is assumed to have an easy magnetization axis 31EA guided in the longitudinal direction.
  • the conductor 35 is preferably made of a material that is sufficiently lower than the electric resistance of the magnetic film 31j. Specifically, a highly conductive material such as copper, aluminum, silver, or gold is preferably used.
  • a plurality of conductors 35 are inclined in a fixed direction with respect to the longitudinal direction.
  • Magnetic film 31j has a higher resistance than the conductor 35, current I 2 flows the shortest distance between the conductors 35. When viewed from the longitudinal direction of the magnetic film 31j, current flows in an inclined direction.
  • the magnetization easy axis 31EA of the magnetic film 31j is because it is induced in the longitudinal direction of the first magnetic element 31, it is inclined in a direction of the magnetization M and the current I 2.
  • FIG. 6 shows a case where the striped conductor 35 is formed in the opposite direction to the case of FIG.
  • the direction of the magnetic field H applied current I 2 direction from the orientation and external easy axis 32EA is the same as in the case of FIG.
  • the magnetization M (solid arrow) rotates in a direction away from the current I 2 by the magnetic field H applied downward from above the paper.
  • the electrical resistance changes in a decreasing direction. That is, as in the case of FIG. 4, the change in electric resistance of ( ⁇ Rmr) is shown.
  • the bias means 31c can be formed by such a configuration of the magnetic film 31j (or 32j) and the conductor 35.
  • the direction in which the current I 2 flows is changed from the direction of the easy magnetization axes 31EA and 32EA.
  • the easy magnetization axes 31EA and 32EA are previously formed on the magnetic film 31j (or 32j). You may guide
  • FIG. 7 shows a magnetic element 30 that combines FIGS. 5 and 6.
  • a power factor sensor unit including the magnetic element 30 is denoted by reference numeral 51.
  • the magnetic element 30 includes an element terminal 30 a connected to the sensor terminal 51 ta of the power factor sensor unit 10, an element terminal 30 b connected to the first measurement resistor 23, and an element terminal 30 b ′ connected to the second measurement resistor 24.
  • the element terminal 30a may be called a center tap.
  • the magnetic element 30 has a striped pattern arranged in a direction from the element terminal 30a toward the element terminal 30b (referred to as “b direction”) and a direction toward 30b ′ (referred to as “b ′ direction”).
  • the formation direction of the conductor 35 is different. Therefore, the direction of the current I 2 flowing on the magnetic film 30j is current flows in different directions in the direction b and b 'direction.
  • the power factor sensor 51 including the magnetic element 30 shown in FIG. 7 forms a bridge circuit, similarly to the case shown in FIG. 2, and between the measurement terminals 13a and 13b, the b direction and b 'Directional difference output appears.
  • FIG. 8 shows a configuration of the power factor measuring device 2 having the power factor sensor unit 51.
  • the measurement terminals 13a and 13b are used as outputs, and the voltage detector 15, the low-pass filter 16, the high-pass filter 17, the rectifier 18, and the dividing means 19 are the same as those in the first embodiment.
  • the power factor sensor 51 shown in the present embodiment does not require a magnetic field generation source such as a permanent magnet for the bias means, and thus can be reduced in size and thinned.
  • the magnetic element 30 is formed by simultaneously forming the magnetic elements 31 and 32 in the b direction and the b ′ direction, they may be formed separately and connected by a conducting wire.
  • FIG. 9 shows the configuration of the power factor measurement apparatus 3 according to the present embodiment.
  • the same parts as those in Embodiments 1 and 2 are denoted by the same reference numerals, and description thereof is also omitted.
  • the power factor measuring device 3 according to the present embodiment is characterized by the magnetic elements 41 and 42.
  • the magnetic elements 41 and 42 are guided such that the easy magnetization axes 41EA and 42EA are inclined with respect to the longitudinal direction. Furthermore, the easy magnetization axis of the magnetic element 41 and 42 are derived respectively in different directions with respect to the current I 2 flowing in the magnetic film.
  • the influence of the magnetic field H generated by the current I 1 flowing in the circuit under test, the magnetization M of the magnetic elements 41 and 42 are rotated as M1 and M2.
  • the relations are different directions such as an approaching direction and a leaving direction.
  • the electrical resistance increases (+ ⁇ Rmr) and decreases ( ⁇ Rmr) in each of the magnetic elements 41 and 42.
  • the subsequent signal processing is the same as in the first and second embodiments, and a voltage proportional to the power factor cos ⁇ can be obtained.
  • the power factor measurement device 3 of the present invention can measure the power factor of power consumption at the inductive load 9 in the circuit under measurement as a voltage value. This is very effective for power control of a load such as an induction motor whose power factor changes depending on the operation state.
  • the present invention can be widely used in an aspect of controlling an inductive load (reactance) such as the home electric product field, the automobile field, and the industrial equipment field.
