WO2013163961A1 - 一种储能式高压电子燃油泵、供油装置及其应用方法 - Google Patents

一种储能式高压电子燃油泵、供油装置及其应用方法 Download PDF

Info

Publication number
WO2013163961A1
WO2013163961A1 PCT/CN2013/075166 CN2013075166W WO2013163961A1 WO 2013163961 A1 WO2013163961 A1 WO 2013163961A1 CN 2013075166 W CN2013075166 W CN 2013075166W WO 2013163961 A1 WO2013163961 A1 WO 2013163961A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
energy storage
oil
plunger
fuel pump
Prior art date
Application number
PCT/CN2013/075166
Other languages
English (en)
French (fr)
Inventor
郗大光
张平
杨延相
刘昌文
Original Assignee
浙江福爱电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江福爱电子有限公司 filed Critical 浙江福爱电子有限公司
Priority to US14/767,607 priority Critical patent/US10495077B2/en
Publication of WO2013163961A1 publication Critical patent/WO2013163961A1/zh
Priority to US16/671,327 priority patent/US20200063728A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • F04B17/046Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids the fluid flowing through the moving part of the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/04Pumps peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/08Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by two or more pumping elements with conjoint outlet or several pumping elements feeding one engine cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive

Definitions

  • the invention belongs to the technical field of engines, and in particular relates to a spark-ignition engine in-cylinder direct fuel injection system.
  • direct injection The way in which fuel is injected directly into the spark-ignition engine cylinder is called direct injection. Due to the good economics of the direct injection engine, it is an important development direction of the engine in the future. The key to direct injection combustion is the fuel supply system. The system's maximum requirements for engine combustion, performance and emissions, low cost and ease of application are the goals pursued by direct injection technology.
  • GDI gasoline direct injection system
  • Most of the direct injection systems used in passenger car engines use the gasoline common rail technology route.
  • the pressure in the fuel rail is usually between 8-20 MPa.
  • the means of establishing rail pressure relies primarily on a mechanical piston pump with electromagnetic control that requires cam actuation and that the engine needs to be redesigned during installation.
  • the mechanical GDI high pressure pump has the following problems:
  • the fuel is repeatedly heated, and the low pressure diaphragm (MMD) is double damaged by temperature and alternating pressure;
  • the above problems and contradictions are inherent in the current GDI mechanical pump, completely solving the technical route that needs to change the pump oil.
  • the oil is supplied by an electronic fuel pump, the above problem does not exist.
  • Advantages of the electronic oil pump include: High pressure can be established before the engine is started; the oil rail volume can be increased without restriction or a buffer can be introduced, so that the pressure fluctuation of the oil rail is greatly reduced to achieve constant pressure injection; Oil supply required; oil cut condition can completely stop working; oil pump work has little effect on FUEL-LINE; pump body is independent of engine, can be installed arbitrarily, easy to produce and after-sales service; Electronic oil pump (electric oil pump) It is difficult to supply fuel pressure of 8MPa or more.
  • the built-in pressure range of the rotary electronic fuel pump is not more than 3 MPa.
  • the pressure that can be achieved with a rotary motor driven plunger pump is theoretically not different from the mechanical one, but the efficiency is lower than the mechanical direct drive and the cost is higher. If the cam mechanism is not used, the linear motor reciprocating motion directly drives the plunger oil pump, and the known disclosed solution can only be loaded in a single pass to cause energy conversion effect.
  • the low utilization rate is low, and achieving high pressure results in a large volume and high cost.
  • the object of the present invention is to use the electric energy reciprocating direct drive device and the energy storage principle to release the full-phase functional quantity in a partial phase to improve the transient energy density to the electric power driving device. , increase pump oil pressure.
  • An energy storage high-pressure electronic fuel pump includes an electromagnetic power device and a plunger sleeve assembly, the plunger sleeve assembly including a high pressure volume and a plunger sleeve including a plunger hole and a plunger slidable in the plunger hole.
  • the clearance volume between the electromagnetic power device and the plunger sleeve assembly forms a low pressure oil chamber, and the plunger defines a high pressure oil chamber in the plunger hole.
  • the plunger sleeve assembly Under the action of the electromagnetic driving device, the plunger sleeve assembly will have a low pressure oil chamber The fuel is sucked into the high pressure oil chamber and is pumped into the high pressure volume, wherein the electromagnetic power device comprises an energy storage device, a moving portion and a stationary portion, and the electromagnetic power device is controlled by the driving current to convert the electric energy into alternating two-way.
  • the electromagnetic power device comprises an energy storage device, a moving portion and a stationary portion, and the electromagnetic power device is controlled by the driving current to convert the electric energy into alternating two-way.
  • a driving force for driving the moving portion to reciprocate, in the first direction of the reciprocating motion the energy storage device absorbs energy from the moving portion, and in the second direction of the reciprocating motion, the plunger sleeve assembly is common to the moving portion and the energy storage device The fuel is pumped under the action.
  • the energy storage device comprises at least one energy storage spring located between the moving part and the stationary part, and may also use a hydraulic oil chamber with a certain volume to store energy, including a piston for compressing the hydraulic oil chamber, one from the hydraulic supply source to the hydraulic pressure.
  • the normally open check valve of the oil chamber when the pressure in the hydraulic chamber is higher than the specified value, the check valve is closed and the energy storage starts.
  • the electromagnetic power unit includes a voice coil motor, and the moving portion includes a basket and a coil connected thereto, and the basket is used to transmit a force generated by the coil.
  • the voice coil motor includes a u-shaped soft magnet and a magnetic stack, the magnetic stack is substantially a columnar body, the magnetic stack includes a first permanent magnet and a first soft magnetic body divided in the axial direction, and the u-shaped soft magnetic body includes a side wall and a bottom surface
  • the first permanent magnet of the magnetic pile is connected to the bottom surface and forms a uniform annular space with the sidewall, the first permanent magnet is magnetized in the axial direction, the coil comprises a first coil, the inner wall of the first coil and the first soft magnet
  • the side circumferences cooperate with each other and can slide axially in the annular space without resistance.
  • the magnetic stack includes a second permanent magnet and a second soft magnetic body that are axially divided, wherein the second permanent magnet is adjacent to the first soft magnetic body and the second soft magnetic body, and the second permanent magnet is axially magnetized. Its polarity is opposite to that of the first permanent magnet.
  • the above solution may include a supplemental soft magnet disposed between the basket and the u-type soft magnet in a manner supplementing the soft magnet to reduce the magnetic resistance between the second soft magnet and the u-soft magnet.
  • the supplemental soft magnet may include a projection extending toward the second soft magnet, the basket including a recess at a corresponding position, the recess being geometrically compatible with the projection so as not to affect the axis of the moving portion Toward the movement, at the same time, such a convex-concave structure can prevent the rotational movement of the moving portion.
  • the coil includes a second coil, and the basket, the second coil, and the first coil are fixed to each other,
  • the winding direction of the second coil is opposite to that of the first coil, and the inner wall of the second coil cooperates with the side circumference of the second soft magnet to slide axially in the annular space without resistance, and the increase of the second coil can further enhance the electromagnetic Force and reduce the heat of the coil.
  • the lead wire of the coil can be solved by including a terminal and a lead spring, one end of the lead spring is connected to the terminal through the stationary part, and the other end is connected to the coil wire, and the spring portion of the lead spring is located between the stationary part and the moving part .
  • Another type of electromagnetic power unit includes a double solenoid drive unit, and the moving portion is an armature.
  • the above various electromagnetic power devices are suitable to be combined with the following piston pump solutions to form a more specific technical solution, that is, including an oil inlet hole, the plunger hole is substantially a circular hole, a plunger and a plunger hole In close fitting and free to slide therein, the moving part drives the plunger to move in the plunger sleeve.
  • the plunger includes an oil inlet hole and an inlet valve seat surface communicating therewith, the oil inlet hole extends through the two ends of the plunger, and the seat surface is located at one end of the high pressure oil chamber, and includes an oil inlet valve member and an oil inlet valve spring.
  • the oil valve member, the inlet valve spring and the inlet valve seat face form an inlet valve.
  • the oil inlet hole may be disposed through a wall surface of the plunger sleeve.
  • the above various electromagnetic power devices are also suitable to be combined with the following piston pump solutions to form a more specific technical solution, that is, including an oil inlet hole, the plunger hole is substantially a circular hole, the plunger and the plunger The hole is closely fitted and free to slide therein, and the moving portion drives the plunger sleeve to move on the plunger.
  • the plunger sleeve assembly includes an oil inlet valve member, an oil inlet valve spring and an oil inlet valve seat, the oil inlet valve seat is disposed at one end of the plunger hole, and the oil inlet hole is communicated with the high pressure oil chamber through the oil inlet valve seat .
  • a valve ejector rod fixed to the stationary portion may be provided, and the valve ejector rod extends from the oil inlet hole to the high pressure chamber, and when the oil inlet stroke is nearing the end, the valve ejector rod contacts the inlet valve member and Limiting the movement of the inlet valve member to limit the complete closing of the inlet valve can further increase the transient energy output density of the electromagnetic power unit to further increase the oil pressure.
  • the oil supply device can be formed by using at least one of the above-mentioned energy storage type high-pressure electronic fuel pumps.
  • the device further comprises a low-pressure electronic oil pump and a solenoid valve type fuel injector, a fuel rail connected to the high-pressure volume, and the low-pressure electronic oil pump is located in the fuel tank.
  • the oil supply for the energy storage type high-pressure electronic fuel pump, the computer control unit, the fuel is pressurized by the energy storage high-pressure electronic fuel pump and then delivered to the oil rail as needed, and the electromagnetic valve type fuel injector supplies the fuel in the oil rail quantitatively. Give the engine.
  • the above solution may include a cam driven plunger type mechanical pump that supplies fuel from a low pressure electronic oil pump to input fuel to the fuel rail.
  • a fuel supply mode corresponds to this.
  • the energy storage high-pressure electronic fuel pump immediately supplies oil to the fuel rail until the rail pressure reaches a predetermined value.
  • the plunger mechanical pump It will be driven by the engine, and after the engine is running, it will then input fuel to the fuel rail. In practical applications, this method can not only quickly establish the rail pressure before the engine starts, but also help to further increase the rail volume and reduce the rail pressure. Fluctuation.
  • an injection device capable of directly supplying oil in the cylinder can be formed, which does not require a fuel rail, and has a simple structure, reliability, and low cost.
  • FIG. 1 is a structural view of a first embodiment of an energy storage type high-pressure electronic fuel pump provided by the present invention
  • FIG. 2 is a structural view of a second embodiment of an energy storage type high-pressure electronic fuel pump provided by the present invention
  • FIG. 3 is a structural view of a third embodiment of an energy storage type high-pressure electronic fuel pump provided by the present invention.
  • 3a is a structural diagram of a complementary soft magnetic body of a third embodiment of an energy storage type high-pressure electronic fuel pump according to the present invention.
  • 3b is a structural diagram of a basket of a third embodiment of the energy storage type high-pressure electronic fuel pump provided by the present invention.
  • FIG. 4 is a structural view of a fourth embodiment of an energy storage type high-pressure electronic fuel pump provided by the present invention.
  • Figure 5 is a structural view of a fifth embodiment of an energy storage type high-pressure electronic fuel pump provided by the present invention.
  • FIG. 6 is a structural view of a sixth embodiment of an energy storage type high-pressure electronic fuel pump provided by the present invention.
  • FIG. 7 is a structural view of a seventh embodiment of an energy storage type high-pressure electronic fuel pump provided by the present invention.
  • FIG. 8 is a structural view of an eighth embodiment of an energy storage type high-pressure electronic fuel pump provided by the present invention.
  • Figure 9 is a structural view of a first embodiment of an oil supply device provided by the present invention.
  • Figure 9a is a structural view of a pump unit of a first embodiment of the oil supply device provided by the present invention.
  • Figure 10 is a structural view of a second embodiment of the oil supply device provided by the present invention.
