WO2013161327A1 - 殺菌処理方法、殺菌用製剤、殺菌用結氷体およびその生成方法および装置、並びに殺菌用液体の生成方法 - Google Patents
殺菌処理方法、殺菌用製剤、殺菌用結氷体およびその生成方法および装置、並びに殺菌用液体の生成方法 Download PDFInfo
- Publication number
- WO2013161327A1 WO2013161327A1 PCT/JP2013/002877 JP2013002877W WO2013161327A1 WO 2013161327 A1 WO2013161327 A1 WO 2013161327A1 JP 2013002877 W JP2013002877 W JP 2013002877W WO 2013161327 A1 WO2013161327 A1 WO 2013161327A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- plasma
- sterilization
- frozen
- plasma treatment
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
- A61L2/18—Liquid substances or solutions comprising solids or dissolved gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/50—Preparations specially adapted for dental root treatment
- A61K6/52—Cleaning; Disinfecting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/0005—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
- A61L2/0082—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using chemical substances
- A61L2/0088—Liquid substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q11/00—Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B15/00—Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D3/00—Devices using other cold materials; Devices using cold-storage bodies
- F25D3/10—Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
Definitions
- the present invention relates to a sterilization treatment method using plasma or the like, a preparation for sterilization, a frozen body for sterilization, a method and apparatus for generating the same, and a method for generating a liquid for sterilization.
- low-temperature plasma atmospheric pressure plasma, atmospheric pressure low-temperature plasma, non-equilibrium plasma, LF plasma, etc.
- low-temperature plasma atmospheric pressure plasma
- atmospheric pressure low-temperature plasma atmospheric pressure low-temperature plasma
- non-equilibrium plasma LF plasma, etc.
- sterilization has been conventionally performed with chemicals, but there has been a problem of postoperative infection due to incomplete sterilization.
- further sterilization effect can be obtained by performing sterilization using the adjustment of pH of the liquid and plasma.
- the liquid can be sterilized by generating plasma in a non-contact manner with respect to the liquid, and by causing the active species generated by the plasma to undergo electrophoresis and contact with the liquid (Patent Document 2).
- Patent Document 3 discloses an LF plasma jet which is one of apparatuses capable of generating such plasma.
- a plasma generator when sterilizing and disinfecting medical equipment, a plasma generator must be installed at the clinical site to ensure the necessary pipelines.
- the present invention has been made in view of the above-described problems, and an object thereof is to enable sterilization using plasma even at a site where a plasma generator is not installed.
- One form of the sterilization treatment method according to the present invention is to bring an active species generated by plasma into contact with a liquid to diffuse the active species in the liquid to generate a plasma processing liquid, and to generate the generated plasma processing liquid.
- the sterilization treatment of the object is performed by applying to the object.
- active species generated by plasma are brought into contact with a liquid to diffuse the active species into the liquid to form a plasma treatment liquid, and the plasma treatment liquid is frozen.
- the frozen body is generated and stored in a frozen state, and the frozen body is thawed and returned to the plasma treatment liquid, which is applied to the object to sterilize the object.
- One form of the method for producing a frozen body for sterilization according to the present invention is to generate a plasma treatment liquid by diffusing active species in a liquid by plasma, and freeze the plasma treatment liquid to produce a frozen body. Use frozen ice for sterilization.
- One form of the sterilization frozen body generating apparatus includes a plasma processing liquid generating apparatus for generating a plasma processing liquid by diffusing active species in a liquid by plasma, and freezing the ice by freezing the plasma processing liquid. And a refrigeration apparatus for producing a body.
- One form of the method for producing a sterilizing liquid according to the present invention is to bring an active species generated by plasma into contact with a liquid, to diffuse the active species into the liquid to obtain a plasma processing liquid, and to freeze the plasma processing liquid The frozen body is then stored in a frozen state, and the frozen body stored in the frozen state is thawed and returned to the plasma treatment liquid to obtain a sterilizing liquid.
- One form of the sterilizing preparation according to the present invention is such that a plasma treatment liquid in which active species generated by plasma are diffused in a liquid is integrated with a cold insulating member for keeping the temperature of the plasma treatment liquid at 10 ° C. or less. It becomes.
- sterilization using plasma can be performed even at a site where no plasma generator is installed.
- the plasma treatment liquid in which the active species is diffused into the liquid by the plasma has a strong sterilization effect, but becomes harmless immediately after the sterilization treatment. Does not pollute.
- the method and apparatus according to the present invention can take the following various forms.
- the active species generated by the plasma are brought into contact with the liquid to diffuse the active species into the liquid to generate a plasma processing liquid, and the generated plasma processing liquid is applied to the target to sterilize the target. .
- the temperature of the liquid is kept at 10 ° C. or lower, the temperature of the generated plasma processing liquid is stored at 10 ° C. or lower, and the stored plasma processing liquid is applied to the object.
- ice is put into the generated plasma processing liquid and ice-cooled to store the temperature at around 0 ° C. or lower, and the stored plasma processing liquid is applied to the object.
- the generated plasma processing liquid is stored at an environmental temperature of 0 ° C. or lower, and the stored plasma processing liquid is applied to an object.
- the temperature of the liquid and the plasma processing solution is kept at a low temperature of 10 ° C. or lower until it is applied to the object. Furthermore, it is preferable to keep the freezing point temperature around 0 ° C.
- the generated plasma processing liquid is more preferably kept at a low temperature of minus Celsius.
- the temperature of the plasma treatment liquid MLp it is necessary to keep the temperature of the plasma treatment liquid MLp as low as possible so that the active species diffused in the plasma treatment liquid MLp are not lost as much as possible.
- the liquid temperature should be kept as low as possible. It is necessary to keep.
- the temperature of the liquid and the plasma treatment liquid at around 0 ° C.
- the surface of the ice is partially thawed by the heat of the plasma and returned to the liquid, and at the same time, the liquid is subjected to plasma treatment.
- the plasma treatment liquid When generating the plasma treatment liquid, use a liquid whose pH is adjusted to 4.8 or lower. Alternatively, an acidic liquid is mixed with the generated plasma processing liquid so that the pH is adjusted to 4.8 or lower, and the plasma processing liquid adjusted to a pH of 4.8 or lower is applied to the object.
- the pH of the generated plasma treatment liquid is adjusted to 2 or less
- the plasma treatment liquid adjusted to pH 2 or less is stored
- the stored plasma treatment liquid is applied to the object.
- the pH of the liquid is lowered by performing the plasma treatment, the pH can be adjusted to 4.8 or less. That is, as a method for adjusting the pH, it is possible to use a method based on the plasma treatment itself, a method of mixing an acidic solution or other drugs, and the like.
- the active species generated by the plasma are brought into contact with the liquid to diffuse the active species into the liquid to form a plasma treatment liquid.
- the plasma treatment liquid is frozen to form an ice body and the ice body is stored in a frozen state. Then, the frozen body is thawed and returned to the plasma treatment liquid, which is applied to the object to sterilize the object.
- an acidic solution is mixed with the plasma treatment liquid obtained by thawing the frozen body to adjust the pH to 4.8 or less, and the plasma treatment liquid adjusted to a pH of 4.8 or less is obtained. Applies to objects.
- the following form can be taken as a method of producing a frozen body for sterilization.
- active species are diffused into the liquid by plasma to generate a plasma treatment liquid, and the plasma treatment liquid is frozen to form an ice body, which is used as a sterilization ice body.
- the plasma treatment liquid is rapidly frozen to form an iced body within 3 minutes. You may make it perform the production
- the generated frozen body may be stored in a container and used as a sterilized frozen body.
- the generated plasma processing liquid may be stored in a container, and the container may be cooled to freeze the plasma processing liquid to generate an ice body, and the ice body in the container may be used as a sterilization ice body.
- a dropper may be used as such a container.
- the active species may be diffused in the liquid by irradiating the plasma so as to contact the liquid.
- the active species may be diffused in the liquid by generating plasma without contacting the liquid in the gas phase and bringing the active species generated in the gas phase into contact with the liquid.
- the following forms can be taken as a method for producing the sterilizing liquid.
- the active species generated by the plasma are brought into contact with the liquid to diffuse the active species into the liquid to form a plasma treatment liquid, and the plasma treatment liquid is frozen to form an ice body, and the ice body is frozen. Thaw the frozen body that has been stored and stored in a frozen state and return to the plasma treatment liquid to make a sterilizing liquid.
- the temperature of the liquid and the plasma processing liquid is always kept at a low temperature of 10 ° C. or lower until it is applied to an object, and also at a temperature around 0 ° C. or a temperature of minus Celsius. It is preferable to keep it.
- a liquid having a pH of 4.8 or less can be used as the liquid before freezing.
- the plasma treatment liquid obtained by thawing may be adjusted so that the pH is 4.8 or less.
- the following forms can be taken as an apparatus for producing a frozen body for sterilization.
- it has a plasma processing liquid generator for generating a plasma processing liquid by diffusing active species in the liquid by plasma, and a refrigeration apparatus for generating a frozen body by freezing the plasma processing liquid.
- the plasma processing liquid generation apparatus may include a liquid supply apparatus that drops liquid so as to pass through the vicinity of the plasma or in the plasma.
- the refrigeration apparatus may receive the liquid dropped by the liquid supply apparatus and rapidly freeze it.
- the plasma processing liquid generating device generates a plasma in the vicinity of the liquid or in contact with the liquid in the container, and the refrigeration apparatus is arranged to cool the container, thereby The generation of the plasma processing liquid and the freezing of the plasma processing liquid may be performed in parallel.
- a device for storing the generated plasma processing liquid in a container may be provided.
- the refrigeration apparatus freezes the plasma processing liquid by cooling the container to generate a frozen body.
- you may have a pH adjuster for adjusting so that pH of a plasma processing liquid may be 4.8 or less.
- the plasma processing liquid generator includes a plasma generator that generates plasma.
- the plasma generator includes a gas supply pipe, an electrode provided in the vicinity of the outlet of the gas supply pipe, and a power supply device for applying a high voltage to the electrode.
- these may be cooled by a refrigeration apparatus, or a separate cooling apparatus may be provided.
- the preparation for sterilization is formed by integrating a plasma processing liquid obtained by diffusing active species generated by plasma in a liquid together with a cold insulating member for maintaining the temperature of the plasma processing liquid at 10 ° C. or lower.
- the pH of the plasma processing solution is adjusted to 4.8 or less.
- the pH of the plasma processing liquid is adjusted to 2 or less. Ice is used as a cold insulation member.
- a frozen cryogen is used as the cold insulator.
- the plasma processing liquid may be stored in a dropper that is a container.
- FIG. 1 shows an example of a sterilization treatment method using the plasma treatment liquid generator 1.
- a liquid ML in a container YK is prepared.
- water such as tap water, pure water, physiological saline, aqueous solution, and other various liquids are used. You may use the ultrapure water whose electrical resistance is 18.2 Mohm / Cm or more.
- the pH of the liquid ML 4.8 or lower is used as the liquid ML.
- the pH of the liquid ML may be adjusted to 4.5 or less. More preferably, the pH is 3.5 or less.
- the pH is preferably set to 1 or more. More preferably, it is set to 2 or more.
- a pH adjuster having an appropriate configuration can be used.
- the temperature of the liquid ML is kept at a low temperature of 10 ° C. or lower. Further, the temperature of the generated plasma processing liquid MLp is also kept at a low temperature of 10 ° C. or less. Therefore, the cooling device 11 can be used. As the cooling device 11, ice or a device provided with an appropriate cooling mechanism can be used. Ice may be placed in the liquid ML. Alternatively, the refrigeration apparatus 13 described later may be used also as the cooling apparatus 11.
- the liquid ML itself may be frozen and kept as ice.
- the ice is irradiated with the plasma PM, whereby a part of the ice is melted and returned to the liquid ML by the heat of the plasma PM, and at the same time, the active species are diffused into the liquid ML.
- a plasma PM is generated by the plasma generator 12, and the active species generated by the plasma PM are brought into contact with the liquid ML to diffuse the active species into the liquid ML (# 1).
- the liquid ML in which active species are diffused into the liquid by the plasma PM may be referred to as “plasma processing liquid” or “plasma processing water”.
- the plasma generator 12 generates the plasma PM in contact with the liquid ML liquid surface.
- the plasma PM By the plasma PM is in contact with the liquid ML, active species generated by the plasma PM, particularly superoxide anion radicals (O 2 - ⁇ ) and its derivatives (or precursors) from diffusing into a liquid ML, plasma treatment It becomes liquid MLp.
- active species generated by the plasma PM particularly superoxide anion radicals (O 2 - ⁇ ) and its derivatives (or precursors) from diffusing into a liquid ML, plasma treatment It becomes liquid MLp.
- the acid dissociation equilibrium of the superoxide anion radical is involved in the bactericidal power of the plasma treatment liquid MLp. That is, it is considered that the superoxide anion radical and its derivative (or precursor) exist in the plasma treatment liquid MLp, and the sterilization activity is sustained by the derivative gradually generating the superoxide anion radical. .
- the plasma generator 12 generates the plasma PM in a state where it does not contact the liquid ML.
- a voltage Vc including an AC voltage component Va having a predetermined frequency and a DC bias voltage component Vb is applied to the ground G by the power supply device 34 to the electrode 33 provided on the outer periphery of the jet outlet of the gas supply pipe.
- the DC bias voltage component Vb is about minus 1 to 10 kV.
- Active species such as superoxide anion radicals and their derivatives (or precursors) generated by the plasma PM are electrophoresed by an electric field generated by the DC bias voltage component Vb, come into contact with the liquid ML, and diffuse into the liquid. .
- FIG. 4 shows an example of the configuration of the plasma generator 12.
- the plasma generator 12 includes a gas supply pipe 31, an electrode 33 provided in the vicinity of the ejection port 31a of the gas supply pipe 31, a power supply device 34, and the like.
- a plasma PM that is LF plasma Low Frequency Plasma
- the plasma PM ejected from the ejection port 31a is surrounded by an appropriate chamber, air is introduced into the chamber from the outside, and the one end of an appropriate tube is connected to the chamber.
- a mixed gas (afterglow gas) of plasma PM and air is ejected from the other end of the tube.
- the ejection port 31a can be extended by a predetermined distance (for example, 4 meters) by the tube, and the mixed gas ejected from the other end of the tube can be used as a radical generation source similar to the plasma PM. It is.
- plasma generator 12 In addition to such a plasma generator 12, other various plasma generators can be used. For example, a device that converts air into plasma by corona discharge can be used.
- the generated plasma processing liquid MLp is applied to an object, for example, an affected area KS of the living body ST (# 2).
- an object for example, an affected area KS of the living body ST (# 2).
- the plasma processing liquid MLp is sucked into the dropper HK, and the plasma processing liquid MLp is dropped from the tip of the nozzle and applied to the affected part KS. Thereby, sterilization and sterilization in the affected part KS is performed.
- a syringe (spuit, syringe) HK various well-known things can be used as a syringe (spuit, syringe) HK.
- a tube having a tubular mouthpiece, a body portion for holding liquid, and a flexible expansion / contraction portion can be used as the dropper HK.
- the entire dropper HK may be formed of a flexible synthetic resin or synthetic rubber.
- the body portion and the stretchable portion may be separable.
- only a part of the dropper, for example, the body part can be treated as a “dropper” here.
- the dropper HK sucks or discharges the liquid from the mouthpiece by compressing or releasing from the compression with the expansion / contraction part sandwiched between fingers.
- the dropper HK is an example of the application device 16.
- the application device 16 it is also possible to use a robot having a gripping part and a multi-joint manipulator and performing control such as automatic control or program control.
- the dropper HK or the like is gripped by the gripping part, the manipulator is controlled to move the dropper HK to the position of an object such as the affected part KS, and the plasma treatment liquid MLp is transferred from the tip of the dropper HK to the affected part KS. What is necessary is just to make it dripping.
- the plasma treatment liquid MLp has a strong sterilization effect, after the sterilization treatment, the plasma treatment liquid MLp becomes harmless over time, so there is no residual toxicity and it does not pollute the environment. Therefore, it can be safely used for sterilization treatment of medical instruments. Moreover, from the Arrhenius plot of FIG. 6, at 37 ° C., which is a body temperature, it can be seen that the half-life is 4 seconds and it is deactivated in a short time. Further, since the plasma treatment liquid MLp has no residual toxicity and does not adversely affect the living body, it can be safely used for treatment of the living body.
- the plasma treatment liquid MLp is mixed with other chemicals or disinfectants, or after the chemical or disinfectant is dissolved in the plasma treatment liquid MLp, it may be applied.