  • an inductive load such as the home electric product field, the automobile field, and the industrial equipment field.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

 小型であり、1つの素子で力率を計測できる力率計測装置が望まれている。 前記電源に対して前記負荷と並列に連結するための一対の連結端(12)と、同一外部磁界によって電気抵抗の変化が異なる2つの磁性素子(21、22)と、前記2つの磁性素子の差動電圧を出力する一対の計測端子(13)と、前記一対の連結端(12)と接続される一対のセンサ端子(10t)を含む力率センサ部(10)と、前記計測端子(13)間の電圧を計測する電圧検出部(15)と、前記電圧検出部(15)の出力に接続されたローパスフィルタ(16)と、前記電圧検出部(15)の出力に接続されたハイパスフィルタ(17)と、前記ハイパスフィルタ(17)に接続された整流器(18)と、前記ローパスフィルタ(16)の出力と、前記整流器(18)の出力を除算する除算手段(19)を有することを特徴とする力率計測装置。

Description

力率計測装置
 本発明は誘導負荷を有する電気回路に置ける消費電力の力率を計測する装置に係るものであり、特に磁性膜の磁気抵抗効果を利用した力率計測装置に関するものである。
 交流電源を用いてリアクタンス成分を有する負荷を駆動する場合は、電圧と電流に位相差が生じる。この位相差によって、消費される電力は、有効電力と無効電力が生じる。無効電力の増大は、電源の有効利用にならないため、当然低減し、有効電力を増大させることが望ましい。
 電源から供給される電力に対して有効電力の割合を力率と呼び、通常cosθで表す。ここでθは、電流-電圧の位相差である。有効電力をできるだけ大きくするためには、電力消費回路における力率を計測し、力率が大きくなるように回路を調整する必要がある。特に、省エネという観点からは、力率の表示が現在の運転効率を直接表示することになり、力率を高めて効率的な運転を目指すとともに、力率の直接計測が望まれる。
 しかしながら、回路で消費される電力の力率は、無効電力を計測することで行われる場合が多い。これは、互いに90°位相のずれた電圧、電流信号の積を取ることで求める。この90°の位相シフトには、変圧器や積分回路といった要素が用いられていた。しかし、このような方法は、負荷変動の際には、無効電力の計算が複雑になるという課題があった。
 この課題を解決するために特許文献1では、交流電路の電圧および電流をサンプリングするサンプリング手段と、前記サンプリング手段によりサンプリングされた電圧データおよび電流データをサンプリングポイント毎に記憶するメモリ手段と、前記メモリ手段により記憶された電圧データおよび電流データから無効電力を演算する疑似無効電力演算手段とを備え、前記メモリ手段は前記電圧データおよび電流データを同位相で1周期分記憶し、前記疑似無効電力演算手段は前記メモリ手段により記憶された所定周期分の電圧データおよび電流データについて、各サンプリングポイントの電流データと90°位相がずれたサンプリングポイントの電圧データをそれぞれ循環的に乗算し、それらの乗算値の平均から無効電力を演算する。
特開2001-074788号公報
 省エネという観点や、電力が自動車などの移動体の駆動へ利用されると、さまざまな箇所での力率計測が必要になる。そのような需要に応えるためには、小型のセンサと簡便な計測部を有する力率計測装置が必要となる。
 特許文献1で開示された力率測定装置は、比較的簡単な構成で無効電力を演算することができるとされているが、交流電路の電圧および電流をサンプリングするサンプリング手段が必要であり、計測装置特にセンサ部分の大きさは、小さくできない。また、回路結線後に電流のサンプリング手段を配置させようとすると、接続線をクランプする必要があり、壁等の溝に埋め込み配設された接続線に対してサンプリング手段を配設するのは、容易ではないという課題が生じる。さらに、特許文献1の方法では、力率を直接測定できていないという課題がある。
 本発明は上記のような課題に鑑み想到されたものであり、磁性膜の有する磁気抵抗効果を利用した力率計測装置である。より具体的に本発明の力率計測装置は、
 電源に接続線を介して接続された負荷において消費される電力の力率を測定する力率計測装置であって、
前記電源に対して前記負荷と並列に連結するための一対の連結端と、
 同一外部磁界によって電気抵抗の変化が異なる2つの磁性素子と、
 前記2つの磁性素子の差動電圧を出力する一対の計測端子と、
 前記一対の連結端と接続される一対のセンサ端子を含む力率センサ部と、
前記計測端子間の電圧を計測する電圧検出部と、
前記電圧検出部の出力に接続されたローパスフィルタと、
前記電圧検出部の出力に接続されたハイパスフィルタと、
前記ハイパスフィルタに接続された整流器と、
前記ローパスフィルタの出力と、前記整流器の出力を除算する除算手段
を有することを特徴とする。
 本発明による力率計測装置は、非接触(原理)、設置が容易(超小型、薄型)、省エネ(計測時のエネルギー消費小)、といった磁性薄膜電力センサのメリットを生かし、誘導電動機の細部において、力率を直接計測できる。したがって、電力消費状況の可視化が可能になり、誘導電動機などのリアクタンス要素を有する回路に応用することにより、運転状況や負荷状況に応じた省エネ駆動制御が可能となる。
本発明の力率計測装置の構成を示す図である。 本発明の力率センサ部の拡大を示す図である。 本発明の第1の磁性素子の動作原理を示す図である。 本発明の第2の磁性素子の動作原理を示す図である。 他の第1の磁性素子の構造を示す図である。 他の第2の磁性素子の構造を示す図である。 バーバーポールタイプの磁性素子を用いた力率センサ部の構成を示す図である。 バーバーポールタイプの磁性素子を用いた力率計測装置の構成を示す図である。 他の構成の磁性素子を用いた力率計測装置の構成を示す図である。