  • FIG 11 is a configuration diagram of a third embodiment of the oil supply device provided by the present invention. detailed description
  • Figure 1 is a block diagram showing the first embodiment of the energy storage type high pressure electronic fuel pump provided by the present invention.
  • the energy storage high pressure electronic fuel pump includes an electromagnetic power unit 100, a plunger sleeve assembly 200.
  • the electromagnetic power unit 100 includes a moving portion 101, a stationary portion 199 and an energy storage spring 102, and the stationary portion 199 and the moving portion 101 constitute a main body of a voice coil motor.
  • the plunger sleeve assembly 200 includes a plunger sleeve 201, a plunger 211, a return spring 209, an inlet valve composed of an inlet valve member 204, an inlet valve spring 206 and an inlet valve seat surface 205.
  • An oil discharge valve consisting of the oil discharge valve member 212, the oil discharge valve spring 215, the oil discharge valve spring seat 216 and the oil discharge valve seat surface 213, and an output sleeve 219 having a high pressure volume 217.
  • the plunger sleeve 201 includes a plunger hole 208.
  • the plunger hole 208 is connected to the oil inlet hole 203 through the inlet valve seat surface 205, and the other end is inserted into the plunger 211 and defines a high pressure oil chamber 208a.
  • the plunger sleeve 201 includes a column. Plug spring seat 210.
  • the plunger 211 includes a central oil passage 211a that connects the high pressure oil chamber 208a with the outlet valve seat surface 213.
  • Oil outlet valve member 212 and oil outlet valve spring 215 is located in the oil discharge valve chamber 214, and the oil discharge valve chamber 214 is in communication with the high pressure volume 217 through the oil outlet passage 216a.
  • the plunger 211 is connected to the output sleeve 219 in a sealed manner, and the outlet valve spring seat 216 is fixed to the output sleeve 219 by pressing or the like.
  • the output sleeve 219 contains a high pressure joint 218 for connection to a high pressure oil line.
  • the moving part 101 includes a first coil 103, a second coil 180, a basket 108 and a bobbin 104 integrally designed therewith, and the connector 106, the first coil 103 and the second coil 180 are wound in opposite directions and connected in series, and the basket is supported.
  • 108 includes a basket hollow 117a for reducing motion resistance and passing fuel, and passages 119a and 119b for passing the coil wires.
  • the basket 108 is rigidly coupled to the first coil 103 and the second coil 180 for transmitting the force generated by the coil to the energy storage spring 102 and the plunger sleeve 201.
  • the stationary portion 199 includes a magnetic pile 109, a U-shaped soft magnetic body 115, and an upper cover 107.
  • the magnetic pile 109 includes a first permanent magnet 111, a first soft magnetic body 113, a second permanent magnet 110, and a second soft magnetic body 114.
  • the U-shaped soft magnetic body 115 includes a low-pressure fuel return passage 118, and the upper cover 107 includes a low-pressure fuel intake passage.
  • 117; the magnetic pile 109 is a cylinder having a central hole, and the U-shaped soft magnet 115 includes an annular side wall 115a and a bottom surface 115b including a central hole.
  • the magnetic pile 109 is fixed to the bottom surface 115b and forms a side with the side wall 115a.
  • the valve top rod 207 is fixed to the upper cover 107 and extends from the oil inlet hole 203 to the high pressure oil chamber 208a.
  • the first soft magnetic body 113, the second soft magnetic body 114 and the U-shaped soft magnetic body are each made of a soft magnetic material.
  • the plunger 211 and the output sleeve 219 pass through the center holes of the magnetic pile 109 and the bottom surface 115b and are fixed to each other.
  • the energy storage spring 102 acts between the basket 108 and the upper cover 107.
  • the lead spring 105a and the lead spring 105b are both compression springs, and also act between the basket 108 and the upper cover 107.
  • the lead spring 105a and the lead spring 105b also have a certain Energy storage function.
  • the lead spring 105a and the lead spring 105b are electrically connected to the two terminals of the connector 106, and the other ends are connected to the two lead wires of the first coil 103 and the second coil 180, respectively.
  • the seal 116a and the seal 116b are used for sealing between the wire and the wall surface of the upper cover 107.
  • the first coil 103 is always held around the first soft magnetic body 113 in the axial range of motion
  • the second coil 180 is always held around the second soft magnetic body 114 in the axial range of motion.
  • the outer diameters of the first soft magnet 113 and the second soft magnetic body 114 may be designed to be slightly larger than the first permanent magnet 111 and the second permanent magnet 110 to ensure that the moving portion 101 is on the circumferential surface of the first soft magnetic body 113 and the second soft magnetic body 114. Smooth on the slide.
  • the return spring 209 acts between the plunger sleeve spring seat 210 and the magnetic pile 109.
  • a complete working process of the energy storage high-pressure electronic fuel pump is: fuel enters the low-pressure oil chamber 198 from the oil inlet 117, and when the current in the positive direction passes through the first coil 103 and the second coil 180, the first soft magnet Under the action of the surrounding radial magnetic field of 113 and the second soft magnetic body 114, the moving portion 101 upwardly compresses the energy storage spring 102, the upward direction refers to the oil suction stroke of the plunger sleeve assembly 200, and the return spring 209 also pushes the plunger at the same time.
  • the inlet valve spring 206 pushes the inlet valve member 204 to ascend, and the fuel in the low pressure oil chamber 198 pushes the inlet valve member 204 to open and enters the high pressure oil chamber 208a due to the pressure difference, when the moving member 101 approaches upward.
  • the valve top rod 207 restricts the oil inlet valve member 204 from seating, when When the moving member 101 is lifted up by the upper cover 107, an initial spacing G is formed between the inlet valve member 204 and the inlet valve seat 205, and the high pressure oil chamber 208a is already full or nearly full of fuel.
  • the moving portion 101 pushes the plunger sleeve 201 down while energy storage
  • the spring 102 also pushes the plunger sleeve 201 down.
  • the plunger sleeve 201 slides along the plunger 211 without resistance, and part of the fuel in the high pressure oil chamber 208a and possibly gas first.
  • the oil inlet hole 203 is squeezed into the low pressure fuel chamber 198.
  • the work of the electromagnetic field and the release of the energy of the energy storage spring 102 are converted into the kinetic energy of the plunger sleeve 201 and the moving portion 101, and the valve top rod 207 is disengaged from the oil inlet valve member.
  • the oil inlet valve member 207 is seated on the oil inlet valve seat 205, and at this time, the plunger sleeve 201 further descends to start compressing the fuel in the high pressure oil chamber 208a, when the oil pressure in the high pressure oil chamber 208a is higher than the oil outlet valve spring.
  • the preload of 215 is summed with the oil pressure in the delivery valve chamber 214, the high pressure fuel enters the high pressure volume 217.
  • the moving portion 101 stores the magnetic field as a functional amount in the energy storage spring 102, and the starting portion of the moving portion 101 further stores the magnetic field work in the form of kinetic energy in the moving portion 101 and the plunger sleeve 201.
  • the sum of the stored energy described above will be released in the subsequent downward flow of the moving portion 101 to the fuel in the high pressure oil chamber 208a, so that the fuel pressure will be greatly increased relative to the non-energy storage system. Therefore, by adjusting the initial pitch G, the total amount of energy stored can be changed.
  • an ordinary fuel circulation pump can be externally connected between the oil inlet passage 117 and the oil return passage 118 for taking the heat in the low pressure oil chamber 198 in time.
  • FIG. 2 is a structural view showing a second embodiment of the energy storage type high-pressure electronic fuel pump provided by the present invention.
  • the moving portion 101 of the embodiment only includes the first coil 113
  • the stationary portion 199 includes only the first permanent magnet 111 and the first soft magnet 113.
  • the first coil 113 is always held around the first soft magnetic body 113 within its range of motion, and the rest of the structure and operation are the same as in the first embodiment of the energy storage high-pressure electronic fuel pump.
  • Fig. 3 is a structural view showing a third embodiment of the energy storage type high-pressure electronic fuel pump provided by the present invention.
  • the stationary portion 119 of the present embodiment adds the second permanent magnet 103 and the second soft magnetic body 114, and a complementary soft magnetic body 122 is added.
  • the increase increases the strength of the magnetic field around the first soft magnet 113, thereby improving the energy conversion efficiency.
  • the structure of the supplemental soft magnet 122 is shown in Fig. 3a, which includes a uniform surrounding magnetizer 122a and two projections 122b and 122c. Accordingly, the structure of the basket 108 is shown in Fig. 3b, including two depressions 198a and 198b, two depressions. 198a and 198b are geometrically compatible with the two projections 122b and 122c, respectively, such that the supplemental soft magnet 122 does not affect the free movement of the basket 108, and the two projections 122b and 122c can limit the rotational movement of the basket 108, supplementing the soft magnet 122.
  • the magnetic resistance between the U-shaped soft magnet 115 and the second soft magnetic body 114 can be reduced.
  • the working process of this embodiment is the same as that of the second embodiment of the high-pressure electronic fuel pump.
  • Fig. 4 is a structural view showing a fourth embodiment of the energy storage type high-pressure electronic fuel pump provided by the present invention.
  • the plunger sleeve assembly 200 includes a plunger sleeve 201 closed at one end and an oil inlet hole 203 provided in the side wall of the fifth portion of the plunger 211 in communication with the center oil passage 211a.
  • the difference in the working process of the present embodiment is as follows, that is, the plunger sleeve 201 is in the process of ascending with the moving portion 101, and the oil inlet hole 203 When it is opened, the fuel in the low pressure oil chamber 198 enters the high pressure oil chamber 208a due to the pressure difference, and then the plunger sleeve 201 continues to ascend until it is restricted.
  • the plunger sleeve 201 is at the beginning stage of the descending movement portion 101, at the oil inlet hole 203.
  • the plunger sleeve 201 and the moving portion 101 0 perform a non-resistive motion under the action of the energy storage spring 102 and the electromagnetic field force. At this stage, the work of the electromagnetic energy and the energy release of the energy storage spring 102 move. The kinetic energy form of the piece 101 and the plunger sleeve 201 stores energy.
  • the fuel in the high pressure oil chamber 208a is started to be compressed. When the oil pressure in the high pressure oil chamber 208a is higher than the oil discharge valve When the preload force of the spring 215 is summed with the oil pressure in the oil discharge valve chamber 214, the high pressure fuel enters the high pressure volume 217.
  • Fig. 5 is a structural view showing a fifth embodiment of the energy storage type high-pressure electronic fuel pump provided by the present invention.
  • the plunger sleeve assembly 200 includes a plunger sleeve 201 that is sealingly coupled to the output sleeve 219, a plunger 211 including a plunger spring seat 211b that extends axially through the ends of the plunger 211 and is connected at one end.
  • the low pressure fuel chamber 198 has the other end connected to the inlet valve seat surface 205.
  • the plunger sleeve hole 208 is a stepped hole.
  • the plunger 211 enters the high pressure oil chamber 208a from the open end, and the outlet valve seat 213 connects the plunger sleeve hole 208.
  • a valve top rod 207 fixed to the upper cover 107 extends from the oil inlet hole 203 to the high pressure oil chamber 208a.
  • the difference in the working process of the present embodiment is as follows: when the moving portion 101 upwardly compresses the energy storage spring 102, the return spring 209 also pushes the plunger 211 at the same time. Upward, the inlet valve spring 206 pushes the inlet valve member 204 to ascend, and the fuel in the low pressure oil chamber 198 pushes the inlet valve member 204 to open and enters the high pressure oil chamber 208a due to the pressure difference, when the moving member 101 approaches the upper portion.
  • valve top rod 207 restricts the inlet valve member: 5 204 is seated, and when the moving member 101 is up-positioned by the upper cover 107, an initial spacing is formed between the inlet valve member 204 and the inlet valve seat 205. G, at this time the high pressure oil chamber 208a is already full or nearly full of fuel.
  • the energy storage spring 102 also pushes the plunger 211 downward.
  • the plunger 211 slides along the plunger sleeve hole 208 without resistance.
  • Part of the fuel in the high pressure oil chamber 208a and possibly the gas are first squeezed from the oil inlet hole 203 into the low pressure fuel chamber 198, during which the work of the electromagnetic field and the release of the energy of the energy storage spring 102 are converted into 10 plungers 211 and the moving portion.
  • Fig. 6 is a structural view showing a sixth embodiment of the energy storage type high-pressure electronic fuel pump provided by the present invention.
  • the structure is different in structure, that is, the output sleeve 219 is fixed to the upper cover 107, and the valve top rod 207 is fixed to the bottom surface 115b.
  • the bottom surface 115b is a closed plate having an inner oil passage 198a.
  • the energy storage spring 102 passes through the central hole of the magnetic pile 109 to act between the basket 108 and the bottom surface 115b.
  • the return spring 209 acts on the plunger sleeve spring seat 210 and the output.
  • the basket 108 includes a central hollow 108b through which the valve stem 207 extends from the oil inlet 203 to the high pressure oil chamber 208a.