- the plasma treatment liquid MLp in which active species are diffused in the liquid has a bactericidal activity as described above.
- the bactericidal activity of the plasma treatment liquid MLp is lost with time.
- FIG. 5 shows the relationship between the standing time of the plasma treatment liquid MLp and the bactericidal activity
- FIG. 6 shows the relation between the temperature of the plasma treatment liquid MLp and the half time of the active species
- FIG. 7 shows the plasma treatment liquid MLp. The relationship between the temperature and the maximum concentration of active species is shown.
- FIG. 5 shows the bactericidal activity decreases exponentially with the passage of time after the plasma treatment liquid MLp is generated.
- FIG. 6 shows the temperature dependence of the half-life of the bactericidal properties obtained by calculating the half-life of the bactericidal active species from the time change of the bactericidal activity shown in FIG. 5 and adjusting the temperature of each experimental system.
- the half-life [minute] of the active species is 0.8, 1.91, 2.23, 4.25, 4176, 30240.
- FIG. 7 shows a calculation of the temperature dependence of the maximum concentration of active species.
- FIG. 7 shows that the maximum concentration increases exponentially with decreasing temperature. Therefore, the plasma treatment liquid MLp having a high concentration of active species can be obtained by lowering the temperature of the plasma treatment liquid MLp or the initial liquid ML.
- the time from the generation of the plasma processing liquid MLp to the application to the object is preferably as short as possible.
- a sufficient sterilization treatment can be performed by applying the plasma treatment liquid MLp within about 1 minute after the generation.
- the half-life of the active species depends on the pH of the plasma treatment solution MLp. That is, in an experiment in which the temperature of the plasma treatment liquid MLp was fixed at 15 ° C., the pH was 5.7, 5.4, 5.3, 5.2, 4.6, 4.5, 4.1. In this case, the half time [min] was 0.21, 0.27, 0.39, 0.55, 1.54, 1.43, 3.77.
- the lifetime of the active species increases exponentially as the pH of the plasma processing solution MLp is lowered. Therefore, in order to extend the lifetime of the active species and maintain the sterilizing effect of the plasma treatment liquid MLp, it is important to lower the pH of the plasma treatment liquid MLp.
- the half time is about 1 minute.
- the plasma treatment liquid MLp may be applied to the object within about one minute after the generation, and a minimum time is ensured from the generation of the plasma treatment liquid MLp to the application to the object. It is thought that it will be done.
- the plasma processing solution MLp is neutral (about pH 7)
- the half-life is extremely short, and the generated plasma processing solution MLp can be moved and applied to an object in another location. It will be difficult.
- the pH is lowered by nitric acid (HNO3) generated by the plasma PM, and in some cases, the pH is lowered to about 2 or less. Therefore, by adjusting the pH of the plasma processing liquid MLp to be lowered to about 2 or lower by nitric acid generated by the plasma PM and storing the plasma processing liquid MLp in that state, the half-time is greatly extended. be able to.
- HNO3 nitric acid
- the pH may be adjusted to about 2 or lower in advance using a drug.
- the plasma processing liquid generator 1 is constituted by the container YK, the plasma generators 12 and 12B, the cooling device 11 and the like used for generating the plasma processing liquid MLp.
- such a plasma processing liquid generator 1 is installed in a treatment room of a hospital, and generates and holds an appropriate amount of plasma processing liquid MLp. If necessary, it is applied to the object using a dropper HK or the like. Moreover, it applies by immersing objects, such as a medical device, in the container YK containing the plasma processing liquid MLp.
- the plasma processing liquid MLp generated by the plasma processing liquid generating apparatus 1 is collected in a separate small container by using a button.
- a small container is preferably made of a heat insulating material such as polystyrene foam and has a function of maintaining the temperature of the plasma processing liquid MLp at a low level.
- the temperature of the plasma processing liquid MLp may be returned to about room temperature in order to prevent it from feeling cold when the plasma processing liquid MLp in a small container is applied to the affected part KS with a dropper HK or the like.
- the plasma processing liquid MLp generated by the plasma processing liquid generating apparatus 1 may be sent to a treatment position by a heat insulating tube or the like, and heated to about room temperature at the outlet, and applied to the affected part KS.
- the sterilization preparation SS in which the plasma processing liquid MLp generated by the plasma processing liquid generating apparatus 1 is integrated with the cold insulation member HR will be described.
- the sterilizing preparation SS is in a form suitable for transporting (or moving) the plasma treatment liquid MLp to the site where sterilization treatment is performed and for use on the site.
- FIGS. 9 (A) to (C) show various forms of the sterilizing preparation SS.
- the sterilizing preparation SS1 has a container CS1, which is composed of a container body CS1a and a lid CS1b, a cold insulation member HR1, and a container YM1.
- the container YM1 is a bag made of a film made of a soft synthetic resin or a metal such as aluminum, and contains a relatively small amount of the plasma treatment liquid MLp and is sealed. At that time, it is preferable to adjust the pH of the plasma treatment liquid MLp to 4.8 or less, and further to 2 or less.
- Refrigeration member HR1 is a frozen material such as ice-non (ice-non), ice bag, ice, dry ice, freezing mixture, or the like.
- the cold insulation member HR1 may have an appropriate shape and size in accordance with the shape and size of the container YM1 and the container CS1.
- the container CS1 accommodates the container YM1 and the cold insulation member HR1, and has a shape and dimensions that are convenient for transportation.
- the material of the container CS1 is preferably a material having a high heat insulating effect such as a synthetic resin.
- the lid CS1b can be easily opened and closed. Therefore, the lid CS1b may be simply inserted into the opening of the container body CS1a. However, the opening of the container body CS1a may be sealed with the lid CS1b so that the low temperature inside the container CS1 is maintained as much as possible.
- the opening of the container main body CS1a and the lid CS1b may be screwed together.
- the generated plasma treatment liquid MLp is immediately stored in the container YM1, put in the container main body CS1a, and then covered with the lid CS1b to be integrated.
- the container main body CS1a contains a cold insulation member HR1 in advance. Moreover, after putting container YM1 in container main body CS1a, you may put cold-retaining member HR1.
- the prepared sterilizing preparation SS1 can be transported as it is, but one or a plurality of sterilizing preparations SS1 may be stored in an appropriate bag or box and transported.
- the temperature of the plasma processing liquid MLp stored in the container YM1 is maintained at 10 ° C. or lower or around 0 ° C. by the cold insulation member HR1. Therefore, the half-life of the active species becomes longer, and the generated plasma processing liquid MLp can be transported to a treatment site away from the site and used.
- Various courier services can be used as a method of transporting the sterilizing preparation SS1.
- the lid CS1b is opened, the container YM1 is taken out, and the plasma treatment liquid MLp in the container YM1 is applied to the object for sterilization.
- an appropriate dropper or brush may be used as necessary.
- the sterilizing preparation SS2 has a container CS2 composed of a container body CS2a and a lid CS2b, a cold insulation member HR2, and a container YM2.
- the container YM2 is a dropper. Therefore, at the treatment site, the taken-out container YM2 can be applied to the object immediately and the object can be sterilized.
- the sterilizing preparation SS3 includes a container CS3 including a container main body CS3a and a lid CS3b, a cold insulation member HR3, and a container YM3.
- the container YM3 includes a container body YM3a and a lid body YM3b, and can accommodate and transport a relatively large amount.
- the cold insulating member HR3 has a container shape that can store the container YM3, and cools the container YM3 so as to cover almost the entire container YM3. Therefore, the cooling effect on the container YM3 is high.
- the sterilizing preparation SS4 has a container YM4 and a cold insulation member HR4.
- the container YM4 is a bag made of a resin film or an aluminum film.
- the container YM4 contains the plasma processing liquid MLp, and the cold processing member HR4 is contained in the plasma processing liquid MLp.
- the cold insulation member HR4 is ice, and the plasma processing liquid MLp is ice-cooled and stored at around 0 ° C.
- the sterilizing preparation SS5 has a container YM5 and a cold insulation member HR5.
- a dropper HK is used as the container YM5.
- the container YM5 contains a plasma processing liquid MLp, and ice that is a cold insulation member HR5 is contained in the plasma processing liquid MLp.
- the plasma processing liquid MLp is ice-cooled by the cold insulation member HR5 and stored at around 0 ° C.
- Such a sterilizing preparation SS5 is, for example, frozen in a state where a suitable amount of water is sucked into the dropper HK which is the container YM5, and the inside water is made into ice, and then the plasma treatment liquid MLp is sucked in. Can be produced.
- the sterilizing preparation SS5 since the shape is small, a large number of the sterilizing preparations SS5 can be easily transported by putting them in an appropriate container. It can be applied to sterilization treatment.
- the sterilizing preparation SS6 includes a container YM6 including a container main body YM6a and a lid YM6b, and a cold insulation member HR6.
- the container YM6 contains a plasma processing liquid MLp, and a cold insulation member HR6 is contained in the plasma processing liquid MLp.
- the cold insulation member HR6 is ice, and the plasma processing liquid MLp is ice-cooled and stored at around 0 ° C.
- the plasma treatment liquid MLp is maintained at a low temperature and can maintain the sterilization activity for a long time. Therefore, the plasma treatment liquid MLp is transported to a treatment site where a plasma generator is not installed. The treatment liquid MLp can be applied to an object to perform sterilization using plasma.
- the container CS1 and the cold insulation member HR1 may be used together by configuring the container CS1 using the cold insulation member.
- the container CS3 may be combined with the cold insulation member HR3 by configuring the container CS3 with the cold insulation member. It is also possible to combine the structures or materials of the sterilizing preparations SS1 to SS6 described above with each other.
- FIG. 10 shows a second example of the sterilization treatment method using the plasma treatment liquid production apparatus 1.
- the plasma processing liquid MLp is generated by the plasma processing liquid generator 1 (# 11).
- the apparatus and operation shown in FIG. 10A are the same as those in FIG. 1A described above.
- the plasma treatment liquid MLp here has a pH of 4.8 when it is defrosted and returned to the liquid MLk without adjusting the pH. You may adjust so that it may become the following.
- the sterilization activity can be maintained for a long time by lowering the temperature of the plasma treatment liquid MLp, but the sterilization activity can be maintained for a longer time by freezing the plasma treatment liquid MLp into a frozen body. Can be held.
- the lifetime of the active species generated in the plasma treatment liquid MLp is deactivated on the order of 10 minutes, for example, about 10 to 20 minutes when the temperature is about 10 ° C.
- the bactericidal activity of the plasma treatment liquid MLp is not based on very short-lived active species in the order of microseconds such as OH radicals, but as described above, active species having a lifetime in the order of seconds such as superoxide anion radicals and It has been found that the derivative contributes. In such a time order, the liquid can be frozen by rapid freezing.
- Rapid freezing is performed at a temperature of about minus 18 ° C. or less, for example. Preferably, it is performed at a temperature of about ⁇ 30 ° C. or lower.
- the plasma processing liquid MLp is frozen to become a frozen body MS. That is, the frozen body MS is a product obtained by freezing the plasma processing liquid MLp.
- the temperature of the frozen body MS is, for example, about minus 18 ° C. or less, or about minus 30 ° C. or less.
- the life (half life) of the bactericidal active species in the plasma treatment liquid is about 2 minutes at 20 ° C. Therefore, when quick freezing is performed, if the target temperature (minus 30 ° C.) can be reached by freezing in about 2 minutes, the decrease in bactericidal activity can be suppressed within 50%. Moreover, if it can freeze within 20 seconds and reach
- the quick freezing is performed within a time period in which the bactericidal activity can be practically maintained.
- the half-life of the active species varies depending on the temperature, it is not preferable to freeze it at room temperature (20 to 25 ° C.) over a longer time than the half-life.
- the preferred time is about 3 minutes. Therefore, the sterilizing activity can be maintained by freezing the plasma treatment liquid MLp after the diffusion of the active species within 3 minutes by quick freezing into the frozen body MS.
- the freezer 13 or the quick freezer is used.
- a refrigeration apparatus using liquid nitrogen may be used.
- the quick freezing is described as being performed after the plasma processing liquid MLp is generated.
- the temperature of the liquid ML may be set to 0 ° C. or lower, and the liquid ML may be kept in a supercooled state so as not to freeze, and immediately after the plasma treatment is finished, stimulation may be applied to freeze it at once.
- a sufficiently cooled metal container may be prepared, and a small amount of the plasma treatment liquid MLp may be placed in the container to freeze it almost instantaneously.
- the liquid ML may be dropped as small water droplets so that the water droplets pass through the plasma PM, and the dropped (dropped) water droplets may be received by a cooled metal plate or the like and frozen at once. .
- the frozen body MS is stored in a frozen state (freezing state) (# 13).
- a frozen state (freezing state) (# 13).
- it is stored at a temperature of about minus 18 ° C. or lower, preferably about ⁇ 30 ° C. or lower.
- a frozen storage device 14 is used for frozen storage.
- the cryopreservation apparatus 14 using liquid nitrogen may be used.
- the cryopreservation device 14 may also be used as the freezing device 13 and may be stored frozen in the freezing device 13 that has undergone quick freezing.
- the storage time varies from several hours, one day, several days, several weeks, etc., depending on the storage temperature.
- the frozen body MS It is possible to transport (or transport) the frozen body MS to another place while the frozen body MS is stored frozen. For example, it is transported from the place where the frozen body MS is manufactured to a clinical site that requires sterilization or disinfection.
- mass production of frozen bodies MS is carried out in a factory and transported to a clinical site such as a hospital or a research facility that requires sterilization.
- a refrigerated vehicle or a cold car is used for conveyance. Further, it can be transported by a suitable vehicle or aircraft in a state of being frozen and kept in a freezer and liquid nitrogen. In the clinical field, the transported frozen body MS is stored in a freezer or the like until it is used.
- the frozen body MS when used for sterilization at the clinical site, it is thawed by the thawing device 15 (# 14).
- the frozen body MS returns to the plasma processing liquid MLp, which is the liquid MLk, by thawing.
- the plasma treatment liquid MLp In the plasma treatment liquid MLp, superoxide anion radicals and derivatives thereof exist, and the bactericidal activity is maintained.
- Thawing of frozen bodies MS should be done in as short a time as possible. This is because when the temperature of the liquid MLk increases when the liquid MLk returns to the liquid MLK by thawing, the decay rate of the bactericidal activity is dramatically increased. For example, it is preferable to thaw within 1 minute at a temperature of about 30 ° C. It can be said that heating using an oven or a stove or heating at room temperature or higher is not so preferable.
- the heating body for thawing for example, a block made of a metal having a large specific heat such as aluminum and a large thermal conductivity may be used.
- the block is kept at an appropriate temperature (for example, about 30 ° C.) and thawed by bringing the frozen ice MS into contact with the block.
- the volume of the frozen body MS and the block may be set so that the frozen body MS is thawed in as short a time as possible within 1 minute.
- a metal syringe that can be adjusted in temperature by a heat block or the like can be used.
- the frozen body MS is placed in the syringe barrel, or the frozen body MS is frozen in the syringe barrel, and the frozen body MS is gradually ejected while thawing. In this case, it is possible to simultaneously perform the thawing of the frozen body MS and the application of the thawed plasma processing liquid MLp.
- the frozen body MS may be applied to the affected area as it is and thawed with heat from the affected area.
- the thawing device 15 is not necessary, and the plasma treatment liquid MLp thawed by the heat of the affected part and the atmosphere is applied to the affected part as it is.
- a sheet of gauze or the like may be placed on the affected area, and the gauze may be sandwiched between the affected area and the frozen body MS.
- the pH of the liquid ML before freezing is adjusted to 4.8 or less, and the pH of the frozen body MS is initially adjusted. It is desirable to keep it down. In other words, it is desirable to freeze the plasma treatment liquid having a pH of 4.8 or lower to produce an iced body.
- the pH may be adjusted to be 4.8 or less, for example.
- a pH adjuster having an appropriate configuration is used.
- the thawed plasma processing liquid MLp is applied to, for example, the affected part KS of the living body ST (# 15).
- the plasma processing liquid MLp is dropped from the tip of the nozzle of the dropper HK and applied to the affected part KS.
- the dropper HK is cooled using the refrigeration apparatus 13 or the like, and the plasma processing liquid MLp in the dropper HK is frozen.
- the frozen body MS may be used.
- the body fluid of the living body ST may have a buffer capacity to keep the pH neutral, so the affected part KS is washed away with an acidic solution and then the plasma treatment liquid MLp is applied. It may be.
- the plasma treatment liquid MLp when used for sterilization of Helicobacter pylori, since the pH of the stomach of the living body ST is low, it is possible to directly apply the plasma treatment liquid MLp in which the pH is not adjusted.
