WO2013161135A1 - 無線端末、無線局、無線通信システム、及びこれらに実装される方法 - Google Patents

無線端末、無線局、無線通信システム、及びこれらに実装される方法 Download PDF

Info

Publication number
WO2013161135A1
WO2013161135A1 PCT/JP2013/000088 JP2013000088W WO2013161135A1 WO 2013161135 A1 WO2013161135 A1 WO 2013161135A1 JP 2013000088 W JP2013000088 W JP 2013000088W WO 2013161135 A1 WO2013161135 A1 WO 2013161135A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
terminal
radio
frequency
measurement
Prior art date
Application number
PCT/JP2013/000088
Other languages
English (en)
French (fr)
Inventor
尚 二木
洋明 網中
弘人 菅原
義一 鹿倉
一志 村岡
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES13782054T priority Critical patent/ES2728235T3/es
Priority to EP16172589.0A priority patent/EP3094126B1/en
Priority to JP2014512299A priority patent/JP6146408B2/ja
Priority to EP19187349.6A priority patent/EP3589005B1/en
Priority to EP13782054.4A priority patent/EP2843856B1/en
Priority to IN8965DEN2014 priority patent/IN2014DN08965A/en
Priority to US14/396,268 priority patent/US9420482B2/en
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013161135A1 publication Critical patent/WO2013161135A1/ja
Priority to US15/199,264 priority patent/US9781618B2/en
Priority to US15/668,936 priority patent/US10028158B2/en
Priority to US15/965,321 priority patent/US10237772B2/en
Priority to US16/255,408 priority patent/US10524146B2/en
Priority to US16/692,460 priority patent/US10750389B2/en
Priority to US16/932,126 priority patent/US11012876B2/en
Priority to US17/229,077 priority patent/US11528627B2/en
Priority to US17/968,028 priority patent/US20230044557A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to use control of a shared frequency by a wireless communication system.
  • Cognitive radio that recognizes the surrounding wireless environment and optimizes communication parameters according to the wireless environment is known.
  • a case where a plurality of radio systems share a frequency band can be cited.
  • a frequency band that can be preferentially used by a certain wireless system referred to as a primary system
  • a secondary system a frequency band that can be preferentially used by another wireless system
  • IEEE 802.22 uses a regional wireless network (WRAN) as a secondary system that secondary uses the frequency band (TV channel) licensed to the TV broadcasting system as the primary system. Standardization is being discussed.
  • WRAN regional wireless network
  • the secondary system secondary uses the frequency band licensed to the primary system, the secondary system must not affect the service provided by the primary system. Therefore, in order to avoid interference with the primary system, the secondary system uses a frequency band that is not used temporally or spatially by the primary system, or the interference given to the primary system falls below an allowable level.
  • the transmission power is adjusted (see, for example, Patent Document 1).
  • WS TV white space
  • GDB Geo-location Database
  • frequency sensing As a cognitive radio technology for identifying an unused frequency band, Geo-location Database (GDB), frequency sensing, and beacon (or Cognitive Pilot Pipe Channel (CPC)) are known. Two or more of these, for example, GDB and frequency sensing, or GDB and beacon may be used in combination.
  • GDB provides information on the usage status of the shared frequency band (e.g. TV band) according to the geographical location, or the secondary available (that is, unused) frequency band (e.g. TVWS).
  • the LTE system operation management apparatus notifies GDB of information on a base station (ie evolved Node B (eNB)) that wants to use TVWS.
  • the operation management apparatus is also referred to as an operation management system, an operation administration and maintenance (OAM) system, or a central control point.
  • the base station information includes, for example, information indicating the geographical position of the base station and the antenna height.
  • GDB determines at least one candidate frequency that can be secondarily used based on the base station information, frequency band, and propagation loss calculation formula, and provides this to the operation management apparatus.
  • the operation management apparatus transfers at least one candidate frequency information notified from the GDB to the base station.
  • the base station based on the sensing result of the candidate frequency by the radio terminal (ie User Equipment (UE)) belonging to the own cell, the frequency used in the own cell from the at least one candidate frequency (hereinafter, assigned) Select (Frequency). For example, the base station selects a candidate frequency having the smallest interference power measured by the wireless terminal as an allocation frequency used in the own cell.
  • the base station provides a communication service using the selected allocated frequency.
  • the radio terminal (UE) must support the frequency sensing function related to cognitive radio. That is, the radio terminal (UE) must support the frequency sensing function (or sensing procedure) related to the cognitive radio in addition to the downlink signal measurement function (or measurement procedure (procedure)) required by the LTE specification. Don't be. This may lead to an increase in the size or complexity of the hardware or software of the radio terminal (UE).
  • One of the objects of the present invention can contribute to simplification of measurement functions to be supported by a wireless terminal when a wireless communication system uses a shared frequency (eg TVTV) shared by a plurality of wireless systems.
  • a wireless terminal, a wireless station, a wireless communication system, a method implemented in these, and a program can contribute to simplification of measurement functions to be supported by a wireless terminal when a wireless communication system uses a shared frequency (eg TVTV) shared by a plurality of wireless systems.
  • a wireless terminal, a wireless station, a wireless communication system, a method implemented in these, and a program e.g TVTV
  • a wireless terminal that is used in a wireless communication system and communicates with a wireless station.
  • the wireless terminal includes a measurement unit.
  • the measurement unit is shared by a plurality of wireless systems including the wireless communication system using a terminal measurement procedure for performing a first terminal measurement corresponding to a radio access technology applied to the wireless communication system. To perform a second terminal measurement at a shared frequency.
  • a radio station that is used in a radio communication system and communicates with at least one radio terminal.
  • the radio station includes a measurement control unit.
  • the measurement control unit uses a terminal measurement procedure for controlling a first terminal measurement corresponding to a radio access technology applied to the radio communication system, and is shared by a plurality of radio systems including the radio communication system. Operate to control the second terminal measurement at the shared frequency to be performed.
  • the wireless communication system includes a wireless station and at least one wireless terminal that communicates with the wireless station.
  • the at least one wireless terminal uses a terminal measurement procedure for performing a first terminal measurement corresponding to a radio access technology applied to the wireless communication system, and includes a plurality of wireless systems including the wireless communication system Operates to perform a second terminal measurement on a shared frequency shared by the.
  • a method used in a wireless communication system and implemented in a wireless terminal that communicates with a wireless station is shared by a plurality of radio systems including the radio communication system using a terminal measurement procedure for performing a first terminal measurement corresponding to a radio access technology applied to the radio communication system. Performing a second terminal measurement at the shared frequency.
  • a method used in a radio communication system and implemented in a radio station that communicates with at least one radio terminal is shared by a plurality of radio systems including the radio communication system using a terminal measurement procedure for controlling a first terminal measurement corresponding to a radio access technology applied to the radio communication system. Including controlling a second terminal measurement at the shared frequency.
  • a radio communication system uses a shared frequency (eg TVWS) shared by a plurality of radio systems, it is possible to contribute to simplification of measurement functions to be supported by radio terminals.
  • a wireless terminal, a wireless station, a wireless communication system, a method implemented in these, and a program can be provided.
  • OAM operation management apparatus
  • FIG. 1 shows a configuration example of a wireless communication system 100 according to the present embodiment.
  • the wireless communication system 100 may be a cellular system (eg LTE system, Universal Mobile Telecommunications System (UMTS), CDMA2000 system (EV-DO, 1xRTT, HPRD), or Global System for Mobile Communications (GSM) system).
  • the wireless communication system 100 may be a non-cellular system (eg WiMAX system, wireless Local Area Network (LAN) system).
  • the wireless communication system 100 includes a wireless station 1, a wireless terminal 2, and a frequency control unit 3.
  • the radio station 1 operates the cell 11 and communicates with the radio terminal 2 belonging to the cell 11.
  • the radio station 1 is called, for example, a base station, a relay station (Relay Node (RN)), or an access point.
  • the wireless terminal 2 is called, for example, a mobile station, User Equipment (UE), or Wireless Transmit / Receive Unit (WTRU).
  • the cell 11 means a coverage area of the radio station 1.
  • the cell 11 may be a sector cell.
  • the frequency control unit 3 operates so as to control the use by the radio station 1 of a shared frequency shared by a plurality of radio systems including the radio communication system 100. For example, the frequency control unit 3 may determine whether or not the shared frequency can be used by the wireless station 1. Further, the frequency control unit 3 may determine whether to use a shared frequency for communication between the wireless station 1 and the wireless terminal 2. Further, the frequency control unit 3 may determine the frequency assigned to the radio station 1 from candidate frequencies including the shared frequency. The assigned frequency is a frequency used for communication between the wireless station 1 and the wireless terminal 2.
  • the shared frequency may be a frequency band licensed to the primary system, such as TVWS.
  • the radio communication system 100 as the secondary system can secondary use the shared frequency when the shared frequency is not used temporally or spatially by the primary system, for example.
  • the radio communication system 100 can not only use the frequency licensed for the radio communication system 100 but also secondary use the shared frequency (e.g. TVTV) that is not licensed for the radio communication system 100.
  • the primary system may not exist.
  • the shared frequency may be shared equally by a plurality of wireless communication systems, for example, a plurality of wireless communication systems operated by different operators.
  • the plurality of radio communication systems may include only systems using the same radio access technology (e.g. LTE) or may include systems using different radio access technologies (e.g. LTE, CDMA2000, GSM, WiMAX).
  • the wireless terminal 2 in order to use a shared frequency such as TVWS in the wireless communication system 100, the wireless terminal 2 must support a frequency sensing function related to cognitive radio. This may increase the scale or complexity of the hardware or software of the wireless terminal 2.
  • the wireless terminal 2 includes the measurement unit 20.
  • the measurement unit 20 is a terminal measurement procedure implemented in the wireless terminal 2 in order to perform a first terminal measurement defined by a radio access technology (eg, LTE, CDMA2000, GSM, WiMAX) applied to the wireless communication system 100.
  • a radio access technology eg, LTE, CDMA2000, GSM, WiMAX
  • the result of the second terminal measurement is supplied to the frequency control unit 3 and used to control the use of the shared frequency by the radio station 1.
  • the wireless station 1 includes a measurement control unit 10 in order to perform the first and second terminal measurements described above in cooperation with the wireless terminal 2.
  • the measurement control unit 10 operates to control the first and second terminal measurements described above.
  • the first terminal measurement includes measuring at least radio characteristics of a frequency licensed to the radio communication system 100 (ie license band).
  • the first terminal measurement is performed using a terminal measurement procedure corresponding to a radio access technology (eg LTE, UMTS, CDMA2000, GSM, WiMAX) applied to the radio communication system 100.
  • a radio access technology eg LTE, UMTS, CDMA2000, GSM, WiMAX
  • the first terminal measurement is performed using a terminal measurement procedure defined (or defined) by a radio access technology applied to the radio communication system 100.
  • the terminal measurement procedure generally includes signaling between the radio station 1 and the radio terminal 2.
  • the wireless station 1 requests a terminal measurement report from the wireless terminal 2 using a predetermined request message.
  • the request message specifies, for example, at least one of a frequency to be measured, a measurement item to be reported, and a measurement period.
  • the wireless terminal 2 performs measurement for the designated frequency in accordance with the request message. Then, the wireless terminal 2 transmits a terminal measurement report indicating the measurement result to the wireless station 1.
  • the terminal measurement report includes, for example, at least one of the following (a) to (e).
  • D information on shared frequency (eg preferred frequency, priority); and (e) received power or received strength of the primary system signal at the shared frequency.
  • the first terminal measurement and terminal measurement procedure generally supports measurement of multiple license bands.
  • the terminal measurement procedure includes an inter-frequency measurement procedure for measuring a plurality of license bands.
  • the terminal measurement procedure may include a procedure for measuring a secondary cell while the primary cell and the secondary cell are set in the wireless terminal 2 by the wireless station 1.
  • the primary cell and the secondary cell use different license bands.
  • a mode in which the radio station 1 operates a plurality of cells including a primary cell and a secondary cell is called, for example, carrier aggregation (Carrier-Aggregation (CA)) or dual-cell operation (dual-cell operation).
  • CA carrier aggregation
  • dual-cell operation dual-cell operation
  • the terminal measurement procedure is a procedure for measuring one or more license bands while the wireless terminal 2 is wirelessly connected to the wireless station 1 and reporting the measurement result and the location information of the wireless terminal 2 to the wireless station 1. May be included. Further, the terminal measurement procedure measures one or more license bands during a period when the wireless terminal 2 is not wirelessly connected to the wireless station 1, stores the measurement result and the position information of the wireless terminal 2 as a log, A procedure for reporting a log to the wireless station 1 during wireless connection with the station 1 may be included.
  • the former procedure is called, for example, immediate MDT (Immediate Minimization of Drive Test), and the latter procedure is called, for example, log MDT (Logged MDT) (see Non-Patent Document 2).
  • the measurement control unit 10 and the measurement unit 20 perform the second terminal measurement at the shared frequency using the terminal measurement procedure for the first terminal measurement described above.
  • the measurement control unit 10 and the measurement unit 20 measure a shared frequency that is a non-licensed band (or a frequency band that is not licensed as a frequency that can be exclusively used) for a measurement procedure between different frequencies for measuring a licensed band. You may apply to.
  • the measurement control part 10 and the measurement part 20 may apply the secondary cell measurement procedure in a carrier aggregation (or dual cell operation) to the measurement of a shared frequency.
  • FIG. 2 is a sequence diagram showing a specific example of a shared frequency use control procedure in the present embodiment.
  • the wireless terminal 2 executes a terminal measurement procedure in order to acquire the wireless characteristics of the shared frequency according to the instruction from the wireless station 1.
  • the terminal measurement procedure includes steps S102 to S104.
  • the wireless station 1 transmits a terminal measurement report instruction on the shared frequency to the wireless terminal 2.
  • the terminal measurement report instruction is transmitted using, for example, a control channel or a data channel that can be used in a license band.
  • the wireless terminal 2 measures the shared frequency according to the terminal measurement report instruction.
  • step S ⁇ b> 104 the wireless terminal 2 transmits a terminal measurement report including a measurement result at the shared frequency to the wireless station 1.
  • the terminal measurement report is transmitted using, for example, a control channel or a data channel that can be used in a license band.
  • step S105 the radio station 1 transmits a terminal measurement report to the frequency control unit 3. Note that when the frequency control unit 3 is arranged integrally with the wireless station 1, step S105 may be omitted.
  • step S106 the frequency control unit 3 controls the use of the shared frequency by the radio station 1 based on the terminal measurement report including the measurement result at the shared frequency.
  • the terminal measurement procedure (S101) shown in FIG. 2 may be executed periodically or aperiodically, for example.
  • the execution of the aperiodic terminal measurement procedure (S101) may be triggered by a request from an operation management device (OAM), a frequency management device, or GDB, for example.
  • the frequency management apparatus is also referred to as Spectrum® Manager (SM), frequency management system, or Central® Control® Point.
  • the radio station 1 may spontaneously start the terminal measurement procedure (S101) when a predetermined condition is satisfied.
  • the terminal measurement procedure (S101) may be executed simultaneously for a plurality of candidate frequencies (partial frequencies) included in the shared frequency, or may be executed for each candidate frequency.
  • the frequency control unit 3 described in the present embodiment may perform a review (update) procedure of the frequency allocated to the radio station 1.
  • the frequency control unit 3 may execute a procedure for releasing the allocated frequency (that is, a procedure for stopping the use of the shared frequency by the wireless station 1).
  • the frequency control unit 3 stops the use of the shared frequency by the radio station 1 when the predetermined condition regarding the use of the shared frequency is not satisfied (in other words, when the predetermined release condition is satisfied). Good.
  • the frequency control unit 3 controls the use of the shared frequency by the radio station 1, for example, determines whether to use the shared frequency or determines whether to permit the use of the shared frequency. Other conditions different from may be considered.