  • the central hole of the magnetic pile 109 may also be a stepped hole which is small inside and outside, or may be a blind hole, and the valve top rod 207 may also be fixed to the magnetic pile 109.
  • the working process in this embodiment is substantially the same as or similar to the first embodiment of the energy storage type high-pressure electronic fuel pump, and will not be described herein.
  • Fig. 7 is a structural view showing a seventh embodiment of the energy storage type high-pressure electronic fuel pump provided by the present invention.
  • the present embodiment is structurally different in that the U-shaped outer magnet 115 includes an extension portion 190 through which a hydraulic sleeve 192 runs.
  • a hydraulic clutch 188 is closely fitted and freely movable in the hydraulic sleeve 192, and an energy storage spring seat 189 is fixed in the extension 190.
  • the energy storage spring acts between the hydraulic plunger 188 and the energy storage spring seat 189.
  • the extension 190 is provided with a normally open hydraulic pressure including a hydraulic valve member 195, a hydraulic valve seat 196 and a hydraulic check valve spring 194.
  • the one-way valve is provided with a passage 193 leading to the low-pressure oil source at the outlet of the hydraulic check valve, and a hydraulic volume chamber 191 is disposed between the hydraulic plunger 188 and the hydraulic check valve, and the hydraulic volume chamber 191 can be extended.
  • the plunger sleeve 201 includes an oil inlet 203 through the side wall, one end receiving the plunger 211 and the other end closed.
  • the difference in the working process of the present embodiment is as follows: when the moving portion 101 is ascending, the hydraulic plunger 188 is pushed and the energy storage spring is compressed by the hydraulic plunger 188. 102, when the pressure of the hydraulic volume chamber 191 rises abruptly due to the movement of the hydraulic plunger, the hydraulic check valve member 195 will close the hydraulic check valve seat 196 against the force of the hydraulic check valve spring 194, at this time, As the hydraulic plunger 188 can continue to ascend, the fuel of the hydraulic volume chamber 191 is continuously pressurized, and the energy storage spring energy and the hydraulic energy are continuously lowered and stored, and the plunger sleeve 201 is in the process of moving along with the moving portion 101.
  • the oil inlet hole 203 is opened, and the fuel in the low pressure oil chamber 198 enters the high pressure oil chamber 208a due to the pressure difference, and then the plunger sleeve 201 continues to ascend until it is restricted, and the plunger sleeve 201 is at the beginning stage of the descending movement portion 101.
  • the plunger sleeve 201 and the moving portion 101 perform the non-resistance movement under the pressure of the hydraulic pressure chamber 191, the energy storage spring 102 and the electromagnetic field force, and store the energy in the form of kinetic energy.
  • the fuel in the high pressure oil chamber 208a is started to be compressed, and the oil pressure in the high pressure oil chamber 208a is higher than
  • the preload force of the oil discharge valve spring 215 is the sum of the oil pressure in the oil discharge valve chamber 214
  • the high pressure fuel enters the high pressure volume 217, and when the pressure is close to the lower end point, the pressure of the hydraulic pressure chamber 191 decreases, and the hydraulic one-way member 195 is opened. If the fuel in the hydraulic volume chamber 191 is missing, it can be replenished by fuel from a low pressure oil source.
  • Fig. 8 is a block diagram showing the eighth embodiment of the energy storage type high-pressure electronic fuel pump provided by the present invention.
  • the energy storage high pressure electronic fuel pump includes an electromagnetic power unit 100, a plunger sleeve assembly 200.
  • the electromagnetic power unit 100 includes a moving portion 101, a stationary portion 199, and an energy storage spring 102.
  • the plunger sleeve assembly 200 includes a plunger sleeve 201, a plunger 211, a return spring 209, and an oil discharge valve composed of an oil discharge valve member 212, an oil discharge valve spring 215, and an oil discharge valve seat surface 213.
  • An output sleeve 219 having a high pressure volume 217, the plunger sleeve 201 includes a plunger bore 208 that enters from one end of the plunger bore 208 and forms a high pressure oil chamber 208a that passes through the side of the plunger sleeve 201
  • the wall is connected to the low pressure oil chamber 198 and the plunger hole 208.
  • the plunger 211 includes a plunger spring seat 211b.
  • the return spring 209 acts between the plunger spring seat 211b and the plunger sleeve 201, and the oil outlet valve spring 215 acts on the oil outlet.
  • the plunger sleeve 201 and the output sleeve 219 are connected in a sealed manner, and the output sleeve 219 includes a high pressure joint 218 for connection with the high pressure oil passage.
  • the moving portion 101 includes an armature 132 and an armature 108.
  • the armature 132 includes an armature oil passage 223.
  • the basket 108 includes a basket hollow 108a. The basket 108 is coupled to the armature 132 for transmitting the function between the armature 132 and the plunger 211. force.
  • the stationary portion 199 includes a double solenoid driving member composed of a first solenoid 124, a second solenoid 123, a yoke 125, a first magnetic gap 127, and a second magnetic gap 126, one of which includes an oil inlet 177. And an upper cover 107 for sealing the 0-ring, a connector 106.
  • the energy storage spring 102 acts between the upper cover 107 and the armature 132.
  • the front and rear end faces of the armature 132 are located adjacent to the first magnetic gap 127 and the second magnetic gap 126, respectively.
  • a complete working process of the energy storage high-pressure electronic fuel pump is: fuel with a certain pressure enters the low-pressure oil chamber 198 from the oil inlet 117, and after the second solenoid 123 is powered, the armature 132 is replaced by the second magnetic
  • the gap 126 drives the moving part 101 to move up under the action of the electromagnetic field force.
  • the upward direction refers to the oil suction stroke of the plunger sleeve assembly 200, the moving part 101 upwardly compresses the energy storage spring 102, and the return spring 209 pushes the plunger 211 upward.
  • the oil inlet hole 203 is opened, and the fuel in the low pressure oil chamber 198 enters the high pressure oil chamber 208a due to the pressure difference, at a certain moment before the moving portion 101 and the plunger 211 continue to be lifted, the second solenoid
  • the armature 132 drives the moving portion 101 downward by the electromagnetic field force of the first magnetic gap 127, and the plunger 211 descends along with the moving portion 101, at the initial starting stage,
  • the plunger 211 and the moving portion 101 perform a non-resistive motion under the action of the energy storage spring 102 and the electromagnetic field force, and part of the fuel in the high pressure oil chamber 208a and the gas that may exist first enter.
  • Oil hole 203 is squeezed to low
  • the fuel chamber 198, the work of electromagnetic energy at this stage and the energy release of the energy storage spring 102 are stored in the form of kinetic energy of the moving member 101 and the plunger 211.
  • the plunger 211 After the plunger 211 is further closed down into the oil hole 203, the plunger 211 starts to compress.
  • the fuel in the oil chamber 208a When the oil pressure in the high pressure oil chamber 208a is higher than the sum of the preload force of the oil discharge valve spring 215 and the oil pressure in the oil discharge valve chamber 214, the oil discharge valve member 212 leaves the outlet valve member seat surface 213, and the high pressure fuel enters. High pressure volume 217.
  • Figure 9 is a configuration diagram of a first embodiment of an oil supply device provided by the present invention.
  • An oil supply device that is, a high pressure fuel pump set 2 comprising a high energy electronic fuel pump provided by two embodiments shown in Fig. 1, a low pressure electronic oil pump 405, a pressure regulator 406, a fuel rail 402, Solenoid valve injector 403, rail pressure sensor 404, computer control unit 401, low pressure fuel supply pipe 407, low pressure return pipe 408, regulator low pressure return pipe 408a, high pressure oil supply pipe 409, fuel tank 410.
  • the high pressure fuel pump unit 2 comprises two energy storage type high pressure electronic fuel pumps 1, a coupler 300, and the coupler 300 includes a
  • the relief valve member 303, the relief valve spring 304 and the relief valve seat surface 305 constitute a relief valve, an overflow passage 306 connecting the relief valve seat surface 305 with the high pressure oil chamber 217, a high pressure joint 218, one back
  • the oil passage 118, the oil return passages 118a and 118b of the two energy storage type high-pressure electronic fuel pumps 1 are connected to the oil return passage 118 through the low pressure seals 301a and 301b, and the output sleeves 219a of the two energy storage type high-pressure electronic fuel pumps 1 and 219b is coupled to the high pressure oil chamber 217 by high pressure seals 302a and 302b.
  • the operation of the oil supply device is that the low-pressure electronic oil pump 405 supplies the fuel in the fuel tank 410 to the high-pressure fuel pump unit 2 through the low-pressure fuel supply pipe 407, and a part of the fuel is regulated by the low-pressure return pipe 408 via the pressure regulator 406.
  • the pressure return pipe 408a returns to the oil tank 410.
  • the computer control unit 401 determines a target fuel supply amount based on the information provided by the oil pressure sensor 404 and the information of the fuel demand of the engine. According to the target oil supply, the driving voltage or current of the high-pressure fuel pump group and its pulse width and frequency are determined.
  • the two energy storage high-pressure electronic fuel pumps of the high-pressure fuel pump group can be shifted in phase operation or in phase.
  • the computer unit 401 opens the solenoid valve injector 403 as needed to directly inject fuel into the cylinder of the internal combustion engine.
  • the fuel may be gasoline, or may be kerosene, diesel, or other biofuel.
  • the return of the low pressure fuel to the fuel tank 410 via the high pressure fuel pump set 2 facilitates cooling of the fuel unit.
  • the function of the pressure regulator 406 is to maintain the pressure of the low pressure supply line 407 to prevent air bubbles from affecting the normal operation of the fuel unit.
  • the relief valve member 303 When the pressure in the oil rail 402 is higher than a predetermined value due to factors such as temperature, the relief valve member 303 will push the relief valve spring 304 to open the overflow passage 306 until the pressure of the oil rail 402 is lower than a predetermined value.
  • This overflow is primarily used to control the pressure of the fuel rail 402 to prevent the solenoid valve injector 403 from opening due to excessive pressure.
  • Figure 10 is a configuration diagram of a second embodiment of the oil supply device provided by the present invention.
  • the present embodiment is structurally different in that it includes an energy storage type high-pressure electronic fuel pump 1, a cam-driven high-pressure pump 413, and a high-pressure pump 413.
  • a commercially available high pressure pump for direct injection engines a high pressure pump 413, a mechanical pump high pressure oil pipe 412 leading to the oil rail 402, a mechanical pump low pressure oil pipe 407a leading to the high pressure pump 413, and a storage energy source.
  • the working process of the oil supply device has the following difference: ⁇ , the low-pressure electronic oil pump 405 passes the fuel in the fuel tank 410 through the low-pressure fuel supply pipe 407-route machine
  • the pump low pressure oil pipe 407a is supplied to the high pressure pump 413, and the other route electronic pump low pressure oil pipe 407b is supplied to the energy storage type high pressure electronic fuel pump 1.
  • the computer control unit 401 first determines according to the information provided by the oil pressure sensor 404.
  • the computer control unit 401 drives the energy storage type high-pressure electronic fuel pump 1 through the high-pressure oil pipe 409 and The pressure chamber 411 supplies oil to the oil rail 402.
  • the energy storage type high pressure electronic fuel pump 1 stops supplying oil to the oil rail 402.
  • the function of the pressure accumulating chamber 411 is equivalent to increasing the volume of the oil rail 402, which can be solved by directly increasing the volume of the oil rail 402.
  • the oil supply device can effectively solve the contradiction between the pressure fluctuation and the pressure rising speed in the oil rail 402 when the simple mechanical high pressure pump 413 is used, which is beneficial to the starting of the engine and is beneficial to reducing the pressure fluctuation in the oil rail 402. Thereby improving oil supply accuracy and simplifying control logic.
  • Figure 11 is a configuration diagram of a third embodiment of the oil supply device provided by the present invention.
  • An oil supply device i.e., an energy storage type high-pressure electronic fuel pump 1 provided by a first embodiment, and an external opening nozzle 500 connected to a high-pressure volume 217.
  • the outer opening nozzle 500 includes a poppet valve member 501, a poppet valve seat 502, a poppet valve spring 503, a poppet valve spring seat 504, a limit member 505, and a poppet valve seat 502 including a poppet valve seat surface 506.
  • the working process of the oil supply device is that, in the non-operating state, the poppet valve member 501 is seated on the lift valve seat 506 by the lift valve spring 503, thereby closing the outer opening nozzle 500, and the fuel pressure in the high pressure volume 217 can be
  • the closing valve force of the poppet valve spring 503 is overcome, the poppet valve member 501 leaves the poppet valve seat 506, and the outer opening nozzle 500 is opened.
  • the fuel in the high pressure volume 217 can be injected into the engine cylinder, and the lifting valve member 501 is lifted during the lifting process.
  • the valve spring seat 504 meets the limit member 505 and the lift valve member 501 reaches its maximum lift.
  • the first to eighth embodiments of the energy storage type high-pressure electronic fuel pump provided by the present invention can be applied to the first to third embodiments of the oil supply device provided by the present invention.
  • Other further aspects based on the spirit of the invention are within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