- the plasma treatment liquid MLp obtained by thawing the frozen body MS is drunk, the frozen body MS is drunk while being thawed in the mouth, or the frozen body MS is swallowed as it is, or plasma is used using an endoscope. It is also possible to apply by applying the treatment liquid MLp.
- the plasma treatment liquid MLp obtained from the active species by the plasma PM has a period of about several minutes in which the bactericidal activity can be maintained as it is, and cannot be delivered to a remote clinical site.
- the chemical reaction proceeds slowly, and the bactericidal activity can be stored for a long time. Therefore, it can be used as a sterilizing liquid at a clinical site where the plasma generator 12 is not installed by delivering it to various places in the state of the frozen body MS.
- sterilization using the plasma PM can be performed even at a site where the plasma generator 12 is not installed. That is, if there is only a freezer at the clinical site, for example, the frozen body MS can be stored frozen and thawed as necessary to be used as a disinfectant or therapeutic agent.
- it can be used as a disinfectant for dental treatment or a surgical disinfectant such as pressure ulcer, and can be applied to sterilization in dental root canal treatment, treatment of periodontal disease, and the like. It can also be applied to surgical treatments such as treatment of intractable bacterial infections that occur at trauma sites such as burns and bedsores, and prevention of gangrene due to diabetes, frostbite, etc.
- the sterilization frozen body generator 2 including the frozen storage device 14 is configured.
- the generation device 2B includes a cooling device 11B, a plurality of plasma generation devices 12B, a container YKB, a freezing container YT, a conveyor 21, a freezing device 22, and the like.
- the container YKB includes an inflow conduit KR1 and an outflow conduit KR2 for the liquid ML.
- the container YKB is filled with the liquid ML, and an amount of the liquid ML that has flowed out from the outflow line KR2 is replenished from the inflow line KR1. That is, the liquid ML in the container YKB is slowly flowing from the inflow conduit KR1 side to the outflow conduit KR2 side.
- the liquid ML is the plasma processing liquid MLp.
- the container YKB is cooled by the cooling device 11, whereby the temperatures of the liquid ML and the plasma processing liquid MLp are 10 ° C. or less.
- the plasma generator 12B is arranged above the liquid ML in the container YKB so that the generated plasma PM irradiates the liquid ML. Since a plurality of plasma generators 12B are provided, the liquid ML flowing in the container YKB is sufficiently irradiated to the plasma PM, sufficiently contacts with the active species generated by the plasma PM, and the active species diffuses into the inside thereof. To do.
- the freezing container YT is made of a metal having a large specific heat, such as aluminum, and a high thermal conductivity, and is placed on the conveyor 21 and sequentially conveyed forward.
- the conveyor 21 stops in a state where the freezing container YT is positioned directly below the outflow pipe KR2, and moves after the plasma processing liquid MLp flowing out from the outflow pipe KR2 enters a predetermined amount in the freezing container YT.
- the conveyor 21 and the outflow pipe line KR2 are examples of an apparatus for storing the plasma processing liquid MLp in a container.
- the freezing container YT is sufficiently cooled to, for example, about minus 30 ° C. or less by the freezing device 22, and the liquid ML dripped therein can be frozen almost instantaneously.
- a predetermined amount of the plasma treatment liquid MLp in the container YKB falls from the outflow pipe KR2 into the cryocontainer YT below it, where it is quickly frozen (instantaneous freezing) and becomes a frozen body MSB.
- the frozen body MSB is carried on the conveyor 21 together with the freezing container YT and sent to an appropriate post-processing device.
- the frozen body MSB is taken out from the freezing container YT and stored frozen.
- a plurality of freezing containers YT may be connected to each other. Therefore, it is also possible for the entire conveyor 21 to form the freezing container YT.
- the frozen body MSB can be stored frozen as it is without being taken out of the freezing container YT.
- the cryocontainer YT may be made of a thin metal film such as an aluminum foil or an aluminum wrap so as to wrap the internal frozen body MS.
- the plasma processing liquid MLp is flowed out from the container YKB at a predetermined flow rate, and the flowed out plasma processing liquid MLp is poured into the freezing container YT for quick freezing.
- the plasma processing liquid MLp is flowed out from the container YKB at a predetermined flow rate, and the flowed out plasma processing liquid MLp is poured into the freezing container YT for quick freezing.
- the plasma generators 12B are arranged so that the plasma PM is ejected in the vertical direction. However, each plasma generator 12B is ejected in the horizontal direction in parallel with the liquid surface of the liquid ML. May be arranged. Further, the container YKB itself may be configured as a flow path through which the liquid ML flows.
- a plurality of plasma generators 12B are used.
- a plasma generator that continuously performs plasma treatment on the liquid ML flowing in the container YKB may be used.
- a high voltage electrode and a ground electrode are disposed so as to face each other across the container YKB above and below the container YKB, and a dielectric barrier discharge is performed by applying a high voltage between these electrodes.
- a plasma generator may be used.
- the generating device 2C includes a plasma generating device 12C, a conveyor 21C, a refrigeration device 22C, a liquid supply device 23, and the like.
- the liquid supply device 23 continuously drops an appropriate amount of the liquid MLC so as to pass through the plasma PM generated by the plasma generator 12C.
- the liquid MLC passes through and in the vicinity of the plasma PM, so that the active species are diffused therein and become the plasma processing liquid MLp.
- the conveyor 21C has a belt made of a material having good thermal conductivity such as metal, and is cooled to a temperature of about minus 30 ° C. or less by the refrigeration apparatus 22C.
- the conveyor 21 ⁇ / b> C is disposed so as to travel below the liquid supply device 23. You may use the freezing conveyor apparatus which comprised the freezing apparatus 22C and the conveyor 21C integrally.
- the liquid MLC dropped from the liquid supply device 23 to become the plasma processing liquid MLp falls on the conveyor 21C, where it is quickly frozen and drops into individual ice bodies MSC.
- the frozen body MSC is carried forward by the conveyor 21C while being frozen.
- the iced body MSC carried out by the conveyor 21C is stored in an appropriate container, or packed in an appropriate package, stored in a cryopreservation apparatus, or transported to another place.
- the sterilized frozen body MSB is continuously manufactured.
- the size, volume, or shape of the frozen body MSC may be determined according to the object to be used.
- the plasma generator 12C is arranged so that the plasma PM is ejected in the horizontal direction, but the plasma generator 12C may be arranged so that the plasma PM is ejected in the vertical direction.
- the liquid supply device 23 may be arranged so that the liquid MLC drops in the plasma PM ejected in the vertical direction. In this way, the time for contacting the plasma PM is increased before the liquid MLC is dropped, and the active species is more reliably diffused into the liquid MLC.
- the generating device 2D includes a plurality of plasma generating devices 12D, containers YKD, a conveyor 21D, a freezing device 22D, and the like.
- the container YKD is made of metal and is placed on the conveyor 21D and sequentially conveyed forward at a low speed.
- the container YKD is cooled to a low temperature by the refrigeration apparatus 22D as it is conveyed forward.
- the plurality of plasma generators 12D are arranged above the conveyor 21D and irradiate the surface of the liquid ML that has entered the container YKD with the plasma PM.
- the liquid ML is cooled to a temperature of 10 ° C. or lower, and irradiated with plasma PM to diffuse active species.
- the liquid ML is gradually cooled as it is conveyed by the conveyor 21D, and freezes sequentially from the portion where the irradiation with the plasma PM has ended, to become an iced body MSD.
- the generation of the plasma treatment liquid MLp and the freezing are performed in parallel so as to overlap in time, and the sterilized ice bodies MSD are continuously manufactured.
- the liquid ML in the container YKD may be frozen (freeze) from the beginning to form ice, and the ice (freezing liquid ML) that has entered the container YKD may be irradiated with the plasma PM from the plasma generator 12D.
- the plasma PM from the plasma generator 12D.
- the surface of the ice is sequentially melted by the heat of the plasma PM and returned to the liquid ML, and the active species diffuses into the liquid ML, and the plasma A treatment liquid MLp is generated.
- the generated plasma processing liquid MLp is cooled by the refrigeration apparatus 22D and frozen again to become an iced body MSD.
- the container YKD, the plasma generator 12D, and the refrigeration apparatus 22D so that the melting of the liquid ML that has been frozen into ice, the plasma treatment of the liquid ML, and the refreezing of the plasma treatment liquid MLp are performed smoothly in sequence.
- the depth and length of the container YKD, the speed of the conveyor 21D, etc. may be adjusted.
- the sterilization ice bodies ST including various forms of the ice bodies MS will be described.
- the sterilization ice body ST described here is another embodiment of the “sterilization preparation” using the plasma treatment liquid MLp. Since the sterilized ice body ST uses an ice body MS formed by freezing the plasma treatment liquid MLp, the ice body MS itself also has a function as a cold insulating member.
- 14 (A) to 14 (G) show various forms of sterilization ice bodies ST.
- the sterilization ice body ST1 is the ice body MS itself.
- the shape of the frozen body MS can be an arbitrary shape such as a plate shape, a rectangular parallelepiped shape, a spherical shape, a disc shape, or a rod shape.
- the size of the frozen body MS is a small size that can be used up once, a relatively large size that can be used multiple times, and a large size that can be separated into multiple frozen bodies MS Any size can be used.
- the sterilization ice body ST2 is a form in which the ice body MS enters the container YU2.
- the container YU2 can have various shapes and sizes depending on the shape and size of the ice body MS.
- a material of the container YU a metal such as steel or aluminum, a synthetic resin, or the like can be used.
- the freezing container YT used in the generation apparatus 2B described above can be used as it is.
- the sterilization ice body ST3 is in a form in which the ice body MS enters the container YU3.
- the container YU3 includes a container body YU3a and a lid YU3b so as to cover the ice body MS.
- a highly heat insulating material as the material of the container YU3, the temperature of the ice body MS can be kept low for a long time.
- the sterilization ice body ST4 is in a form in which the entire circumference of the ice body MS is covered with a container YU4 made of a packaging material.
- a metal film such as an aluminum foil can be used.
- the sterilization ice body ST5 has a form in which the ice body MS is housed in a container YU5 which is a dropper.
- the various syringes HK described above can be used as the container YU5.
- the plasma treatment liquid MLp that is not frozen can be sucked into the dropper HK and then frozen.
- the plasma processing liquid MLp which is obtained by partially melting the frozen body MS and melting it into a liquid, can be directly applied to the object by the dropper HK that is the container YU5.
- the sterilization ice body ST6 is in a form in which the ice body MS is covered with a container YU6 made of a packaging material and is in contact with and integrated with the cold insulation member HRT6. . These may be packaged with an appropriate packaging material.
- the cold insulation member HRT6 the various cold insulation members HR described above can be used.
- a material in which a cryogen such as dry ice or an organic solvent is frozen is preferable as the cold-retaining member HRT.
- the sterilization ice body ST7 includes a container YU7 including a container body YU7a and a lid body YU7b, a cold insulation member HRT7a, b, and an ice body MS.
- the container YU7 may be the same as the container CS1 shown in FIG.
- the frozen body MS may be packaged with an appropriate packaging material.
- the icing body MS contained therein is thawed and returned to the liquid plasma processing liquid MLp (processing liquid MLk), thereby generating plasma for sterilization using plasma. It can also be performed at a site where no device is installed. Moreover, since the frozen body MS is frozen and normally kept at 0 ° C. or less, the bactericidal activity is preserved for a long time.
- liquid plasma processing liquid MLp processing liquid MLk
- the types, materials, shapes, dimensions, and the like of the container YU and the cold insulation member HRT can be variously changed in addition to those described above.
- the method for producing the frozen body for sterilization is to bring the active species generated by the plasma PM into contact with the liquid ML and diffuse the active species in the liquid ML (# 21). Freeze to form frozen body MS (# 22). If necessary, the frozen body MS is stored frozen (# 23). The frozen ice MS can be transported to a remote location.
- the method for producing the sterilizing liquid is such that active species generated by the plasma PM are brought into contact with the liquid ML to diffuse the active species in the liquid ML (# 31), and the liquid ML in which the active species has diffused is frozen.
- the frozen body MS is obtained (# 32). Thaw the frozen body MS back to liquid MLk (# 33).
- the sterilization treatment method generates plasma treatment liquid MLp (# 41), and applies this to the object to perform sterilization treatment (# 42).
- the temperature of the plasma processing liquid MLp is preferably set to 10 ° C. or lower.
- the sterilization processing method generates a plasma processing solution MLp (# 51), and freezes it to generate a frozen body MS (# 52).
- the frozen body MS is transported to the treatment site as necessary.
- the frozen body MS is thawed at the treatment site (# 53), and the liquid MLk obtained by thawing the frozen body MS is applied to the object (# 54).
- a liquid whose pH is adjusted to 4.8 or less may be used.
- the pH of the plasma processing liquid MLp may be adjusted to 4.8 or less.
- the pH of the liquid MLk may be adjusted to 4.8 or less. In any case, it is preferable that the pH of the plasma treatment liquid MLp or the liquid MLk be adjusted to 4.8 or less before being applied to the object.
- FIG. 19 shows an experimental result for verifying the sterilizing effect of the plasma treated water.
- ultrapure water was prepared and divided into plasma treated water MLCp irradiated with plasma PM and ultrapure water (plasma unirradiated water) MLCm that was not irradiated with plasma PM.
- the plasma treated water MLCp and the plasma non-irradiated water MLCm were stored at room temperature as they were and when they were frozen and stored frozen by liquid nitrogen, respectively. Evaluation was carried out by mixing with the bacterial suspension of E. coli adjusted to 7.
- the bacterial concentration is approximately 3 ⁇ 10 6 cfu / ml after 60 minutes in both cases of storage at room temperature or frozen storage. It can be seen that it has not changed.
- E. coli in the case of plasma-treated water MLCp, immediately after plasma treatment (after 0 minutes), E. coli could be sterilized to below the detection limit (10 cfu / ml), but this was left at room temperature for 60 minutes. Later, it can be seen that there is no sterilizing power. On the other hand, when it is stored frozen in liquid nitrogen after plasma treatment, E. coli is below the detection limit, and it can be seen that sufficient sterilizing power is maintained just after plasma treatment.
- sterilization with the plasma treatment liquid MLp of the present embodiment is different in action mechanism from sterilization with stable chemical species (half time >> 60 minutes) such as ozone and hydrogen peroxide generated by plasma. I understand that.
- FIG. 20 shows the remaining bactericidal activity and time change of the plasma treated water.
- ultrapure water was prepared, and plasma treated water MLDp was generated by irradiation with plasma PM for 5 minutes.
- Plasma treated water MLDp was mixed with a bacterial solution / buffer at room temperature, allowed to stand at room temperature for 5 minutes, serially diluted, spread on a plate, cultured, and colony counted.
- FIG. 21 shows the relationship between the refrigeration temperature of the plasma treated water and the sterilizing effect
- FIG. 22 shows the relationship between the refrigerated storage time of the plasma treated water and the sterilizing effect.
- FIG. 22 shows the logarithm of the viable cell count shown in FIG. 21 for the plasma treated water, which is plotted on the vertical axis and the storage time is plotted on the horizontal axis.
- liquid MLE was prepared, and this was irradiated with plasma PM to obtain plasma treated water (plasma sterilized water) MLEp.
- the plasma-treated water MLEp was rapidly frozen to produce a plurality of frozen bodies MSE. Freeze bodies MSE are stored frozen at minus 18 ° C., minus 30 ° C., and minus 85 ° C., respectively, thawed on ice after a certain period of time, mixed with bacterial solution and acidic buffer, and left at room temperature for 5 minutes. Serial dilution was performed, and the cells were plated and cultured, and colony counting was performed.
- the plasma-treated water is rapidly frozen and stored at minus 30 ° C. or less, so that it can be transported and stored while maintaining the bactericidal activity.