  • the frequency control unit 3 may consider the geographical position of the radio station 1. Specifically, the frequency control unit 3 may determine whether the geographical position of the wireless station 1 is within an area where the use of the shared frequency is permitted. Further, the frequency control unit 3 may consider frequencies that can be used by the radio station 1. Specifically, the frequency control unit 3 may determine whether or not the shared frequency is included in the usable frequency range of the wireless station 1. Further, the frequency control unit 3 may consider the maximum value or the minimum value of the downlink transmission power of the radio station 1.
  • the radio station 1 and the radio terminal 2 are defined (or defined) by the radio access technology (eg, LTE, UMTS, CDMA2000, GSM, WiMAX) applied to the radio communication system 100.
  • the terminal measurement procedure for performing the first terminal measurement is utilized to operate to perform the second terminal measurement at the shared frequency. Therefore, the wireless terminal 2 does not need to support an additional measurement procedure for shared frequency measurement. Therefore, this embodiment can contribute to simplification of the measurement function that the wireless terminal 2 should support when the wireless communication system 100 uses a shared frequency (eg TVTV) shared by a plurality of wireless systems. .
  • the frequency control unit 3 may be disposed integrally with the radio station 1.
  • the radio station 1 may determine use of the shared frequency by the following procedure, for example. First, the radio station 1 having the frequency control unit 3 transmits a shared frequency allocation request to an operation management apparatus (OAM) not shown. Next, the wireless station 1 receives a notification indicating at least one candidate frequency from the operation management apparatus (OAM). Each candidate frequency may be an unused partial band included in the shared frequency. Then, the radio station 1 determines an “assigned frequency” to be used by the radio station 1 from at least one candidate frequency. Finally, the wireless station 1 transmits a report (assigned frequency report) indicating the selected assigned frequency to the operation management apparatus.
  • OAM operation management apparatus
  • the frequency control unit 3 may be disposed integrally with the operation management apparatus (OAM) 4.
  • OAM operation management apparatus
  • the operation management apparatus 4 may determine the use of the shared frequency by the radio station 1 according to the following procedure. First, the operation management apparatus 4 receives a shared frequency allocation request from the wireless station 1. Next, the operation management apparatus 4 transmits a terminal measurement report request to the wireless station 1 and receives a terminal measurement report returned from the wireless station 1. Then, the operation management apparatus 4 determines the “assigned frequency” to the wireless station 1 using the received terminal measurement report. Finally, the operation management apparatus 4 notifies the wireless station 1 of the determined “assigned frequency”.
  • the frequency control unit 3 may be arranged integrally with the frequency management device 5.
  • the frequency management device 5 is also referred to as a spectrum manager (SM) or a frequency management system.
  • SM spectrum manager
  • the frequency management device 5 manages allocation of shared frequencies for a plurality of wireless systems including the wireless communication system 100. Multiple wireless systems typically include systems operated by different operators.
  • a configuration example of the wireless communication system 100 according to the present embodiment may be the same as the configuration of the first embodiment illustrated in FIG.
  • FIG. 6 is a sequence diagram showing a specific example of a shared frequency use control procedure in the wireless communication system 100 according to the present embodiment.
  • FIG. 6 includes step S201.
  • the wireless station 1 transmits a specific signal on the shared frequency for the second terminal measurement by the wireless terminal 2.
  • the specific signal is transmitted until a predetermined period or a predetermined timing, and is transmitted at least during the measurement of the shared frequency by the wireless terminal 2 (step S103).
  • the specific signal is experimentally transmitted before the use of the shared frequency in the communication between the radio station 1 and the radio terminal 2 is officially permitted by the frequency control unit 3. Therefore, the specific signal can also be called a test signal or a training signal.
  • the predetermined period during which the specific signal is transmitted can be referred to as a temporary operation period, a preparation period, or a test period for using the shared frequency.
  • the provisional operation period is a period for determining whether or not to use a shared frequency, or a period for determining whether or not a shared frequency can be used.
  • the predetermined timing as a reference for transmitting the characteristic signal may be a time point when the use of the shared frequency is determined or a time point when the use of the shared frequency is updated.
  • Constraints may be imposed on the specific signal as compared to a radio signal transmitted in normal communication between the radio station 1 and the radio terminal 2.
  • the specific signal may not include a data channel signal for transmitting user data. That is, the specific signal may include at least one of a pilot signal, a reference signal, and a synchronization signal without including a data channel signal.
  • Constraints may be imposed on the transmission power of specific signals.
  • the specific signal may be transmitted with lower transmission power than a downlink signal in a frequency licensed by the wireless communication system 100 (i.e. license band).
  • the specific signal may be transmitted with transmission power equal to or lower than the upper limit imposed by the shared frequency management system.
  • the shared frequency management system is, for example, the frequency management device 5 or the Geo-location Database (GDB).
  • steps S101 to S106 in FIG. 6 may be the same as the processing in the step group having the same reference numeral shown in FIG.
  • the measurement report instruction in step S102 may include setting information of a specific signal transmitted from the radio station 1.
  • the wireless terminal 2 performs the second terminal measurement while transmitting a specific signal within the shared frequency from the wireless station 1. Therefore, the wireless terminal 2 can measure the reception power or reception quality of the specific signal transmitted from the wireless station 1 in the second terminal measurement at the shared frequency.
  • This has the following advantages. That is, if the wireless terminal 2 simply performs sensing, that is, measurement of interference power from another wireless system (e.g. primary system), it may be insufficient for determining a frequency suitable for the wireless communication system 100. This is because the communication quality (e.g. throughput) when the wireless communication system 100 uses the shared frequency depends on the reception power or reception quality of the shared frequency signal transmitted from the wireless station 1 at the wireless terminal 2.
  • the wireless terminal 2 can receive the shared frequency signal (ie, the specific signal) from the wireless station 1 with sufficient quality, in other words, the wireless communication system 100 can effectively use the shared frequency. Can guarantee.
  • ⁇ Third Embodiment> a specific example of the arrangement of the frequency control unit 3 described in the first and second embodiments and the procedure for assigning the shared frequency to the radio station 1 will be described. Specifically, the present embodiment shows an example in which the frequency control unit 3 is arranged integrally with the radio station 1.
  • FIG. 7 shows a configuration example of a wireless network including the wireless communication system 100 according to the present embodiment.
  • the operation management apparatus (OAM) 4 manages a plurality of radio stations 1.
  • the operation management device (OAM) 4 communicates with the frequency management device (SM) 5 and receives shared frequency information from the frequency management device (SM) 5.
  • the shared frequency information indicates a usable shared frequency (i.e. at least one candidate frequency).
  • the operation management apparatus (OAM) 4 may receive the shared frequency information directly from the Geo-location Database (GDB) without using the frequency management apparatus (SM) 5.
  • GDB Geo-location Database
  • FIG. 8 is a sequence diagram showing a specific example of a shared frequency use control procedure in the wireless communication system 100 according to the present embodiment.
  • the wireless station 1 transmits a frequency allocation request to the operation management apparatus (OAM) 4.
  • the operation management apparatus (OAM) 4 acquires information on candidate frequencies that can be allocated among the shared frequencies.
  • the operation management device (OAM) 4 may receive information on candidate frequencies from the frequency management device (SM) 5 or GDB.
  • the operation management apparatus (OAM) 4 transmits a notification indicating at least one candidate frequency to the wireless station 1.
  • the radio station 1 and the radio terminal 2 perform the second terminal measurement at the shared frequency (candidate frequency) while transmitting a specific signal from the radio station 1 at the shared frequency (here, the candidate frequency).
  • the second terminal measurement is performed using a terminal measurement procedure defined (or defined) by a radio access technology (e.g. LTE, UMTS, CDMA2000, GSM, WiMAX) applied to the radio communication system 100.
  • a radio access technology e.g. LTE, UMTS, CDMA2000, GSM, WiMAX
  • the radio station 1 and the radio terminal 2 may perform the second terminal measurement for each candidate frequency.
  • the wireless station 1 determines an “assigned frequency” to be used by the wireless station 1 from at least one candidate frequency based on the terminal measurement result at each candidate frequency. Specifically, the radio station 1 may select a candidate frequency in which low interference power from another radio system and high reception quality of a specific signal are measured as an “assigned frequency”.
  • step S305 the wireless station 1 transmits a report indicating the selected “assigned frequency” to the operation management apparatus (OAM) 4.
  • the radio station 1 may transmit a report indicating that frequency allocation is not performed to the operation management apparatus (OAM) 4.
  • step S306 the operation management apparatus (OAM) 4 updates the candidate frequency information based on the report from the wireless station 1. However, step S306 may be omitted.
  • the procedure shown in FIG. 8 is only an example. For example, acquisition of candidate frequency information (S302) by the operation management apparatus (OAM) 4 may be performed in advance prior to the procedure of FIG. Further, the operation management apparatus (OAM) 4 may voluntarily notify the candidate frequency to the radio station 1 without the radio station 1 transmitting the frequency allocation request (S301).
  • FIG. 9 is a flowchart showing an example of the operation related to the use control of the shared frequency by the radio station 1.
  • the radio station 1 determines whether it is necessary to assign a shared frequency. For example, the wireless station 1 may determine that an additional shared frequency is necessary when the load of the cell 11 in the license band (e.g. communication amount, number of wireless terminals, etc.) exceeds a predetermined standard.
  • Step S402 corresponds to step S301 in FIG. That is, in step S402, the wireless station 1 transmits a frequency allocation request to the operation management apparatus (OAM) 4.
  • OAM operation management apparatus
  • Step S403 corresponds to step S303 in FIG. That is, in step S403, the wireless station 1 determines whether a candidate frequency notification has been received.
  • Step S404 corresponds to step S203 in FIG. That is, when receiving the candidate frequency notification (YES in step S403), the wireless station 1 transmits a specific signal at the candidate frequency.
  • Steps S405 and S406 correspond to the terminal measurement procedure (S101) shown in FIG. That is, the wireless station 1 transmits a terminal measurement report instruction at the candidate frequency to the wireless terminal 2 while receiving a specific signal at the candidate frequency, and receives a terminal measurement report returned from the wireless terminal 2.
  • Step S407 corresponds to step S304 in FIG. That is, in step S407, the radio station 1 determines the “assigned frequency” of the own cell 11A from at least one candidate frequency based on the terminal measurement report.
  • Step S408 corresponds to step S305 in FIG. That is, in step S308, the radio station 1A transmits an allocation frequency report to the operation management apparatus (OAM) 4.
  • the allocated frequency report indicates the candidate frequency determined as the allocated frequency or indicates that frequency allocation is not performed.
  • the frequency control unit 3 may execute a procedure for releasing the allocated frequency (that is, a procedure for stopping the use of the shared frequency by the radio station 1).
  • the operation management apparatus (OAM) 4 may notify the radio station 1 of the constraint conditions related to the specific signal (e.g. signal type to be transmitted, transmission power setting).
  • the management apparatus (OAM) 4 notifies the wireless station 1 of the time when the second station measurement by the wireless station 1 should be performed, or the timing or period when the specific signal may be transmitted from the wireless station 1. Also good.
  • the operation management device (OAM) 4 may notify the upper limit value of the downlink transmission power when notifying the radio station 1 of the candidate frequency.
  • the operation management apparatus (OAM) 4 may notify the radio station 1 of an absolute time or a relative time indicating the usable period of the candidate frequency. These may be common among the candidate frequencies or may be different.
  • ⁇ Fourth Embodiment> a specific example of the arrangement of the frequency control unit 3 described in the first embodiment and the procedure for assigning the shared frequency to the radio station 1 will be described.
  • this embodiment shows an example in which the frequency control unit 3 is arranged integrally with the operation management apparatus (OAM) 4.
  • a configuration example of a wireless network including the wireless communication system 100 according to the present embodiment may be substantially the same as the configuration example of the second embodiment illustrated in FIG.
  • the frequency control unit 3 is arranged not in the radio station 1 but in the operation management device (OAM) 4.
  • FIG. 10 is a sequence diagram showing a specific example of a shared frequency use control procedure in the wireless communication system 100 according to the present embodiment.
  • the processing in steps S301, S302, S201, and S101 to S104 in FIG. 10 may be the same as the processing in the step group having the same reference numeral shown in FIG.
  • the operation management apparatus (OAM) 4 transmits a terminal measurement report instruction to the radio stations 1A and 1B in addition to the candidate frequency notification.
  • the candidate frequency notification and the terminal measurement report instruction may be separate messages. Further, the terminal measurement report instruction may not be explicitly transmitted.
  • the candidate frequency notification may be defined in advance to mean an instruction of a terminal measurement report at the candidate frequency indicated therein.
  • step S504 in response to the terminal measurement report instruction from the operation management apparatus (OAM) 4, the wireless station 1 transmits a terminal measurement report to the operation management apparatus (OAM) 4.
  • step S505 the operation management apparatus (OAM) 4 determines the assigned frequency of the radio station 1A. In other words, the operation management device (OAM) 4 determines whether or not the shared frequency is used for the wireless station 1 (or whether or not the use of the shared frequency by the wireless station 1 is permitted). In the determination in step S505, the terminal measurement report is considered.
  • step S506 the operation management apparatus (OAM) 4 notifies the wireless station 1 of the determined assigned frequency. If none of the candidate frequencies satisfy the condition, the operation management apparatus (OAM) 4 notifies the radio station 1 that frequency allocation is not performed.
  • step S507 the operation management apparatus (OAM) 4 updates the candidate frequency information. However, step S507 may be omitted.
  • the procedure shown in FIG. 10 is only an example. As described with reference to FIG. 8, for example, the timing of acquisition of candidate frequency information (S302) by the operation management apparatus (OAM) 4 may be changed as appropriate. Further, the operation management apparatus (OAM) 4 may spontaneously transmit the candidate frequency notification and the terminal measurement report instruction to the wireless station 1 without the wireless station 1 transmitting the frequency allocation request (S301).
  • FIG. 11 is a flowchart showing an example of an operation related to the use control of the shared frequency by the radio station 1.
  • the processing in steps S401, S402 and S404 to S406 in FIG. 11 may be the same as the processing in the step group having the same reference numeral shown in FIG.
  • Step S603 in FIG. 11 corresponds to step S503 in FIG. That is, in step S603, the radio station 1 determines whether or not a candidate frequency notification and a terminal measurement report instruction have been received. If these are received (YES in step S603), the wireless station 1 controls terminal measurement at the candidate frequency while transmitting a specific signal (steps S404 to S406).
  • Steps S607 and S608 in FIG. 11 correspond to steps S504 and S505 in FIG. That is, the wireless station 1A transmits a terminal measurement report to the operation management apparatus (OAM) 4 (step S607).
  • the wireless station 1 determines whether a notification of the assigned frequency has been received.
  • the radio station 1 may set the cell 11A using the allocated frequency and start communication with the radio terminal 2.
  • FIG. 12 is a flowchart showing an example of operations related to use control of the shared frequency by the operation management apparatus (OAM) 4.
  • Step S701 corresponds to step S301 in FIG. That is, the operation management apparatus (OAM) determines whether or not a frequency allocation request has been received from the wireless station 1 (step S301).
  • Steps S702 and S703 correspond to steps S503 and S504 in FIG. That is, the operation management apparatus (OAM) 4 transmits a candidate frequency notification and a terminal measurement report instruction (step S702). Then, the operation management apparatus (OAM) 4 determines whether or not a terminal measurement report has been received (step S703).