一种储能式高压电子燃油泵、包括该燃油泵的供油装置及其应用方法,所述储能式高压电子燃油泵包括电磁动力装置和柱塞套筒组件,柱塞套筒组件包括高压容积和含有柱塞孔的柱塞套以及可在柱塞孔中滑动的柱塞,柱塞在柱塞孔中的余隙容积为高压油腔,电磁动力装置与柱塞套筒组件之间的余隙容积形成低压油腔,在电磁驱动装置的作用下,柱塞套筒组件将低压油腔中的燃油吸入高压油腔并压送至高压容积中,所述电磁动力装置包括储能装置、运动部和静止部,电磁动力装置由驱动电流控制将电能转化为交替变化的双向驱动力,以驱动运动部往复运动。

Description

一种储能式高压电子燃油泵、 供油装置及其应用方法 技术领域
本发明属于发动机技术领域, 特别涉及火花点火式发动机缸内燃油直喷系统。
背景技术
将燃油直接喷入火花点火式发动机气缸的燃烧方式称为直喷技术。 由于直喷发动机具有良 好的经济性, 是未来发动机的重要发展方向。 实现直喷燃烧的关键在于燃油供应系统, 系统 最大限度满足发动机燃烧、 性能和排放的要求、 成本低和便于应用等是直喷技术所追求的目 标。
越来越多的轿车发动机采用汽油直喷系统 (GDI)。 应用于轿车发动机的直喷系统多数采用 汽油共轨技术路线, 除了启动过程外, 油轨内的压力通常在 8-20MPa之间。 目前, 建立油轨 压力的手段主要依靠一种带有电磁控制的机械式柱塞泵, 这种泵需要凸轮驱动, 安装时, 发 动机需要重新设计。 除此之外, 机械式 GDI高压泵还存在以下问题:
1 ) 发动机启动前油轨压力不确定。 长期搁置后压力低于 lMPa, 因此会影响启动和启动后 的过渡过程、 发动机排放污染物等;
2) 油轨压力不稳定, 压力随凸轮相位变化较大;
3) 从完全断油到恢复供油的过渡工况比较复杂, 不喷油时或者怠速时, 维持轨压不变较难;
4) 在部分负荷, 燃油被反复加热, 低压膜片 (MMD) 受温度和交变压力双重破坏;
5) 发动机油量需求计算逻辑与高压油泵的控制关联度大, 控制逻辑复杂;
6) 油轨容积太小, 压力波动增大, 容积过大, 启动前压力建立过程太长。
总之, 上述问题和矛盾是当前 GDI机械泵固有的, 彻底解决需要改变泵油的技术路线。 相对而言, 若用电子式燃油泵供油, 则不存在上述问题。 电子油泵的优点包括: 在发动机 启动前可以建立高压; 可以不受限制地增大油轨容积或者引入缓冲器, 使得油轨压力波动大 幅度降低, 以实现恒压喷射; 可以比较精确地实现按需供油; 断油工况, 可以完全停止工作; 油泵工作对油路系统 (FUEL-LINE) 影响很小; 泵体独立于发动机, 可以任意安装, 便于生 产和售后服务; 但是, 已知公开的电子油泵 (电动油泵) 供应 8MPa以上的燃油压力是比较 困难的。旋转式电子燃油泵的建压范围不大于 3MPa。以旋转电机驱动的柱塞油泵可实现的压 力理论上与机械式没有差异, 但效率比机械式直接驱动更低, 成本更高。 如不采用凸轮机构 而采用直线电机往复运动直接驱动柱塞油泵, 已知公开的方案只能单程加载导致能量转化效 率低时间利用率低, 实现高压会导致产品的体积很大, 成本也很高。
发明内容
针对现有技术中存在的诸多问题,本发明之目的在于运用电能往复式直接驱动装置和储能 原理, 将全相位的做功能量在部分相位释放, 以提高往电能驱动装置的瞬态能量密度, 提高 泵油压力。
本发明上述目的通过以下技术方案实现, 艮卩:
一种储能式高压电子燃油泵, 包括电磁动力装置、 柱塞套筒组件, 柱塞套筒组件包括高压容 积和含有柱塞孔的柱塞套以及可在柱塞孔中滑动的柱塞, 电磁动力装置与柱塞套筒组件之间 的余隙容积形成低压油腔, 柱塞在柱塞孔中划分出高压油腔, 在电磁驱动装置的作用下, 柱 塞套筒组件将低压油腔中的燃油吸入高压油腔并压送至高压容积中, 其特征为, 所述电磁动 力装置包括储能装置、 运动部和静止部, 电磁动力装置由驱动电流控制将电能转化为交替变 化的双向驱动力, 以驱动运动部往复运动, 在往复运动的第一方向, 储能装置吸收来自运动 部的能量, 在往复运动的第二方向, 柱塞套筒组件在运动部和储能装置的共同作用下压送燃 油。
储能装置包括至少一个位于运动部和静止部之间的储能弹簧, 也可以采用具有一定容积的 液压油腔储能, 其中包括一个可压缩液压油腔的活塞, 一个从液压供应源到液压油腔的常开 单向阀, 当液压腔内压力高过所定值时, 单向阀关闭和储能开始。
电磁动力装置包括一个音圈电机, 运动部包括提篮和与之连接的线圈, 提篮用于传递线圈 产生的力。
所述音圈电机包括一个包括 u型软磁体和磁堆, 磁堆大致为柱状体, 磁堆包括沿轴向分割 的第一永磁体和第一软磁体, u型软磁体包括侧壁和底面, 磁堆的第一永磁体与底面连接并 与侧壁形成一个均匀的环形空间, 第一永磁体沿轴向充磁, 所述线圈包括第一线圈, 第一线 圈的内壁与第一软磁体的侧周相互配合, 可以没有阻力地在所述环形空间中轴向滑动。 进一步, 所述磁堆包括沿轴向分割的第二永磁体和第二软磁体, 其中, 第二永磁体与第一 软磁体和第二软磁体相邻, 第二永磁体轴向充磁, 其极性与第一永磁体相反。
上述方案可以包括一个补充软磁体, 所述补充软磁体位于提篮与 u型软磁体之间, 补充软 磁体以减少第二软磁体与 u性软磁体之间的磁阻的方式布置。
补充软磁体可以包括有伸向第二软磁体的凸出部, 所述提篮包括在相应位置的凹陷部, 所 述凹陷部在几何上与凸出部相容, 以至于不影响运动部的轴向运动, 同时, 这种凸凹结构可 以防止运动部的旋转运动。
对于双软磁体的结构, 所述线圈包括第二线圈, 提篮、 第二线圈和第一线圈相互固定, 第 二线圈与第一线圈的缠绕方向相反, 第二线圈的内壁与第二软磁体的侧周相互配合, 可以没 有阻力地在所述环形空间中轴向滑动, 第二线圈的增加可以进一步增强电磁力和减少线圈的 发热。
线圈的引线可以通过如下方案解决, 即, 包括接线端子和引线弹簧, 引线弹簧的一头穿过 静止部与接线端子连接, 另一头连接线圈导线, 引线弹簧的弹簧部分位于静止部与运动部之 间。
另一种电磁动力装置包括一个双螺线管驱动装置, 所述运动部为一个电枢。
以上各种电磁动力装置,都适合采用以下柱塞泵方案与之配合形成更具体的技术方案,即, 包括一个进油孔, 所述柱塞孔大致为一个圆孔, 柱塞与柱塞孔密切配合且在其中自由滑动, 运动部驱动柱塞在柱塞套中运动。
所述柱塞包括一个进油孔和与之联通的进油阀座面, 进油孔贯穿柱塞两端, 座面位于高压 油腔一端, 包括一个进油阀件和进油阀簧, 进油阀件、 进油阀簧和进油阀座面形成进油阀。 所述进油孔可以穿过柱塞套壁面设置。
以上各种电磁动力装置, 也都适合采用以下柱塞泵方案与之配合形成更具体的技术方案, 即, 包括一个进油孔, 所述柱塞孔大致为一个圆孔, 柱塞与柱塞孔密切配合且在其中自由滑 动, 运动部驱动柱塞套在柱塞上运动。
进一步, 所述柱塞套筒组件包括进油阀件、 进油阀弹簧和进油阀座, 进油阀座布置在柱塞 孔的一端, 进油孔通过进油阀座与高压油腔联通。
对于上述含进油阀的方案, 可以设置一个固定于静止部的阀顶杆, 阀顶杆从进油孔伸向高 压腔, 进油行程临近结束时, 阀顶杆与进油阀件接触并限制进油阀件继续运动, 从而限制进 油阀完全关闭, 其效果可以进一步提高电磁动力装置的瞬态能量输出密度, 以进一步提高油 压。
采用至少一个上述储能式高压电子燃油泵, 可以形成一种供油装置, 这个装置还包括低压 电子油泵和电磁阀式喷油嘴, 一个与高压容积连接的油轨, 低压电子油泵位于燃油箱内为储 能式高压电子燃油泵供油, 电脑控制单元, 燃油被储能式高压电子燃油泵加压后按需输送至 油轨, 电磁阀式喷油嘴将油轨中的燃油定量地供应给发动机。
进一步, 上述方案可以包括一个由凸轮驱动的柱塞式机械泵, 所述柱塞式机械泵由低压电 子油泵供应燃油, 向所述油轨输入燃油。 与之对应的是一种燃油供应方式, 一旦发动机上电 (启动钥匙开启), 所述储能式高压电子燃油泵立即向油轨供油, 直到油轨压力到达所定值, 柱塞式机械泵将由发动机驱动, 发动机运转后, 随之向油轨输入燃油。此方法在实际应用中, 不仅可以在发动机启动前迅速建立油轨压力, 有利于进一步增大油轨容积, 并减少油轨压力 波动。
采用上述储能式高压电子燃油泵, 以及压力开启式喷油嘴, 可以形成一种可以完成缸内直 接供油的喷射装置, 这种装置不需要油轨, 结构简单、 可靠且成本低。
附图说明
通过以下附图和具体实施方式对本发明做进一步详细描述:
图 1 为本发明提供的储能式高压电子燃油泵第一实施例的结构图;
图 2为本发明提供的储能式高压电子燃油泵第二实施例的结构图;
图 3为本发明提供的储能式高压电子燃油泵第三实施例的结构图;
图 3a为本发明提供的储能式高压电子燃油泵第三实施例之补充软磁体结构图;
图 3b为本发明提供的储能式高压电子燃油泵第三实施例之提篮结构图;
图 4为本发明提供的储能式高压电子燃油泵第四实施例的结构图;
图 5为本发明提供的储能式高压电子燃油泵第五实施例的结构图;
图 6为本发明提供的储能式高压电子燃油泵第六实施例的结构图;
图 7为本发明提供的储能式高压电子燃油泵第七实施例的结构图;
图 8为本发明提供的储能式高压电子燃油泵第八实施例的结构图;
图 9为本发明提供的供油装置第一实施例的构成图;
图 9a为本发明提供的供油装置第一实施例之泵组结构图;
图 10为本发明提供的供油装置第二实施例的构成图;
图 11为本发明提供的供油装置第三实施例的构成图。 具体实施方式
图 1显示了本发明提供的储能式高压电子燃油泵第一实施例的结构图。
储能式高压电子燃油泵, 包括一个电磁动力装置 100, 一个柱塞套筒组件 200。
电磁动力装置 100包括运动部 101, 静止部 199和储能弹簧 102, 静止部 199与运动部 101 构成一种音圈电机的主体。
柱塞套筒组件 200包括一个柱塞套 201, 一个柱塞 211, 一个回位弹簧 209, 一个由进油阀 件 204、进油阀弹簧 206和进油阀座面 205组成的进油阀, 一个由出油阀件 212、 出油阀弹簧 215、出油阀弹簧座 216和出油阀座面 213组成的出油阀,一个含高压容积 217的输出套 219。 柱塞套 201包括柱塞孔 208, 柱塞孔 208的一端通过进油阀座面 205与进油孔 203连接, 另 一端纳入柱塞 211并划分出高压油腔 208a, 柱塞套 201包括柱塞套弹簧座 210。 柱塞 211包 括一个连接高压油腔 208a与出油阀座面 213的中心油道 211a。 出油阀件 212和出油阀弹簧 215位于出油阀室 214之中,出油阀室 214通过出油通道 216a与高压容积 217连通。柱塞 211 与输出套 219以密封的方式连接, 出油阀弹簧座 216通过压紧等方式固定于输出套 219。 输 出套 219含有高压接头 218用于与高压油路连接。