- the configuration, structure, shape, size, number, material, arrangement, component, temperature, time, etc. of each part or the whole of the application device 16, the liquid supply device 23, the pH adjustment device, or the generation device 1, 1B to 1D are described in the present invention. It can be appropriately changed in accordance with the gist of
- the present invention can be used for the sterilization or disinfection of medical instruments, pharmaceuticals, living bodies, etc., and the production of sterilizing preparations and sterilized ice cubes.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Birds (AREA)
- Biomedical Technology (AREA)
- Pharmacology & Pharmacy (AREA)
- Oncology (AREA)
- Dermatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Communicable Diseases (AREA)
- Plasma Technology (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
プラズマを用いた殺菌をプラズマ発生装置が設置されていない現場においても行えるようにすることを目的とする。プラズマPMにより発生した活性種を液体MLに接触させて当該液体ML中に活性種を拡散させてプラズマ処理液MLpとし、プラズマ処理液MLpを対象物に適用して対象物の殺菌処理を施す。プラズマ処理液MLpの温度を10℃以下に保持する。また、プラズマ処理液MLpを一旦冷凍して結氷体MSとして保存し、これを解凍して液体のプラズマ処理液に戻してから対象物に適用する。
Description
本発明は、プラズマなどを用いて行う殺菌処理方法、殺菌用製剤、殺菌用結氷体およびその生成方法および装置、並びに殺菌用液体の生成方法に関する。
従来において、大気圧下において生成できる低温のプラズマ(低温プラズマ、大気圧プラズマ、大気圧低温プラズマ、非平衡プラズマ、LFプラズマなどと呼称される)が、医療分野を初めとする種々の分野で注目されている。
このようなプラズマの医療応用の1つとして、医療器具、医薬品、生体などの殺菌消毒への応用がある。例えば生体は濡れ環境にあるため、液体中での殺菌が重要である。pHを低下させた液体に対してプラズマを照射することにより、殺菌に要する時間が1/100程度となる高い殺菌力が得られることが分かっている(特許文献1)。
例えば歯科治療の分野において、従来においては化学薬品により殺菌が行われていたが、不完全な殺菌に因る術後の感染症の問題があった。これに対し、液体のpHの調整とプラズマとを用いて殺菌を行うことによって、より一層の殺菌効果が得られる。
また、液体に対して非接触でプラズマを生成し、プラズマにより生成した活性種を電気泳動させて液体に接触させることにより、液体に対する殺菌を行うこともできる(特許文献2)。
また、このようなプラズマを発生させることのできる装置の1つであるLFプラズマジェットが、特許文献3に開示されている。
しかし一方、例えば歯科治療にプラズマを用いるためには、治療現場にプラズマ発生装置を設置する必要があり、プラズマを発生させ活性種を生成させるために種々のガスを導入する管路を設ける必要がある。また、場合によっては副生成物として生成されるガスを排出する管路を設ける必要がある。
また、医療器具の殺菌消毒を行う場合においても、その臨床現場にプラズマ発生装置を設置し、必要な管路を確保しなければならない。
本発明は、上述の問題に鑑みてなされたもので、プラズマを用いた殺菌をプラズマ発生装置が設置されていない現場においても行えるようにすることを目的とする。
本発明に係る殺菌処理方法の1つの形態は、プラズマにより発生した活性種を液体に接触させて当該液体中に前記活性種を拡散させてプラズマ処理液を生成し、生成した前記プラズマ処理液を対象物に適用して前記対象物の殺菌処理を施す。
本発明に係る殺菌処理方法の他の1つの形態は、プラズマにより発生した活性種を液体に接触させて当該液体中に前記活性種を拡散させてプラズマ処理液とし、前記プラズマ処理液を冷凍して結氷体を生成するとともに当該結氷体を冷凍状態で保存し、前記結氷体を解凍してプラズマ処理液に戻しこれを対象物に適用して前記対象物の殺菌処理を施す。
本発明に係る殺菌用結氷体の生成方法の1つの形態は、プラズマによって液体中に活性種を拡散させてプラズマ処理液を生成し、前記プラズマ処理液を冷凍して結氷体を生成しこれを殺菌用結氷体とする。
本発明に係る殺菌用結氷体の生成装置の1つの形態は、プラズマによって液体中に活性種を拡散させてプラズマ処理液を生成するプラズマ処理液生成装置と、前記プラズマ処理液を冷凍して結氷体を生成するための冷凍装置と、を有する。
本発明に係る殺菌用液体の生成方法の1つの形態は、プラズマにより発生した活性種を液体に接触させて当該液体中に前記活性種を拡散させてプラズマ処理液とし、前記プラズマ処理液を冷凍して結氷体を生成するとともに、当該結氷体を冷凍状態で保存し、冷凍状態で保存した前記結氷体を解凍してプラズマ処理液に戻して殺菌用液体とする。
本発明に係る殺菌用製剤の1つの形態は、プラズマにより発生した活性種を液体中に拡散させたプラズマ処理液が、前記プラズマ処理液の温度を10℃以下に保持するための保冷部材とともに一体化されてなる。
本発明によると、プラズマを用いた殺菌をプラズマ発生装置が設置されていない現場においても行うことができる。
本発明によると、プラズマによって液体中に活性種を拡散させたプラズマ処理液は、強い殺菌効果を持つが、殺菌処理を行った後は速やかに無害なものとなるので、残留毒性がなく環境を汚染しない。
本発明に係る方法および装置は次のような種々の形態をとることができる。
殺菌処理方法として次の形態をとることができる。
すなわち、プラズマにより発生した活性種を液体に接触させて当該液体中に活性種を拡散させてプラズマ処理液を生成し、生成したプラズマ処理液を対象物に適用して対象物の殺菌処理を施す。
その際に、液体の温度を10℃以下に保持し、生成したプラズマ処理液の温度を10℃以下で保存し、保存していたプラズマ処理液を対象物に適用する。また、生成したプラズマ処理液に氷を入れて氷冷することにより温度を0℃近辺以下として保存し、保存していたプラズマ処理液を対象物に適用する。または、生成したプラズマ処理液を環境温度0℃以下で保存し、保存していたプラズマ処理液を対象物に適用する。
すなわち、液体およびプラズマ処理液の温度を、対象物に適用するまでは常に10℃以下の低温に保持しておくことが好ましい。さらには、0℃近辺の氷点温度に保持しておくことが好ましい。生成されたプラズマ処理液については、摂氏マイナスの低温に保持しておくことが一層好ましい。
つまり、プラズマ処理液MLpに拡散された活性種のできるだけ消失させないために、プラズマ処理液MLpの温度をできるだけ低温に維持しておく必要がある。また、プラズマ処理液を行っている間においても、発生した活性種の一部が消失していき、温度が高いほど活性種の消失の割合が大きいので、液体の温度をできるだけ低温に維持しておく必要がある。
例えば液体およびプラズマ処理液の温度を0℃近辺に保持する方法として、プラズマ処理を行う以前の液体を凍結させて氷としておく方法がある。この場合に、液体を凍結させた氷にプラズマを照射することにより、プラズマの熱により氷の一部の表面を解凍して液体に戻しながら、同時にその液体にプラズマ処理を施す。これによって、プラズマ処理液の生成の全工程を0℃近辺の温度で行うことが可能である。
プラズマ処理液を生成する際に、pHが4.8以下に調整された液体を用いる。または、生成されたプラズマ処理液に酸性液を混合してpHが4.8以下となるように調整し、pHが4.8以下に調整されたプラズマ処理液を対象物に適用する。
また、生成されたプラズマ処理液のpHが2以下となるように調整し、pHが2以下に調整されたプラズマ処理液を保存し、保存していたプラズマ処理液を対象物に適用する。
また、プラズマ処理を行うことによって液体のpHが低下するので、これによってもpHを4.8以下に調整することができる。つまり、pHの調整方法として、プラズマ処理を行うこと自体による方法、または、酸性液その他の薬物を混合する方法などを用いることが可能である。
また、プラズマにより発生した活性種を液体に接触させて当該液体中に活性種を拡散させてプラズマ処理液とし、プラズマ処理液を冷凍して結氷体を生成するとともに当該結氷体を冷凍状態で保存し、結氷体を解凍してプラズマ処理液に戻しこれを対象物に適用して対象物の殺菌処理を施す。
その際に、結氷体を解凍して得られたプラズマ処理液に酸性液を混合してpHが4.8以下となるように調整し、pHが4.8以下に調整されたプラズマ処理液を対象物に適用する。
殺菌用結氷体の生成方法として次の形態をとることができる。
すなわち、プラズマによって液体中に活性種を拡散させてプラズマ処理液を生成し、プラズマ処理液を冷凍して結氷体を生成しこれを殺菌用結氷体とする。
その際に、プラズマ処理液を生成した後、当該プラズマ処理液を急速冷凍して3分以内に結氷体を生成する。プラズマ処理液の生成とその急速冷凍とを並行して行うようにしてもよい。なお、液体およびプラズマ処理液の温度を、上に述べたようにできるだけ低温に保持しておくのが好ましい。
冷凍する前の液体として、pHが4.8以下の液体を用いることが好ましい。生成した結氷体を容器に収納してこれを殺菌用結氷体としてもよい。生成したプラズマ処理液を容器に収納し、その容器を冷却することによりプラズマ処理液を冷凍して結氷体を生成し、容器に収納された状態の結氷体を殺菌用結氷体としてもよい。そのような容器としてスポイトを用いてもよい。
プラズマを液体に接触するように照射することにより、液体中に活性種を拡散させてもよい。また、プラズマを気相中において液体に接触しない状態で発生させ、気相中において発生した活性種を液体に接触させることにより、液体中に活性種を拡散させるようにしてもよい。
殺菌用液体の生成方法として次の形態をとることができる。
すなわち、プラズマにより発生した活性種を液体に接触させて当該液体中に活性種を拡散させてプラズマ処理液とし、プラズマ処理液を冷凍して結氷体を生成するとともに、当該結氷体を冷凍状態で保存し、冷凍状態で保存した結氷体を解凍してプラズマ処理液に戻して殺菌用液体とする。
殺菌用液体の生成に際し、上に述べたように、液体およびプラズマ処理液の温度を、対象物に適用するまでは常に10℃以下の低温に、さらには0℃近辺または摂氏マイナスの温度に保持しておくことが好ましい。
冷凍する前の液体として、pHが4.8以下の液体を用いることができる。または、解凍によって得られたプラズマ処理液を、そのpHが4.8以下となるように調整してもよい。
殺菌用結氷体の生成装置として次の形態をとることができる。
すなわち、プラズマによって液体中に活性種を拡散させてプラズマ処理液を生成するプラズマ処理液生成装置と、プラズマ処理液を冷凍して結氷体を生成するための冷凍装置とを有する。
また、プラズマ処理液生成装置は、液体をプラズマの近辺またはプラズマの中を通過するように滴下させる液体供給装置を備えていてもよい。冷凍装置は、液体供給装置により滴下された液体を受けて急速冷凍するようにしてもよい。
また、プラズマ処理液生成装置は、容器に入った液体に対し、当該液体の近辺においてまたは当該液体に接触するようにプラズマを発生させ、冷凍装置は、容器を冷却するように配置し、これによって、プラズマ処理液の生成とプラズマ処理液の冷凍とを並行して行うようにしてもよい。
生成した前記プラズマ処理液を容器に収納するための装置を備えておいてもよい。その場合に、冷凍装置は、容器を冷却することによりプラズマ処理液を冷凍して結氷体を生成する。また、プラズマ処理液のpHが4.8以下となるように調整するためのpH調整装置を有してもよい。
プラズマ処理液生成装置は、プラズマを発生するプラズマ発生装置を備える。プラズマ発生装置は、ガス供給管と、ガス供給管の出口の近辺に設けられた電極と、電極に高電圧を印加するための電源装置とを有する。
また、液体および生成中のプラズマ処理液を低温に保持するために、これらを冷凍装置によって冷却してもよく、または別個の冷却装置を設けてもよい。
殺菌用製剤として次の形態をとることができる。
すなわち、殺菌用製剤は、プラズマにより発生した活性種を液体中に拡散させたプラズマ処理液が、プラズマ処理液の温度を10℃以下に保持するための保冷部材とともに一体化されてなる。
好ましくは、プラズマ処理液は、pHが4.8以下に調整されている。または、プラズマ処理液は、pHが2以下に調整されている。保冷部材として氷が用いられる。または、保冷部材として冷凍された保冷剤が用いられる。プラズマ処理液が、容器であるスポイトに収納されていてもよい。
この場合も、プラズマ処理液の生成に際して、液体およびプラズマ処理液の温度を、上に述べたようにできるだけ低温に保持しておくのが好ましい。
〔殺菌処理方法の実施形態その1〕
次に、殺菌処理方法についての実施形態を説明する。
〔殺菌処理方法の実施形態その1〕
次に、殺菌処理方法についての実施形態を説明する。
図1には、プラズマ処理液生成装置1を用いた殺菌処理方法の例が示されている。
図1(A)に示すように、まず、液体MLを容器YKに入れたものを準備する。液体MLとしては、水道水などの水、純水、生理食塩水、水溶液、その他の種々の液体が用いられる。電気抵抗が18.2MΩ/Cm以上である超純水を用いてもよい。
殺菌効果を高めるために、液体MLを対象物に適用するまでにそのpHを4.8以下とする必要があり、ここでは液体MLとしてpHが4.8以下に調整された液体を用いる。なお、液体MLのpHを、4.5以下に調整してもよい。さらに好ましくはpHを3.5以下とする。人体への影響を少なくし、また液体MLの後処理を容易にするためには、pHを1以上としておくのが好ましい。より好ましくは2以上としておく。
このようにpHを調整するには、例えば、液体ML中に酸または酸性を示す塩を投入したり、炭酸ガスを液体ML中に吹き込むなどの方法がある。例えば、食品に使用されるクエン酸などの酸性液を投入すればよい。このようにpHが調整されて酸性になると、液体ML中のプロトン(水素イオン)H+ が増加した状態となる。
なお、上に述べたような方法でpHを調整するために、適当な構成のpH調整装置を用いることができる。
また、液体MLの温度を、10℃以下の低温に保持しておく。また、生成したプラズマ処理液MLpの温度についても10℃以下の低温に保持しておく。そのために冷却装置11を用いることができる。冷却装置11として、氷、または適当な冷却機構を備えた装置を用いることができる。液体MLの中に氷を入れておくことでもよい。または、後で述べる冷凍装置13を冷却装置11として兼用することでもよい。
また、液体MLそれ自体を凍結させて氷としておいてもよい。その場合に、次に述べるように、その氷にプラズマPMを照射することにより、プラズマPMの熱により氷の一部を溶かして液体MLに戻し、同時にその液体ML中に活性種を拡散させる。
そして、プラズマ発生装置12によってプラズマPMを発生させ、プラズマPMにより発生した活性種を液体MLに接触させて当該液体ML中に活性種を拡散させる(#1)。このように、プラズマPMによって液体中に活性種が拡散した液体MLを、「プラズマ処理液」または「プラズマ処理水」ということがある。
活性種を液体MLに接触させる方法として、図2に示すようにプラズマPMを液体MLに接触するように照射する方法、および、図3に示すようにプラズマPMが液体MLに接触しないようにして活性種を電気泳動させる方法がある。
図2において、プラズマ発生装置12は、プラズマPMを液体MLの液面に接触した状態で生成する。
プラズマPMが液体MLに接触することにより、プラズマPMにより生成された活性種、特にスーパーオキシドアニオンラジカル(O2
- ・)およびその誘導体(または前駆体)が、液体ML中に拡散し、プラズマ処理液MLpとなる。
プラズマ処理液MLpの殺菌力には、スーパーオキシドアニオンラジカルの酸解離平衡が関与している。つまり、プラズマ処理液MLp中には、スーパーオキシドアニオンラジカルおよびその誘導体(または前駆体)が存在し、誘導体が徐々にスーパーオキシドアニオンラジカルを発生させることで、殺菌活性が持続されるものと考えられる。
図3において、プラズマ発生装置12は、プラズマPMを液体MLの液面に接触しない状態で発生する。電源装置34によって、ガス供給管の噴出口の外周に設けられた電極33には、グランドGに対し、所定周波数の交流電圧成分Vaと直流バイアス電圧成分Vbとを含む電圧Vcが印加される。直流バイアス電圧成分Vbは、マイナス1~10kV程度である。
プラズマPMにより生成されたスーパーオキシドアニオンラジカルなどの活性種およびその誘導体(または前駆体)は、直流バイアス電圧成分Vbによる電界によって電気泳動し、液体MLの液面に接触し、液中に拡散する。
図4には、プラズマ発生装置12の構成の例が示されている。
図4において、プラズマ発生装置12は、ガス供給管31、ガス供給管31の噴出口31aの近辺に設けられた電極33、および電源装置34などによって構成される。電極33に高電圧の交流電圧を印加し、ガス供給管31からヘリウムガスなどを供給することにより、噴出口31aの近辺にLFプラズマ(Low Frequency Plasma) であるプラズマPMが生成される。