 以下本発明に係る力率計測装置について図を参照しながら説明する。なお、以下の説明は本発明の一実施形態を例示するのであり、以下の実施形態に限定されるものではない。本発明の趣旨を逸脱しない限りにおいて、以下の実施形態は変更することができる。
 (実施の形態1)
 図1は本発明の力率計測装置の構成を示したものである。本発明の力率計測装置1は、連結端12と、力率センサ部10と、電圧検出部15と、ローパスフィルタ16と、ハイパスフィルタ17と、整流器18と、除算手段19を含む。また、本発明の力率計測装置1は、電源7に接続された負荷9(抵抗値はR1)で消費される電力の力率を計測する。ここで、電源7は交流である。なお、電源7と負荷9の間は接続線8(抵抗値はRcu)で接続される。
 連結端12は、計測対象となる回路の電源7に対して負荷9と並列に、力率計測装置1の力率センサ部10を接続するための端子である。したがって、この連結端12は1対あり、それぞれ区別する場合は、連結端12a、12bとよぶ。
 図2には、力率センサ部10と連結端12だけを示す。力率センサ部10は、磁性膜の磁気抵抗効果を利用した素子を2つ組み合わせ、それぞれの差動出力を取り出す端子(計測端子13:それぞれ13a、13b)が設けられている。また、連結端12と接続されるセンサ端子10t(10ta、10tb)が設けられる。力率センサ部10の構成としては、第1の磁性素子21と第2の磁性素子22のそれぞれに、計測抵抗23および24(それぞれ抵抗値はR2)が直列に接続されたものが、並列に接続されている。
 第1の磁性素子21は、短冊状に形成された磁性膜21jの両端に素子端子21aおよび21bが形成され、バイアス手段21cが配設されている。バイアス手段21cは、第1の磁性素子21の磁性膜21j中に形成される磁化を、素子端子21a、21b間に流れる電流Iの向きに対して、動作点まで変える(回転させる)ための手段である。例えば、図2の第1の磁性素子21の場合は、矢印MFの方向に磁界を印加する永久磁石である。この矢印MFは磁性膜21jの面内方向に印加される。
 同様に第2の磁性素子22も、短冊状に形成された磁性膜22jの両端に素子端子22aおよび22bが形成され、バイアス手段22cが配設されている。ただし、第2の磁性素子22では、バイアス手段22cは、素子端子22a、22b間に流れる電流Iに対して、バイアス手段21cとは逆方向にバイアスを印加する(矢印MF’)。なお、後述するようにバイアス手段21c、22cは、このように永久磁石のように磁性膜21j、22jに磁界を印加する手段だけでなく、磁性膜の磁化と磁性膜を流れる電流の向きを変更できる構成であればよい。
 また、素子端子21a(22a)から素子端子21b(22b)に向かう方向を磁性素子21(22)の長手方向と呼ぶ。また、第1の磁性素子21と第2の磁性素子22は、接続線8の電流I方向(図1参照)に長手方向を揃えて配置される。接続線8の電流Iの発生する磁界Hを磁性膜の面内に作用させるためである。また、それぞれの磁性素子21、22は、接続線8の表面から等距離に配置されるのが望ましい。接続線8を流れる電流Iによる磁界Hは、接続線8の中心からの距離で決まるからである。逆に、接続線8の断面が円形で、接続線8の中心からの距離が等しければ、第1の磁性素子21と第2の磁性素子22は、必ずしも1直線状に配置されていなくてもよい。
 第1の磁性素子21の一方端21aは、力率センサ部10のセンサ端子10taと接続される。そして、第1の磁性素子21の他方端21bは、第1の計測抵抗23と直列に接続される。第2の磁性素子22の一方端22aは、同じく力率センサ部10のセンサ端子10taと接続される。そして、第1の磁性素子21同様、第2の磁性素子22の他方端22bは、第2の計測抵抗24と直列に接続される。
 第1の計測抵抗23および第2の計測抵抗24は、また、力率センサ部10のセンサ端子10tbに接続される。すなわち、力率センサ部10の一方端10taと他方端10tbの間で、第1の磁性素子21と第1の計測抵抗23、第2の磁性素子22と第2の計測抵抗24がブリッジ回路を構成する。
 計測端子13は、第1の磁性素子21と第2の磁性素子22の一方の素子端子21b、22bに接続されている。ここで、第1の計測抵抗23と第2の計測抵抗24は、同一の抵抗値を有し、なおかつ、磁性素子21、22の素子端子(21aと21bおよび22aと22b)間の抵抗Rmrと比較して十分大きな抵抗である。
 したがって、計測端子13a、13b間は、ブリッジ回路の差動出力となっている。また、計測抵抗23、24が磁性素子21、22の素子端子間の抵抗Rmrより十分に大きいので、力率計測装置1の連結端12間に印加される電圧に係らず、一定の電流が流れるとみなせる。
 次に図3、図4を用いて磁性素子21、22を詳説する。図3(a)には、第1の磁性素子21だけを示す。第1の磁性素子21では、磁性膜21jの磁化容易軸は素子端子21a、21b間の軸21EA方向に形成されている。言い換えると、磁化容易軸は長手方向に誘導されている。この時の素子端子21a、21b間の抵抗Rmrと、磁性膜21jの面内直角方向にかかる磁界Hとの関係を図3(b)に示す。
 図3(b)では、横軸が面内直角方向の磁界Hであり、縦軸は磁性膜21jの長手方向の抵抗値Rmr(Ω)である。なお、ここで、面内直角方向というのは、軸21EA方向に対して磁性膜21j面内方向であってかつ直角方向に、外部から磁界が印加されることを意味する。磁気抵抗特性を表す曲線MRCは、外部磁界ゼロの点を対称軸とした偶関数となる。
 第1の磁性素子21はバイアス手段21cによって、バイアス磁界MFが軸21EAに直角方向に印加されている。このバイアス磁界MFによって、磁性膜21jの磁化Mは軸21EAから角度θだけ傾く(図3(a)参照)。これを図3(b)でみると、バイアス磁界MFの大きさHbaisが磁性膜21jに印加されているので、動作点が曲線MRCに沿って、Hbais分だけ変化する。なお、第1の磁性素子21に流される電流は、素子端子21a、21b間に印加されるので、ほぼ軸21EA(長手方向)に沿って流れる。