运动部 101包括第一线圈 103,第二线圈 180,提篮 108和与之一体化设计的线圈骨架 104, 接线器 106, 第一线圈 103与第二线圈 180的缠绕的方向相反并相互串联, 提篮 108包括用 于减小运动阻力和通过燃油的提篮镂空 108a, 用于通过线圈导线的通道 119a和 119b。 提篮 108与第一线圈 103和第二线圈 180刚性连接, 用于将线圈产生的力传递给储能弹簧 102和 柱塞套 201。
静止部 199包括磁堆 109, U型软磁体 115, 上盖 107。 磁堆 109包括第一永磁体 111, 第 一软磁体 113, 第二永磁体 110, 第二软磁体 114; U型软磁体 115包括低压燃油回油道 118, 上盖 107包括低压燃油入油道 117;磁堆 109为一个含中心孔的圆柱体, U型软磁体 115包括 一个圆环形侧壁 115a和一个含中心孔的底面 115b, 磁堆 109固定于底面 115b并与侧壁 115a 形成一个均匀的环形空间 120。阀顶杆 207固定于上盖 107并从进油孔 203伸向高压油腔 208a, 第一软磁体 113、 第二软磁体 114和 U型软磁体均由软磁材料制成。 柱塞 211和输出套 219 从磁堆 109和底面 115b之中心孔穿过并相互固定。
储能弹簧 102作用于提篮 108与上盖 107之间,引线弹簧 105a和引线弹簧 105b均为压簧, 也作用于提篮 108与上盖 107之间,引线弹簧 105a和引线弹簧 105b也具备一定的储能功能。 引线弹簧 105a和引线弹簧 105b—端以导电的方式分别连接接线器 106的两个端子, 另一端 分别连接第一线圈 103和第二线圈 180之两个导线抽头。 密封件 116a和密封件 116b用于导 线与上盖 107壁面之间的密封。
第一线圈 103在轴向的运动范围内始终保持在第一软磁体 113之周围,第二线圈 180在轴 向的运动范围内始终保持在第二软磁体 114之周围。 第一软磁体 113和第二软磁体 114的外 径在设计时可以略大于第一永磁体 111和第二永磁体 110以保证运动部 101在第一软磁体 113 和第二软磁体 114周表面上滑行顺畅。
回位弹簧 209作用于柱塞套弹簧座 210与磁堆 109之间。
所述储能式高压电子燃油泵的一个完整工作过程是: 燃油从进油道 117进入低压油腔 198, 当正方向的电流通过第一线圈 103和第二线圈 180时, 在第一软磁体 113和第二软磁体 114 的周围径向磁场的作用下, 运动部 101上行压缩储能弹簧 102, 所述上行是指柱塞套筒组件 200的吸油行程, 回位弹簧 209也同时推动柱塞套 201上行, 进油阀弹簧 206推动进油阀件 204随之上行, 同时低压油腔 198中的燃油因为压差推动进油阀件 204开启并进入高压油腔 208a, 当运动件 101上行接近被上盖 107限位时, 阀顶杆 207则限制进油阀件 204落座, 当 运动件 101上行被上盖 107限位时, 进油阀件 204与进油阀座 205之间形成初始间距 G, 此 时高压油腔 208a已经充满或者接近充满燃油。 当反向电流通过第一线圈 103和第二线圈 180 时, 在第一软磁体 113和第二软磁体 114的周围径向磁场的作用下, 运动部 101推动柱塞套 201下行, 同时储能弹簧 102也推动柱塞套 201下行, 在进油阀件 204离开阀顶杆 207之前, 柱塞套 201顺柱塞 211作无阻力滑动,高压油腔 208a中的部分燃油以及可能存在的气体首先 从进油孔 203被挤压到低压燃油腔 198, 这个期间电磁场的做功和储能弹簧 102能量的释放 转化为柱塞套 201和运动部 101的动能, 在阀顶杆 207脱离进油阀件 204的瞬间, 进油阀件 207落座于进油阀座 205, 此时柱塞套 201进一步下行开始压缩高压油腔 208a中的燃油, 当 高压油腔 208a中的油压力高于出油阀弹簧 215的预紧力与出油阀室 214中的油压力总和时, 高压燃油进入高压容积 217。
在上述过程中, 运动部 101上行将磁场作功能量储存于储能弹簧 102中, 运动部 101下行 的开始阶段又将磁场做功以运动能的形式储存于运动部 101和柱塞套 201中, 上述被储存的 能量总和将在运动部 101的后续下行中释放于压送高压油腔 208a中的燃油,因此燃油压力会 相对无储能系统大幅提高。 因此, 通过调整初始间距 G, 可以改变储能总量。
在上述过程中, 在进油道 117和回油道 118之间可外接一个普通的燃油循环泵, 用于将低 压油腔 198中的热量及时带走。
图 2显示了本发明提供的储能式高压电子燃油泵第二实施例的结构图。
与本发明提供的储能式高压电子燃油泵第一实施例相比, 本实施例之运动部 101仅仅包含 第一线圈 113, 静止部 199仅仅包含第一永磁体 111和第一软磁体 113, 第一线圈 113在其运 动范围内始终保持在第一软磁体 113周围, 其余结构和工作过程与储能式高压电子燃油泵第 一实施例相同。
本实施例之工作过程与高压电子燃油泵第一实施例相同。
图 3显示了本发明提供的储能式高压电子燃油泵第三实施例的结构图。
与本发明提供的储能式高压电子燃油泵第二实施例相比, 本实施例之静止部 119增加了第 二永磁体 103和第二软磁体 114, 同时增加了一个补充软磁体 122, 这些增加会提高第一软磁 体 113周围的磁场强度, 从而提高能量的转换效率。
补充软磁体 122的结构见图 3a,其中包括四周均匀的导磁体 122a和两个凸起 122b和 122c, 相应地, 提篮 108的结构见图 3b, 其中包括两个凹陷 198a和 198b, 两个凹陷 198a和 198b 分别与两个凸起 122b和 122c在几何上相容以至于补充软磁体 122不影响提篮 108的自由运 动, 两个凸起 122b和 122c可以限制提篮 108的旋转运动, 补充软磁体 122可以减小 U型软 磁体 115与第二软磁体 114之间的磁阻。 本实施例之工作过程与高压电子燃油泵第二实施例相同。
图 4显示了本发明提供的储能式高压电子燃油泵第四实施例的结构图。
与本发明提供的储能式高压电子燃油泵第一实施例相比,本实施例在结构上的不同之处在 于柱塞套组件 200。 柱塞套组件 200包括一个一端封闭的柱塞套 201和一个设在柱塞 211之 5 侧壁与其中心油道 211a相连通的进油孔 203。
与本发明提供的储能式高压电子燃油泵第一实施例相比,本实施例在工作过程上的差异如 下, 即, 柱塞套 201在随同运动部 101上行的过程中, 进油孔 203被打开, 低压油腔 198中 的燃油因压差进入高压油腔 208a, 之后柱塞套 201继续上行直至被限位, 柱塞套 201在随同 运动部 101下行的开始阶段, 在进油孔 203被柱塞套 201覆盖前, 柱塞套 201和运动部 101 0 在储能弹簧 102与电磁场力共同作用下做无阻力运动, 此阶段电磁能的做功与储能弹簧 102 的能量释放会以运动件 101和柱塞套 201的动能形式储存能量, 柱塞套 201进一步下行覆盖 进油孔 203后, 开始压缩高压油腔 208a中的燃油, 当高压油腔 208a中的油压力高于出油阀 弹簧 215的预紧力与出油阀室 214中的油压力总和时, 高压燃油进入高压容积 217。
图 5显示了本发明提供的储能式高压电子燃油泵第五实施例的结构图。
5 与本发明提供的储能式高压电子燃油泵第一实施例相比,本实施例在结构上的不同之处在 于柱塞套组件 200。柱塞套组件 200包括一个与输出套 219以密封方式连接的柱塞套 201, 一 个包括柱塞弹簧座 211b的柱塞 211, 进油孔 203沿轴向贯穿柱塞 211之两端, 一端连接低压 燃油腔 198, 另一端连接进油阀座面 205, 柱塞套孔 208是一个阶梯孔, 柱塞 211从开口一端 进入形成高压油腔 208a, 出油阀座 213连接柱塞套孔 208的另一端, 一个固定于上盖 107的 :° 阀顶杆 207从进油孔 203伸向高压油腔 208a。
与储能式高压电子燃油泵第一实施例相比, 本实施例在工作过程上的差异如下, 即, 当运 动部 101上行压缩储能弹簧 102时, 回位弹簧 209也同时推动柱塞 211上行,进油阀弹簧 206 推动进油阀件 204随之上行, 同时低压油腔 198中的燃油因为压差推动进油阀件 204开启并 进入高压油腔 208a, 当运动件 101上行接近被上盖 107限位时, 阀顶杆 207则限制进油阀件 :5 204落座, 当运动件 101上行被上盖 107限位时, 进油阀件 204与进油阀座 205之间形成初 始间距 G, 此时高压油腔 208a已经充满或者接近充满燃油。 当运动部 101推动柱塞 211下行 时, 储能弹簧 102也同时推动柱塞 211下行, 在进油阀件 204离开阀顶杆 207之前, 柱塞 211 顺柱塞套孔 208作无阻力滑动,高压油腔 208a中的部分燃油以及可能存在的气体首先从进油 孔 203被挤压到低压燃油腔 198, 这个期间电磁场的做功和储能弹簧 102能量的释放转化为 10 柱塞 211和运动部 101的动能, 在阀顶杆 207脱离进油阀件 204的瞬间, 进油阀件 207落座 于进油阀座 205,此时柱塞 211进一步下行开始压缩高压油腔 208a中的燃油,当高压油腔 208a 中的油压力高于出油阀弹簧 215的预紧力与出油阀室 214中的油压力总和时, 高压燃油进入 高压容积 217。
图 6显示了本发明提供的储能式高压电子燃油泵第六实施例的结构图。
与本发明提供的储能式高压电子燃油泵第一实施例相比,本实施例在结构上的不同之处在 于, 即, 输出套 219固定于上盖 107, 阀顶杆 207固定于底面 115b, 底面 115b是一个含有内 油道 198a的封闭平板, 储能弹簧 102穿过磁堆 109之中心孔作用于提篮 108和底面 115b之 间, 回位弹簧 209作用于柱塞套弹簧座 210与输出套 219之间, 提篮 108包括一个中心镂空 108b, 阀顶杆 207穿过中心镂空 108b从进油孔 203伸向高压油腔 208a。
上述方案中, 磁堆 109之中心孔也可以是一个外大内小的阶梯孔, 也可以是一个盲孔, 阀 顶杆 207也可以固定于磁堆 109。
本实施例在工作过程与储能式高压电子燃油泵第一实施例基本相同或者相似, 这里不再赘 述。
图 7显示了本发明提供的储能式高压电子燃油泵第七实施例的结构图。