  • Steps S704 to S706 in FIG. 12 correspond to steps S505 to S507 in FIG. That is, in step S ⁇ b> 704, the operation management apparatus (OAM) 4 determines the “assigned frequency” for the radio station 1 from at least one candidate frequency based on the terminal measurement report received from the radio station 1. In step S ⁇ b> 705, the operation management apparatus (OAM) 4 transmits an allocation frequency notification to the wireless station 1. In step S ⁇ b> 706, the operation management apparatus (OAM) 4 updates the candidate frequency information according to the candidate frequency assignment to the wireless station 1.
  • the radio communication system 100 according to the first to fourth embodiments described above is an LTE system
  • the radio station 1 corresponds to “radio base station (ie eNB)”
  • the radio terminal 2 corresponds to “UE”.
  • the terminal measurement procedures described in the first to fourth embodiments can be referred to as a UE measurement procedure.
  • the terminal measurement report may include at least one of the following (1a) to (1e), for example.
  • eNB1 may transmit the terminal measurement report instruction
  • UE2 may transmit the terminal measurement report to eNB1 as "(UE) Measurement Report”.
  • FIG. 13 is a sequence diagram showing a specific example of the terminal measurement procedure in this embodiment.
  • eNB1 transmits a “RRC Connection Reconfiguration” message to UE2.
  • UE2 performs the measurement in a shared frequency according to the setting information (Measurement
  • UE2 transmits "(UE)
  • the terminal measurement procedure for performing the second terminal measurement at the shared frequency may include at least one of the following (2a) to (2e), for example.
  • MDT Minimum of Drive Test
  • FIG. 14 is a conceptual diagram of a procedure (2a) that uses inter-frequency measurement for the second terminal measurement at the shared frequency.
  • FIG. 14 shows a case where the shared frequency is TVWS.
  • UE2 measures a license band that is a serving carrier or serving cell. Furthermore, UE2 measures the TV band according to the instruction of inter-frequency measurement by eNB1.
  • the “RRC Connection Reconfiguration” message in step S902 includes measurement configuration information (Measurement Configuration (MeasConfig)) of Inter-frequency measurement.
  • this measurement setting information includes at least one of the following three, for example. -Measurement items (eg RSRP, RSRQ, RSSI, or CQI); ⁇ Setting information of communication interruption period for measurement between different frequencies (Measurement Gap Configuration (MeasGapConfig)); and ⁇ Setting information about report (Report Configuration (ReportConfig)).
  • FIG. 15 is a conceptual diagram of the procedure (2c).
  • FIG. 15 also shows a case where the shared frequency is TVWS.
  • UE2 measures a license band that is a serving carrier or serving cell. Furthermore, UE2 receives the TV band as an additional carrier using a 2nd receiver according to the instruction
  • the “RRC Connection Reconfiguration” message in step S902 includes measurement setting information (Measurement Configuration (MeasConfig)) of inter-frequency measurement (Inter-frequency measurement).
  • Measurement Configuration Measurement Configuration (MeasConfig)
  • Inter-frequency measurement A specific example of the measurement setting information is as described above.
  • UE2 notifies eNB1 beforehand that it has a dual receiver configuration (in other words, it has a second receiver). Therefore, eNB1 has recognized that UE2 can perform the terminal measurement in a shared frequency using a 2nd receiver.
  • UE2 measures the shared frequency as Intra-frequency or Inter-frequency measurement.
  • eNB1 and UE2 may measure a shared frequency as Inter-RAT-measurement.
  • FIG. 16 is a conceptual diagram of a procedure (2d) for measuring a shared frequency set as a secondary cell (or secondary carrier) of carrier aggregation (CA).
  • FIG. 16 also shows a case where the shared frequency is TVWS.
  • UE2 measures the license band that is the primary cell (or primary carrier) of carrier aggregation (CA).
  • indication by eNB1 UE2 sets the cell (or carrier) of TV band as a secondary cell (or secondary carrier) of a carrier aggregation (CA), receives a specific signal, and performs terminal measurement in a TV band.
  • eNB1 may set to a secondary cell one by one in order, and may set a some candidate frequency as a some secondary cell simultaneously.
  • the “RRC Connection Reconfiguration” message in step S902 includes the configuration information (Secondary Cell Configuration (SCellConfig)) and measurement configuration information (Measurement Configuration (MeasConfig) of the secondary cell (or secondary carrier) of carrier aggregation (CA). ))including.
  • SCellConfig Secondary Cell Configuration
  • MeasConfig Measurement Configuration
  • UE2 measures a shared frequency as Intra-frequency or Inter-frequency measurement.
  • the secondary cell configuration information (SCellConfig) includes, for example, a list of secondary cells to be added or modified (SCellToAddModList).
  • the secondary cell list includes at least one of the following three, for example. -Secondary cell index (SCellIndex); -Frequency information (Absolute Radio Frequency Channel Number (ARFCN)); and-Radio resource configuration (Radio Resource Config).
  • the procedure (2b) using the inter-RAT access measurement for the second terminal measurement on the shared frequency can also be performed according to the sequence diagram shown in FIG.
  • the “RRC Connection Reconfiguration” message in step S902 includes measurement setting information (Measurement Configuration (MeasConfig)) of Inter-RAT measurement.
  • Measurement Configuration Measurement Configuration (MeasConfig)
  • Measurement Configuration Measurement Configuration
  • eNB1 may transmit the specific signal demonstrated in 2nd Embodiment.
  • the specific signal transmitted from the eNB 1 at the shared frequency may include at least one of a pilot signal, a reference signal, and a synchronization signal without including a data channel signal.
  • the specific signal may include at least one of the following (3a) to (3c).
  • (3b) Reference signal for CSI calculation (CSI Reference Signal (CSI-RS);
  • CSI-RS CSI Reference Signal
  • Synchronization Signal Synchronization Signal
  • the specific signal may include (3d) common system control information (Master Information Block (MIB) or System Information Block (SIB)) in the cell.
  • MIB Master Information Block
  • SIB System Information Block
  • a restriction may be imposed on the transmission power of the specific signal.
  • the specific signal may be transmitted with lower transmission power than the downlink signal in the license band (Licensed Band) of the LTE system 100.
  • the specific signal may be transmitted with a transmission power equal to or lower than the upper limit imposed by the shared frequency management system (e.g. GDB, SM).
  • the shared frequency management system e.g. GDB, SM
  • FIG. 17 shows a configuration example of a wireless network including the wireless communication system (i.e. LTE system) 100 according to the present embodiment.
  • the example of FIG. 17 includes two LTE systems 100A and 100B.
  • the LTE system 100A includes two eNBs 1A and 1B.
  • the eNB 1A operates the cell 11A and communicates with the UE 2A belonging to the cell 11A.
  • the eNB 1B operates the cell 11B and communicates with the UE 2B belonging to the cell 11B.
  • the operation management apparatus (OAM) 4A manages a plurality of radio stations 1 (including eNBs 1A and 1B) included in the LTE system 100A.
  • OFAM operation management apparatus
  • the LTE system 100B includes two eNBs 1C and 1D.
  • the eNB 1C operates the cell 11C and communicates with the UE 2C belonging to the cell 11C.
  • eNB1D operates cell 11D and communicates with UE2D belonging to cell 11D.
  • the operation management apparatus (OAM) 4B manages a plurality of radio stations 1 (including eNB 1C and 1D) included in the LTE system 100B.
  • the operation management devices (OAM) 4A and 4B communicate with the frequency management device (SM) 5 and receive shared frequency information from the frequency management device (SM) 5.
  • the shared frequency information indicates a usable shared frequency (i.e. at least one candidate frequency).
  • the operation management devices (OAM) 4A and 4B may receive the shared frequency information directly from the Geo-location Database (GDB) 6 without going through the frequency management device (SM) 5.
  • GDB 6 manages the usage status of the frequency band (i.e. TV band) licensed to the TV broadcasting system 200 and provides information on the secondary usable frequency band (e.g. TVWS).
  • FIG. 18 is a sequence diagram showing a specific example of a shared frequency use control procedure in the LTE system 100A according to the present embodiment.
  • FIG. 18 shows the eNB 1A, but the operation of the eNB 1B is the same as that of the eNB 1A.
  • the LTE system 100B may execute the same procedure as the LTE system 100A shown in FIG.
  • steps S101 to S104, S201, S301, and S303 to S306 in FIG. 18 may be the same as the processing in the step group having the same reference numeral shown in FIG.
  • Steps S801 and S802 in FIG. 18 are specific examples of “acquisition of candidate frequency information (step S302)” shown in FIG. That is, in step S801, the operation management apparatus (OAM) 4A transmits a request for candidate frequency information to the GDB 6. In step S802, the operation management apparatus (OAM) 4A receives notification of candidate frequency information from the GDB 6.
  • the candidate frequency information indicates at least one candidate frequency.
  • Steps S803 and S804 in FIG. 18 show processing for starting communication using the assigned frequency (i.e.WSTVWS).
  • eNB1A transmits the setting information of allocation frequency to UE2A.
  • eNB1A communicates with UE2A in the allocated frequency.
  • the procedure shown in FIG. 18 is only an example. As described with reference to FIG. 8, the timing of acquisition of candidate frequency information (S801 and S802) by the operation management apparatus (OAM) 4A may be changed as appropriate. Moreover, the operation management apparatus (OAM) 4 may voluntarily notify the eNB 1 of the candidate frequency without the eNB 1 transmitting the frequency allocation request (S301).
  • the wireless communication system 100 according to the fourth embodiment described above is an LTE system and the shared frequency is TVWS will be specifically described. That is, this embodiment shows an example in which the frequency control unit 3 is arranged integrally with the operation management apparatus (OAM) 4.
  • a configuration example of a wireless network including the LTE system 100 according to the present embodiment may be substantially the same as the configuration example of the sixth embodiment illustrated in FIG. However, the frequency control unit 3 is arranged not in the radio station (ie eNB) 1 but in the operation management device (OAM) 4.
  • FIG. 19 is a sequence diagram showing a specific example of a shared frequency use control procedure in the LTE systems 100A and 100B according to the present embodiment.
  • FIG. 19 shows the eNB 1A, but the operation of the eNB 1B is the same as that of the eNB 1A.
  • the LTE system 100B may perform the same procedure as the LTE system 100A shown in FIG.
  • the processing in the step group shown in FIG. 19 may be the same as the processing in the step group having the same symbol shown in FIG. 10 or FIG. Therefore, the detailed description regarding each step of FIG. 19 is abbreviate
  • the procedure shown in FIG. 19 is only an example. As described with reference to FIG. 10, for example, the timing of acquisition of candidate frequency information (S302) by the operation management apparatus (OAM) 4 may be changed as appropriate. Further, the operation management apparatus (OAM) 4 may spontaneously transmit the candidate frequency notification and the terminal measurement report instruction to the eNB 1 without the eNB 1 transmitting the frequency allocation request (S301).
  • the seventh embodiment described above may be modified as described below.
  • the operation management devices (OAM) 4A and 4B of each operator determine the assigned frequency from the candidate frequencies (ie TVWS).
  • the frequency management device (SM) 5 may centrally perform frequency allocation (ie frequency management) of a plurality of operator networks.
  • FIG. 20 is a sequence diagram showing a specific example of a shared frequency use control procedure in the LTE systems 100A and 100B according to the present embodiment.
  • FIG. 21 has shown about eNB1A and 1C, operation
  • FIG. 20 includes step S901.
  • the frequency management device (SM) 5 receives information on the secondary usable TVWS, that is, information on candidate frequencies, from the GDB 6.
  • FIG. 20 includes steps S902 and S903 instead of steps S801 and S802 shown in FIG.
  • the operation management apparatuses (OAM) 4A and 4B transmit the frequency allocation request to the frequency management apparatus (SM) 5 in response to receiving the frequency allocation request (S301) from the eNBs 1A and 1C.
  • the operation management devices (OAM) 4A and 4B may transfer the frequency allocation request message from the eNBs 1A and 1C to the frequency management device (SM) 5.
  • step S ⁇ b> 903 the operation management devices (OAM) 4 ⁇ / b> A and 4 ⁇ / b> B receive notification of candidate frequency information from the frequency management device (SM) 5.
  • FIG. 20 includes steps S904 to S906 instead of step S505 shown in FIG.
  • the operation management apparatuses (OAM) 4A and 4B transmit terminal measurement reports to the frequency management apparatus (SM) 5.
  • the frequency management apparatus (SM) 5 determines the allocation frequency of each of the eNBs 1A and 1C based on the terminal measurement report.
  • the frequency management device (SM) 5 transmits notifications indicating the assigned frequencies of the eNBs 1A and 1C to the management devices (OAM) 4A and 4B, respectively.
  • FIG. 20 includes step S907 instead of step S507 shown in FIG.
  • the frequency management device (SM) 5 updates the candidate frequency information in order to reflect the result of candidate frequency assignment to each of the eNBs 1A and 1C.
  • the procedure shown in FIG. 20 is only an example.
  • the timing of acquisition of candidate frequency information from the GDB 6 (S901) by the frequency management device (SM) 5 may be changed as appropriate.
  • the operation management devices (OAM) 4A and 4B may voluntarily request candidate frequencies from the frequency management device (SM) 5 without the eNB 1 transmitting a frequency allocation request (S301).
  • a network node such as the frequency management device (SM) 5 performs frequency allocation for a plurality of operator networks (or a plurality of operator systems), so Can be maintained, and an optimal operator network (or operator system) can be selected as a shared frequency allocation destination.
  • SM frequency management device
  • the seventh and eighth embodiments assuming the LTE system, the case where TVWS is used in the LTE system is used as an example.
  • the seventh and eighth embodiments can be applied to a case where there is no primary system such as the TV broadcast system 200 and a plurality of systems share a frequency.
  • the plurality of systems may be a plurality of LTE systems, or may be a system different from the LTE system.
  • the processing performed by the measurement control unit 10, the measurement unit 20, and the frequency control unit 3 (or 3A to 3D) described in the first to eighth embodiments is performed by using a semiconductor processing apparatus including an application specific integrated circuit (ASIC). It may be realized using. Further, these processes may be realized by causing a computer system including at least one processor (eg, a microprocessor, MPU, Digital Signal Processor (DSP)) to execute a program. Specifically, one or a plurality of programs including a group of instructions for causing a computer system to execute an algorithm related to the measurement control unit 10, the measurement unit 20, or the frequency control unit 3 shown in the first to eighth embodiments. And the program may be supplied to a computer.
  • a computer system including at least one processor (eg, a microprocessor, MPU, Digital Signal Processor (DSP)) to execute a program.
  • a computer system including at least one processor (eg, a microprocessor, MPU, Digital Signal Processor (DSP)) to execute a program.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • Examples of non-transitory computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), Compact Disc Read Only Memory (CD-ROM), CD- R, CD-R / W, and semiconductor memory (for example, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)).
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • Reference embodiment (reference form) is described.
  • the technical idea grasped from the reference form described below contributes to the solution of a problem different from the technical idea grasped from the first to eighth embodiments described above, and is grasped from the first to eighth embodiments. It can be implemented independently of the technical idea.
  • the wireless terminal 2 measures the shared frequency while transmitting a specific signal at the shared frequency (or candidate frequency) from 1 has been described.
  • the processing is such that the wireless terminal 2 can receive a shared frequency signal (ie, a specific signal) from the wireless station 1 with sufficient quality as compared with simple sensing, in other words, wireless communication.
  • a shared frequency signal ie, a specific signal
  • the first terminal measurement specified (or defined) by the radio access technology eg, LTE, UMTS, CDMA2000, GSM, WiMAX
  • the radio access technology eg, LTE, UMTS, CDMA2000, GSM, WiMAX
  • the second terminal measurement at the shared frequency is not essential to perform the second terminal measurement at the shared frequency using the terminal measurement procedure.
  • the “process in which the wireless terminal 2 performs the second terminal measurement at the shared frequency while transmitting the specific signal at the shared frequency from the wireless station 1” described in the second to eighth embodiments is the first process.
  • the above-described effects are also obtained when the second terminal measurement uses a different terminal measurement procedure.
  • the reference form including “a process in which the wireless terminal 2 performs the second terminal measurement at the shared frequency while transmitting a specific signal at the shared frequency from the wireless station 1” can be described as, for example, the following supplementary note: .
  • a wireless communication system comprising a wireless station and at least one wireless terminal communicating with the wireless station, The at least one wireless terminal performs a first terminal measurement at a first frequency licensed to the wireless communication system and at a second frequency shared by a plurality of wireless systems including the wireless communication system. Operate to perform a second terminal measurement; The wireless station operates to transmit a specific signal on the shared frequency when the second terminal measurement is performed.
  • Wireless communication system (Appendix 2) The wireless communication system according to appendix 1, wherein the specific signal does not include a data channel signal for transmitting user data. (Appendix 3) The wireless communication system according to attachment 2, wherein the specific signal includes at least one of a pilot signal, a reference signal, and a synchronization signal.
  • the specific signal is transmitted in at least one of a temporary operation period, a preparation period, and a test period for determining whether to use the shared frequency in communication between the wireless station and the at least one wireless terminal.
  • the wireless communication system according to any one of appendices 1 to 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Transceivers (AREA)