 この傾斜θによって磁性膜21jの抵抗値は、Rm0まで下がる。この点が第1の磁性素子21の動作点となる。言い換えると、動作点での抵抗値はRm0である。
 ここで、図3(a)の方向に磁界Hが印加されたとする。この外部磁界Hによって、磁化Mは軸21EA方向に回転させられ、電流Iとなす角がθより小さくなる。図3(b)を参照して、電流Iと磁化Mとのなす角度が小さくなると、第1の磁性素子21の抵抗値はΔRmrだけ増加する(+ΔRmr)。
 図4には、図3同様第2の磁性素子22だけを記載する。第2の磁性素子22では、バイアス手段22cの方向が図3の第1の磁性素子21のバイアス手段21cと電流Iに対して方向が異なる。まず、バイアス磁界MF’によって磁化Mは軸22EA方向から角度θだけ傾斜する。ただし、バイアス磁界MF’はバイアス磁界MFと方向が異なるので、磁化Mの傾斜方向も図3の場合と逆となる。
 そして、図3同様の方向から外部磁界Hが印加されたとする。磁化Mはもともと外部磁界Hの印加方向に傾斜していたので、外部磁界Hによって軸22EAから離れる方向に傾斜する。図4(b)でこれを見ると、バイアス磁界Hbaisと同じ方向に印加された外部磁界Hによって第2の磁性素子22の抵抗RmrはΔRmrだけ小さくなる(‐ΔRmr)。
 すなわち、これら2つの磁性素子21、22は、同一方向からの外部磁界Hに対して、抵抗の変化が異なる磁性素子であるといえる。これは言い換えると、異なるバイアス手段を有しているといってもよい。
 再び図2を参照して、2つの磁性素子21、22は、すでに説明したように、計測抵抗23、24と共に、ブリッジ回路を形成し、計測端子13a、13bは2つの磁性素子21、22の抵抗変化を電圧変化として、差分出力する端子である。磁性素子21、22は、図3、図4で説明したように外部磁界Hによって抵抗値が(+ΔRmr)、(-ΔRmr)だけ変化する。
 計測抵抗23、24の抵抗値は、磁性素子21、22の抵抗値より十分大きく、また計測抵抗23、24は同じ大きさの抵抗であるので、磁性素子21、22には同じ電流Iが流れるとみなせる。すると、計測端子13a、13b間の出力電圧は、2×ΔRmr×Iとなる。
 再度図3を参照して、出力の詳細について式を用いて説明を行う。まず、磁性素子が1つの場合(第1の磁性素子21)について説明する。
 力率センサ部10は、測定対象である回路の接続線8に近接して配置される。そして接続線8に流れる電流によって発生する磁界Hを受ける。接続線8に流れる電流をIとすると、磁性膜に印加される磁界Hは、比例定数をαとして、(1)式のように表される。
H=αI・・・・(1)
 図3(b)に示すように、第1の磁性素子21の電気抵抗の変化ΔRmrは、外部からの印加磁界Hに比例するので、比例定数をβとし、(1)式を考慮すると、(2)式のように表される。
ΔRmr=βH=β(αI)・・・・(2)
 磁性膜21jに磁界が印加されていない時の電気抵抗をRm0とすると、磁界Hが印加された時の磁性膜全体の電気抵抗Rmは、(3)式のように表される。
Rm=Rm0+ΔRmr=Rm0+αβI・・・・(3)
 つまり、電流Iが流れる接続線8に近接配置された力率センサ部10の磁性膜21jは、(3)式のような電気抵抗特性を有する。この磁性素子21の素子端子21a、21b間に電流Iが流れると、素子端子21a、21b間の電圧Vmrは(4)式のように表される。
Vmr=RmI=(Rm0+ΔRm)I=(Rm0+αβI)I・・・・(4)
 次に電源7(図1参照)の電圧Vinは、振幅V、角周波数ωとすると、(5)式のように表される。また、被測定回路で負荷9はリアクタンスであるので、負荷9を流れる電流Iは、電源電圧Vinとは位相のズレが生じる。この位相のズレをθとする。一方、力率センサ部10の第1の磁性素子21は、通常の抵抗なので電源電圧Vinと同位相である。したがって、電流IおよびIは、(6)式、(7)式のように表される。
 そこで、(4)式に(6)式および(7)式を代入すると(8)式のように変形される。
Figure JPOXMLDOC01-appb-M000001
 図2で説明したように磁性素子21および22は、差動増幅するように接続されており、同一磁界に対しては、それぞれ出力が異なる。すなわち、外部磁界Hに対する第1の磁性素子21の電気抵抗の変化分が(2)式で示すΔRmrと表されるとすると、第2の磁性素子22の場合の外部磁界Hに対する電気抵抗の変化分は、(-ΔRmr)となる。すると第2の磁性素子22の場合の出力Vmrは(9)式のように表される。
Figure JPOXMLDOC01-appb-M000002
 力率センサ部10の出力は、差動出力(Vmr-Vmr)であるので、(8)式および(9)式より、(10)式のように表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、(10)式の右項を(11)式のようにAとし、左項を(12)式のようにBとすると、Aは、磁性素子21、22の差分出力の直流成分であり、Bは差分出力の交流成分である。またAは、負荷9の消費電力Iにcosθが乗算された値に比例する。すなわち、Aは、負荷9で消費される電力の有効電力に比例する。また、Bは、負荷9で消費する消費電力の皮相電力に比例する。
 すなわち、図2を参照して、計測端子13a、13bの端子間には、直流成分として負荷9の有効電力に比例した電圧が得られ、交流成分として負荷9の皮相電力に比例した電圧を得ることができる。
 よく知られているように、皮相電力は、複素数で表され、その実数成分を有効電力、虚数成分を無効電力と定義される。そして、力率は、皮相電力に対する有効電力の割合と定義される。したがって、力率(cosθ)は、(13)式に示すように、有効電力/皮相電力、すなわち、A/Bで表される。