与本发明提供的储能式高压电子燃油泵第六实施例相比, 本实施例在结构上的不同之处在 于, 即, U型外磁体 115包括一个延长部 190, 一个液压套筒 192贯穿于磁堆 109和 U型外 磁体 115及其延长部的中心, 在液压套筒 192内设有一个密切配合且可自由运动的液压柱塞 188, 延长部 190内固定有一个储能弹簧座 189, 储能弹簧作用于液压柱塞 188和储能弹簧座 189之间, 延长部 190内设有一个常开的包括液压阀件 195、液压阀座 196和液压单向阀弹簧 194在内的液压单向阀, 在液压单向阀之出口处设有一个通向低压油源的通道 193, 在液压柱 塞 188和液压单向阀之间设有一个液压容积室 191, 液压容积室 191可以延伸至延长部 190 之外, 柱塞套 201包括一个穿过侧壁的进油孔 203, 一端接纳柱塞 211, 另一端封闭。
与储能式高压电子燃油泵第六实施例相比, 本实施例在工作过程上的差异如下, 即, 当运 动部 101上行时, 推动液压柱塞 188并通过液压柱塞 188压缩储能弹簧 102, 当液压容积室 191之压力因液压柱塞运动而陡然上升时, 液压单向阀件 195将会克服液压单向阀弹簧 194 之作用力而关闭与液压单向阀座 196, 此时, 随着液压柱塞 188可以继续上行, 液压容积室 191 的燃油被不断加压, 储能弹簧能和液压能同时不断被垒高和储存, 柱塞套 201在随同运 动部 101上行的过程中,进油孔 203被打开,低压油腔 198中的燃油因压差进入高压油腔 208a, 之后柱塞套 201继续上行直至被限位, 柱塞套 201在随同运动部 101下行的开始阶段, 在进 油孔 203被柱塞套 201覆盖前, 柱塞套 201和运动部 101在液压容积室 191之压力、 储能弹 簧 102与电磁场力共同作用下做无阻力运动并以动能的形式储存能量, 柱塞套 201进一步下 行覆盖进油孔 203后, 开始压缩高压油腔 208a中的燃油, 当高压油腔 208a中的油压力高于 出油阀弹簧 215的预紧力与出油阀室 214中的油压力总和时, 高压燃油进入高压容积 217, 接近下行终点时, 液压容积室 191压力下降, 此时液压单向件 195开启, 液压容积室 191中 的燃油若有缺失则可以通过来自低压油源中的燃油补充。
图 8显示了本发明提供的储能式高压电子燃油泵第八实施例的结构图。
储能式高压电子燃油泵, 包括一个电磁动力装置 100, 一个柱塞套筒组件 200。
电磁动力装置 100包括运动部 101, 静止部 199和储能弹簧 102。
柱塞套筒组件 200包括一个柱塞套 201, 一个柱塞 211, 一个回位弹簧 209, 一个由出油阀 件 212、出油阀弹簧 215和出油阀座面 213组成的出油阀,一个含高压容积 217的输出套 219, 柱塞套 201包括柱塞孔 208, 柱塞 211从柱塞孔 208的一端进入并形成高压油腔 208a, 进油 孔 203穿过柱塞套 201的侧壁连接低压油腔 198和柱塞孔 208,柱塞 211包括柱塞弹簧座 211b, 回位弹簧 209作用于柱塞弹簧座 211b与柱塞套 201之间, 出油阀弹簧 215作用于出油阀件 212与输出套 219之间, 柱塞套 201与输出套 219之间以密封的方式连接, 输出套 219含有 高压接头 218用于与高压油路连接。
运动部 101包括一个电枢 132和提篮 108, 电枢 132包括电枢油道 223, 提篮 108包括提篮 镂空 108a, 提篮 108与电枢 132连接用于传递电枢 132与柱塞 211之间的作用力。
静止部 199包括一个由第一螺线管 124、 第二螺线管 123、 磁轭 125、 第一磁隙 127和第 二磁隙 126构成的双螺线管驱动部件, 一个含进油道 177和密封 0型圈的上盖 107, 一个接 线器 106。
储能弹簧 102作用于上盖 107和电枢 132之间。电枢 132的前后端面分别位于第一磁隙 127 和第二磁隙 126附近。
所述储能式高压电子燃油泵的一个完整工作过程是:带有一定压力的燃油从进油道 117进 入低压油腔 198, 第二螺线管 123上电后, 电枢 132因第二磁隙 126在电磁场力的作用下带 动运动部 101上行, 所述上行是指柱塞套筒组件 200的吸油行程, 运动部 101上行压缩储能 弹簧 102, 回位弹簧 209推动柱塞 211上行, 一定时间后, 进油孔 203被打开, 低压油腔 198 中的燃油因压差进入高压油腔 208a,在运动部 101和柱塞 211继续上行被限位前的某一时刻, 第二螺线管 123断电和第一螺线管 124上电, 电枢 132因第一磁隙 127在电磁场力的作用下 带动运动部 101下行, 柱塞 211在随同运动部 101下行, 在初始开始阶段, 在进油孔 203被 柱塞 211封闭前, 柱塞 211和运动部 101在储能弹簧 102与电磁场力共同作用下做无阻力运 动,高压油腔 208a中的部分燃油以及可能存在的气体首先从进油孔 203被挤压到低压燃油腔 198,此阶段电磁能的做功与储能弹簧 102的能量释放会以运动件 101和柱塞 211的动能形式 储存, 柱塞 211进一步下行封闭进油孔 203后, 柱塞 211开始压缩高压油腔 208a中的燃油, 当高压油腔 208a中的油压力高于出油阀弹簧 215的预紧力与出油阀室 214中的油压力总和 时, 出油阀件 212离开出油阀件座面 213, 高压燃油进入高压容积 217。
图 9为本发明提供的供油装置第一实施例的构成图。
一种供油装置, 即, 包括由两个图 1所示实施例提供的储能式高压电子燃油泵组成的高压 燃油泵组 2, 一个低压电子油泵 405, 调压器 406, 油轨 402, 电磁阀式喷油嘴 403, 油轨压 力传感器 404,电脑控制单元 401,低压供油管 407,低压回油管 408,调压器低压回油管 408a, 高压供油管 409, 燃油箱 410。
参考图 9a提供的供油装置第一实施例之泵组 2的结构图,所述高压燃油泵组 2包括两个储 能式高压电子燃油泵 1, 一个耦合器 300, 耦合器 300包括一个由溢流阀件 303、 溢流阀弹簧 304和溢流阀座面 305构成的溢流阀, 一个连接溢流阀座面 305与高压油腔 217的溢流通道 306, 一个高压接头 218, 一个回油道 118, 两个储能式高压电子燃油泵 1的回油通道 118a和 118b通过低压密封件 301a和 301b与回油道 118连接, 两个储能式高压电子燃油泵 1的输出 套 219a和 219b通过高压密封件 302a和 302b与高压油腔 217连接。
所述供油装置的工作过程是,低压电子油泵 405将燃油箱 410中的燃油通过低压供油管 407 供应给高压燃油泵组 2,其中部分燃油通过低压回油管 408经调压器 406由调压器回油管 408a 回到油箱 410, 为了维持油轨 402的一个目标压力, 电脑控制单元 401根据油轨压力传感器 404 提供的信息, 以及发动机对燃油需求量的信息, 确定一个目标供油量, 根据这个目标供 油量决定对高压燃油泵组的驱动电压或者电流及其脉宽和频率, 根据需要, 高压燃油泵组的 两个储能式高压电子燃油泵可以错开相位工作, 也可以同相位工作, 电脑单元 401根据需要 开启电磁阀式喷油嘴 403向内燃机气缸内直接喷射燃油, 燃油可以是汽油, 也可以是煤油、 柴油以及其它生物燃油。 低压燃油经过所述高压燃油泵组 2回流回油箱 410有利于冷却所述 燃油装置, 调压器 406的作用是维持低压供油管 407的压力, 以防止气泡影响所述燃油装置 的正常工作。
当油轨 402中的压力因为温度等因素的影响高于所定值时, 溢流阀件 303将推动溢流阀弹 簧 304开启溢流通道 306, 直至油轨 402的压力低于所定值。这种溢流主要用于控制油轨 402 的压力以防止因压力过高而电磁阀式喷油嘴 403无法开启。
图 10为本发明提供的供油装置第二实施例的构成图。
与本发明提供的供油装置第一实施例相比, 本实施例在结构上的不同之处在于, 包括一个 储能式高压电子燃油泵 1, 一个凸轮驱动的高压泵 413, 高压泵 413是一个目前市场普遍采用 的商业化的直喷发动机用高压泵, 一路由高压泵 413通向油轨 402的机械泵高压油管 412, 一路通向高压泵 413的机械泵低压油管 407a和通向储能式高压电子燃油泵的电子泵低压油管 407b, 一个可以选择的蓄压室 411。
与本发明提供的供油装置第一实施例相比, 所述供油装置的工作过程存在以下区别, 艮卩, 低压电子油泵 405将燃油箱 410中的燃油通过低压供油管 407—路由机械泵低压油管 407a供 给高压泵 413, 另一路由电子泵低压油管 407b供给储能式高压电子燃油泵 1, 在发动机启动 前或者启动后, 电脑控制单元 401首先根据油轨压力传感器 404提供的信息决定是否由储能 式高压电子燃油泵 1给油轨 402供油, 如果油轨 402中的压力低于所定值时, 则电脑控制单 元 401驱动储能式高压电子燃油泵 1通过高压油管 409和蓄压室 411向油轨 402供油, 当油 轨 402中的压力高于所定值时, 储能式高压电子燃油泵 1则停止向油轨 402供油。
蓄压室 411的作用是相当于增加油轨 402的容积,该作用可以通过直接增加油轨 402的容 积加以解决。
所述供油装置可以有效地解决采用单纯的机械式高压泵 413时油轨 402中的压力波动与压 力上升速度之间的矛盾, 有利于发动机的启动, 有利于减少油轨 402中的压力波动从而提高 供油精度和简化控制逻辑。
图 11为本发明提供的供油装置第三实施例的构成图。
一种供油装置, 即, 包括由一个第一实施例提供的储能式高压电子燃油泵 1和一个与高压 容积 217连接的外开式喷嘴 500。
外开式喷嘴 500包括一个提升阀件 501, 一个提升阀座 502, 提升阀弹簧 503, 提升阀弹簧 座 504, 限位件 505, 提升阀座 502包括一个提升阀座面 506。
所述供油装置的工作过程为, 在不工作状态, 提升阀件 501在提升阀弹簧 503的作用下 落座于提升阀座 506, 从而关闭外开喷嘴 500, 当高压容积 217中的燃油压力可以克服提升阀 弹簧 503之关阀力时, 提升阀件 501则离开提升阀座 506, 外开喷嘴 500开启, 高压容积 217 中的燃油可喷入发动机气缸, 提升阀件 501的提升过程中, 提升阀弹簧座 504与限位件 505 相遇, 提升阀件 501则到达其最大升程。
本发明提供的储能式高压电子燃油泵第一实施例至第八实施例均可应用于为本发明提供 的供油装置第一实施例至第三实施例。 基于本发明精神实质的其它进一步的方案均属本发明 应属保护权利范围。