Abstract

 一実施形態では、無線端末(2)は、無線通信システム(100)で使用され、無線局(1)と通信を行う。無線端末(2)は、測定部(20)を含む。測定部(20)は、無線通信システム(100)に適用される無線アクセス技術に対応する第1の端末測定を実行するための端末測定プロシージャを利用して、無線通信システム(100)を含む複数の無線システムで共用される共用周波数における第2の端末測定を実行するよう動作する。これにより、この実施形態は、複数の無線システムで共用される共用周波数(e.g. TVWS)を無線通信システムが使用する際に、無線端末がサポートするべき測定機能の簡素化に寄与する。

Description

無線端末、無線局、無線通信システム、及びこれらに実装される方法
 本発明は、無線通信システムによる共用周波数の使用制御に関する。
 周囲の無線環境を認知し、その無線環境に応じて通信パラメータの最適化を行うコグニティブ無線が知られている。コグニティブ無線の例として、複数の無線システムが周波数帯域を共用するケースを挙げることができる。例えば、ある無線システム(プライマリシステムと呼ばれる)が優先的に利用可能な周波数帯域を他の無線システム(セカンダリシステムと呼ばれる)が二次利用するケースがある。Institute of Electrical and Electronic Engineers(IEEE)802.22では、プライマリシステムとしてのTV放送システムにライセンスされた周波数帯域(TVチャネル)を二次利用するセカンダリシステムとしての地域無線ネットワーク(Wireless Regional Area Network:WRAN)の標準化が議論されている。
 プライマリシステムにライセンスされた周波数帯域をセカンダリシステムが二次利用する際、セカンダリシステムは、プライマリシステムが提供するサービスに影響を及ぼさないようにする必要がある。したがって、セカンダリシステムは、プライマリシステムへの干渉を回避するために、プライマリシステムによって時間的若しくは空間的に使用されていない周波数帯域を使用するか、又はプライマリシステムに与える干渉が許容レベルを下回るように送信電力を調整する(例えば特許文献1を参照)。
 コグニティブ無線の一例として、プライマリシステムがTV放送システムであり、セカンダリシステムがセルラシステムである場合を想定した検討が盛んに行われている。なお、TV放送システムで時間的又は空間的に使用されていない周波数帯域は、TVホワイトスペース(White Space:WS)と呼ばれる(例えば非特許文献1を参照)。
 未使用の周波数帯域を特定するためのコグニティブ無線技術として、Geo-location Database(GDB)、周波数センシング、及びビーコン(又はCognitive Pilot Channel (CPC))が知られている。これらのうち2つ以上、例えばGDBと周波数センシング、又はGDBとビーコン、が組み合わせて用いられる場合もある。GDBは、地理的位置に応じた共用周波数帯域(e.g. TV band)の使用状況、又は二次利用可能な(つまり未使用の)周波数帯域(e.g. TVWS)の情報を提供する。
 例えば、セルラシステムであるLong Term Evolution(LTE)システムへのTVWSの割り当ては、以下の手順で実行される。
(1)LTEシステムの運用管理装置がTVWSの利用を希望する基地局(i.e. evolved Node B (eNB))の情報をGDBに通知する。運用管理装置は、運用管理システム、Operation Administration and Maintenance (OAM)システム、又はCentral Control Pointとも呼ばれる。基地局情報は、例えば、基地局の地理的位置およびアンテナ高を示す情報を含む。
(2)GDBは、基地局情報、周波数帯域、及び伝播損の計算式に基づいて、二次利用可能な少なくとも1つの候補周波数を決定し、これを運用管理装置に提供する。
(3)運用管理装置は、GDBから通知された少なくとも1つの候補周波数の情報を基地局に転送する。
(4)基地局は、自セルに帰属する無線端末(i.e. User Equipment(UE))による候補周波数のセンシング結果に基づいて、少なくとも1つの候補周波数の中から自セルで使用する周波数(以下、割り当て周波数)を選択する。例えば、基地局は、無線端末により測定された干渉電力が最も小さい候補周波数を、自セルで使用する割り当て周波数として選択する。
(5)基地局は、選択した割り当て周波数を使用して通信サービスを提供する。
特開2011-166721号公報
 上述したLTEシステムへのTVWSの割り当て例では、無線端末(UE)がコグニティブ無線に関する周波数センシング機能をサポートしなければならない。つまり、無線端末(UE)は、LTE仕様によって要求されているダウンリンク信号の測定機能(又は測定手順(procedure))に加えて、コグニティブ無線に関する周波数センシング機能(又はセンシング手順)をサポートしなければならない。このことは、無線端末(UE)のハードウェア又はソフトウェアの規模の増大または複雑化を招くおそれがある。
 本発明の目的の1つは、複数の無線システムで共用される共用周波数(e.g. TVWS)を無線通信システムが使用する際に、無線端末がサポートするべき測定機能の簡素化に寄与することが可能な無線端末、無線局、無線通信システム、これらに実装される方法、及びプログラムを提供することである。
 第1の態様では、無線通信システムで使用され、無線局と通信を行う無線端末が提供される。前記無線端末は、測定部を含む。前記測定部は、前記無線通信システムに適用される無線アクセス技術に対応する第1の端末測定を実行するための端末測定プロシージャを利用して、前記無線通信システムを含む複数の無線システムで共用される共用周波数における第2の端末測定を実行するよう動作する。
 第2の態様では、無線通信システムで使用され、少なくとも1つの無線端末と通信を行う無線局が提供される。前記無線局は、測定制御部を含む。前記測定制御部は、前記無線通信システムに適用される無線アクセス技術に対応する第1の端末測定を制御するための端末測定プロシージャを利用して、前記無線通信システムを含む複数の無線システムで共用される共用周波数における第2の端末測定を制御するよう動作する。
 第3の態様では、無線通信システムは、無線局及び前記無線局と通信する少なくとも1つの無線端末を含む。前記少なくとも1つの無線端末は、前記無線通信システムに適用される無線アクセス技術に対応する第1の端末測定を実行するための端末測定プロシージャを利用して、前記無線通信システムを含む複数の無線システムで共用される共用周波数における第2の端末測定を実行するよう動作する。
 第4の態様では、無線通信システムで使用され、無線局と通信を行う無線端末に実装される方法が提供される。当該方法は、前記無線通信システムに適用される無線アクセス技術に対応する第1の端末測定を実行するための端末測定プロシージャを利用して、前記無線通信システムを含む複数の無線システムで共用される共用周波数における第2の端末測定を実行することを含む。
 第5の態様では、無線通信システムで使用され、少なくとも1つの無線端末と通信を行う無線局に実装される方法が提供される。当該方法は、前記無線通信システムに適用される無線アクセス技術に対応する第1の端末測定を制御するための端末測定プロシージャを利用して、前記無線通信システムを含む複数の無線システムで共用される共用周波数における第2の端末測定を制御することを含む。
 第6の態様では、上述した第4の態様に係る方法をコンピュータに行わせるためのプログラムが提供される。
 第7の態様では、上述した第5の態様に係る方法をコンピュータに行わせるためのプログラムが提供される。
 上述した各態様によれば、複数の無線システムで共用される共用周波数(e.g. TVWS)を無線通信システムが使用する際に、無線端末がサポートするべき測定機能の簡素化に寄与することが可能な無線端末、無線局、無線通信システム、これらに実装される方法、及びプログラムを提供できる。
第1の実施形態に係る無線通信システムの構成例を示す図である。 第1の実施形態に係る無線通信システムにおける共用周波数の使用制御手順の具体例を示すシーケンス図である。 第1の実施形態に係る無線通信システムの他の構成例を示す図である。 第1の実施形態に係る無線通信システムの他の構成例を示す図である。 第1の実施形態に係る無線通信システムの他の構成例を示す図である。 第2の実施形態に係る無線通信システムにおける共用周波数の使用制御手順の具体例を示すシーケンス図である。 第3の実施形態に係る無線通信システムを含む無線ネットワークの構成例を示す図である。 第3の実施形態に係る無線通信システムにおける共用周波数の使用制御手順の具体例を示すシーケンス図である。 第3の実施形態に係る無線局による共用周波数の使用制御に関する動作の一例を示すフローチャートである。 第4の実施形態に係る無線通信システムにおける共用周波数の使用制御手順の具体例を示すシーケンス図である。 第4の実施形態に係る無線局による共用周波数の使用制御に関する動作の一例を示すフローチャートである。 第4の実施形態に係る運用管理装置(OAM)による共用周波数の使用制御に関する動作の一例を示すフローチャートである。 第5の実施形態に係る無線通信システムにおける共用周波数における端末測定プロシージャの具体例を示すシーケンス図である。 第5の実施形態に係る無線端末による測定の第1の具体例を示す図である。 第5の実施形態に係る無線端末による測定の第2の具体例を示す図である。 第5の実施形態に係る無線端末による測定の第3の具体例を示す図である。 第6の実施形態に係る無線通信システムを含む無線ネットワークの構成例を示す図である。 第6の実施形態に係る無線通信システムにおける共用周波数の使用制御手順の具体例を示すシーケンス図である。 第7の実施形態に係る無線通信システムにおける共用周波数の使用制御手順の具体例を示すシーケンス図である。 第8の実施形態に係る無線通信システムにおける共用周波数の使用制御手順の具体例を示すシーケンス図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
<第1の実施形態>
 図1は、本実施形態に係る無線通信システム100の構成例を示している。無線通信システム100は、セルラシステム(e.g. LTEシステム、Universal Mobile Telecommunications System(UMTS)、CDMA2000システム(EV-DO、1xRTT、HPRD)、又はGlobal System for Mobile Communications (GSM)システム)であってもよい。また、無線通信システム100は、非セルラシステム(e.g. WiMAXシステム、無線Local Area Network(LAN)システム)であってもよい。
 無線通信システム100は、無線局1、無線端末2、及び周波数制御部3を含む。無線局1は、セル11を運用し、セル11に帰属する無線端末2と通信する。無線局1は、例えば、基地局、中継局(Relay Node(RN))、又はアクセスポイントと呼ばれる。無線端末2は、例えば、移動局、User Equipment(UE)、又はWireless Transmit/Receive Unit(WTRU)と呼ばれる。セル11は、無線局1のカバレッジエリアを意味する。セル11は、セクタ・セルであってもよい。
 周波数制御部3は、無線通信システム100を含む複数の無線システムで共用される共用周波数の無線局1による使用を制御するよう動作する。周波数制御部3は、例えば、無線局1による共用周波数の使用可否を決定してもよい。また、周波数制御部3は、無線局1と無線端末2の間の通信のために共用周波数を使用するか否かを決定してもよい。また、周波数制御部3は、共用周波数を含む候補周波数の中から無線局1の割り当て周波数を決定してもよい。割り当て周波数は、無線局1と無線端末2の間の通信に使用される周波数である。
 共用周波数は、例えばTVWSのように、プライマリシステムにライセンスされた周波数帯域であってもよい。この場合、セカンダリシステムとしての無線通信システム100は、例えば、共用周波数がプライマリシステムによって時間的又は空間的に使用されていない場合に共用周波数を二次利用することができる。言い換えると、無線通信システム100は、無線通信システム100にライセンスされた周波数を利用できるだけでなく、無線通信システム100にライセンスされていない共用周波数(e.g. TVWS)を二次利用することができる。なお、プライマリシステムは存在しなくてもよい。この場合、共用周波数は、複数の無線通信システム、例えば、異なるオペレータによって運用される複数の無線通信システムによって平等に共用されてもよい。複数の無線通信システムは、同じ無線アクセス技術(e.g. LTE)を用いるシステムのみを含んでもよいし、異なる無線アクセス技術(e.g. LTE、CDMA2000、GSM、WiMAX)を用いるシステムを含んでもよい。
 既に述べたように、無線通信システム100においてTVWSのような共用周波数をするためには、無線端末2がコグニティブ無線に関する周波数センシング機能をサポートしなければならない。このことは、無線端末2のハードウェア又はソフトウェアの規模の増大または複雑化を招くおそれがある。
 この問題に対処するため、本実施形態では、無線端末2は測定部20を有する。測定部20は、無線通信システム100に適用される無線アクセス技術(e.g. LTE、CDMA2000、GSM、WiMAX)により定義される第1の端末測定を実行するために無線端末2に実装された端末測定プロシージャを利用して、共用周波数における第2の端末測定を実行するよう動作する。第2の端末測定の結果は、周波数制御部3に供給され、無線局1による共用周波数の使用を制御するために用いられる。
 一方、無線局1は、上述した第1及び第2の端末測定を無線端末2と協調して行うために、測定制御部10を有する。測定制御部10は、上述した第1及び第2の端末測定を制御するよう動作する。
 第1の端末測定は、少なくとも無線通信システム100にライセンスされた周波数(i.e. ライセンスバンド)の無線特性を測定することを含む。第1の端末測定は、無線通信システム100に適用される無線アクセス技術(e.g. LTE、UMTS、CDMA2000、GSM、WiMAX)に対応する端末測定プロシージャを用いて行われる。言い換えると、第1の端末測定は、無線通信システム100に適用される無線アクセス技術によって規定(又は定義)される端末測定プロシージャを用いて行われる。端末測定プロシージャは、一般的に、無線局1と無線端末2の間のシグナリングを含む。例えば、無線局1は、所定の要求メッセージを用いて無線端末2に端末測定報告を要求する。要求メッセージは、例えば、測定すべき周波数、報告されるべき測定項目、及び測定期間のうち少なくとも1つを指定する。無線端末2は、要求メッセージに従って、指定された周波数に対する測定を実行する。そして、無線端末2は、測定結果を示す端末測定報告を無線局1に送信する。端末測定報告は、例えば、以下の(a)~(e)のうち少なくとも1つを含む。
(a)共用周波数における無線通信システム100の信号の受信電力又は受信強度;
(b)共用周波数における無線通信システム100の信号の受信品質;
(c)共用周波数における無線通信システム100の通信路品質;
(d)共用周波数に関する情報(e.g. 好ましい周波数、優先度);及び
(e)共用周波数におけるプライマリシステムの信号の受信電力又は受信強度。
 なお、第1の端末測定および端末測定プロシージャは、一般的に、複数のライセンスバンドの測定をサポートする。例えば、端末測定プロシージャは、複数のライセンスバンドの測定のために、異周波数間測定(inter-frequency measurement)プロシージャを含む。あるいは、端末測定プロシージャは、無線局1によってプライマリセル及びセカンダリセルが無線端末2に設定されている間のセカンダリセルを測定するためのプロシージャを含んでもよい。プライマリセル及びセカンダリセルは、互いに異なるライセンスバンドを使用する。無線局1がプライマリセル及びセカンダリセルを含む複数セルを運用する形態は、例えば、キャリアアグリゲーション(Carrier Aggregation(CA))、又はデュアルセル運用(dual-cell operation)と呼ばれる。
 また、端末測定プロシージャは、無線端末2が無線局1と無線接続中に1つ以上のライセンスバンドの測定を行い、測定結果と無線端末2の位置情報とを無線局1に報告するためのプロシージャを含んでもよい。また、端末測定プロシージャは、無線端末2が無線局1と無線接続していない期間に1つ以上のライセンスバンドの測定を行い、測定結果と無線端末2の位置情報とをログとして保存し、無線局1と無線接続中に無線局1にログを報告するためのプロシージャなどを含んでも良い。前者のプロシージャは、例えば、即時MDT(Immediate Minimization of Drive Test)、後者のプロシージャは、例えば、ログMDT(Logged MDT)と呼ばれる(非特許文献2を参照)。
 測定制御部10及び測定部20は、上述した第1の端末測定のための端末測定プロシージャを利用して、共用周波数における第2の端末測定を実行する。例えば、測定制御部10及び測定部20は、ライセンスバンドを測定するための異周波数間測定プロシージャを、非ライセンスバンド(あるいは、専有できる周波数としてはライセンスされてない周波数バンド)である共用周波数の測定に適用してもよい。また、測定制御部10及び測定部20は、キャリアアグリゲーション(又はデュアルセル運用)におけるセカンダリセル測定プロシージャを共用周波数の測定に適用してもよい。
 図2は、本実施形態における共用周波数の使用制御手順の具体例を示すシーケンス図である。ステップS101では、無線端末2は無線局1の指示に従い、共用周波数の無線特性を取得するために、端末測定プロシージャを実行する。図2の例では、端末測定プロシージャは、ステップS102~S104を含む。ステップS102では、無線局1は、共用周波数における端末測定報告指示を無線端末2に送信する。端末測定報告指示は、例えば、ライセンスバンドにおいて利用可能な制御チャネル又はデータチャネルを用いて送信される。ステップS103では、無線端末2は、端末測定報告指示に従って共用周波数を測定する。ステップS104では、無線端末2は、共用周波数における測定結果を含む端末測定報告を無線局1に送信する。端末測定報告は、例えば、ライセンスバンドにおいて利用可能な制御チャネル又はデータチャネルを用いて送信される。
 ステップS105では、無線局1は、端末測定報告を周波数制御部3に送信する。なお、周波数制御部3が無線局1と一体的に配置される場合にはステップS105は省略されてもよい。ステップS106では、周波数制御部3は、共用周波数における測定結果を含む端末測定報告に基づいて、無線局1による共用周波数の使用を制御する。
 図2に示した端末測定プロシージャ(S101)は、例えば、周期的に実行されてもよいし、非周期的に実行されてもよい。非周期的な端末測定プロシージャ(S101)の実行は、例えば、運用管理装置(OAM)、周波数管理装置、又はGDBからの要求にトリガーされてもよい。周波数管理装置は、Spectrum Manager(SM)、周波数管理システム、又はCentral Control Pointとも呼ばれる。また、無線局1は、所定の条件を満たした場合に自発的に端末測定プロシージャ(S101)を開始してもよい。また、端末測定プロシージャ(S101)は、共用周波数に含まれる複数の候補周波数(部分周波数)について同時に実行されてもよいし、1つの候補周波数毎に実行されてもよい。
 また、本実施形態で述べた周波数制御部3は、無線局1への割り当て周波数の見直し(更新)手順を行なってもよい。また、周波数制御部3は、割り当て周波数の解放手順(つまり、無線局1による共用周波数の使用を停止する手順)を実行してもよい。周波数制御部3は、例えば、共用周波数の使用に関する所定の条件を満たさなくなった場合に(言い換えると、所定の解放条件を満たした場合に)、無線局1による共用周波数の使用を停止してもよい。
 また、周波数制御部3は、無線局1による共用周波数の使用の制御、例えば共用周波数を使用するかどうかの判定や、共用周波数の使用を許可するかどうかの判定を行うために、端末測定報告とは異なる他の条件を考慮してもよい。例えば、周波数制御部3は、無線局1の地理的位置を考慮してもよい。具体的には、周波数制御部3は、無線局1の地理的位置が共用周波数の使用が許可されるエリア内であるか否かを判定してもよい。また、周波数制御部3は、無線局1が使用可能な周波数を考慮してもよい。具体的には、周波数制御部3は、無線局1の使用可能な周波数範囲に共用周波数が含まれるか否かを判定してもよい。また、周波数制御部3は、無線局1のダウンリンク送信電力の最大値又は最小値を考慮してもよい。