Figure JPOXMLDOC01-appb-M000004
 上記の説明をまとめると、計測端子13aと13b間には、直流成分として負荷9の有効電力に比例した電圧(A)が生じ、交流成分として負荷9の皮相電力に比例した電圧(B)が生じている。そして、AとBを除算した結果の電圧が力率に比例した電圧として得られる。
 そこで、再度図1を参照して、計測端子13aと13bの出力は、電圧検出部(アンプ)15によって検出され、ローパスフィルタ16によって直流成分(A:有効電圧に相当)が抽出される。一方、ハイパスフィルタ17によって交流成分(B:皮相電力に相当)が抽出され、整流器18によって直流電圧に変換される。この操作で、(13)式の比例定数Kは、電源角周波数ωに依存しない定数とみなせる。これらは除算手段19によって、A/Bが求められる。結果は、力率(cosθ)に比例した電圧が得られる。
 以上のように、図1で示した構成を有する力率計測装置1によって、誘導性の負荷9で消費される電力の力率が求めることができる。
 (実施の形態2)
 図5には、磁性素子のバリエーションについて説明する。上記の説明のように、本発明の力率計測装置1は、同一の外部磁界Hに対して、異なる電気抵抗の変化率を有する一対の磁性素子の差分出力から直流電圧(有効電力に比例)と交流電圧(皮相電力に比例)を求め、除算することで力率に比例した電圧を得ることができる。
 磁性素子の磁性膜自体は、図3(b)、図4(b)でも示したように、外部から作用される磁界に対しては偶関数であり、そのままでは印加磁界に比例した抵抗値を得ることはできない。そこで、磁性素子21、22では、永久磁石のような磁界発生源をバイアス手段21c、22cとして磁性膜21j、22jの近傍に配置することによって、バイアス磁界を生成し、動作点を得た。しかし、磁石のような磁界発生源を用いなくても、動作点を得る方法がある。
 図5には、第1の磁性素子21の他の形態(第1の磁性素子31)を示す。なお、磁性膜31jの上に、縞模様の導体35が形成されている。また、磁性膜31jは、長手方向に磁化容易軸31EAが誘導されているとする。導体35は、磁性膜31jの電気抵抗と比べて十分に低い材料のものを使用するのが好ましい。具体的には銅若しくはアルミニウム、銀、金といった良導電性材料が好適に用いられる。導体35は、長手方向に対して一定方向に傾斜し、複数個形成される。
 このような磁性素子31の動作について図3と対応させながら説明する。素子端子31aおよび31b間には、電流Iが流される。素子端子31aから入力された電流Iは、縞模様の導体35から導体35へ流れる際には、磁性膜31j上を流れなければならない。導電部分は磁性膜31jしかないからである。
 磁性膜31jは、導体35より抵抗が高いため、電流Iは導体35間の最短距離を流れる。これは磁性膜31jの長手方向から見ると、傾斜した方向に電流が流れることとなる。ここで、磁性膜31jの磁化容易軸31EAは第1の磁性素子31の長手方向に誘導されているので、磁化Mと電流Iの向きに傾斜ができる。
 ここで、磁性膜31jに対して紙面上から下方向に磁界Hが印加されると、磁化Mはそれにつれて回転する(実線白矢印)。すると、回転した磁化Mと電流Iのなす角度が小さくなるので、磁性膜31jの抵抗は高くなる。すなわち、図3の場合同様、+ΔRmrの電気抵抗の変化を示す。
 図6には、縞模様の導体35が図5の場合とは、逆向きに形成されている場合を示す。電流Iの向きと磁化容易軸32EAの向きおよび外部から印加される磁界Hの向きは、図5の場合と同様である。図6の場合は、紙面上から下方向に印加される磁界Hによって、磁化M(実線矢印)は、電流Iから離れる方向に回転する。これは図4の場合同様、電気抵抗は減少する方向に変化する。すなわち、図4の場合同様、(-ΔRmr)の電気抵抗の変化を示す。
 このように、予め外部から印加磁界がない状態で、電流Iの流れる方向と、磁化Mの方向に角度をつけておくと、見かけ上バイアス磁界をかけたのと同じ状態になる。すなわち、このような磁性膜31j(または32j)と導体35の構成によってバイアス手段31c(若しくは32c)を形成することができる。
 なお、図5および図6では、電流Iの流れる方向が磁化容易軸31EA、32EAの方向と変わるような構成としたが、例えば予め磁化容易軸31EA、32EAを磁性膜31j(または32j)の長手方向に対して角度をつけて誘導しておいてもよい(実施形態3参照)。
 図7には、図5および図6を組み合わせた磁性素子30を示す。また、磁性素子30を含む力率センサ部を符号51で示す。磁性素子30は、力率センサ部10のセンサ端子51taと接続される素子端子30aと第1の計測抵抗23と接続される素子端子30bおよび第2の計測抵抗24と接続される素子端子30b’を有する。
 素子端子30aはセンタータップと言っても良い。磁性素子30は、素子端子30aから素子端子30bに向かう方向(これを「b方向」と呼ぶ)と30b’に向かう方向(これを「b’方向」と呼ぶ)けて配置された縞模様の導体35の形成方向が異なる。したがって、磁性膜30j上で流れる電流Iの向きは、b方向とb’方向では異なる方向に電流が流れている。
 このような磁性素子30に対して外部磁界Hが作用し、図7のように磁化Mが回転したとすると、b方向に向かう電流Iからは、磁化Mと電流の向きが同じ方向になるので、図3同様電気抵抗は増加する(+ΔRmr)。一方、b’方向に流れる電流Iからみると、磁化Mと電流の向きが離れる方向になるので、図4同様電気抵抗は減少する(-ΔRmr)。
 また、b方向およびb’方向にはそれぞれ、十分大きな計測抵抗23、24が直列に接続されており、それぞれの計測抵抗23、24は、力率センサ部10の端子10tbに接続されている。従って、図7に示した磁性素子30を含む力率センサ部51は、図2に示した場合と同様に、ブリッジ回路を形成しており、測定端子13a、13b間には、b方向とb’方向の差分出力が現れる。