また、例えば、噴出口31aから噴出するプラズマPMを適当なチャンバーで囲い、このチャンバー内に外部から空気を導入して混合し、かつ、チャンバーに適当なチューブの一端を接続する。チューブの他端からは、プラズマPMと空気との混合ガス(アフターグローガス)が噴出する。このようにして、噴出口31aをチューブによって所定距離(例えば4メートル)延長することが可能であり、チューブの他端から噴出される混合ガスをプラズマPMと同様なラジカル発生源として用いることが可能である。
なお、このようなプラズマ発生装置12の外に、他の種々のプラズマ発生装置を用いることができる。例えば、コロナ放電によって空気をプラズマ化する装置を用いることができる。
次に、図1(B)に示すように、生成したプラズマ処理液MLpを、対象物、例えば生体STの患部KSに適用する(#2)。プラズマ処理液MLpの適用に際し、例えば、プラズマ処理液MLpをスポイトHKに吸入しておき、そのノズルの先端からプラズマ処理液MLpを滴下させて患部KSに塗布する。これによって、患部KSにおける殺菌消毒が行われる。
なお、スポイト(spuit 、syringe)HKとして、公知の種々のものを用いることが可能である。例えば、管状の吸い口、液体を保持する胴部、および可撓性のある伸縮部を有するものをスポイトHKとして用いることができる。スポイトHKの全体を柔軟な合成樹脂または合成ゴムによって形成してもよい。胴部と伸縮部とが分離可能なものでもよい。分離可能なスポイトを用いる場合に、そのスポイトを構成する一部の部品、例えば胴部のみについても、ここでは「スポイト」として扱うことが可能である。スポイトHKは、伸縮部を指などで挟んで圧縮しまたは圧縮から解放することにより、吸い口から液体を吸い込みまたは吐出する。スポイトHKは、適用装置16の1つの例である。
なお、適用装置16として、把持部および多関節のマニプレータを有し、自動制御またはプログラム制御などの制御が行われるロボットなどを用いることも可能である。この場合に、例えば、把持部でスポイトHKなどを把持し、マニプレータを制御駆動してスポイトHKを患部KSなどの対象物の位置に移動させ、スポイトHKの先端からプラズマ処理液MLpを患部KSに滴下させればよい。
プラズマ処理液MLpは強い殺菌効果を持つが、殺菌処理を行った後は、プラズマ処理液MLpは時間の経過とともに無害なものとなるので、残留毒性がなく環境を汚染しない。したがって、医療器具の殺菌処理などに安全に用いることができる。また、図6のアレニウスプロットから、体温である37℃では、半減時間は4秒であり短時間で失活することが分かる。また、プラズマ処理液MLpは、残留毒性がなく生体への悪影響がないので、生体の治療にも安全に用いることができる。
なお、プラズマ処理液MLpの適用の仕方として、刷毛などで塗布したり、霧状にして散布するなど、状況に応じた態様で適用すればよい。
また、プラズマ処理液MLpを他の薬剤または殺菌剤と混合した後に、またはプラズマ処理液MLpに薬剤または殺菌剤を溶解した後に、それを適用してもよい。
さて、液中に活性種が拡散した状態のプラズマ処理液MLpは、上に述べたように殺菌活性がある。しかし、プラズマ処理液MLpの殺菌活性は時間とともに失われていく。プラズマ処理液MLpの殺菌活性の寿命を延ばすためには、プラズマ処理液MLpの温度を下げることが重要であることが、実験を進める中で分かってきた。
すなわち、図5にはプラズマ処理液MLpの放置時間と殺菌活性との関係が、図6にはプラズマ処理液MLpの温度と活性種の半減時間との関係が、図7にはプラズマ処理液MLpの温度と活性種の最大到達濃度との関係が、それぞれ示されている。
図5に示すように、殺菌活性は、プラズマ処理液MLpが生成されてから時間の経過とともに指数関数的に減少する。図5に示す殺菌活性の時間変化から、殺菌活性種の半減時間を計算し、それぞれ実験系の温度を調整して求めた殺菌特性の半減時間の温度依存が図6に示されている。
図6に示すように、プラズマ処理液MLpの温度〔℃〕が、25、20、19、15、-18、-30である場合に、活性種の半減時間〔分〕は、0.8、1.91、2.23、4.25、4176、30240である。
図6によると、プラズマ処理液MLpの温度を下げることで、殺菌活性の半減時間がほぼ直線的に延びることが分かる。これは、反応速度の対数が温度に比例するというアレニウスの式にも沿っている。
図6から分かるように、温度を10℃程度まで下げると、半減時間は10分程度となり、プラズマ処理液MLpを用いた殺菌処理を行う場合の実用的な時間を確保することができる。
プラズマ処理液MLpの温度を下げると活性種の半減時間が長くなることから、プラズマによって単位時間当たりに同じ量の活性種を供給したとしても、最終到達濃度が変わってくる。つまり、例えば半減時間が短い場合には、活性種を供給している間に活性種がどんどん消失していくので、濃度上昇が見られ難くなる。活性種の最大到達濃度の温度依存を計算したものが図7に示されている。
図7によると、活性種の単位時間当たりのwの供給量を1μM/minとし、プラズマ処理液MLpの温度〔℃〕が、25、20、15、10、5、0である場合に、活性種の最終到達濃度〔μM〕は、1.2、2.8、6.3、18.8、43.1、107である。
図7によると、温度の低下とともに指数関数的に最大到達濃度が上昇することが分かる。したがって、プラズマ処理液MLpまたは初期の液体MLの温度を下げることによって、活性種の濃度の高いプラズマ処理液MLpが得られる。
このように、プラズマ処理液MLpを生成してから対象物に適用するまでの時間は、できるだけ短い方がよい。例えば、25℃程度の室温においても、プラズマ処理液MLpを生成してから1分程度以内で適用することにより、十分な殺菌処理を行うことが可能である。
しかし、液体MLまたはプラズマ処理液MLpの温度を10℃以下とすることにより、プラズマ処理液MLpを適用して殺菌処理を実施するに必要な時間を確保することができる。したがって、液体MLまたはプラズマ処理液MLpを10℃以下の温度に冷却し保持するために、適当な冷却装置または保冷装置などを用いればよい。
また、その後の実験によって、活性種の半減時間はプラズマ処理液MLpのpHに依存することが分かってきた。つまり、プラズマ処理液MLpの温度を15℃に固定しておいた実験で、pHが、5.7、5.4、5.3、5.2、4.6、4.5、4.1である場合に、半減時間〔分〕は、0.21、0.27、0.39、0.55、1.54、1.43、3.77であった。
この実験結果によると、プラズマ処理液MLpのpHを下げていくと活性種の寿命は指数関数的に延びている。したがって、活性種の寿命を延ばし、プラズマ処理液MLpの殺菌効果を維持するために、プラズマ処理液MLpのpHを低くしておくことが重要である。
上の実験結果のグラフからは、pHが4.8の場合に半減時間が1分程度となる。つまり、この場合に、プラズマ処理液MLpを生成してから1分程度以内に対象物に適用すればよいこととなり、プラズマ処理液MLpの生成から対象物への適用までに最低限の時間は確保されることになると考えられる。しかし、もしプラズマ処理液MLpが中性(pH7程度)であった場合には、半減時間が極短くなり、生成したプラズマ処理液MLpを移動して別の場所にある対象物に適用することが困難になると考えられる。
また、プラズマ処理液MLpを生成する際に、プラズマPMによって生成される硝酸(HNO3 )によってpHが低下し、場合によってはpHが2程度またはそれ以下に低下する。したがって、プラズマPMによって生成される硝酸によってプラズマ処理液MLpのpHが2程度またはそれ以下に低下するように調整しておき、その状態でプラズマ処理液MLpを保存することによって、半減時間を大きく延ばすことができる。
なお、薬剤を用いて予めpHを2程度またはそれ以下に低下するように調整しておいてもよいことは上に述べたとおりである。
なお、図5および図6で説明した実験において、プラズマ処理液MLpのpHは4程度であり、その半減時間はここでの実験結果とほぼ一致する。
上に述べたように、プラズマ処理液MLpの生成に用いられる容器YK、プラズマ発生装置12、12B、および冷却装置11などによって、プラズマ処理液生成装置1が構成される。
そのようなプラズマ処理液生成装置1は、例えば、病院の処置室に設置しておき、適当な量のプラズマ処理液MLpを生成して保持しておく。必要に応じて、スポイトHKなどを用いて対象物に適用する。また、プラズマ処理液MLpの入った容器YKに医療機器などの対象物を浸すことによって適用する。
また、プラズマ処理液生成装置1により生成されたプラズマ処理液MLpを、必要なときにボタンを押して別の小容器に採取して用いる。そのような小容器は、例えば、発泡スチロールなどの保温材料からなってプラズマ処理液MLpの温度を低い状態に維持できる機能のあるのがよい。また、小容器のプラズマ処理液MLpをスポイトHKなどで患部KSに塗布する際に、冷たく感じるのを防ぐために、プラズマ処理液MLpの温度を室温程度に戻してもよい。
また、例えば、プラズマ処理液生成装置1で生成したプラズマ処理液MLpを、断熱チューブなどによって処置位置まで送り、その出口の箇所で室温程度にまで暖めて患部KSに塗布するようにしてもよい。
〔殺菌用製剤の例〕
次に、プラズマ処理液生成装置1により生成されたプラズマ処理液MLpを保冷部材HRとともに一体化した殺菌用製剤SSについて説明する。
〔殺菌用製剤の例〕
次に、プラズマ処理液生成装置1により生成されたプラズマ処理液MLpを保冷部材HRとともに一体化した殺菌用製剤SSについて説明する。
すなわち、殺菌用製剤SSは、プラズマ処理液MLpを殺菌処理を行う現場まで搬送(または移動)しかつ現場で使用するのに適した形態としたものである。
図8(A)~(C)および図9(A)~(C)には種々の形態の殺菌用製剤SSが示されている。
図8(A)において、殺菌用製剤SS1は、容器本体CS1aと蓋体CS1bとからなる容器CS1、保冷部材HR1、および容器YM1を有する。
容器YM1は、軟質の合成樹脂またはアルミニウムなどの金属などのフィルムからなる袋体であり、比較的少量のプラズマ処理液MLpが収納されて密封されている。その際に、プラズマ処理液MLpのpHを4.8以下に、さらには2以下に、調整しておくのが好ましい。
保冷部材HR1は、アイスノン(ice-non: 登録商標)などの保冷剤を凍結させたもの、氷嚢(ice bag) 、氷、ドライアイス(dry ice) 、寒剤(freezing mixture) などである。保冷部材HR1は、容器YM1および容器CS1の形状寸法などに合わせて、適当な形状および寸法としておけばよい。
容器CS1は、容器YM1および保冷部材HR1を収納し、搬送に便利な形状および寸法のものである。容器CS1の材料は、合成樹脂などの断熱効果の高いものが好ましい。また、蓋体CS1bの開閉が容易に行えるようにしておくことが好ましい。したがって、容器本体CS1aの開口部に蓋体CS1bを挿入するだけでもよい。しかし、容器CS1の内部の低温ができるだけ保持されるよう、容器本体CS1aの開口部を蓋体CS1bで密閉する構造としておいてもよい。容器本体CS1aの開口部と蓋体CS1bとをネジ結合させてもよい。
殺菌用製剤SS1を作製するには、生成されたプラズマ処理液MLpを直ぐに容器YM1に収納し、これを容器本体CS1aに入れた後、蓋体CS1bで蓋をして一体化する。容器本体CS1aには予め保冷部材HR1が入っている。また、容器YM1を容器本体CS1aに入れた後、保冷部材HR1を入れてもよい。
作製された殺菌用製剤SS1は、そのままの状態で搬送できるが、1個または複数個の殺菌用製剤SS1を適当な袋または箱に収納して搬送してもよい。
殺菌用製剤SS1とすることにより、容器YM1に収納されたプラズマ処理液MLpの温度が、保冷部材HR1によって10℃以下にまたは0℃近辺に保持される。したがって、活性種の半減時間が長くなり、生成されたプラズマ処理液MLpを離れた処置現場に搬送して使用することができる。殺菌用製剤SS1の搬送方法として、種々の宅配便を利用することも可能である。
殺菌用製剤SS1が到着した処置現場において、蓋体CS1bを開けて容器YM1を取り出し、容器YM1内のプラズマ処理液MLpを対象物に適用して殺菌を行う。その際に、必要に応じて適当なスポイトまたは刷毛などを用いればよい。
図8(B)において、殺菌用製剤SS2は、容器本体CS2aと蓋体CS2bとからなる容器CS2、保冷部材HR2、および容器YM2を有する。
殺菌用製剤SS2において、容器YM2はスポイトである。したがって、処置現場において、取り出した容器YM2を用いて直ぐに対象物に適用し、対象物の殺菌処理を行うことができる。
図8(C)において、殺菌用製剤SS3は、容器本体CS3aと蓋体CS3bとからなる容器CS3、保冷部材HR3、および容器YM3を有する。
殺菌用製剤SS3において、容器YM3は容器本体YM3aと蓋体YM3bとからなり、比較的多くの量を収納して搬送することができる。
保冷部材HR3は、容器YM3を収納できる容器形状となっており、容器YM3のほぼ全体を覆った状態で冷却するので、容器YM3に対する冷却効果が高い。
図9(A)において、殺菌用製剤SS4は、容器YM4、および保冷部材HR4を有する。容器YM4は、樹脂フィルムまたはアルミフィルムなどからなる袋体である。容器YM4にはプラズマ処理液MLpが収納されており、プラズマ処理液MLpの中に保冷部材HR4が入っている。保冷部材HR4は氷であり、プラズマ処理液MLpは氷冷されて0℃近辺で保存される。
図9(B)において、殺菌用製剤SS5は、容器YM5、および保冷部材HR5を有する。容器YM5として、スポイトHKが用いられる。容器YM5にはプラズマ処理液MLpが収納されており、プラズマ処理液MLpの中に保冷部材HR5である氷が入っている。プラズマ処理液MLpは保冷部材HR5により氷冷されて0℃近辺で保存される。
なお、このような殺菌用製剤SS5は、例えば、容器YM5であるスポイトHKに適量の水を吸い込ませてた状態で冷凍して中の水を氷としておき、その後に、プラズマ処理液MLpを吸い込ませることによって作製することができる。
殺菌用製剤SS5による場合は、形状が小さいので、適当な容器に多数の殺菌用製剤SS5を入れて容易に搬送することができ、しかも処置現場において、殺菌用製剤SS5をそのまま用いて直ぐに対象物に適用して殺菌処理を行うことができる。
図9(C)において、殺菌用製剤SS6は、容器本体YM6aと蓋体YM6bとからなる容器YM6、および保冷部材HR6を有する。容器YM6にはプラズマ処理液MLpが収納されており、プラズマ処理液MLpの中に保冷部材HR6が入っている。保冷部材HR6は氷であり、プラズマ処理液MLpは氷冷されて0℃近辺で保存される。
上に述べた殺菌用製剤SS1~6によると、プラズマ処理液MLpが低温で保持され、殺菌活性を長時間保持することができるので、プラズマ発生装置が設置されていない処置現場に搬送してプラズマ処理液MLpを対象物に適用し、プラズマを用いた殺菌を行うことができる。
なお、殺菌用製剤SS1において、容器CS1を保冷部材を用いて構成することにより、容器CS1と保冷部材HR1とを兼用してもよい。また、殺菌用製剤SS3においても同様に、容器CS3を保冷部材を用いて構成することにより、容器CS3と保冷部材HR3とを兼用してもよい。上に述べた殺菌用製剤SS1~6の構造または材料などを互いに組み合わせることも可能である。
その他、容器CS、容器YM、および保冷部材HRの種類、材料、形状、寸法などは、上に述べた以外に種々変更することが可能である。
〔殺菌処理方法の実施形態その2〕
次に、プラズマ処理液MLpを冷凍して結氷体MSとすることにより保存し、これを解凍して殺菌処理に用いる殺菌処理方法についての実施形態を説明する。
〔殺菌処理方法の実施形態その2〕
次に、プラズマ処理液MLpを冷凍して結氷体MSとすることにより保存し、これを解凍して殺菌処理に用いる殺菌処理方法についての実施形態を説明する。
図10には、プラズマ処理液生成装置1を用いた殺菌処理方法のその2の例が示されている。
図10(A)に示すように、プラズマ処理液生成装置1によってプラズマ処理液MLpを生成する(#11)。図10(A)に示す装置および操作などは、上に述べた図1(A)の場合と同様である。
ただし、後で述べるように、ここでのプラズマ処理液MLpについては、pHを調整することなく、これを結氷体MSとしそれを解凍して液体MLkに戻したときに、そのpHが4.8以下となるように調整してもよい。
次に、図10(B)に示すように、プラズマ処理液MLpを急速冷凍する(#12)。
上に述べたように、プラズマ処理液MLpの温度を下げることで殺菌活性を長時間保持できるが、プラズマ処理液MLpを冷凍して結氷体とすることにより、より長い時間に渡って殺菌活性を保持することができる。
つまり、上に述べたように、プラズマ処理液MLpに生成された活性種の寿命は、温度が10℃程度である場合に、10分オーダー、例えば10~20分程度で失活する。
プラズマ処理液MLpの殺菌活性は、OHラジカルのようなマイクロ秒オーダーの非常に短い寿命の活性種によるのではなく、上に述べたように、スーパーオキシドアニオンラジカルという秒オーダーの寿命の活性種およびその誘導体が寄与していることが分かってきている。このような時間オーダーであれば液体を急速冷凍により凍結することが可能である。
急速冷凍は、例えばマイナス18℃程度以下の温度で行う。好ましくは、マイナス30℃程度以下の温度で行う。急速冷凍を行うことにより、プラズマ処理液MLpは凍結して結氷体MSとなる。つまり、結氷体MSは、プラズマ処理液MLpが凍結したものである。結氷体MSの温度は、例えばマイナス18℃程度以下とし、またはマイナス30℃程度以下とする。