Claims

权利要求书
1. 一种储能式高压电子燃油泵, 包括电磁动力装置和柱塞套筒组件, 柱塞套组件包括高压 容积和含有柱塞孔的柱塞套以及可在柱塞孔中滑动的柱塞, 柱塞在柱塞孔中的余积为高压油 腔, 电磁动力装置与柱塞套筒组件之间的余隙容积形成低压油腔, 在电磁驱动装置的作用下, 柱塞套筒组件将低压油腔中的燃油吸入高压油腔并压送至高压容积中, 其特征为, 所述电磁 动力装置包括储能装置、 运动部和静止部, 电磁动力装置由驱动电流控制将电能转化为交替 变化的双向驱动力, 以驱动运动部往复运动, 在往复运动的第一方向, 储能装置吸收来自运 动部的能量, 在往复运动的第二方向, 柱塞套筒组件在运动部和储能装置的共同作用下压送 燃油。
2. 如权利要求 1所述的储能式高压电子燃油泵, 其特征为, 储能装置包括至少一个位于运动 部和静止部之间的储能弹簧。
3. 如权利要求 2所述的储能式高压电子燃油泵,其特征为,储能装置包括至少一个液压油腔。
4. 如权利要求 2或者 3所述的储能式高压电子燃油泵, 其特征为, 所述电磁动力装置包括一 个音圈电机, 运动部包括提篮和与之连接的线圈。
5. 如权利要求 4所述的储能式高压电子燃油泵, 其特征为, 所述音圈电机包括一个包括 U型 软磁体和磁堆, 磁堆大致为柱状体, 磁堆包括沿轴向分割的第一永磁体和第一软磁体, U型 软磁体包括侧壁和底面, 磁堆的第一永磁体与底面连接并与侧壁形成一个均匀的环形空间, 第一永磁体沿轴向充磁, 所述线圈包括第一线圈, 第一线圈的内壁与第一软磁体的侧周相互 配合, 可以没有阻力地在所述环形空间中轴向滑动。
6. 如权利要求 5所述的储能式高压电子燃油泵, 其特征为, 所述磁堆包括沿轴向分割的第二 永磁体和第二软磁体, 其中, 第二永磁体与第一软磁体和第二软磁体相邻, 第二永磁体轴向 充磁, 其极性与第一永磁体相反。
7. 如权利要求 6所述的储能式高压电子燃油泵,其特征为提篮与 U型软磁体之间设有一补充 软磁体, 补充软磁体以减少第二软磁体与 U性软磁体之间的磁阻的方式布置。
8. 如权利要求 7所述的储能式高压电子燃油泵, 其特征为, 所述补充软磁体包括有伸向第二 软磁体的凸出部, 所述提篮包括在相应位置的凹陷部, 所述凹陷部在几何上与凸出部相容, 以至于不影响运动部的轴向运动。
9. 如权利要求 6所述的储能式高压电子燃油泵, 其特征为, 所述线圈包括第二线圈, 提篮、 第二线圈和第一线圈相互固定, 第二线圈与第一线圈的缠绕方向相反, 第二线圈的内壁与第 二软磁体的侧周相互配合, 可以没有阻力地在所述环形空间中轴向滑动。
10. 如权利要求 5-9之一项所述的储能式高压电子燃油泵,其特征为线圈连接有引线弹簧, 引 线弹簧的一头穿过静止部与接线端子连接, 引线弹簧的弹簧部分位于静止部与运动部之间。
11. 如权利要求 2或者 3所述的储能式高压电子燃油泵, 其特征为, 所述电磁动力装置包括 一个双螺线管驱动装置, 所述运动部为一个电枢。
12. 如权利要求 1-11之一项所述的储能式高压电子燃油泵, 其特征在于该储能式高压电子燃 油泵包括一个通向高压油腔的进油孔, 所述柱塞孔大致为一个圆孔, 柱塞与柱塞孔密切配合 且在其中自由滑动, 运动部驱动柱塞在柱塞套中运动。
13. 如权利要求 12所述的储能式高压电子燃油泵, 其特征为, 所述柱塞包括一个进油孔和与 之联通的进油阀座面, 进油孔贯穿柱塞两端, 座面位于高压油腔一端, 包括一个进油阀件和 进油阀簧, 进油阀件、 进油阀簧和进油阀座面形成进油阀。
14. 如权利要求 12所述的储能式高压电子燃油泵, 其特征为, 所述进油孔穿过柱塞套壁面设 置。
15. 如权利要求 1-11之一项所述的储能式高压电子燃油泵, 其特征为, 该储能式高压电子燃 油泵包括一个通向高压油腔的进油孔, 所述柱塞孔大致为一个圆孔, 柱塞与柱塞孔密切配合 且在其中自由滑动, 运动部驱动柱塞套在柱塞上运动。
16. 如权利要求 14所述的储能式高压电子燃油泵,其特征为所述柱塞套筒组件包括进油阀件、 进油阀弹簧和进油阀座, 进油阀座布置在柱塞孔的一端, 进油孔通过进油阀座与高压油腔联 通。
17. 如权利要求 13或者 16所述的储能式高压电子燃油泵, 其特征为, 包括静止部设有阀顶 杆, 阀顶杆从进油孔伸向高压腔, 进油行程临近结束时, 阀顶杆与进油阀件接触并限制进油 阀件继续运动。
18. 一种供油装置, 其特征在于, 包括至少一个如权利要求 1-17之一项所述的储能式高压电 子燃油泵, 包括低压电子油泵和电磁阀式喷油嘴, 一个与高压容积连接的油轨, 和至少一个 电脑控制单元, 低压电子油泵位于燃油箱内为储能式高压电子燃油泵供油, 电脑控制单元控 制所述的储能式高压电子燃油泵和电磁阀式喷油嘴工作, 燃油被储能式高压电子燃油泵加压 后按需输送至油轨, 电磁阀式喷油嘴将油轨中的燃油定量地供应给发动机。
19. 如权利要求 18所述的供油装置, 其特征在于, 包括一个由凸轮驱动的柱塞式机械泵, 所 述柱塞式机械泵与所述储能式高压电子燃油泵并联在油路中,由低压电子油泵供应低压燃油, 向所述油轨输入高压燃油。
20. 如权利要求 18或 19所述的供油装置, 其特征在于, 所述储能式高压电子燃油泵内部包 括一个过压溢流阀, 当油轨压力高于所定值时, 过压溢流阀开启, 油轨向低压油路泄油。
21. 如权利要求 20所述的供油装置, 其特征在于储能式高压电子燃油泵还包括与高压容积相 连接的压力开启式喷油嘴。
22. 一种燃油供应方式,包括权利要求 20所述的供油装置,其特征在于,一旦发动机上电(启 动钥匙开启), 所述储能式高压电子燃油泵立即向油轨供油, 直到油轨压力到达所定值, 柱塞 式机械泵将由发动机驱动, 发动机运转后, 随之向油轨输入燃油。
PCT/CN2013/075166 2012-05-04 2013-05-04 一种储能式高压电子燃油泵、供油装置及其应用方法 WO2013163961A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/767,607 US10495077B2 (en) 2012-05-04 2013-05-04 Energy-storing-type high-pressure electric fuel pump, fuel-supplying apparatus, and application method therefor
US16/671,327 US20200063728A1 (en) 2012-05-04 2019-11-01 Energy-storing-type high pressure electric fuel pump, fuel-supplying apparatus, and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101386664 2012-05-04
CN201210138666.4A CN102953883B (zh) 2012-05-04 2012-05-04 一种储能式高压电子燃油泵、供油装置及其应用方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/767,607 A-371-Of-International US10495077B2 (en) 2012-05-04 2013-05-04 Energy-storing-type high-pressure electric fuel pump, fuel-supplying apparatus, and application method therefor
US16/671,327 Division US20200063728A1 (en) 2012-05-04 2019-11-01 Energy-storing-type high pressure electric fuel pump, fuel-supplying apparatus, and applications thereof