 図8には、この力率センサ部51を有する力率計測装置2の構成を示す。計測端子13a、13bを出力とし、電圧検出部15、ローパスフィルタ16、ハイパスフィルタ17、整流器18、除算手段19は実施の形態1の場合と同じである。本実施の形態で示した力率センサ部51は、バイアス手段に永久磁石等の磁界発生源を必要としないので、小型かつ薄膜化が可能となる。また、磁性素子30はb方向とb’方向に磁性素子31と32を同時形成したものであるが、それぞれ別々に形成して導線で連結してもよい。
 (実施の形態3)
 図9に本実施の形態に関わる力率計測装置3の構成を示す。実施の形態1および2と同じ部分は同じ符号を用い、また説明も省略する。本実施の形態に係る力率計測装置3では、磁性素子41、42に特徴がある。磁性素子41および42は、長手方向に対して、磁化容易軸41EA、42EAが傾斜して誘導されている。さらに、磁性素子41および42の磁化容易軸がそれぞれ磁性膜に流れる電流Iに対して異なる方向に向けて誘導されている。
 このような構成にすることによって、被測定回路に流れる電流Iによって生成される磁界Hの影響を受け、磁性素子41、42の磁化Mは、M1およびM2のように回転する。磁性素子41、42に流れる電流Iの向きは、素子端子間(41a、41b間および42a、42b間:長手方向)にあるので、磁性素子41、42において、電流の向きと磁化の向きの関係は、それぞれ接近する向きと離れる向きというように異なる向きとなる。
 これは、実施の形態1および2の場合同様、それぞれの磁性素子41、42において、電気抵抗は増加(+ΔRmr)と減少(-ΔRmr)となる。その後の信号処理に関しても、実施の形態1および2と同様であり、力率cosθに比例する電圧を得ることができる。
 以上のように本発明の力率計測装置3は、被測定回路中の誘導負荷9での消費電力の力率を電圧値として計測することができる。これは、誘導モータといった、運転状態で力率が変化する負荷の電力制御に大変有効である。
 本発明は、家庭電気製品分野、自動車分野、産業機器分野など誘導負荷(リアクタンス)を制御する局面において広く利用することができる。
1、2、3 力率計測装置
7 電源
8 接続線(抵抗)
9 負荷
10 力率センサ部
10t(10ta、10tb) センサ端子
12(12a、12b) 連結端
13(13a、13b) 計測端子
15 電圧検出部
16 ローパスフィルタ
17 ハイパスフィルタ
18 整流器
19 除算手段
21 第1の磁性素子
21a、21b (第1の磁性素子の)素子端子
21c (第1の磁性素子の)バイアス手段
21j (第1の磁性素子の)磁性膜
21EA (第1の磁性素子の)磁化容易軸
22 第2の磁性素子
22a、22b (第2の磁性素子の)素子端子
22c (第2の磁性素子の)バイアス手段
22j (第2の磁性素子の)磁性膜
22EA (第2の磁性素子の)磁化容易軸
23 第1の計測抵抗
24 第2の計測抵抗
25 絶縁層
31 第1の磁性素子
31a、31b (第1の磁性素子の)素子端子
31j (第1の磁性素子の)磁性膜
31EA (第1の磁性素子の)磁化容易軸
32 第2の磁性素子
32a、32b (第2の磁性素子の)素子端子
32j (第2の磁性素子の)磁性膜
32EA (第2の磁性素子の)磁化容易軸
41 第1の磁性素子
41a、41b (第1の磁性素子の)素子端子
41j (第1の磁性素子の)磁性膜
41EA (第1の磁性素子の)磁化容易軸
42 第2の磁性素子
42a、42b (第2の磁性素子の)素子端子
42j (第2の磁性素子の)磁性膜
42EA (第2の磁性素子の)磁化容易軸
51、52 力率センサ部
51t(51ta、51tb)、52t(52ta、52tb) センサ端子

Claims (4)

  1.  電源に接続線を介して接続された負荷において消費される電力の力率を測定する力率計測装置であって、
    前記電源に対して前記負荷と並列に連結するための一対の連結端と、
     同一外部磁界によって電気抵抗の変化が異なる2つの磁性素子と、
     前記2つの磁性素子の差動電圧を出力する一対の計測端子と、
     前記一対の連結端と接続される一対のセンサ端子を含む力率センサ部と、
    前記計測端子間の電圧を計測する電圧検出部と、
    前記電圧検出部の出力に接続されたローパスフィルタと、
    前記電圧検出部の出力に接続されたハイパスフィルタと、
    前記ハイパスフィルタに接続された整流器と、
    前記ローパスフィルタの出力と、前記整流器の出力を除算する除算手段
    を有することを特徴とする力率計測装置。
  2.  前記2つの磁性素子は、
    短冊状の磁性膜の両端に設けられた素子端子と、
    前記磁性膜の膜面に平行に磁界が印加されるバイアス手段を有し、
    前記バイアス手段は、それぞれの磁性素子に流れる電流方向に対して、一方の磁性素子の面内方向に印加する磁界方向と他方の磁性素子の面内方向に印加する磁界方向が異なることを特徴とする請求項1に記載された力率計測装置。
  3.  前記2つの磁性素子は、
    短冊状の磁性膜の両端に設けられた素子端子と、
    前記磁性膜の表面に前記素子端子間方向に対して傾斜した複数の導体が形成されたバイアス手段を有し、
    前記バイアス手段は、一方の磁性素子表面の導体の磁性素子に流れる電流方向に対する傾斜方向が、他方の磁性素子表面の導体の磁性素子に流れる電流方向に対する傾斜方向と異なることを特徴とする請求項1に記載された力率計測装置。
  4.  前記2つの磁性素子は、
    短冊状の磁性膜の両端に設けられた素子端子と、
    前記素子端子間方向に対して傾斜した磁化容易軸が誘導されたバイアス手段を有し、
    前記バイアス手段は、一方の磁性素子の磁性素子に流れる電流方向に対する磁化容易軸の傾斜方向が、他方の磁性素子の磁性素子に流れる電流方向に対する磁化容易軸の傾斜方向と異なる方向であることを特徴とする請求項1に記載された力率計測装置。