なお、プラズマ処理液中の殺菌活性種の寿命(半減期)は20℃において2分程度であることがわかっている。したがって、急速冷凍を行う場合に、2分程度で凍結させて目標温度(マイナス30℃)に到達することができれば、殺菌活性の低下は50%以内に抑えられる。また、20秒以内に凍結させて目標温度(マイナス30℃)に到達することができれば、90%以上の殺菌活性を維持することができる。しかし、凍結させるのに10分かかった場合には、殺菌活性は初期の16分の1程度に低下してしまう。したがって、冷凍を行う場合に、できる限り時間をかけずに急速冷凍して凍結させ、目標温度(例えばマイナス30℃)に到達させればよい。
本実施形態の急速冷凍では、殺菌活性を実用上維持することのできる時間内で急速に冷凍する。図6に示すように、活性種の半減時間は温度によって変化するが、室温(20~25℃)であっても半減時間に比べて長い時間をかけて冷凍するのは好ましくないため、その場合の好ましい時間は、3分程度といえる。したがって、活性種の拡散を終えたプラズマ処理液MLpに対し、急速冷凍によって3分以内で凍結させて結氷体MSにすれば、殺菌活性を維持することができる。
急速冷凍を行うために、冷凍装置13または急速冷凍装置などを用いる。液体窒素を用いた冷凍装置でもよい。
上の説明では、急速冷凍のタイミングとして、プラズマ処理液MLpを生成した後に急速冷凍を行うとして説明した。その場合に、液体MLの温度を0℃以下としかつ凍らないような過冷却状態にしておき、プラズマ処理が終わった直後に刺激を与えてそれを一気に凍結させるようにしてもよい。
また、例えば、十分に冷却した金属の容器を準備しておき、その容器の中に少量のプラズマ処理液MLpを入れることによって、ほぼ瞬間的に凍結させるようにしてもよい。
また、液体MLを小さな水滴として滴下させ、その水滴がプラズマPMの中を通過するようにし、滴下(落下)した水滴を冷却された金属プレートなどで受け、それを一気に冷凍するようにしてもよい。
また、プラズマ処理液MLpの生成と冷凍とを並行して実行することも可能である。例えば、液体MLにプラズマPMを照射している間において、液体MLを冷却して温度を低下させていき、液体MLの時間的に長く照射されている部分から徐々に凍結させていくようにしてもよい。
これらの結氷体MSの生成装置の例については後で図11~図13によって説明する。
図10(C)に示すように、結氷体MSを冷凍状態(結氷状態)で保存する(#13)。例えば、マイナス18℃程度以下、好ましくはマイナス30℃程度以下の温度で保存する。冷凍保存のために、冷凍保存装置14が用いられる。液体窒素を用いた冷凍保存装置14でもよい。冷凍保存装置14を冷凍装置13と兼用し、急速冷凍を行った冷凍装置13の中でそのまま冷凍保存してもよい。
冷凍および保存の温度が低いほど、結氷体MS内での化学反応(不均化反応など)が抑えられ、活性種または誘導体による殺菌活性が長時間にわたって保持される。保存時間は、保存温度に応じて、数時間、1日、数日、数週間などと変化する。
結氷体MSを冷凍保存した状態で、結氷体MSを他の場所へ搬送(または輸送)することが可能である。例えば、結氷体MSを製造した場所から、殺菌または消毒を必要とする臨床現場へ搬送する。具体的には、例えば工場において結氷体MSを大量生産し、病院または研究施設などの殺菌消毒を必要とする臨床現場に搬送する。搬送には、冷凍車または保冷車などが用いられる。また、冷凍庫および液体窒素などにより冷凍保冷した状態で、適当な車両または航空機などによって搬送することも可能である。臨床現場では、搬送されてきた結氷体MSを、使用するまで冷凍庫などで保存する。
図10(D)に示すように、結氷体MSを臨床現場で殺菌に使用するに当たって、解凍装置15によって解凍する(#14)。結氷体MSは、解凍することによって、液体MLkであるプラズマ処理液MLpに再び戻る。プラズマ処理液MLpの中には、スーパーオキシドアニオンラジカルおよびその誘導体が存在し、殺菌活性が維持されている。
結氷体MSの解凍は、できるだけ短時間で行う必要がある。解凍により液体MLkに戻ったときに、その液体MLkの温度が高くなると、殺菌活性の減衰速度が飛躍的に高くなってしまうからである。例えば、30℃前後の温度で1分以内に解凍することが好ましい。オーブンまたはコンロを用いての加熱や室温以上での加熱は余り好ましくないといえる。
解凍のための加熱体として、例えば、アルミニウムなどの比熱が大きく熱伝導率の大きい金属からなるブロックを用いればよい。このブロックを適当な温度(例えば30℃程度)としておき、結氷体MSをブロックに接触させることによって解凍する。結氷体MSが1分以内のできるだけ短時間で解凍されるよう、結氷体MSおよびブロックの体積を設定しておけばよい。
また、ヒートブロックなどにより温度調整が可能な金属製の注射筒を用いることもできる。結氷体MSを注射筒内に入れ、または注射筒内において結氷体MSを凍結させておき、結氷体MSを解凍しながら徐々に射出する。この場合には、結氷体MSの解凍と解凍されたプラズマ処理液MLpの塗布とを同時並行的に行うことが可能である。
また、結氷体MSを、そのままの状態で患部に当てるなどにより適用し、患部からの熱で解凍するようにしてもよい。この場合は、解凍装置15は不要であり、患部および大気の熱によって解凍されたプラズマ処理液MLpはそのまま患部に塗布される。結氷体MSによる冷たさを緩和するために、例えば、患部の上に1枚のガーゼなどを載せ、患部と結氷体MSとの間にガーゼを挟むようにしてもよい。
なお、このように結氷体MSの解凍と塗布とを連続して行う場合には、凍結前の液体MLのpHを4.8以下となるように調整しておき、結氷体MSのpHを当初から下げておくことが望ましい。つまり、pHが4.8以下となったプラズマ処理液を冷凍して結氷体を生成するのが望ましい。
なお、結氷体となる前のプラズマ処理液MLpについて、そのpHを調整しなかった場合には、解凍により液体MLkとなったときに、pHが例えば4.8以下となるように調整すればよい。この場合に、適当な構成のpH調整装置が用いられる。
図10(E)に示すように、解凍したプラズマ処理液MLpを、例えば生体STの患部KSに適用する(#15)。プラズマ処理液MLpの適用に際し、例えば、スポイトHKのノズルの先端からプラズマ処理液MLpを滴下させて患部KSに塗布する。
これによって、患部KSにおける殺菌消毒が行われる。この場合に、解凍によりプラズマ処理液MLpとなったものをスポイトHKで吸引して滴下させればよい。また、上に述べたように、スポイトHKの中に結氷体MSを収納しておき、それを徐々に解凍しながら滴下させてもよい。
その場合に、例えば、生成されたプラズマ処理液MLpの所定量をスポイトHKで吸引した後、冷凍装置13などを用いてスポイトHKを冷却し、スポイトHKの中のプラズマ処理液MLpを冷凍して結氷体MSとしておいてもよい。
スポイトHKからプラズマ処理液MLpを滴下する場合に、生体STの体液はpHを中性に保つバッファー能を有することがあるので、患部KSを酸性溶液で洗い流してから、プラズマ処理液MLpを塗布することでもよい。
また、例えばピロリ菌の除菌に用いる場合に、生体STの胃の中はpHが低いので、pHの調整が行われていないプラズマ処理液MLpをそのまま適用することも可能である。この場合に、結氷体MSを解凍して得たプラズマ処理液MLpを飲んだり、結氷体MSを口の中で解凍しながら飲んだり、結氷体MSのまま飲み込んだり、または内視鏡を用いプラズマ処理液MLpを塗布するなどによって適用することも可能である。
上に述べたように、プラズマPMによって活性種を得たプラズマ処理液MLpは、そのままの状態では殺菌活性を保持できる時間が数分程度であり、遠く離れた臨床現場へは配達することができない。しかし、プラズマ処理液MLpを冷凍して結氷体MSとすることにより、化学反応はゆっくりと進むこととなり、殺菌活性の長期保存が可能となる。したがって、結氷体MSの状態で各地へ配達することにより、プラズマ発生装置12が設置されていない臨床現場で殺菌用液体として使用できるのである。
このように、本実施形態によると、プラズマPMを用いた殺菌をプラズマ発生装置12が設置されていない現場においても行うことができる。つまり、臨床現場に例えば冷凍庫さえあれば、結氷体MSを冷凍保存しておき、必要に応じて解凍することにより消毒薬または治療薬として用いることができる。
例えば、歯科治療の消毒治療薬、または褥瘡などの外科的消毒薬として用い、例えば歯科の根管治療における殺菌、歯周病の治療などに適用することが可能である。また、火傷や床ずれなどの外傷部位に発生する難治性細菌感染の治療、糖尿病、凍傷などによる壊疽防止など、外科治療にも適用することが可能である。
また、本実施形態によると、歯科治療または外科治療などにおいて、プラズマPMの直接照射やアフターグローガスの照射に比べて、安全性が高く利用し易いという利点がある。
図10(A)~(E)で説明した中で、図10(A)および(B)で用いられる冷却装置11、プラズマ発生装置12、および冷凍装置13を含めた構成、またはさらにpH調整装置または冷凍保存装置14を含めて、殺菌用結氷体の生成装置2が構成される。
〔殺菌用結氷体の生成装置の例〕
次に、殺菌用結氷体の生成装置の種々の例について、図11~図13を参照しながら説明する。
〔殺菌用結氷体の生成装置の例〕
次に、殺菌用結氷体の生成装置の種々の例について、図11~図13を参照しながら説明する。
図11において、生成装置2Bは、冷却装置11B、複数のプラズマ発生装置12B、容器YKB、凍結容器YT、コンベア21、および冷凍装置22などを備える。
容器YKBは、液体MLの流入管路KR1および流出管路KR2を備えている。容器YKBには液体MLが満たされ、流出管路KR2から流出した分量の液体MLが流入管路KR1から補充される。つまり、容器YKB内の液体MLは、流入管路KR1の側から流出管路KR2の側へゆっくりと流れている。液体MLが流出管路KR2の近辺に到達したときには、液体MLはプラズマ処理液MLpとなっている。容器YKBは冷却装置11により冷却され、これにより液体MLおよびプラズマ処理液MLpの温度は10℃以下となっている。
プラズマ発生装置12Bは、容器YKB内の液体MLの上方において、発生したプラズマPMが液体MLを照射するように配置されている。プラズマ発生装置12Bが複数設けられているので、容器YKB内を流れる液体MLは、十分にプラズマPMに照射され、プラズマPMによって生成された活性種と十分に接触してその内部に活性種が拡散する。
凍結容器YTは、アルミニウムなどの比熱が大きく熱伝導率の大きい金属からなり、コンベア21の上に載って順次前方に搬送される。コンベア21は、凍結容器YTが流出管路KR2の真下に位置した状態で停止し、流出管路KR2から流出するプラズマ処理液MLpが直下の凍結容器YTに所定量入った後に移動する。ここでは、コンベア21および流出管路KR2が、プラズマ処理液MLpを容器に収納するための装置の例となる。また、凍結容器YTは、冷凍装置22によって、例えばマイナス30℃程度以下に十分に冷却されており、その中に滴下する液体MLをほぼ瞬間的に凍結させることができる。
容器YKB内のプラズマ処理液MLpは、その所定量ずつが、流出管路KR2からその下方にある凍結容器YT内に落下し、そこで急速冷凍(瞬間冷凍)され、結氷体MSBとなる。
結氷体MSBは、凍結容器YTとともにコンベア21で運ばれ、適当な後処理装置に送られる。後処理装置において、例えば結氷体MSBを凍結容器YTから取り出して冷凍保存する。この場合には、複数の凍結容器YTを互いに連結した状態としておいてもよい。したがって、コンベア21の全体が凍結容器YTを形成するようにしておくことも可能である。
また、結氷体MSBを凍結容器YTから取り出すことなく、そのままの状態で冷凍保存することも可能である。この場合には、凍結容器YTをアルミホイル(aluminium foil) またはアルミラップ(aluminium wrap) のような薄い金属フィルムで作製し、内部の結氷体MSを包装するようにしてもよい。
このように、生成装置2Bによると、容器YKBからプラズマ処理液MLpを所定流量で流出させ、流出したプラズマ処理液MLpを凍結容器YTに流し込んで急速冷凍する。これによって、適当なサイズ(体積)の使い勝手のよい結氷体MSを連続的に生産することが可能である。
なお、図11においては、プラズマPMが鉛直方向に噴出するようにプラズマ発生装置12Bを配置したが、プラズマPMが液体MLの液面と平行に水平方向に噴出するように、各プラズマ発生装置12Bを配置してもよい。また、容器YKBそれ自体を、液体MLが流れる流路として構成してもよい。
また、図11においては、複数個のプラズマ発生装置12Bを用いたが、容器YKB内を流れる液体MLに対して連続的にプラズマ処理を施すプラズマ発生装置を用いてもよい。例えば、容器YKBの上方と下方とにおいて容器YKBを挟んで対向するように高圧電極とグランド電極とを配置し、それらの電極間に高電圧を印加して誘電体バリア放電を行わせるようにしたプラズマ発生装置を用いてもよい。
図12において、生成装置2Cは、プラズマ発生装置12C、コンベア21C、冷凍装置22C、および液体供給装置23などを備える。
液体供給装置23は、プラズマ発生装置12Cにより発生したプラズマPMの中を通過するように、適当な量の液体MLCを連続的に滴下する。液体MLCは、プラズマPMの中およびその近辺を通過することにより、その中に活性種が拡散し、プラズマ処理液MLpとなる。
コンベア21Cは、金属のような熱伝導率の良好な材料からなるベルトを有し、冷凍装置22Cによってマイナス30℃程度以下の温度に冷却されている。コンベア21Cは、液体供給装置23の下方において走行するように配置される。冷凍装置22Cおよびコンベア21Cを一体に構成した冷凍コンベア装置を用いてもよい。
液体供給装置23から滴下してプラズマ処理液MLpとなった液体MLCは、コンベア21C上に落下し、そこで1滴ごとに急速冷凍されて個々の結氷体MSCとなる。結氷体MSCは、冷凍状態のまま、コンベア21Cによって前方へ運ばれる。コンベア21Cによって搬出された結氷体MSCは、適当な容器に収納され、または適当なパッケージで包装され、冷凍保存装置で保存され、または他の場所へ搬送される。
このように、生成装置2Cによると、殺菌用の結氷体MSBが連続的に製造される。結氷体MSCのサイズ、体積、または形状は、それを使用する対象物に応じて決めておけばよい。
なお、図12においては、プラズマPMが水平方向に噴出するようにプラズマ発生装置12Cを配置したが、プラズマPMが鉛直方向に噴出するようにプラズマ発生装置12Cを配置してもよい。その場合に、鉛直方向に噴出するプラズマPMの中を液体MLCが滴下するように、液体供給装置23を配置すればよい。このようにすると、液体MLCが滴下するまでにプラズマPMに接触する時間が長くなり、液体MLC中への活性種の拡散がより確実に行われる。
図13において、生成装置2Dは、複数のプラズマ発生装置12D、容器YKD、コンベア21D、および冷凍装置22Dなどを備える。
容器YKDは、金属からなり、コンベア21Dの上に載って順次前方に低速度で搬送される。容器YKDは、前方に搬送されるにしたがって、冷凍装置22Dによって低温に冷却される。
複数のプラズマ発生装置12Dは、コンベア21Dの上方に配置されており、容器YKDに入った液体MLの表面にプラズマPMを照射する。
液体MLは、10℃以下の温度に冷却されており、プラズマPMを照射され、活性種の拡散が行われる。液体MLは、コンベア21Dで搬送されるにしたがって徐々に冷却され、プラズマPMの照射が終わった部分から順次凍結して結氷体MSDとなる。
このように、生成装置2Dによると、プラズマ処理液MLpの生成と冷凍とが時間的に重複するよう並行して行われ、殺菌用の結氷体MSDが連続的に製造される。
また、容器YKD内の液体MLを当初から凍結(氷結)させて氷としておき、容器YKDに入った氷(氷結した液体ML)にプラズマ発生装置12DからのプラズマPMを照射してもよい。この場合に、容器YKDに入った氷にプラズマPMを照射することにより、プラズマPMの熱によって氷の表面が順次融解して液体MLに戻り、その液体MLの中に活性種が拡散し、プラズマ処理液MLpが生成される。生成されたプラズマ処理液MLpは、冷凍装置22Dによって冷却され、再度凍結されて結氷体MSDとなる。凍結して氷となった液体MLの融解、液体MLのプラズマ処理、およびプラズマ処理液MLpの再凍結が、順次円滑に行われるように、容器YKD、プラズマ発生装置12D、および冷凍装置22Dの配置、容器YKDの深さおよび長さ、コンベア21Dの速度などを調整しておけばよい。
このようにすることによって、プラズマ処理液MLpの生成から結氷体MSの生成までの全工程を、0℃近辺の温度で行うことができ、活性種の濃度の高い結氷体MSを効率よく生成することができる。
〔殺菌用結氷体の例〕
次に、プラズマ処理液MLpを凍結させた結氷体MSの種々の形態について説明する。
〔殺菌用結氷体の例〕
次に、プラズマ処理液MLpを凍結させた結氷体MSの種々の形態について説明する。
つまり、結氷体MSそれ自体の製造方法については先に説明したが、ここでは、結氷体MSを、殺菌処理を行う現場まで搬送(または移動)しかつ現場で使用するのに適した形態の例を説明する。
以下において、種々の形態の結氷体MSを含んだ殺菌用結氷体STについて説明する。なお、ここで説明する殺菌用結氷体STは、プラズマ処理液MLpを用いた「殺菌用製剤」の他の実施形態であるとも言える。殺菌用結氷体STは、プラズマ処理液MLpが凍結してなる結氷体MSを用いるので、結氷体MSそれ自体も保冷部材としての機能を有する。
図14(A)~(G)には種々の形態の殺菌用結氷体STが示されている。
図14(A)において、殺菌用結氷体ST1は、結氷体MSそれ自体である。結氷体MSの形状は、板状、直方体状、球状、円盤状、または棒状など、任意の形状とすることが可能である。結氷体MSの大きさは、1回の使用で使い切ってしまう小さいサイズのもの、複数回に渡って使用する比較的に大きいサイズのもの、複数の結氷体MSに切り離すことのできる大きなサイズのものなど、任意のサイズとすることが可能である。