Publications (1)

Publication Number Publication Date
WO2013163961A1 true WO2013163961A1 (zh) 2013-11-07

Family

ID=47763151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075166 WO2013163961A1 (zh) 2012-05-04 2013-05-04 一种储能式高压电子燃油泵、供油装置及其应用方法

Country Status (3)

Country Link
US (2) US10495077B2 (zh)
CN (1) CN102953883B (zh)
WO (1) WO2013163961A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102953883B (zh) 2012-05-04 2015-02-04 浙江福爱电子有限公司 一种储能式高压电子燃油泵、供油装置及其应用方法
EP2912300B1 (en) 2012-10-25 2018-05-30 Picospray, Inc. Fuel injection system
US10500602B2 (en) * 2013-10-16 2019-12-10 The Boeing Company Cancelling damping induced by drag in synthetic jets using performance enhancements
CN104763569B (zh) * 2014-01-06 2018-05-11 联合汽车电子有限公司 采用铜钎焊技术的高压泵
CN103742383A (zh) * 2014-01-23 2014-04-23 苏州派格丽减排系统有限公司 用于scr减排系统的储能式增压电磁柱塞泵及计量喷射系统
CN105484833B (zh) * 2014-09-19 2019-05-17 浙江福爱电子有限公司 一种液体喷射计量单元
CN105987727A (zh) * 2015-01-20 2016-10-05 浙江福爱电子有限公司 一种液体流量测量装置
US10197025B2 (en) 2016-05-12 2019-02-05 Briggs & Stratton Corporation Fuel delivery injector
US10947940B2 (en) * 2017-03-28 2021-03-16 Briggs & Stratton, Llc Fuel delivery system
EP3428441A1 (de) * 2017-07-11 2019-01-16 Siemens Aktiengesellschaft Antrieb einer pumpe
CN107246342B (zh) * 2017-07-24 2022-04-08 南京航空航天大学 动圈式高频增压泵
US20190112959A1 (en) * 2017-10-12 2019-04-18 Zhejiang Fai Electronics Co., Ltd. Pulse-coupled pump
DE102018201279B4 (de) * 2018-01-29 2019-11-28 Continental Automotive Gmbh Hochdruckanschluss für eine Kraftstoffhochdruckpumpe eines Kraftstoffeinspritzsystems sowie Kraftstoffhochdruckpumpe
CN108386302A (zh) * 2018-05-07 2018-08-10 长沙燕通生物科技有限公司 柴油机储能与分流启动装置
CN110939499A (zh) * 2018-09-25 2020-03-31 福爱电子(贵州)有限公司 一种碳氢喷嘴及其应用
WO2020077181A1 (en) 2018-10-12 2020-04-16 Briggs & Stratton Corporation Electronic fuel injection module
JP7115328B2 (ja) 2019-01-15 2022-08-09 株式会社デンソー 電磁弁
DE102019125271A1 (de) * 2019-09-19 2021-03-25 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Kraftstoffeinspritzsystems, Antriebssystem und Kraftfahrzeug
CN113464397A (zh) * 2020-03-30 2021-10-01 福爱电子(贵州)有限公司 一种双脉冲泵液体喷射装置
CN114251211A (zh) * 2020-09-23 2022-03-29 浙江福爱电子有限公司 一种往复式电子燃油喷射单元
CN112160856A (zh) * 2020-09-30 2021-01-01 浙江翱腾智能科技股份有限公司 一种高压燃油泵及其供油方式
CN114760776B (zh) * 2022-05-12 2023-07-25 大连佳峰自动化股份有限公司 一种高精度贴片机焊头机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269279A (ja) * 2002-03-11 2003-09-25 Yanmar Co Ltd 蓄圧式分配型燃料噴射ポンプ
CN2763560Y (zh) * 2004-12-08 2006-03-08 浙江飞亚电子有限公司 一种电磁驱动燃油喷射装置
CN101509451A (zh) * 2009-03-09 2009-08-19 浙江飞亚电子有限公司 非自由电枢的电子燃油喷射装置
CN101718262A (zh) * 2009-06-29 2010-06-02 重庆红江机械有限责任公司 一种多功能无级变流高压供油泵
CN102953883A (zh) * 2012-05-04 2013-03-06 浙江福爱电子有限公司 一种储能式高压电子燃油泵、供油装置及其应用方法
CN202811141U (zh) * 2012-05-04 2013-03-20 浙江福爱电子有限公司 一种储能式高压电子燃油泵

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952192A (en) * 1975-05-27 1976-04-20 General Electric Company Thermal switch device
US4612592A (en) * 1979-12-26 1986-09-16 Burroughs Corporation Dual coil/dual magnet actuator
JP2001263187A (ja) * 2000-03-17 2001-09-26 Denso Corp エンジン用燃料供給装置のチェックバルブ
CN1133810C (zh) * 2001-02-16 2004-01-07 郗大光 电动燃油喷射装置
WO2002069479A1 (en) * 2001-02-27 2002-09-06 Bei Technologies, Inc. Long stroke linear voice coil actuator with the proportional solenoid type characteristic
US6718950B2 (en) * 2001-12-14 2004-04-13 Caterpillar Inc. Electrically driven hydraulic pump sleeve actuator
US6940992B2 (en) * 2002-11-05 2005-09-06 Step Technologies Inc. Push-push multiple magnetic air gap transducer
JP4603867B2 (ja) * 2004-12-07 2010-12-22 日立オートモティブシステムズ株式会社 可変容量式燃料ポンプの制御装置及び燃料供給システム
US7503314B2 (en) * 2005-10-14 2009-03-17 Federal-Mogul World Wide, Inc. Marine fuel vapor separator with vent control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269279A (ja) * 2002-03-11 2003-09-25 Yanmar Co Ltd 蓄圧式分配型燃料噴射ポンプ
CN2763560Y (zh) * 2004-12-08 2006-03-08 浙江飞亚电子有限公司 一种电磁驱动燃油喷射装置
CN101509451A (zh) * 2009-03-09 2009-08-19 浙江飞亚电子有限公司 非自由电枢的电子燃油喷射装置
CN101718262A (zh) * 2009-06-29 2010-06-02 重庆红江机械有限责任公司 一种多功能无级变流高压供油泵
CN102953883A (zh) * 2012-05-04 2013-03-06 浙江福爱电子有限公司 一种储能式高压电子燃油泵、供油装置及其应用方法
CN202811141U (zh) * 2012-05-04 2013-03-20 浙江福爱电子有限公司 一种储能式高压电子燃油泵

Also Published As

Publication number Publication date
US20200063728A1 (en) 2020-02-27
US20160186732A1 (en) 2016-06-30
CN102953883A (zh) 2013-03-06
CN102953883B (zh) 2015-02-04
US10495077B2 (en) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2013163961A1 (zh) 一种储能式高压电子燃油泵、供油装置及其应用方法
JP4304887B2 (ja) 代替燃料用の燃料供給システム
CN110748446B (zh) 一种共轨高压进出油阀组件及共轨高压供油泵
CN101526039B (zh) 电子喷射燃料供给系统的控制方法
CN103244329A (zh) 电控单体泵式高压共轨燃油系统
US20170292468A1 (en) Apparatus and method for controlling flow control valve for high pressure fuel pump
KR20010067290A (ko) 전자제어식 디젤 연료 분사 시스템
CN202811141U (zh) 一种储能式高压电子燃油泵
CN102678250B (zh) 一种发动机活塞冷却装置
CN110848060B (zh) 一种电控蓄压喷油器
US20150226164A1 (en) In-cylinder charging system for fuel delivery systems and methods
CN210948964U (zh) 一种共轨高压进出油阀组件及共轨高压供油泵
CN109253003A (zh) 微动态回油的电控燃油喷射系统
CN105804827A (zh) 压电控制增压式配气系统
CN105756740A (zh) 压电控制配气系统
CN207437338U (zh) 一种智能液压泵
CN205744034U (zh) 双压电协同控制增压式配气系统
CN205714328U (zh) 压电控制增压式配气系统
CN105781662B (zh) 双电磁协同控制增压式配气系统
CN210531034U (zh) 一种十六烷值测定机电控喷油泵
CN201149661Y (zh) 柱塞泵流量控制装置
CN207777005U (zh) 一种柴油喷射系统
CN105781657B (zh) 双压电协同控制增压式配气系统
CN105804826B (zh) 双压电液压驱动增压式配气系统
CN102748179B (zh) 喷油器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13785125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13785125

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13785125

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 10-07-2015)

WWE Wipo information: entry into national phase

Ref document number: 14767607

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13785125

Country of ref document: EP

Kind code of ref document: A1