PCT/JP2013/002975 2012-05-11 2013-05-09 力率計測装置 WO2013168428A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380036790.2A CN104508501B (zh) 2012-05-11 2013-05-09 功率因数计测装置
US14/400,023 US10120001B2 (en) 2012-05-11 2013-05-09 Power factor measurement device
EP13788379.9A EP2848948B1 (en) 2012-05-11 2013-05-09 Power factor measurement apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012110116A JP6083690B2 (ja) 2012-05-11 2012-05-11 力率計測装置
JP2012-110116 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013168428A1 true WO2013168428A1 (ja) 2013-11-14

Family

ID=49550491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002975 WO2013168428A1 (ja) 2012-05-11 2013-05-09 力率計測装置

Country Status (5)

Country Link
US (1) US10120001B2 (ja)
EP (1) EP2848948B1 (ja)
JP (1) JP6083690B2 (ja)
CN (1) CN104508501B (ja)
WO (1) WO2013168428A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5979413B2 (ja) 2012-03-27 2016-08-24 公立大学法人大阪市立大学 電力計測装置
WO2015141235A1 (ja) * 2014-03-20 2015-09-24 公立大学法人大阪市立大学 電力センサ、電力センサシステム、及び回生電力検出装置
CN107064785B (zh) * 2016-11-23 2023-08-04 国家电网公司 附加电源法低压交流开关通断试验功率因数测试系统方法
JP6877379B2 (ja) * 2018-03-14 2021-05-26 株式会社東芝 センサ
CN109188070B (zh) * 2018-09-21 2020-11-20 广东嘉盛达科技有限公司 一种月度功率因数预测方法及系统
JP6997892B2 (ja) * 2021-03-02 2022-01-18 株式会社東芝 センサ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474457A (en) * 1987-09-16 1989-03-20 Fujitsu Ltd Wattmeter using magneto-resistance element
JP2001074788A (ja) 1999-09-06 2001-03-23 Matsushita Electric Ind Co Ltd 無効電力計測装置と無効電力量計量装置と電力計測装置と電力量計量装置と力率計測装置
JP2011047731A (ja) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd 電力計測装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910004261B1 (ko) 1987-04-09 1991-06-25 후지쓰 가부시끼가이샤 자전 변환 소자를 이용한 검지기
JPH02120677A (ja) * 1988-10-31 1990-05-08 Fujitsu Ltd 位相差検出装置
JPH03261394A (ja) * 1990-03-08 1991-11-21 Alex Denshi Kogyo Kk 電動機の制御装置および制御方法
JP3262452B2 (ja) 1994-04-27 2002-03-04 キヤノン株式会社 シート積載装置及び画像形成装置
JPH07297464A (ja) * 1994-04-28 1995-11-10 Murata Mfg Co Ltd 差動型磁気抵抗効果素子
US5661645A (en) * 1996-06-27 1997-08-26 Hochstein; Peter A. Power supply for light emitting diode array
JP4023997B2 (ja) * 2000-10-26 2007-12-19 財団法人電気磁気材料研究所 薄膜磁界センサ
JP3573100B2 (ja) 2001-02-06 2004-10-06 日立金属株式会社 方位計及び方位の測定方法
US20030214762A1 (en) * 2002-05-14 2003-11-20 Manish Sharma Magnetic field detection sensor
JP4105147B2 (ja) 2004-12-06 2008-06-25 Tdk株式会社 電流センサ
JP4609152B2 (ja) 2005-03-30 2011-01-12 富士電機システムズ株式会社 超小型電力変換装置
JP2008039734A (ja) * 2006-08-10 2008-02-21 Koshin Denki Kk 電流センサ
JP5453994B2 (ja) * 2009-08-10 2014-03-26 Tdk株式会社 電流センサ