図14(B)において、殺菌用結氷体ST2は、結氷体MSが容器YU2に入った形態である。容器YU2は、結氷体MSの形状および寸法に応じて種々の形状および寸法のものとすることが可能である。容器YUの材料として、鋼またはアルミニウムなどの金属、合成樹脂などを用いることが可能である。容器YU2として、上に述べた生成装置2Bで用いた凍結容器YTをそのまま用いることも可能である。
図14(C)において、殺菌用結氷体ST3は、結氷体MSが容器YU3に入った形態である。容器YU3は、結氷体MSを覆うように、容器本体YU3aと蓋体YU3bとからなる。容器YU3の材料として断熱性の高いものを用いることにより、結氷体MSの温度を長時間に渡って低温に保持することが可能である。
図14(D)において、殺菌用結氷体ST4は、結氷体MSの全周を包装材からなる容器YU4で覆った形態である。容器YU4として、アルミホイルなどの金属フィルムを用いることが可能である。
図14(E)において、殺菌用結氷体ST5は、スポイトである容器YU5の中に結氷体MSが収納された形態である。容器YU5として、上に述べた種々のスポイトHKを用いることが可能である。スポイトHKの中に凍結していないプラズマ処理液MLpを吸い込んだ後、これを凍結させることによって作製可能である。結氷体MSを部分的に融解させ、融解して液体となったプラズマ処理液MLpを、容器YU5であるスポイトHKによって、対象物に直接に適用することができる。
図14(F)において、殺菌用結氷体ST6は、結氷体MSが包装材からなる容器YU6で覆われており、それが保冷部材HRT6と接触して一体化された状態となった形態である。これらを適当な包装材により包装してもよい。保冷部材HRT6として、上に述べた種々の保冷部材HRを用いることが可能である。特に、結氷体MSは通常0℃以下で凍結しているので、保冷部材HRTとして、ドライアイスまたは有機溶媒などの寒剤を凍結させたものなどが好ましい。
図14(G)において、殺菌用結氷体ST7は、容器本体YU7aと蓋体YU7bとからなる容器YU7、保冷部材HRT7a,b、および結氷体MSを有する。容器YU7は、図8(A)に示した容器CS1と同様のものでもよい。結氷体MSを適当な包装材で包装しておいてもよい。
上に述べた殺菌用結氷体ST1~7によれば、それに含まれた結氷体MSを解凍して液体のプラズマ処理液MLp(処理液MLk)に戻すことにより、プラズマを用いた殺菌をプラズマ発生装置が設置されていない現場においても行うことができる。しかも、結氷体MSは凍結しており、通常は0℃以下に保持されているので、殺菌活性が長期に渡って保存される。
なお、上に述べた殺菌用結氷体ST1~7の構造または材料などを互いに組み合わせることも可能である。
その他、容器YUおよび保冷部材HRTの種類、材料、形状、寸法などは、上に述べた以外に種々変更することが可能である。
図15において、殺菌用結氷体の生成方法は、プラズマPMにより発生した活性種を液体MLに接触させて当該液体ML中に活性種を拡散させ(#21)、活性種が拡散した液体MLを冷凍して結氷体MSとする(#22)。必要に応じて、結氷体MSを冷凍保存する(#23)。冷凍保存した結氷体MSは遠隔地に搬送することができる。
図16において、殺菌用液体の生成方法は、プラズマPMにより発生した活性種を液体MLに接触させて当該液体ML中に活性種を拡散させ(#31)、活性種が拡散した液体MLを冷凍して結氷体MSとする(#32)。結氷体MSを解凍して液体MLkに戻す(#33)。
図17において、殺菌処理方法は、プラズマ処理液MLpを生成し(#41)、これを対象物に適用して殺菌処理を施す(#42)。ステップ#41において、プラズマ処理液MLpの温度を10℃以下としておくのが好ましい。
図18において、殺菌処理方法は、プラズマ処理液MLpを生成し(#51)、これを冷凍して結氷体MSを生成する(#52)。結氷体MSは、必要に応じて処置現場に搬送される。処置現場において結氷体MSを解凍し(#53)、結氷体MSを解凍して得られた液体MLkを対象物に適用する(#54)。
なお、ステップ#41または#51においてプラズマ処理液を生成する際に、pHが4.8以下に調整された液体を用いてもよい。または、ステップ#41または#51でプラズマ処理液MLpを生成した後に、プラズマ処理液MLpのpHが4.8以下となるように調整してもよい。ステップ#53で結氷体MSを解凍した後に、液体MLkのpHが4.8以下となるように調整してもよい。いずれにしても、プラズマ処理液MLpまたは液体MLkを対象物に適用するまでに、そのpHが4.8以下となるように調整しておくのが好ましい。
次に、プラズマ処理液MLpおよび結氷体MSなどの殺菌活性に関して行った実験結果について説明する。
〔実験結果1〕
図19には、プラズマ処理水の殺菌効果を検証するための実験結果が示されている。
図19には、プラズマ処理水の殺菌効果を検証するための実験結果が示されている。
この実験では、超純水を準備し、これにプラズマPMを照射したプラズマ処理水MLCpとプラズマPMを照射しなかった超純水(プラズマ未照射水)MLCmとに分けた。プラズマ処理水MLCpおよびプラズマ未照射水MLCmを、それぞれ、そのまま室温で保存した場合と液体窒素を用いた急速冷凍を行って冷凍保存した場合とについて、所定の放置時間の後で、pHを3.7に調整した大腸菌の菌懸濁液に混合して評価を行った。
図19によると、超純水(プラズマ未照射水MLCm)の場合には、室温での保存または冷凍保存のいずれの場合でも、60分経過後において菌濃度がおよそ3×106 cfu/ml程度であり、変化していないことがわかる。
他方、プラズマ処理水MLCpの場合には、プラズマ処理を行った直後(0分後)では、大腸菌を検出限界(10cfu/ml)以下にまで殺菌できているが、これを室温で60分間放置した後では、殺菌力が皆無になっていることがわかる。これに対して、プラズマ処理を行った後に液体窒素で冷凍保存した場合には、大腸菌は検出限界以下であり、プラズマ処理の直後と同様に十分な殺菌力が保たれていることがわかる。
これらの実験事実から、本実施形態のプラズマ処理液MLpによる殺菌は、プラズマによって生成されたオゾンや過酸化水素などの安定化学種(半減時間≫60分)による殺菌とは作用機序が異なっていることが分かる。
なお、超純水として、電気抵抗が18.2MΩ/cm以上の水を用いた。
〔実験結果2〕
図20には、プラズマ処理水の残存殺菌活性と時間変化が示されている。
図20には、プラズマ処理水の残存殺菌活性と時間変化が示されている。
この実験では、超純水を準備し、プラズマPMを5分間照射してプラズマ処理水MLDpを生成した。プラズマ処理水MLDpを、室温において、菌液・バッファーと混合し、5分間室温で放置し、段階希釈を行い、プレートに蒔いて培養し、コロニーカウントを行った。
図20によると、プラズマ処理を行った直後(0分後)では検出限界まで殺菌できており、放置時間が5分までは生菌数に変化がないことから、この間は殺菌力が液中に残存することがわかる。その後、残存する殺菌活性は、時間とともに低下していき、およそ10~20分の間に殺菌力はほぼ完全に失われる。
これによって、プラズマ処理水MLDpの殺菌活性を室温で保存することはできないことがわかる。
〔実験結果3〕
図21にはプラズマ処理水の冷凍温度と殺菌効果との関係が、図22にはプラズマ処理水の冷凍保存時間と殺菌効果との関係が、それぞれ示されている。図22は、プラズマ処理水について図21に示す生菌数の対数をとり、それを縦軸にし、保存時間を横軸にして表したものである。
図21にはプラズマ処理水の冷凍温度と殺菌効果との関係が、図22にはプラズマ処理水の冷凍保存時間と殺菌効果との関係が、それぞれ示されている。図22は、プラズマ処理水について図21に示す生菌数の対数をとり、それを縦軸にし、保存時間を横軸にして表したものである。
この実験では、液体MLEを準備し、これにプラズマPMを照射してプラズマ処理水(プラズマ殺菌水)MLEpとした。プラズマ処理水MLEpを急速冷凍して複数個の結氷体MSEを作製した。結氷体MSEを、マイナス18℃、マイナス30℃、マイナス85℃の各温度でそれぞれ冷凍保存し、一定時間後にそれぞれを氷上で解凍し、菌液・酸性バッファーと混合し、5分間室温で放置し、段階希釈を行い、プレートに蒔いて培養し、コロニーカウントを行った。
図21および図22によると、マイナス18℃で保存した場合には、殺菌力が日時の経過とともに徐々に低下し、およそ2週間で殺菌活性はほとんど見られなくなった。
これに対し、マイナス30℃以下で保存した場合には、2週間後でも殺菌活性は高いままの状態が保たれていた。
このことから、プラズマ処理水を急速に冷凍し、マイナス30℃以下で保存することにより、殺菌活性を保持したまま輸送および貯蔵が可能であるといえる。
上に述べた実施形態において、容器YK,YKB,YKD、液体ML、冷却装置11、プラズマ発生装置12,12B~12D、冷凍装置13,22,22C,22D、冷凍保存装置14、解凍装置15、適用装置16、液体供給装置23、pH調整装置、または生成装置1,1B~1Dの各部または全体の構成、構造、形状、サイズ、個数、材質、配置、成分、温度、時間などは、本発明の主旨に沿って適宜変更することができる。
本発明は、医療器具、医薬品、生体などの殺菌または消毒、およびそのための殺菌用製剤および殺菌用結氷体の製造などに利用可能である。
1 プラズマ処理液生成装置
2,2B,2C,2D 生成装置(殺菌用結氷体の生成装置)
11,11B 冷却装置
12,12B,12C,12D プラズマ発生装置
13 冷凍装置
14 冷凍保存装置
15 解凍装置
16 適用装置
21,21C,21D コンベア
22,22C,22D 冷凍装置
23 液体供給装置
31 ガス供給管
31a 噴出口
33 電極
34 電源装置
PM プラズマ
YK,YKB,YKD 容器
YM 容器
YT 凍結容器(冷凍装置)
HK スポイト(適用装置)
ML 液体
MS,MSB,MSC,MSD 結氷体(殺菌用結氷体)
MLk 液体(解凍された液体)
MLp プラズマ処理液
SS 殺菌用製剤
ST 殺菌用結氷体
HR 保冷部材
2,2B,2C,2D 生成装置(殺菌用結氷体の生成装置)
11,11B 冷却装置
12,12B,12C,12D プラズマ発生装置
13 冷凍装置
14 冷凍保存装置
15 解凍装置
16 適用装置
21,21C,21D コンベア
22,22C,22D 冷凍装置
23 液体供給装置
31 ガス供給管
31a 噴出口
33 電極
34 電源装置
PM プラズマ
YK,YKB,YKD 容器
YM 容器
YT 凍結容器(冷凍装置)
HK スポイト(適用装置)
ML 液体
MS,MSB,MSC,MSD 結氷体(殺菌用結氷体)
MLk 液体(解凍された液体)
MLp プラズマ処理液
SS 殺菌用製剤
ST 殺菌用結氷体
HR 保冷部材
Claims (30)
- プラズマにより発生した活性種を液体に接触させて当該液体中に前記活性種を拡散させてプラズマ処理液を生成し、生成した前記プラズマ処理液を対象物に適用して前記対象物の殺菌処理を施す、
ことを特徴とする殺菌処理方法。 - 生成した前記プラズマ処理液の温度を10℃以下で保存し、保存していた前記プラズマ処理液を前記対象物に適用する、
請求項1記載の殺菌処理方法。 - 生成した前記プラズマ処理液に氷を入れて氷冷することにより温度を0℃近辺以下として保存し、保存していた前記プラズマ処理液を前記対象物に適用する、
請求項2記載の殺菌処理方法。 - 生成した前記プラズマ処理液を環境温度0℃以下で保存し、保存していた前記プラズマ処理液を前記対象物に適用する、
請求項2記載の殺菌処理方法。 - 前記液体の温度を10℃以下に保持し、前記プラズマ処理液の生成を10℃以下の温度で行い、生成したプラズマ処理液の温度を対象物に適用するまで10℃以下に保持する、
請求項2ないし4のいずれかに記載の殺菌処理方法。 - 前記プラズマ処理液を生成する際に、pHが4.8以下に調整された液体を用いる、
請求項1ないし5のいずれかに記載の殺菌処理方法。 - 生成された前記プラズマ処理液に酸性液を混合してpHが4.8以下となるように調整し、pHが4.8以下に調整された前記プラズマ処理液を前記対象物に適用する、
請求項1ないし5のいずれかに記載の殺菌処理方法。 - 生成された前記プラズマ処理液のpHが2以下となるように調整し、pHが2以下に調整された前記プラズマ処理液を保存し、保存していた前記プラズマ処理液を前記対象物に適用する、
請求項1ないし5のいずれかに記載の殺菌処理方法。 - プラズマにより発生した活性種を液体に接触させて当該液体中に前記活性種を拡散させてプラズマ処理液とし、前記プラズマ処理液を冷凍して結氷体を生成するとともに当該結氷体を冷凍状態で保存し、前記結氷体を解凍してプラズマ処理液に戻しこれを対象物に適用して前記対象物の殺菌処理を施す、
ことを特徴とする殺菌処理方法。 - 前記結氷体を解凍して得られたプラズマ処理液に酸性液を混合してpHが4.8以下となるように調整し、pHが4.8以下に調整された前記プラズマ処理液を前記対象物に適用する、
請求項9記載の殺菌処理方法。 - 解凍されることにより殺菌用液体として用いるための殺菌用結氷体の生成方法であって、
プラズマによって液体中に活性種を拡散させてプラズマ処理液を生成し、
前記プラズマ処理液を冷凍して結氷体を生成しこれを殺菌用結氷体とする、
ことを特徴とする殺菌用結氷体の生成方法。 - 前記液体の温度を10℃以下に保持し、前記プラズマ処理液の生成を10℃以下の温度で行い、生成したプラズマ処理液を急速冷凍して3分以内に前記結氷体を生成する、
請求項11記載の殺菌用結氷体の生成方法。 - 前記プラズマ処理液のpHが4.8以下となるように調整しておき、pHが4.8以下となった前記プラズマ処理液を冷凍して前記結氷体を生成する、
請求項11または12記載の殺菌用結氷体の生成方法。 - 生成した結氷体を容器に収納してこれを前記殺菌用結氷体とする、
請求項11ないし13のいずれかに記載の殺菌用結氷体の生成方法。 - 生成した前記プラズマ処理液を容器に収納し、前記容器を冷却することにより前記プラズマ処理液を冷凍して結氷体を生成し、前記容器に収納された状態の結氷体を前記殺菌用結氷体とする、
請求項11ないし13のいずれかに記載の殺菌用結氷体の生成方法。 - 前記容器として、スポイトを用いる、
請求項15記載の殺菌用結氷体の生成方法。 - 請求項11ないし16のいずれかに記載の方法により生成した殺菌用結氷体。
- 解凍されることにより殺菌用液体として用いるための殺菌用結氷体の生成装置であって、
プラズマによって液体中に活性種を拡散させてプラズマ処理液を生成するプラズマ処理液生成装置と、
前記プラズマ処理液を冷凍して結氷体を生成するための冷凍装置と、
を有することを特徴とする殺菌用結氷体の生成装置。 - 前記プラズマ処理液生成装置は、前記液体を前記プラズマの近辺またはプラズマの中を通過するように滴下させる液体供給装置を有し、
前記冷凍装置は、前記液体供給装置により滴下された液体を受けて急速冷凍する、
請求項18記載の殺菌用結氷体の生成装置。 - 前記プラズマ処理液生成装置は、容器に入った前記液体に対し、当該液体の近辺においてまたは当該液体に接触するようにプラズマを発生させ、
前記冷凍装置は、前記容器を冷却するように配置され、
これによって、前記プラズマ処理液の生成と前記プラズマ処理液の冷凍とを並行して行う、
請求項18記載の殺菌用結氷体の生成装置。 - 生成した前記プラズマ処理液を容器に収納するための装置を備え、前記冷凍装置は、前記容器を冷却することにより前記プラズマ処理液を冷凍して結氷体を生成する、
請求項18記載の殺菌用結氷体の生成装置。 - 前記プラズマ処理液生成装置は、氷結した前記液体に対してプラズマを照射して融解させ、融解した前記液体中に活性種を拡散させて前記プラズマ処理液を生成するようになっている、
請求項18記載の殺菌用結氷体の生成装置。 - 前記プラズマ処理液のpHが4.8以下となるように調整するためのpH調整装置を有する、
請求項18ないし22のいずれかに記載の殺菌用結氷体の生成装置。 - プラズマにより発生した活性種を液体に接触させて当該液体中に前記活性種を拡散させてプラズマ処理液とし、
前記プラズマ処理液を冷凍して結氷体を生成するとともに、当該結氷体を冷凍状態で保存し、
冷凍状態で保存した前記結氷体を解凍してプラズマ処理液に戻して殺菌用液体とする、
ことを特徴とする殺菌用液体の生成方法。 - プラズマにより発生した活性種を液体中に拡散させたプラズマ処理液が、前記プラズマ処理液の温度を10℃以下に保持するための保冷部材とともに一体化されてなる、
ことを特徴とする殺菌用製剤。 - 前記プラズマ処理液は、pHが4.8以下に調整されている、
請求項25記載の殺菌用製剤。 - 前記プラズマ処理液は、pHが2以下に調整されている、
請求項26記載の殺菌用製剤。 - 前記保冷部材は、氷である、
請求項25ないし27のいずれかに記載の殺菌用製剤。 - 前記保冷部材は、冷凍された保冷剤である、
請求項25ないし27のいずれかに記載の殺菌用製剤。 - 前記プラズマ処理液が、容器であるスポイトに収納されている、
請求項25ないし29のいずれかに記載の殺菌用製剤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/523,292 US20150086423A1 (en) | 2012-04-27 | 2014-10-24 | Sterilization treatment method, formulation for sterilization use, solid ice for sterilization use, method and device for producing the solid ice, and method for producing liquid for sterilization use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-103800 | 2012-04-27 | ||