 上述したように、本実施形態では、無線局1及び無線端末2は、無線通信システム100に適用される無線アクセス技術(e.g. LTE、UMTS、CDMA2000、GSM、WiMAX)により規定(又は定義)される第1の端末測定を実行するための端末測定プロシージャを利用して、共用周波数における第2の端末測定を実行するよう動作する。したがって、無線端末2は、共用周波数の測定のために追加の測定プロシージャをサポートする必要がない。従って、本実施形態は、複数の無線システムで共用される共用周波数(e.g. TVWS)を無線通信システム100が使用する際に、無線端末2がサポートするべき測定機能の簡素化に寄与することができる。
 ところで、周波数制御部3の配置は、ネットワークアーキテクチャの設計思想に基づいて、又は無線通信規格に応じて、適宜決定されるものである。例えば、図3に示すように、周波数制御部3は、無線局1と一体的に配置されてもよい。この場合、無線局1は、例えば、以下の手順で共用周波数の使用を決定すればよい。まず、周波数制御部3を有する無線局1は、共用周波数の割り当て要求を図示されていない運用管理装置(OAM)に送信する。次に、無線局1は、運用管理装置(OAM)から少なくとも1つの候補周波数を示す通知を受信する。各候補周波数は、共用周波数に含まれる未使用の部分帯域とすればよい。そして、無線局1は、少なくとも1つの候補周波数の中から無線局1で使用される"割り当て周波数"を決定する。最後に、無線局1は、選択した割り当て周波数を示す報告(割り当て周波数報告)を運用管理装置に送信する。
 また、図4に示すように、周波数制御部3は、運用管理装置(OAM)4と一体的に配置されてよい。この場合、運用管理装置4は、例えば、以下の手順で無線局1による共用周波数の使用を決定すればよい。まず、運用管理装置4は、共用周波数の割り当て要求を無線局1から受信する。次に、運用管理装置4は、端末測定報告の要求を無線局1に送信し、無線局1から返信される端末測定報告を受信する。そして、運用管理装置4は、受信した端末測定報告を用いて、無線局1への"割り当て周波数"を決定する。最後に、運用管理装置4は、決定した"割り当て周波数"を無線局1に通知する。
 また、図5に示すように、周波数制御部3は、周波数管理装置5と一体的に配置されてもよい。周波数管理装置5は、Spectrum Manager(SM)、又は周波数管理システムとも呼ばれる。周波数管理装置5は、無線通信システム100を含む複数の無線システムに対する共用周波数の割り当てを管理する。複数の無線システムは、典型的には、異なるオペレータによって運用されるシステムを含む。
<第2の実施形態>
 本実施形態では、第1の実施形態の変形例について説明する。本実施形態に係る無線通信システム100の構成例は、図1、3、4、又は5に示した第1の実施形態の構成と同様とすればよい。
 図6は、本実施形態に係る無線通信システム100における共用周波数の使用制御手順の具体例を示すシーケンス図である。図6と図2の比較から明らかであるように、図6はステップS201を含む。ステップS201では、無線局1は、無線端末2による第2の端末測定のために、共用周波数において特定信号を送信する。特定信号は、所定期間または所定タイミングまで送信され、少なくとも無線端末2による共用周波数の測定(ステップS103)が行われる間に送信される。言い換えると、特定信号は、無線局1と無線端末2の間の通信における共用周波数の使用が周波数制御部3によって正式に許可される前に、試験的に送信される。したがって、特定信号は、テスト信号又はトレーニング信号と呼ぶこともできる。ここで、特定信号が送信される所定期間は、共用周波数を使用するための仮運用期間、準備期間、又はテスト期間と呼ぶことができる。仮運用期間は、共用周波数を使用するか否かを決定する為の期間、または共用周波数を使用可能か否かを決定する為の期間である。また、特性信号の送信の基準となる所定タイミングとは、共用周波数の使用を決定する時点、または共用周波数の使用を更新する時点、などが考えられる。
 特定信号は、無線局1と無線端末2の間の通常の通信において送信される無線信号に比べて制約が課されてもよい。例えば、特定信号は、ユーザーデータを送信するためのデータチャネル信号を含まなくてもよい。つまり、特定信号は、データチャネル信号を含まずに、パイロット信号、参照信号、及び同期信号のうち少なくとも1つを含んでもよい。
 特定信号の送信電力に対して制約が課されてもよい。例えば、特定信号は、無線通信システム100にライセンスされた周波数(i.e. ライセンスバンド)におけるダウンリンク信号に比べて低い送信電力で送信されてもよい。また、特定信号は、共用周波数の管理システムによって課された上限値以下の送信電力で送信されてもよい。ここで、共用周波数の管理システムは、例えば、周波数管理装置5、又はGeo-location Database(GDB)である。
 図6のステップS101~S106における処理は、図2に示した同一符号のステップ群における処理と同様とすればよい。なお、ステップS102における測定報告指示は、無線局1から送信される特定信号の設定情報を含んでもよい。
 以上に述べたように、本実施形態は、無線局1から共用周波数内の特定信号を送信しながら、無線端末2が第2の端末測定を行う。したがって、無線端末2は、共用周波数における第2の端末測定において、無線局1から送信された特定信号の受信電力又は受信品質を測定することがきる。これにより、以下に述べる利点がある。すなわち、無線端末2が単なるセンシング、つまり他の無線システム(e.g. プライマリシステム)からの干渉電力の測定、を行うだけでは、無線通信システム100に適した周波数の決定に不十分であるおそれがある。なぜなら、無線通信システム100が共用周波数を使用したときの通信品質(e.g. スループット)は、無線局1から送信される共用周波数信号の無線端末2における受信電力又は受信品質に依存するためである。したがって、単なるセンシングは、無線通信システム100が共用周波数を使用したときの通信品質が十分であることを保証できない。これに対して、本実施形態は、無線端末2が無線局1からの共用周波数信号(i.e. 特定信号)を十分な品質で受信できること、言い換えると無線通信システム100が共用周波数を効果的に利用できること、を保証できる。
<第3の実施形態>
 本実施形態では、第1及び第2の実施形態で説明した周波数制御部3の配置、及び無線局1への共用周波数の割り当て手順の具体例について説明する。具体的には、本実施形態は、周波数制御部3が無線局1と一体的に配置される例を示す。
 図7は、本実施形態に係る無線通信システム100を含む無線ネットワークの構成例を示している。図7の例では、運用管理装置(OAM)4は、複数の無線局1を管理する。運用管理装置(OAM)4は、周波数管理装置(SM)5と通信し、共用周波数情報を周波数管理装置(SM)5から受信する。共用周波数情報は、使用可能な共用周波数(i.e. 少なくとも1つの候補周波数)を示す。なお、運用管理装置(OAM)4は、周波数管理装置(SM)5を介さずにGeo-location Database(GDB)から直接的に共用周波数情報を受信してもよい。
 図8は、本実施形態に係る無線通信システム100における共用周波数の使用制御手順の具体例を示すシーケンス図である。ステップS301では、無線局1は、周波数割り当て要求を運用管理装置(OAM)4に送信する。ステップS302では、運用管理装置(OAM)4は、共用周波数のうち割当可能な候補周波数の情報を取得する。運用管理装置(OAM)4は、周波数管理装置(SM)5又はGDBから候補周波数の情報を受信すればよい。ステップS303では、運用管理装置(OAM)4は、少なくとも1つの候補周波数を示す通知を無線局1に送信する。
 図8のステップS201並びにS101~S104における処理は、図6に示した同一符号のステップ群における処理と同様である。つまり、無線局1及び無線端末2は、無線局1から共用周波数(ここでは候補周波数)における特定信号を送信しながら、共用周波数(候補周波数)における第2の端末測定を行う。第2の端末測定は、無線通信システム100に適用される無線アクセス技術(e.g. LTE、UMTS、CDMA2000、GSM、WiMAX)により規定(又は定義)される端末測定プロシージャを用いて行われる。なお、候補周波数が複数である場合、無線局1及び無線端末2は、各候補周波数について第2の端末測定を行えばよい。
 ステップS304では、無線局1は、各候補周波数における端末測定結果に基づいて、少なくとも1つの候補周波数の中から無線局1で使用される"割り当て周波数"を決定する。具体的には、無線局1は、他の無線システムからの低い干渉電力、及び特定信号の高い受信品質が測定された候補周波数を"割り当て周波数"として選択すればよい。
 ステップS305では、無線局1は、選択した"割り当て周波数"を示す報告を運用管理装置(OAM)4に送信する。なお、いずれの候補周波数も割り当て周波数の決定条件を満たさなかった場合、無線局1は、周波数割り当てを行わないことを示す報告を運用管理装置(OAM)4に送信すればよい。ステップS306では、運用管理装置(OAM)4は、無線局1からの報告に基づいて、候補周波数の情報を更新する。ただし、ステップS306は省略されてもよい。
 図8に示した手順は、一例に過ぎない。例えば、運用管理装置(OAM)4による候補周波数情報の取得(S302)は、図8の手順に先立って予め行われてもよい。また、無線局1が周波数割り当て要求(S301)を送信することなく、運用管理装置(OAM)4が自発的に無線局1に候補周波数を通知してもよい。
 図9は、無線局1による共用周波数の使用制御に関する動作の一例を示すフローチャートである。ステップS401では、無線局1は、共用周波数の割り当てが必要であるか否かを判定する。無線局1は、例えば、ライセンスバンドでのセル11の負荷(e.g. 通信量、無線端末数など)が所定の基準を超えた場合に追加の共用周波数が必要であると判定すればよい。ステップS402は、図8のステップS301に対応する。すなわち、ステップS402では、無線局1は、周波数割り当て要求を運用管理装置(OAM)4に送信する。
 ステップS403は、図8のステップS303に対応する。すなわち、ステップS403では、無線局1は、候補周波数通知を受信したか否かを判定する。ステップS404は、図8のステップS203に対応する。すなわち、無線局1は、候補周波数通知を受信した場合に(ステップS403でYES)、候補周波数における特定信号を送信する。ステップS405及びS406は、図8に示された端末測定プロシージャ(S101)に対応する。すなわち、無線局1は、候補周波数における特定信号を送信している間に、候補周波数での端末測定報告指示を無線端末2に送信し、無線端末2から返信される端末測定報告を受信する。
 ステップS407は、図8のステップS304に対応する。すなわち、ステップS407では、無線局1は、端末測定報告に基づいて、少なくとも1つの候補周波数の中から自セル11Aの"割り当て周波数"を決定する。
 ステップS408は、図8のステップS305に対応する。すなわち、ステップS308では、無線局1Aは、割り当て周波数報告を運用管理装置(OAM)4に送信する。割り当て周波数報告は、割り当て周波数として決定した候補周波数を示すか、又は周波数割り当てを行わないことを示す。
 第1の実施形態で述べたのと同様に、周波数制御部3は、割り当て周波数の解放手順(つまり、無線局1による共用周波数の使用を停止する手順)を実行してもよい。
 また、運用管理装置(OAM)4は、無線局1に候補周波数を通知する際に、特定信号に関する制約条件(e.g. 送信する信号種別、送信電力設定)を無線局1に通知してもよい。また、用管理装置(OAM)4は、無線局1による第2の端末測定を行うべき時間、又は無線局1から特定信号を送信してもよいタイミング又は期間などを無線局1に通知してもよい。また、運用管理装置(OAM)4は、無線局1に候補周波数を通知する際に、ダウンリンク送信電力の上限値を通知してもよい。また、運用管理装置(OAM)4は、候補周波数の使用可能期限を示す絶対時刻又は相対時刻を無線局1に通知してもよい。これらは、候補周波数間で共通でもよいし、異なっていてもよい。
<第4の実施形態>
 本実施形態では、第1の実施形態で説明した周波数制御部3の配置、及び無線局1への共用周波数の割り当て手順の具体例について説明する。具体的には、本実施形態は、周波数制御部3が運用管理装置(OAM)4と一体的に配置される例を示す。なお、本実施形態に係る無線通信システム100を含む無線ネットワークの構成例は、図7に示した第2の実施形態の構成例と概ね同様とすればよい。ただし、周波数制御部3は、無線局1ではなく運用管理装置(OAM)4に配置される。
 図10は、本実施形態に係る無線通信システム100における共用周波数の使用制御手順の具体例を示すシーケンス図である。図10のステップS301、S302、S201、並びにS101~S104における処理は、図8に示した同一符号のステップ群における処理と同様とすればよい。
 図10のステップS503では、運用管理装置(OAM)4は、候補周波数通知に加えて、端末測定報告の指示を無線局1A及び1Bに送信する。なお、候補周波数通知と端末測定報告指示は、別々のメッセージであってもよい。また、端末測定報告指示は、明示的に送信されなくてもよい。例えば、候補周波数通知は、それに示された候補周波数における端末測定報告の指示をも意味することが予め規定されてもよい。
 ステップS504では、運用管理装置(OAM)4からの端末測定報告指示に応答して、無線局1は、運用管理装置(OAM)4に端末測定報告を送信する。ステップS505では、運用管理装置(OAM)4は、無線局1Aの割り当て周波数を決定する。言い換えると、運用管理装置(OAM)4は、無線局1について共用周波数を使用するか否か(又は、無線局1による共用周波数の使用を許可するか否か)を判定する。ステップS505の判定では、端末測定報告が考慮される。
 ステップS506では、運用管理装置(OAM)4は、無線局1に対して、決定した割り当て周波数を通知する。なお、いずれの候補周波数についても条件を満たさない場合、運用管理装置(OAM)4は、周波数割り当てを行わないことを無線局1に通知する。ステップS507では、運用管理装置(OAM)4は、候補周波数の情報を更新する。ただし、ステップS507は省略されてもよい。
 図10に示した手順は、一例に過ぎない。図8に関して述べたのと同様に、例えば、運用管理装置(OAM)4による候補周波数情報の取得(S302)のタイミングは、適宜変更されてもよい。また、無線局1が周波数割り当て要求(S301)を送信することなく、運用管理装置(OAM)4が自発的に無線局1に候補周波数通知及び端末測定報告指示を送信してもよい。
 図11は、無線局1による共用周波数の使用制御に関する動作の一例を示すフローチャートである。図11のステップS401、S402、並びにS404~S406における処理は、図9に示した同一符号のステップ群における処理と同様とすればよい。
 図11のステップS603は、図10のステップS503に対応する。すなわち、ステップS603では、無線局1は、候補周波数通知および端末測定報告指示を受信したか否かを判定する。これらを受信した場合(ステップS603でYES)、無線局1は、特定信号を送信しながら候補周波数における端末測定を制御する(ステップS404~S406)。
 図11のステップS607及びS608は、図10のステップS504及びS505に対応する。すなわち、無線局1Aは、端末測定報告を運用管理装置(OAM)4に送信する(ステップS607)。そして、ステップS608では、無線局1は、割り当て周波数の通知を受信したか否かを判定する。割り当て周波数の通知を受信した場合(ステップS608でYES)、無線局1は、割り当て周波数を用いてセル11Aを設定し、無線端末2との通信を開始すればよい。
 図12は、運用管理装置(OAM)4による共用周波数の使用制御に関する動作の一例を示すフローチャートである。ステップS701は、図10のステップS301に対応する。すなわち、運用管理装置(OAM)は、無線局1から周波数割り当て要求を受信したか否かを判定する(ステップS301)。ステップS702及びS703は、図10のステップS503及びS504に対応する。すなわち、運用管理装置(OAM)4は、候補周波数通知および端末測定報告指示を送信する(ステップS702)。そして、運用管理装置(OAM)4は、端末測定報告を受信したか否かを判定する(ステップS703)。
 図12のステップS704~S706は、図10のステップS505~S507に対応する。すなわち、ステップS704では、運用管理装置(OAM)4は、無線局1から受信した端末測定報告に基づいて、少なくとも1つの候補周波数の中から無線局1に対する "割り当て周波数"を決定する。ステップS705では、運用管理装置(OAM)4は、割り当て周波数通知を無線局1に送信する。そして、ステップS706では、運用管理装置(OAM)4は、無線局1に対する候補周波数の割り当てに応じて、候補周波数の情報を更新する。
<第5の実施形態>
 本実施形態では、上述した第1~第4の実施形態に係る無線通信システム100がLTEシステムである場合について具体的に説明する。無線通信システム100がLTEシステムである場合、無線局1は"無線基地局(i.e. eNB)"に対応し、無線端末2は"UE"に対応する。そして、第1~第4の実施形態で説明した端末測定プロシージャは、UE測定プロシージャ(UE measurement procedure)と呼ぶことができる。
 本実施形態では、端末測定報告は、例えば、以下の(1a)~(1e)のうち少なくとも1つを含んでもよい。
(1a)共用周波数におけるLTEシステム100の信号の受信電力(Reference Signal Received Power(RSRP))又は受信強度(Received Signal Strength Indicator(RSSI));
(1b)共用周波数における無線通信システム100の信号の受信品質(Reference Signal Received Quality(RSRQ));
(1c)共用周波数におけるLTEシステム100の通信路品質(Channel Quality Indicator(CQI)又はChannel State Information(CSI));
(1d)共用周波数に関する情報(e.g. 好ましい周波数、優先度);及び
(1e)共用周波数におけるプライマリシステムの信号の受信電力(Received Interference Power)又は受信強度力(Received Interference Signal Strength)。
 また、本実施形態では、eNB1は、UE2への端末測定報告指示を"RRC Connection Reconfiguration"によって送信してもよい。また、UE2は、eNB1への端末測定報告を"(UE) Measurement Report"として送信してもよい。
 図13は、本実施形態における端末測定プロシージャの具体例を示すシーケンス図である。図13のステップS902では、eNB1は、"RRC Connection Reconfiguration"メッセージをUE2に送信する。ステップS903では、UE2は、"RRC Connection Reconfiguration"によって示される端末測定の設定情報(Measurement Configuration)に従って、共用周波数における測定を実行する。ステップS903では、UE2は、 共用周波数での測定結果を示す"(UE) Measurement Report"をeNB1に送信する。
 また、本実施形態では、共用周波数における第2の端末測定を行うための端末測定プロシージャは、例えば以下の(2a)~(2e)のうち少なくとも1つを含んでもよい。
(2a)異周波数間測定(Inter-frequency measurement)プロシージャ;
(2b)異無線アクセス技術間測定(Inter-RAT measurement)プロシージャ;
(2c)デュアルレシーバ構成を有するUE2の第2レシーバ(Second Receiver)を用いて、追加キャリアとして設定された共用周波数を測定するプロシージャ; 
(2d)キャリアアグリゲーション(Carrier Aggregation(CA))のセカンダリセル(又はセカンダリキャリア)として設定された共用周波数を測定するプロシージャ;及び
(2e)MDT(Minimization of Drive Test)の端末測定プロシージャ。
 図14は、共用周波数における第2の端末測定のために異周波数間測定(Inter-frequency measurement)を用いるプロシージャ(2a)の概念図である。図14は、共用周波数がTVWSである場合について示している。UE2は、サービングキャリア又はサービングセルであるライセンスバンドの測定を行う。さらに、UE2は、eNB1による異周波数間測定(Inter-frequency measurement)の指示に従ってTVバンドの測定を行う。