EP2461174A4 (en) 2009-08-26 2015-11-04 Panasonic Ip Man Co Ltd MAGNETIC FIELD SENSOR, AND MAGNETIC FIELD MEASURING METHOD, ENERGY MEASURING DEVICE, AND ENERGY MEASURING METHOD USING THE SAME
US8930152B2 (en) 2009-09-25 2015-01-06 University Of Washington Whole structure contactless power consumption sensing
WO2011111493A1 (ja) * 2010-03-12 2011-09-15 アルプス・グリーンデバイス株式会社 電流センサ
JP2012078232A (ja) * 2010-10-04 2012-04-19 Panasonic Corp 電流検出装置
CN102023244A (zh) * 2010-10-26 2011-04-20 江苏多维科技有限公司 独立封装的电表传感器
CN202066953U (zh) * 2011-05-30 2011-12-07 北京鼎臣超导科技有限公司 一种磁传感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474457A (en) * 1987-09-16 1989-03-20 Fujitsu Ltd Wattmeter using magneto-resistance element
JP2001074788A (ja) 1999-09-06 2001-03-23 Matsushita Electric Ind Co Ltd 無効電力計測装置と無効電力量計量装置と電力計測装置と電力量計量装置と力率計測装置
JP2011047731A (ja) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd 電力計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROAKI TSUJIMOTO ET AL.: "Magnetic thin film power sensor using a magneto resistance effect", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN KENKYUKAI SHIRYO. MAG, MAGNETICS KENKYUKAI, 24 November 2011 (2011-11-24), XP008175051 *

Also Published As

Publication number Publication date
EP2848948B1 (en) 2020-02-26
EP2848948A4 (en) 2016-06-01
JP6083690B2 (ja) 2017-02-22
US10120001B2 (en) 2018-11-06
CN104508501B (zh) 2017-05-17
EP2848948A1 (en) 2015-03-18
JP2013238434A (ja) 2013-11-28
CN104508501A (zh) 2015-04-08
US20150219700A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
JP6083690B2 (ja) 力率計測装置
US10101413B2 (en) Magnetic field detection device
US10184959B2 (en) Magnetic current sensor and current measurement method
EP3467528B1 (en) Magnetic sensor sensitivity matching calibration
JP5979413B2 (ja) 電力計測装置
US11022632B2 (en) Electric current sensor
JPWO2011118184A1 (ja) 電流から発生する磁界を検知して電流量を推定する方法
CN105264389B (zh) 电流测量装置以及电流计算方法
JPH08304466A (ja) 電流計
JP5911065B2 (ja) 漏電検出装置
JP2009020085A (ja) 多相電流の検出装置
US11828827B2 (en) Magnetic sensor sensitivity matching calibration
JP2017187502A (ja) 磁界検出装置
JP2002328140A (ja) 電流センサ
JP6390709B2 (ja) 電流検出装置、及び電流検出方法
WO2012042336A1 (ja) 電力計測装置および電力計測方法
US10866267B2 (en) Electric current sensor
TWI703338B (zh) 電流感測器
US20230243635A1 (en) Absolute position measurement using single magnet strip
JP2014048065A (ja) 電流センサ
JP2012093267A (ja) 電流検出装置
JPWO2004086073A1 (ja) 磁気インピーダンス素子及び電流・磁界センサ
TW202009497A (zh) 電流感測器
JP2016121944A (ja) 磁気抵抗素子回路及びブリッジ回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013788379

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14400023

Country of ref document: US