JP2012103800 | 2012-04-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/523,292 Continuation US20150086423A1 (en) | 2012-04-27 | 2014-10-24 | Sterilization treatment method, formulation for sterilization use, solid ice for sterilization use, method and device for producing the solid ice, and method for producing liquid for sterilization use |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013161327A1 true WO2013161327A1 (ja) | 2013-10-31 |
Family
ID=49482669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/002877 WO2013161327A1 (ja) | 2012-04-27 | 2013-04-26 | 殺菌処理方法、殺菌用製剤、殺菌用結氷体およびその生成方法および装置、並びに殺菌用液体の生成方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150086423A1 (ja) |
JP (1) | JPWO2013161327A1 (ja) |
WO (1) | WO2013161327A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015093864A (ja) * | 2013-11-14 | 2015-05-18 | 沖野 晃俊 | ラジカル機能液およびその製造方法並びにラジカル機能液の使用方法 |
JP2016003184A (ja) * | 2014-06-13 | 2016-01-12 | 国立大学法人名古屋大学 | 抗腫瘍水溶液および抗癌剤とそれらの製造方法 |
JP2016150923A (ja) * | 2015-02-18 | 2016-08-22 | 国立大学法人名古屋大学 | プラズマ殺菌水溶液とその製造方法および殺菌方法 |
JP2017029117A (ja) * | 2015-08-05 | 2017-02-09 | 国立大学法人名古屋大学 | 魚類の生産方法および稚魚の成長促進方法および魚類の成長促進剤 |
WO2018021528A1 (ja) * | 2016-07-28 | 2018-02-01 | 日本碍子株式会社 | 殺菌水を生成する装置、被処理物を殺菌する方法および殺菌水を生成する方法 |
US10499648B2 (en) | 2014-09-02 | 2019-12-10 | Katsuhisa Kitano | Sterilization method, formulation for sterilization use, and device for producing sterilizing liquid |
JP2020130085A (ja) * | 2019-02-21 | 2020-08-31 | 国立大学法人東北大学 | 活性種含有液噴射装置および殺菌駆除方法 |
JP2021065823A (ja) * | 2019-10-21 | 2021-04-30 | 株式会社テクノ菱和 | 電極およびプラズマ殺菌水生成装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106241963A (zh) * | 2015-06-09 | 2016-12-21 | 松下知识产权经营株式会社 | 液体处理方法、对象物处理方法、液体处理装置及等离子体处理液 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63302273A (ja) * | 1987-05-30 | 1988-12-09 | 昭和熱学工業株式会社 | オゾン氷の製法 |
JPH11285524A (ja) * | 1998-04-03 | 1999-10-19 | Daikin Ind Ltd | オゾン含有殺菌水の製造装置およびオゾン含有殺菌水 |
JP2000037693A (ja) * | 1998-07-24 | 2000-02-08 | Mitsubishi Electric Corp | オゾン水供給装置 |
JP2002360689A (ja) * | 2001-06-13 | 2002-12-17 | Clean Chemical Kk | 人工透析装置の洗浄方法 |
JP2003052344A (ja) * | 2001-08-10 | 2003-02-25 | Fuji Electric Co Ltd | 鮮度保持装置 |
JP2006289236A (ja) * | 2005-04-08 | 2006-10-26 | Sutai Rabo:Kk | プラズマ放電処理水生成装置、並びにプラズマ放電水、植物成長促進液、化粧用水、工業用オゾン洗浄水、医療用オゾン殺菌水及び医療用オゾン治療水 |
JP2006336899A (ja) * | 2005-05-31 | 2006-12-14 | Gunma Univ | オゾンガス含有製氷方法及び装置 |
JP2007210666A (ja) * | 2006-02-13 | 2007-08-23 | Akiyasu Inaba | 保存容器 |
JP2008145060A (ja) * | 2006-12-11 | 2008-06-26 | Akiyasu Inaba | オゾン氷及びオゾン氷包装体 |
WO2010134551A1 (ja) * | 2009-05-19 | 2010-11-25 | パナソニック電工株式会社 | 気液混合液 |
JP2011520578A (ja) * | 2008-05-26 | 2011-07-21 | ノバルティス アーゲー | 薬剤の局所適用のためのキット |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1099863A (ja) * | 1996-08-07 | 1998-04-21 | Kenichi Morita | 用水の殺菌方法及びこれに用いる用水処理装置 |
JP2003294343A (ja) * | 2002-04-02 | 2003-10-15 | Masanao Uchiyama | 気体含有氷または水和物の製造法及びその装置とその製品 |
WO2009041049A1 (ja) * | 2007-09-27 | 2009-04-02 | Satoshi Ikawa | 殺菌方法および装置 |
US8486331B2 (en) * | 2008-05-02 | 2013-07-16 | Han Sup Uhm | Sterilization effects of acidic ozone water |
JP5230314B2 (ja) * | 2008-09-11 | 2013-07-10 | 三菱電機株式会社 | 活性酸素生成装置 |
US20110212185A1 (en) * | 2008-09-16 | 2011-09-01 | Kenichiro Tanaka | Water that expresses pathogen-resistance genes (pr gene clusters) to encode plant immunoproteins, a method of preventing plant diseases using the water, and a device for producing the water |
-
2013
- 2013-04-26 WO PCT/JP2013/002877 patent/WO2013161327A1/ja active Application Filing
- 2013-04-26 JP JP2014512376A patent/JPWO2013161327A1/ja active Pending
-
2014
- 2014-10-24 US US14/523,292 patent/US20150086423A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63302273A (ja) * | 1987-05-30 | 1988-12-09 | 昭和熱学工業株式会社 | オゾン氷の製法 |
JPH11285524A (ja) * | 1998-04-03 | 1999-10-19 | Daikin Ind Ltd | オゾン含有殺菌水の製造装置およびオゾン含有殺菌水 |
JP2000037693A (ja) * | 1998-07-24 | 2000-02-08 | Mitsubishi Electric Corp | オゾン水供給装置 |
JP2002360689A (ja) * | 2001-06-13 | 2002-12-17 | Clean Chemical Kk | 人工透析装置の洗浄方法 |
JP2003052344A (ja) * | 2001-08-10 | 2003-02-25 | Fuji Electric Co Ltd | 鮮度保持装置 |
JP2006289236A (ja) * | 2005-04-08 | 2006-10-26 | Sutai Rabo:Kk | プラズマ放電処理水生成装置、並びにプラズマ放電水、植物成長促進液、化粧用水、工業用オゾン洗浄水、医療用オゾン殺菌水及び医療用オゾン治療水 |
JP2006336899A (ja) * | 2005-05-31 | 2006-12-14 | Gunma Univ | オゾンガス含有製氷方法及び装置 |
JP2007210666A (ja) * | 2006-02-13 | 2007-08-23 | Akiyasu Inaba | 保存容器 |
JP2008145060A (ja) * | 2006-12-11 | 2008-06-26 | Akiyasu Inaba | オゾン氷及びオゾン氷包装体 |
JP2011520578A (ja) * | 2008-05-26 | 2011-07-21 | ノバルティス アーゲー | 薬剤の局所適用のためのキット |
WO2010134551A1 (ja) * | 2009-05-19 | 2010-11-25 | パナソニック電工株式会社 | 気液混合液 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015093864A (ja) * | 2013-11-14 | 2015-05-18 | 沖野 晃俊 | ラジカル機能液およびその製造方法並びにラジカル機能液の使用方法 |
JP2016003184A (ja) * | 2014-06-13 | 2016-01-12 | 国立大学法人名古屋大学 | 抗腫瘍水溶液および抗癌剤とそれらの製造方法 |
US10499648B2 (en) | 2014-09-02 | 2019-12-10 | Katsuhisa Kitano | Sterilization method, formulation for sterilization use, and device for producing sterilizing liquid |
JP2016150923A (ja) * | 2015-02-18 | 2016-08-22 | 国立大学法人名古屋大学 | プラズマ殺菌水溶液とその製造方法および殺菌方法 |
JP2017029117A (ja) * | 2015-08-05 | 2017-02-09 | 国立大学法人名古屋大学 | 魚類の生産方法および稚魚の成長促進方法および魚類の成長促進剤 |
WO2018021528A1 (ja) * | 2016-07-28 | 2018-02-01 | 日本碍子株式会社 | 殺菌水を生成する装置、被処理物を殺菌する方法および殺菌水を生成する方法 |
JPWO2018021528A1 (ja) * | 2016-07-28 | 2019-05-23 | 日本碍子株式会社 | 殺菌水を生成する装置、被処理物を殺菌する方法および殺菌水を生成する方法 |
JP2020130085A (ja) * | 2019-02-21 | 2020-08-31 | 国立大学法人東北大学 | 活性種含有液噴射装置および殺菌駆除方法 |
JP7215726B2 (ja) | 2019-02-21 | 2023-01-31 | 国立大学法人東北大学 | 活性種含有液噴射装置および殺菌駆除方法 |
JP2021065823A (ja) * | 2019-10-21 | 2021-04-30 | 株式会社テクノ菱和 | 電極およびプラズマ殺菌水生成装置 |
JP7389429B2 (ja) | 2019-10-21 | 2023-11-30 | 株式会社テクノ菱和 | プラズマ殺菌水生成装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013161327A1 (ja) | 2015-12-24 |
US20150086423A1 (en) | 2015-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013161327A1 (ja) | 殺菌処理方法、殺菌用製剤、殺菌用結氷体およびその生成方法および装置、並びに殺菌用液体の生成方法 | |
JP6025083B2 (ja) | 殺菌用液体の生成方法および装置 | |
CN104302328B (zh) | 以氮氧化物为基础的灭菌法以及灭菌装置 | |
US9623132B2 (en) | Plasma-generated gas sterilization method | |
US4262494A (en) | Portable device for cryopreservation, transportation and temporary cryogenic storage of semen and other similar tissue | |
US11684701B2 (en) | Operating room coating applicator and method | |
US10632215B2 (en) | Device and method for sterilizing liquid nitrogen by ultraviolet radiation | |
CN110505862B (zh) | 将血液制品和细胞培养物保存在压力下的气体介质中的装置 | |
JP3916588B2 (ja) | プラズマ処理機付き滅菌装置及び滅菌方法 | |
JP2014167913A (ja) | 生体膜の処理のためのシステムおよび方法 | |
CN106660793A (zh) | 施加一氧化氮至治疗部位的装置 | |
ES2848860T3 (es) | Método de esterilización, preparación para la esterilización y dispositivo para la producción de líquido bactericida | |
RU2710019C2 (ru) | Пенообразующие композиции и способы доставки активного агента в полость тела | |
CA2984102C (en) | System and method for decontamination of a lumen device | |
US20120009085A1 (en) | Vacuum system and methods for sterilization thereof | |
JP2023071118A (ja) | 酸素ラジカル活性化水溶液生成装置および殺菌方法 | |
JP2016214207A (ja) | 切花類保存装置、切花類保存液、切花類保存用の固体物及び切花類保存方法 | |
JP5958492B2 (ja) | 気体窒素酸化物の発生法と発生装置 | |
WO2020147604A1 (zh) | 一种超低温冷冻及封闭式保存方法 | |
KR101802512B1 (ko) | 일산화질소 물의 생성 및 그 응용 | |
KR20170005880A (ko) | 일산화질소 물의 생성 및 그 응용 | |
Zhdanov et al. | Low Temperature Plasma Vacuum Sterilization of Medical Devices by using SterAcidAgent®: Description and Distinctive Characteristics. | |
JP2004041711A (ja) | 血液保存バッグ | |
WO2017065233A1 (ja) | 殺菌方法 | |
JPH04132601A (ja) | オゾン含有物質の生成とその利用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13781370 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2014512376 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13781370 Country of ref document: EP Kind code of ref document: A1 |