 異周波数間測定(Inter-frequency measurement)は、図13に示したシーケンス図に従って行うことができる。具体的には、ステップS902における"RRC Connection Reconfiguration"メッセージは、Inter-frequency measurementの測定設定情報(Measurement Configuration(MeasConfig))を含む。さらに、この測定設定情報は、例えば、以下の3つのうち少なくとも1つを含む。
・測定項目(e.g. RSRP、RSRQ、RSSI、又はCQI);
・異周波数間測定の為の通信中断期間の設定情報(Measurement Gap Configuration(MeasGapConfig));及び
・報告に関する設定情報(Report Configuration(ReportConfig))。
 図15は、プロシージャ(2c)の概念図である。図15も、共用周波数がTVWSである場合について示している。UE2は、サービングキャリア又はサービングセルであるライセンスバンドの測定を行う。さらに、UE2は、eNB1による指示に従って、第2レシーバを用いて追加キャリアとしてのTVバンドを受信し、TVバンドの測定を行う。
 プロシージャ(2c)に基づく共用周波数の測定も、図13に示したシーケンス図に従って行うことができる。具体的には、ステップS902における"RRC Connection Reconfiguration"メッセージは、異周波数測定(Inter-frequency measurement)の測定設定情報(Measurement Configuration(MeasConfig))を含む。測定設定情報の具体例は、上述した通りである。ここでは、UE2はデュアルレシーバ構成を有すること(言い換えると第2レシーバを有すること)をeNB1に予め通知している。したがって、eNB1は、UE2が第2レシーバを用いて共用周波数における端末測定を行えることを認識している。ステップS903では、UE2は、Intra-frequency 又は Inter-frequency measurementとして共用周波数の測定を行う。なお、eNB1及びUE2は、Inter-RAT measurementとして共用周波数の測定を行ってもよい。
 図16は、キャリアアグリゲーション(CA)のセカンダリセル(又はセカンダリキャリア)として設定された共用周波数を測定するプロシージャ(2d)の概念図である。図16も、共用周波数がTVWSである場合について示している。UE2は、キャリアアグリゲーション(CA)のプライマリセル(又はプライマリキャリア)であるライセンスバンドの測定を行う。さらに、UE2は、eNB1による指示に従って、TVバンドのセル(又はキャリア)をキャリアアグリゲーション(CA)のセカンダリセル(又はセカンダリキャリア)として設定し、特定信号を受信し、TVバンドにおける端末測定を行う。なお、共用周波数が複数の候補周波数を含む場合、eNB1は、1つずつ順にセカンダリセルに設定しても良いし、複数の候補周波数を同時に複数のセカンダリセルとして設定してもよい。
 キャリアアグリゲーション(CA)を用いた共用周波数の測定も、図13に示したシーケンス図に従って行うことができる。具体的には、ステップS902における"RRC Connection Reconfiguration"メッセージは、キャリアアグリゲーション(CA)のセカンダリセル(又はセカンダリキャリア)の設定情報(Secondary Cell Configuration(SCellConfig))、及び測定設定情報(Measurement Configuration(MeasConfig))を含む。ステップS903では、UE2は、Intra-frequency 又は Inter-frequency measurementとして共用周波数の測定を行う。ここで、セカンダリセル設定情報(SCellConfig)は、例えば追加又は修正されるセカンダリセルのリスト(SCellToAddModList)を含む。セカンダリセル・リスト(SCellToAddModList)は、例えば、以下の3つのうち少なくとも1つを含む。
・セカンダリセルのインデックス(SCellIndex);
・周波数情報(Absolute Radio Frequency Channel Number(ARFCN));及び
・無線リソース設定(Radio Resource Config)。
 なお、共用周波数における第2の端末測定のために異無線アクセス技術間測定(Inter-RAT measurement)を用いるプロシージャ(2b)も、図13に示したシーケンス図に従って行うことができる。具体的には、ステップS902における"RRC Connection Reconfiguration"メッセージは、Inter-RAT measurementの測定設定情報(Measurement Configuration(MeasConfig))を含む。Inter-RAT measurementの測定設定情報の具体例は、上述したInter-frequency measurementのそれと同様である。
 また、本実施形態では、eNB1は、第2の実施形態で説明した特定信号を送信してもよい。共用周波数においてeNB1から送信される特定信号は、データチャネル信号を含まずに、パイロット信号、参照信号、及び同期信号のうち少なくとも1つを含んでもよい。例えば、特定信号は、以下の(3a)~(3c)のうち少なくとも1つのみを含んでもよい。
(3a)セル内共通の参照信号(Common Reference Signal(CRS));
(3b)CSI算出用の参照信号(CSI Reference Signal(CSI-RS);及び
(3c)同期信号(Synchronization Signal)。
 さらに、特定信号は、(3d)セル内共通のシステム制御情報(Master Information Block(MIB)又はSystem Information Block(SIB))を含んでもよい。
 また、特定信号の送信電力に対して制約が課されてもよい。例えば、特定信号は、LTEシステム100のライセンスバンド(Licensed Band)におけるダウンリンク信号に比べて低い送信電力で送信されてもよい。また、特定信号は、共用周波数の管理システム(e.g. GDB、SM)によって課された上限値以下の送信電力で送信されてもよい。
<第6の実施形態>
 本実施形態では、上述した第3の実施形態に係る無線通信システム100がLTEシステムであり、共用周波数がTVWSである場合について具体的に説明する。つまり、本実施形態は、周波数制御部3が無線局(i.e. eNB)1と一体的に配置される例を示す。
 図17は、本実施形態に係る無線通信システム(i.e. LTEシステム)100を含む無線ネットワークの構成例を示している。図17の例は、2つのLTEシステム100A及び100Bを含む。LTEシステム100Aは、2つのeNB1A及び1Bを含む。eNB1Aは、セル11Aを運用し、セル11Aに帰属するUE2Aと通信する。eNB1Bは、セル11Bを運用し、セル11Bに帰属するUE2Bと通信する。運用管理装置(OAM)4Aは、LTEシステム100Aに含まれる複数の無線局1(eNB1A及び1Bを含む)を管理する。
 同様に、LTEシステム100Bは、2つのeNB1C及び1Dを含む。eNB1Cは、セル11Cを運用し、セル11Cに帰属するUE2Cと通信する。同様に、eNB1Dは、セル11Dを運用し、セル11Dに帰属するUE2Dと通信する。運用管理装置(OAM)4Bは、LTEシステム100Bに含まれる複数の無線局1(eNB1C及び1Dを含む)を管理する。
 運用管理装置(OAM)4A及び4Bは、周波数管理装置(SM)5と通信し、共用周波数情報を周波数管理装置(SM)5から受信する。共用周波数情報は、使用可能な共用周波数(i.e. 少なくとも1つの候補周波数)を示す。運用管理装置(OAM)4A及び4Bは、周波数管理装置(SM)5を介さずにGeo-location Database(GDB)6から直接的に共用周波数情報を受信してもよい。GDB6は、TV放送システム200にライセンスされた周波数帯域(i.e. TV band)の使用状況を管理し、二次利用可能な周波数帯域(e.g. TVWS)の情報を提供する。
 図18は、本実施形態に係るLTEシステム100Aにおける共用周波数の使用制御手順の具体例を示すシーケンス図である。図18は、eNB1Aについて示しているが、eNB1Bの動作もeNB1Aと同様である。また、LTEシステム100Bも、図18に示すLTEシステム100Aと同様の手順を実行すればよい。
 図18のステップS101~S104、S201、S301、並びにS303~S306における処理は、図8に示した同一符号のステップ群における処理と同様とすればよい。図18のステップS801及びS802は、図8に示した"候補周波数情報の取得(ステップS302)"の具体例である。つまり、ステップS801では、運用管理装置(OAM)4Aは、候補周波数情報の要求をGDB6に送信する。ステップS802では、運用管理装置(OAM)4Aは、候補周波数情報の通知をGDB6から受信する。候補周波数情報は、少なくとも1つの候補周波数を示す。
 図18のステップS803及びS804は、割り当て周波数(i.e. TVWS)を用いた通信を開始するための処理を示している。ステップS803では、eNB1Aは、割り当て周波数の設定情報をUE2Aに送信する。ステップS804では、eNB1Aは、割り当て周波数においてUE2Aと通信する。
 図18に示した手順は、一例に過ぎない。図8に関して述べたのと同様に、運用管理装置(OAM)4Aによる候補周波数情報の取得(S801及びS802)のタイミングは、適宜変更されてもよい。また、eNB1が周波数割り当て要求(S301)を送信することなく、運用管理装置(OAM)4が自発的にeNB1に候補周波数を通知してもよい。
<第7の実施形態>
 本実施形態では、上述した第4の実施形態に係る無線通信システム100がLTEシステムであり、共用周波数がTVWSである場合について具体的に説明する。つまり、本実施形態は、周波数制御部3が運用管理装置(OAM)4と一体的に配置される例を示す。なお、本実施形態に係るLTEシステム100を含む無線ネットワークの構成例は、図17に示した第6の実施形態の構成例と概ね同様とすればよい。ただし、周波数制御部3は、無線局(i.e. eNB)1ではなく運用管理装置(OAM)4に配置される。
 図19は、本実施形態に係るLTEシステム100A及び100Bにおける共用周波数の使用制御手順の具体例を示すシーケンス図である。図19は、eNB1Aについて示しているが、eNB1Bの動作もeNB1Aと同様である。また、LTEシステム100Bも、図19に示すLTEシステム100Aと同様の手順を実行すればよい。なお、図19に示されたステップ群における処理は、図10又は図18に示された同一符号のステップ群における処理と同様とすればよい。したがって、ここでは、図19の各ステップに関する詳細な説明を省略する。
 図19に示した手順は、一例に過ぎない。図10に関して述べたのと同様に、例えば、運用管理装置(OAM)4による候補周波数情報の取得(S302)のタイミングは、適宜変更されてもよい。また、eNB1が周波数割り当て要求(S301)を送信することなく、運用管理装置(OAM)4が自発的にeNB1に候補周波数通知及び端末測定報告指示を送信してもよい。
<第8の実施形態>
 上述した第7の実施形態は、以下に述べるように変形されてもよい。第7の実施形態では、各オペレータの運用管理装置(OAM)4A及び4Bが候補周波数(i.e. TVWS)の中から割り当て周波数を決定する例を示した。しかしながら、複数のオペレータ・ネットワークの周波数割り当て(i.e. 周波数管理)を周波数管理装置(SM)5が集中的に行なってもよい。
 図20は、本実施形態に係るLTEシステム100A及び100Bにおける共用周波数の使用制御手順の具体例を示すシーケンス図である。図21は、eNB1A及び1Cについて示しているが、eNB1B及び1Dの動作もeNB1A及び1Cと同様である。図20と図19の比較から明らかであるように、図20はステップS901を含む。ステップS901では、周波数管理装置(SM)5は、二次利用可能なTVWSの情報、つまり、候補周波数の情報、をGDB6から受信する。
 また、図20は、図19示されたステップS801及びS802に代えて、ステップS902及びS903を含む。ステップS902では、運用管理装置(OAM)4A及び4Bは、周波数割り当て要求(S301)をeNB1A及び1Cから受信したことに応じて、周波数割り当て要求を周波数管理装置(SM)5に送信する。運用管理装置(OAM)4A及び4Bは、eNB1A及び1Cからの周波数割り当て要求メッセージを周波数管理装置(SM)5に転送してもよい。ステップS903では、運用管理装置(OAM)4A及び4Bは、周波数管理装置(SM)5から候補周波数情報の通知を受信する。
 さらに、図20は、図19示されたステップS505に代えて、ステップS904~S906を含む。ステップS904では、運用管理装置(OAM)4A及び4Bは、端末測定報告を周波数管理装置(SM)5に送信する。ステップS905では、周波数管理装置(SM)5は、端末測定報告に基づいて、eNB1A及び1Cの各々の割り当て周波数を決定する。ステップS906では、周波数管理装置(SM)5は、eNB1A及び1Cの割り当て周波数を示す通知を管理装置(OAM)4A及び4Bにそれぞれ送信する。
 さらにまた、図20は、図19示されたステップS507に代えてステップS907を含む。ステップS907では、周波数管理装置(SM)5は、eNB1A及び1Cの各々への候補周波数の割り当て結果を反映するために、候補周波数の情報を更新する。
 図20に示した手順は、一例に過ぎない。例えば、周波数管理装置(SM)5によるGDB6からの候補周波数情報の取得(S901)のタイミングは、適宜変更されてもよい。また、eNB1が周波数割り当て要求(S301)を送信することなく、運用管理装置(OAM)4A及び4Bが自発的に周波数管理装置(SM)5に候補周波数を要求してもよい。
 本実施形態で述べたように、周波数管理装置(SM)5のようなネットワークノード(又は装置)が、複数のオペレータ・ネットワーク(又は複数のオペレータ・システム)に対する周波数割り当てを行うことで、オペレータ間の公平性を保つことができ、最適なオペレータ・ネットワーク(又はオペレータ・システム)を共用周波数の割当先として選択することができる。
 なお、LTEシステムを想定した第7及び第8の実施形態において、TVWSをLTEシステムで利用する場合を例に用いた。しかしながら、第7及び第8の実施形態は、TV放送システム200のようなプライマリシステムが存在せず、複数のシステムが周波数を共用する場合にも適用できることは言うまでもない。また、複数のシステムとは、複数のLTEシステムであってもよいし、LTEシステムと別のシステムであっても良い。
<その他の実施形態>
 第1~第8の実施形態で説明した測定制御部10、測定部20、及び周波数制御部3(又は3A~3D)により行われる処理は、Application Specific Integrated Circuit(ASIC)を含む半導体処理装置を用いて実現されてもよい。また、これらの処理は、少なくとも1つのプロセッサ(e.g. マイクロプロセッサ、MPU、Digital Signal Processor(DSP))を含むコンピュータシステムにプログラムを実行させることによって実現してもよい。具体的には、第1~第8の実施形態で示された測定制御部10、測定部20、又は周波数制御部3に関するアルゴリズムをコンピュータシステムに行わせるための命令群を含む1又は複数のプログラムを作成し、当該プログラムをコンピュータに供給すればよい。
 このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
<参考の実施形態>
 以下では、参考の実施形態(参考形態)について説明する。以下に述べる参考形態から把握される技術思想は、上述した第1~第8の実施形態から把握される技術思想とは異なる課題の解決に寄与し、第1~第8の実施形態から把握される技術思想とは独立に実施可能である。
 第2~第8の実施形態では、無線局1について共用周波数を使用するか否か(又は、無線局1による共用周波数の使用を許可するか否か)を決定することを目的として、無線局1から共用周波数(又は候補周波数)における特定信号を送信しながら、無線端末2が共用周波数を測定する処理について説明した。当該処理は、第2の実施形態で述べたように、単なるセンシングに比べて、無線端末2が無線局1からの共用周波数信号(i.e. 特定信号)を十分な品質で受信できること、言い換えると無線通信システム100が共用周波数を効果的に利用できること、を保証できるとの効果を奏する。
 なお、当該効果を得るためには、無線通信システム100に適用される無線アクセス技術(e.g. LTE、UMTS、CDMA2000、GSM、WiMAX)により規定(又は定義)される第1の端末測定を実行するための端末測定プロシージャを利用して共用周波数における第2の端末測定を実行することを必須としない。言い換えると、第2~第8の実施形態で説明された"無線局1から共用周波数における特定信号を送信しながら、無線端末2が共用周波数における第2の端末測定を行う処理"は、第1及び第2の端末測定が異なる端末測定プロシージャを用いる場合にも上述した効果を奏する。
 "無線局1から共用周波数における特定信号を送信しながら、無線端末2が共用周波数における第2の端末測定を行う処理"を含む参考形態は、例えば、以下の付記のように記載することができる。
(付記1)
 無線局及び前記無線局と通信する少なくとも1つの無線端末を備える無線通信システムであって、
 前記少なくとも1つの無線端末は、前記無線通信システムにライセンスされた第1の周波数における第1の端末測定を実行するとともに、前記無線通信システムを含む複数の無線システムで共用される第2の周波数における第2の端末測定を実行するよう動作し、
 前記無線局は、前記第2の端末測定が行われる際に、前記共用周波数において特定信号を送信するよう動作する、
無線通信システム。
(付記2)
 前記特定信号は、ユーザーデータを送信するためのデータチャネル信号を含まない、付記1に記載の無線通信システム。
(付記3)
 前記特定信号は、パイロット信号、参照信号、及び同期信号のうち少なくとも1つを含む、付記2に記載の無線通信システム。
(付記4)
 前記特定信号は、前記無線通信システムにライセンスされた周波数におけるダウンリンク信号に比べて低い送信電力で前記無線局から送信される、付記1~3のいずれか1項に記載の無線通信システム。
(付記5)
 前記特定信号は、前記共用周波数の管理システムによって課された上限値以下の送信電力で前記無線局から送信される、付記1~4のいずれか1項に記載の無線通信システム。
(付記6)
 前記特定信号は、前記無線局と前記少なくとも1つの無線端末の間の通信における前記共用周波数の使用可否を決定するために送信される、付記1~5のいずれか1項に記載の無線通信システム。
(付記7)
 前記特定信号は、前記無線局と前記少なくとも1つの無線端末の間の通信における前記共用周波数の使用可否を決定するための仮運用期間、準備期間、及びテスト期間の少なくとも1つにおいて送信される、付記1~6のいずれか1項に記載の無線通信システム。
(付記8)
 前記第2の端末測定の結果に基づいて、前記無線局と前記少なくとも1つの無線端末の間の通信における前記共用周波数の使用を制御するよう動作する制御部をさらに備える、付記1~7のいずれか1項に記載の無線通信システム。
 さらに、上述した実施形態及び参考形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態及び参考形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。
 この出願は、2012年4月27日に出願された日本出願特願2012-102336を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1、1A、1B、1C、1D 無線局
2、2A、2B、2C、2D 無線端末
3 周波数制御部
4、4A、4B 運用管理装置(Operation Administration and Maintenance(OAM))
5 周波数管理装置(Spectrum Manager(SM))
6 Geo-location Database(GDB)
10 測定制御部
11、11A、11B、11C、11D セル
20 測定部
100、100A、100B 無線通信システム
200 TV放送システム

Claims (59)

  1.  無線通信システムで使用され、無線局と通信を行う無線端末であって、
     前記無線通信システムに適用される無線アクセス技術に対応する第1の端末測定を実行するための端末測定プロシージャを利用して、前記無線通信システムを含む複数の無線システムで共用される共用周波数における第2の端末測定を実行するよう動作する測定部を備える、
    無線端末。
  2.  前記第2の端末測定は、前記無線局と前記無線端末の間の通信のために前記共用周波数を使用するか否かを決定するために実施される、請求項1に記載の無線端末。
  3.  前記第2の端末測定の結果は、前記無線局と前記無線端末の間の通信における前記共用周波数の使用の制御のために用いられる、請求項1又は2に記載の無線端末。
  4.  前記端末測定プロシージャは、異周波数間測定(inter-frequency measurement)のためのプロシージャを含み、
     前記第2の端末測定は、前記異周波数間測定として実施される、
    請求項1~3のいずれか1項に記載の無線端末。
  5.  前記端末測定プロシージャは、前記無線局によりプライマリセル及びセカンダリセルが設定されている間に前記セカンダリセルを測定するためのプロシージャを含み、
     前記第2の端末測定は、前記セカンダリセルにおける端末測定として実施される、
    請求項1~3のいずれか1項に記載の無線端末。
  6.  前記第2の端末測定は、前記無線局から前記共用周波数において送信される特定信号を受信する手順を含む、請求項1~5のいずれか1項に記載の無線端末。
  7.  前記特定信号は、パイロット信号、参照信号、及び同期信号のうち少なくとも1つを含む、請求項6に記載の無線端末。
  8.  前記特定信号は、前記共用周波数の管理システムによって課された上限値以下の送信電力で前記無線局から送信される、請求項6又は7に記載の無線端末。
  9.  前記特定信号は、前記無線局と前記無線端末の間の通信における前記共用周波数の使用に関する所定期間または所定タイミングまで送信される、請求項6~8のいずれか1項に記載の無線端末。
  10.  前記所定期間が、前記無線局と前記無線端末の間の通信に前記共用周波数を使用するための仮運用期間、準備期間、及びテスト期間のうち少なくとも1つを含む、請求項9に記載の無線端末。
  11.  前記所定タイミングが、前記共用周波数の使用を決定する時点、及び前記共用周波数の使用を更新する時点、のうち少なくとも1つを含む、請求項9に記載の無線端末。
  12.  前記端末測定プロシージャは、前記無線局及び前記無線端末の間のシグナリングを含む、請求項1~11のいずれか1項に記載の無線端末。
  13.  前記シグナリングは、前記無線端末が前記無線局から端末測定指示を受信することを含む、請求項12に記載の無線端末。
  14.  前記端末測定指示は、測定するべき周波数の指定、及び前記無線局から送信される参照信号の設定情報、のうち少なくとも1つを含む、請求項13に記載の無線端末。
  15.  前記シグナリングは、前記無線端末から前記無線局に測定報告を送信することを含む、請求項12~14のいずれか1項に記載の無線端末。
  16.  前記測定報告は、前記共用周波数における受信信号電力、前記無線通信システムの参照信号の受信電力(Reference Signal Received Power(RSRP))、前記無線通信システムの参照信号の受信品質(Reference Signal Received Quality(RSRQ))、前記無線通信システムの通信路品質インジケータ(Channel Quality Indicator(CQI))、前記共用周波数における複数の候補周波数の間の優先順位、前記共用周波数における候補周波数のうちで好ましい周波数を示す情報、及び前記無線端末の位置情報、のうち少なくとも1つを含む、請求項15に記載の無線端末。
  17.  前記第1及び第2の端末測定は、前記無線端末が無線特性を測定することを含む、請求項1~16のいずれか1項に記載の無線端末。
  18.  前記共用周波数は、プライマリシステムが優先的に利用可能であり、前記無線通信システムによって二次利用される、請求項1~17のいずれか1項に記載の無線端末。
  19.  前記共用周波数は、TVホワイトスペースである、請求項1~18のいずれか1項に記載の無線端末。
  20.  無線通信システムで使用され、少なくとも1つの無線端末と通信を行う無線局であって、
     前記無線通信システムに適用される無線アクセス技術に対応する第1の端末測定を制御するための端末測定プロシージャを利用して、前記無線通信システムを含む複数の無線システムで共用される共用周波数における第2の端末測定を制御するよう動作する測定制御部を備える、
    無線局。
  21.  前記第2の端末測定は、前記無線局と前記少なくとも1つの無線端末の間の通信のために前記共用周波数を使用するか否かを決定するために実施される、請求項20に記載の無線局
  22.  前記第2の端末測定の結果は、前記無線局と前記少なくとも1つの無線端末の間の通信における前記共用周波数の使用の制御のために用いられる、請求項20又は21に記載の無線局。
  23.  前記端末測定プロシージャは、異周波数間測定(inter-frequency measurement)のためのプロシージャを含み、
     前記第2の端末測定は、前記異周波数間測定として実施される、
    請求項20~22のいずれか1項に記載の無線局。
  24.  前記端末測定プロシージャは、前記無線端末にプライマリセル及びセカンダリセルを設定している間に前記セカンダリセルを測定するためのプロシージャを含み、
     前記第2の端末測定は、前記セカンダリセルにおける端末測定として実施される、
    請求項20~22のいずれか1項に記載の無線局。
  25.  測定制御部は、前記第2の端末測定が行われる際に、前記無線局から前記共用周波数において特定信号を送信するよう制御する、請求項20~24のいずれか1項に記載の無線局。
  26.  前記特定信号は、パイロット信号、参照信号、及び同期信号のうち少なくとも1つを含む、請求項25に記載の無線局。
  27.  前記特定信号は、前記共用周波数の管理システムによって課された上限値以下の送信電力で前記無線局から送信される、請求項25又は26に記載の無線局。
  28.  前記特定信号は、前記無線局と前記無線端末の間の通信における前記共用周波数の使用に関する所定期間または所定タイミングまで送信される、請求項25~27のいずれか1項に記載の無線局。
  29.  前記所定期間が、前記無線局と前記少なくとも1つの無線端末の間の通信に前記共用周波数を使用するための仮運用期間、準備期間、及びテスト期間の少なくとも1つを含む、請求項28に記載の無線局。
  30.  前記所定タイミングが、前記共用周波数の使用を決定する時点、及び前記共用周波数の使用を更新する時点、のうち少なくとも1つを含む、請求項28に記載の無線局。
  31.  前記端末測定プロシージャは、前記無線局及び前記少なくとも1つの無線端末の間のシグナリングを含む、請求項20~30のいずれか1項に記載の無線局。
  32.  前記シグナリングは、前記無線局から前記少なくとも1つの無線端末に端末測定指示を送信することを含む、請求項31に記載の無線局。
  33.  前記端末測定指示は、測定するべき周波数の指定、及び前記無線局から送信される参照信号の設定情報、のうち少なくとも1つを含む、請求項32に記載の無線局。
  34.  前記シグナリングは、前記無線局が前記少なくとも1つの無線端末から測定報告を受信することを含む、請求項31~33のいずれか1項に記載の無線局。
  35.  前記測定報告は、前記共用周波数における受信信号電力、前記無線通信システムの参照信号の受信電力(Reference Signal Received Power(RSRP))、前記無線通信システムの参照信号の受信品質(Reference Signal Received Quality(RSRQ))、前記無線通信システムの通信路品質インジケータ(Channel Quality Indicator(CQI))、前記共用周波数に含まれる複数の候補周波数の間の優先順位、前記共用周波数における候補周波数のうちで好ましい周波数を示す情報、及び前記無線端末の位置情報、のうち少なくとも1つを含む、請求項34に記載の無線局。
  36.  前記第1及び第2の端末測定は、前記少なくとも1つの無線端末が無線特性を測定することを含む、請求項20~35のいずれか1項に記載の無線局。
  37.  前記第2の端末測定の結果に基づいて、前記無線局と前記少なくとも1つの無線端末の間の通信における前記共用周波数の使用を制御するよう動作する周波数制御部をさらに備える、請求項20~36のいずれか1項に記載の無線局。
  38.  前記周波数制御部は、前記共用周波数を含む少なくとも1つの候補周波数の中から前記無線局で使用される周波数を決定するよう動作する、請求項37に記載の無線局。
  39.  前記少なくとも1つの候補周波数は、前記無線局を管理する運用管理装置から前記無線局に供給される、請求項38に記載の無線局。
  40.  前記無線局を管理する運用管理装置に前記第2の端末測定の結果を送信するよう動作するとともに、前記少なくとも1つの無線端末との通信のために前記無線局に割り当てられた周波数を示す情報を受信するよう動作する周波数制御部をさらに備える、請求項20~36のいずれか1項に記載の無線局。
  41.  無線局及び前記無線局と通信する少なくとも1つの無線端末を備える無線通信システムであって、
     前記少なくとも1つの無線端末は、前記無線通信システムに適用される無線アクセス技術に対応する第1の端末測定を実行するための端末測定プロシージャを利用して、前記無線通信システムを含む複数の無線システムで共用される共用周波数における第2の端末測定を実行するよう動作する、
    無線通信システム。
  42.  前記無線局は、前記端末測定プロシージャを利用して、前記共用周波数における前記第2の端末測定を制御するよう動作する、請求項41に記載の無線通信システム。
  43.  前記第2の端末測定は、前記無線局と前記少なくとも1つの無線端末の間の通信のために前記共用周波数を使用するか否かを決定するために実施される、請求項41又は42に記載の無線通信システム。
  44.  前記端末測定プロシージャは、異周波数間測定(inter-frequency measurement)のためのプロシージャを含み、
     前記第2の端末測定は、前記異周波数間測定として実施される、
    請求項41~43のいずれか1項に記載の無線通信システム。
  45.  前記端末測定プロシージャは、前記無線局によりプライマリセル及びセカンダリセルが前記無線端末に設定されている間に前記セカンダリセルを測定するためのプロシージャを含み、
     前記第2の端末測定は、前記セカンダリセルにおける端末測定として実施される、
    請求項41~44のいずれか1項に記載の無線通信システム。
  46.  前記無線局は、さらに、前記第2の端末測定が行われる際に、前記共用周波数において特定信号を送信するよう動作する、請求項41~45のいずれか1項に記載の無線通信システム。
  47.  前記特定信号は、パイロット信号、参照信号、及び同期信号のうち少なくとも1つを含む、請求項46に記載の無線通信システム。
  48.  前記特定信号は、前記共用周波数の管理システムによって課された上限値以下の送信電力で前記無線局から送信される、請求項46又は47に記載の無線通信システム。
  49.  前記特定信号は、前記無線局と前記無線端末の間の通信における前記共用周波数の使用に関する所定期間または所定タイミングまで送信される、請求項46~48のいずれか1項に記載の無線通信システム。
  50.  前記所定期間が、前記無線局と前記少なくとも1つの無線端末の間の通信に前記共用周波数を使用するための仮運用期間、準備期間、及びテスト期間のうち少なくとも1つを含む、請求項49に記載の無線通信システム。
  51.  前記所定タイミングが、前記共用周波数の使用を決定する時点、及び前記共用周波数の使用を更新する時点、のうち少なくとも1つを含む、請求項49に記載の無線通信システム。
  52.  前記第2の端末測定の結果に基づいて、前記無線局と前記少なくとも1つの無線端末の間の通信における前記共用周波数の使用を制御するよう動作する制御部をさらに備える、請求項41~51のいずれか1項に記載の無線通信システム。
  53.  前記制御部は、前記共用周波数を含む少なくとも1つの候補周波数の中から前記無線局で使用される周波数を決定するよう動作する、請求項52に記載の無線通信システム。
  54.  前記制御部は、前記無線局に配置される請求項53に記載の無線通信システム。
  55.  前記制御部は、前記無線局を含む複数の無線局の中から前記共用周波数を割り当てる無線局を決定するよう動作する、請求項52に記載の無線通信システム。
  56.  前記制御部は、前記無線局を管理する運用管理装置に配置される、請求項55に記載の無線通信システム。
  57.  前記制御部は、前記無線通信システムによる周波数利用を管理する周波数管理装置に配置される、請求項55に記載の無線通信システム。
  58.  無線通信システムで使用され、無線局と通信を行う無線端末に実装される方法であって、
     前記無線通信システムに適用される無線アクセス技術に対応する第1の端末測定を実行するための端末測定プロシージャを利用して、前記無線通信システムを含む複数の無線システムで共用される共用周波数における第2の端末測定を実行することを備える、
    方法。
  59.  無線通信システムで使用され、少なくとも1つの無線端末と通信を行う無線局に実装される方法であって、
     前記無線通信システムに適用される無線アクセス技術に対応する第1の端末測定を制御するための端末測定プロシージャを利用して、前記無線通信システムを含む複数の無線システムで共用される共用周波数における第2の端末測定を制御することを備える、
    方法。
PCT/JP2013/000088 2012-04-27 2013-01-11 無線端末、無線局、無線通信システム、及びこれらに実装される方法 WO2013161135A1 (ja)

Priority Applications (15)

Application Number Priority Date Filing Date Title
ES13782054T ES2728235T3 (es) 2012-04-27 2013-01-11 Terminal inalámbrico, estación inalámbrica, sistema de comunicación inalámbrica y método implementado en los mismos
EP16172589.0A EP3094126B1 (en) 2012-04-27 2013-01-11 Radio terminal, radio station and methods
JP2014512299A JP6146408B2 (ja) 2012-04-27 2013-01-11 無線端末、無線局、無線通信システム、及びこれらに実装される方法
EP19187349.6A EP3589005B1 (en) 2012-04-27 2013-01-11 Radio terminal, radio station and methods
EP13782054.4A EP2843856B1 (en) 2012-04-27 2013-01-11 Wireless terminal, wireless station, wireless communication system, and method implemented in same
IN8965DEN2014 IN2014DN08965A (ja) 2012-04-27 2013-01-11
US14/396,268 US9420482B2 (en) 2012-04-27 2013-01-11 Radio terminal, radio station, radio communication system, and methods implemented therein
US15/199,264 US9781618B2 (en) 2012-04-27 2016-06-30 Radio terminal, radio station, radio communication system, and methods implemented therein
US15/668,936 US10028158B2 (en) 2012-04-27 2017-08-04 Radio terminal, radio station, radio communication system, and methods implemented therein
US15/965,321 US10237772B2 (en) 2012-04-27 2018-04-27 Radio terminal, radio station, radio communication system, and methods implemented therein
US16/255,408 US10524146B2 (en) 2012-04-27 2019-01-23 Radio terminal, radio station, radio communication system, and methods implemented therein
US16/692,460 US10750389B2 (en) 2012-04-27 2019-11-22 Radio terminal, radio station, radio communication system, and methods implemented therein
US16/932,126 US11012876B2 (en) 2012-04-27 2020-07-17 Radio terminal, radio station, radio communication system, and methods implemented therein
US17/229,077 US11528627B2 (en) 2012-04-27 2021-04-13 Radio terminal, radio station, radio communication system, and methods implemented therein
US17/968,028 US20230044557A1 (en) 2012-04-27 2022-10-18 Radio terminal, radio station, radio communication system, and methods implemented therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012102336 2012-04-27
JP2012-102336 2012-04-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/396,268 A-371-Of-International US9420482B2 (en) 2012-04-27 2013-01-11 Radio terminal, radio station, radio communication system, and methods implemented therein
US15/199,264 Continuation US9781618B2 (en) 2012-04-27 2016-06-30 Radio terminal, radio station, radio communication system, and methods implemented therein

Publications (1)

Publication Number Publication Date
WO2013161135A1 true WO2013161135A1 (ja) 2013-10-31

Family

ID=49482493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000088 WO2013161135A1 (ja) 2012-04-27 2013-01-11 無線端末、無線局、無線通信システム、及びこれらに実装される方法

Country Status (7)

Country Link
US (9) US9420482B2 (ja)
EP (3) EP3094126B1 (ja)
JP (5) JP6146408B2 (ja)
ES (2) ES2761836T3 (ja)
IN (1) IN2014DN08965A (ja)
TR (1) TR201905025T4 (ja)
WO (1) WO2013161135A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104837140A (zh) * 2014-02-09 2015-08-12 上海朗帛通信技术有限公司 一种在非授权频谱上的通信方法和装置
CN105075326A (zh) * 2014-02-11 2015-11-18 华为技术有限公司 获取非授权频率信息的方法及设备
WO2016038763A1 (ja) * 2014-09-12 2016-03-17 日本電気株式会社 無線局、無線端末、及び端末測定のための方法
WO2016038762A1 (ja) * 2014-09-12 2016-03-17 日本電気株式会社 無線局、無線端末、及びこれらの方法
WO2016047513A1 (ja) * 2014-09-26 2016-03-31 京セラ株式会社 基地局及びユーザ端末
WO2016143560A1 (ja) * 2015-03-06 2016-09-15 京セラ株式会社 無線端末及び基地局
KR20160132374A (ko) * 2014-03-18 2016-11-18 소니 주식회사 장치
CN106233762A (zh) * 2014-04-17 2016-12-14 高通股份有限公司 使用设备内共存消息在非许可频带中进行干扰管理
JP2017063326A (ja) * 2015-09-24 2017-03-30 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
EP3130187A4 (en) * 2014-04-07 2017-04-12 Huawei Technologies Co., Ltd. System and method for discontinuous transmissions and measurements
JPWO2016021625A1 (ja) * 2014-08-05 2017-06-08 京セラ株式会社 ユーザ端末、プロセッサ及び基地局
JP2017516339A (ja) * 2014-03-20 2017-06-15 インテル アイピー コーポレイション ダイナミックなセルオン及びオフのためのeNodeB及びUE
JP2017516430A (ja) * 2014-04-25 2017-06-15 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 基地局、ユーザ機器、リソース取得方法、及びシステム
JP2017517985A (ja) * 2014-07-02 2017-06-29 インテル アイピー コーポレイション 未認可スペクトルにおける測定報告のためのシステムおよび方法
WO2017126623A1 (ja) * 2016-01-22 2017-07-27 京セラ株式会社 無線端末及びプロセッサ
JPWO2016039179A1 (ja) * 2014-09-12 2017-08-17 シャープ株式会社 基地局装置および端末装置
JP2017526218A (ja) * 2014-07-07 2017-09-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるデータ送受信方法及びその装置
JP2017532824A (ja) * 2014-08-19 2017-11-02 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無認可無線周波数スペクトル帯域を使用するセルラにおける広帯域測距
JP2017532880A (ja) * 2014-09-23 2017-11-02 富士通株式会社 アンライセンスバンドにおける通信方法、装置及びシステム
JP2017533637A (ja) * 2014-09-24 2017-11-09 アルカテル−ルーセント Lteライセンス支援アクセス・ベースの通信システムにおける高速なチャネルの測定およびフィードバックのための方法
JP2018506901A (ja) * 2015-01-20 2018-03-08 ソニー株式会社 ユーザ機器、セルラーネットワークノード、およびライセンス補助アクセスを提供するための方法
EP3200510A4 (en) * 2014-09-26 2018-06-27 Kyocera Corporation Base station and mobile station
JP2018521541A (ja) * 2015-05-13 2018-08-02 クゥアルコム・インコーポレイテッドQualcomm Incorporated ライセンス支援アクセスのためのrrm測定および報告
CN108650679A (zh) * 2014-09-11 2018-10-12 华为技术有限公司 网络设备、终端,以及确定通信频谱可用性的方法
JP2020162125A (ja) * 2015-01-30 2020-10-01 クゥアルコム・インコーポレイテッドQualcomm Incorporated 免許不要スペクトルを通じてのlteにおける信号強度測定に基づくrrm
CN113411893B (zh) * 2014-09-12 2024-06-07 日本电气株式会社 无线电站、无线电终端、及其方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2761836T3 (es) 2012-04-27 2020-05-21 Nec Corp Terminal de radio, estación de radio y métodos
US9137695B2 (en) * 2013-08-05 2015-09-15 Qualcomm Incorporated Apparatus and methods for continuous inter-frequency measurement reconfigurations of DC-HSUPA UE
CN105409273A (zh) * 2013-10-31 2016-03-16 华为技术有限公司 无线通信方法及装置
CN111263395B (zh) * 2014-01-24 2021-10-26 华为技术有限公司 一种测量方法、配置方法、相关设备及系统
CN105453630A (zh) * 2014-02-13 2016-03-30 华为技术有限公司 一种rs snr的上报、接收方法、终端及装置
ES2755926T3 (es) * 2014-03-24 2020-04-24 Ericsson Telefon Ab L M Sistema y método para activar y desactivar múltiples células secundarias
CA2966970C (en) 2014-11-06 2023-05-16 Nec Corporation Radio terminal, radio station, and method thereof
EP3255915B1 (en) * 2015-02-28 2019-08-28 Huawei Technologies Co., Ltd. Frequency band sharing method, apparatus and system
WO2017014111A1 (ja) * 2015-07-22 2017-01-26 シャープ株式会社 端末装置、基地局装置、測定方法および集積回路
US10142952B2 (en) * 2015-09-14 2018-11-27 Ofinno Technologies, Llc Synchronization of unlicensed cell reception of a wireless device
KR102420247B1 (ko) * 2015-12-10 2022-07-14 삼성전자주식회사 반송파 집적 기술을 사용하는 무선 통신 시스템에서 측정 보고 송수신 방법 및 장치
PL3836631T3 (pl) * 2016-04-12 2024-04-15 Telefonaktiebolaget Lm Ericsson (Publ) Nadawanie i odbieranie informacji systemowych w częściach
KR102512849B1 (ko) * 2016-09-29 2023-03-24 삼성전자 주식회사 측정을 수행하기 위한 장치 및 방법
US10779278B2 (en) * 2017-03-24 2020-09-15 Nokia Technologies Oy Inter-frequency and intra-frequency measurement management
US10575185B2 (en) * 2017-04-27 2020-02-25 Qualcomm Incorporated Spectrum renting negotiation
CN111108796B (zh) * 2017-09-28 2024-04-05 三星电子株式会社 用于在多个带宽部分上执行数据发射和测量的方法和网络节点
JP6865185B2 (ja) * 2018-02-27 2021-04-28 日本電信電話株式会社 回線制御装置、回線制御方法および回線制御プログラム
CN110809279B (zh) * 2018-08-06 2022-04-22 华为技术有限公司 一种小区切换的方法、装置及系统
JP7151780B2 (ja) * 2018-11-02 2022-10-12 日本電気株式会社 Oam受信装置、及び、oam受信方法
EP3881593A4 (en) * 2018-11-12 2022-06-22 Telefonaktiebolaget Lm Ericsson (Publ) FINGERPRINT POSITIONING METHOD AND DEVICE
KR20200112288A (ko) * 2019-03-21 2020-10-05 삼성전자주식회사 무선 통신 시스템에서 주파수 측정 방법 및 장치
US20220201527A1 (en) * 2019-04-26 2022-06-23 Ntt Docomo, Inc. User terminal and radio communication method
GB201909462D0 (en) * 2019-07-01 2019-08-14 Samsung Electronics Co Ltd eMeas and MDT
WO2021078399A1 (en) * 2019-10-25 2021-04-29 European Space Agency Aggregated communication network
CN113572511A (zh) * 2020-04-29 2021-10-29 华为技术有限公司 一种通信方法、装置及计算机可读存储介质
US11582055B2 (en) 2020-08-18 2023-02-14 Charter Communications Operating, Llc Methods and apparatus for wireless device attachment in a managed network architecture
US11563593B2 (en) 2020-08-19 2023-01-24 Charter Communications Operating, Llc Methods and apparatus for coordination between wireline backhaul and wireless systems
US11844057B2 (en) 2020-09-09 2023-12-12 Charter Communications Operating, Llc Methods and apparatus for wireless data traffic management in wireline backhaul systems
US20220150863A1 (en) * 2020-11-06 2022-05-12 Qualcomm Incorporated Sidelink positioning in presence of clock error

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011350A (ja) * 2008-06-30 2010-01-14 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム、協調センシング方法、及び、総合判定局装置
JP2010021648A (ja) * 2008-07-08 2010-01-28 Fujitsu Ltd 移動端末局および受信品質測定方法
WO2010088586A2 (en) * 2009-02-01 2010-08-05 Qualcomm Incorporated Multichannel dynamic frequency selection
WO2011099634A1 (ja) * 2010-02-15 2011-08-18 株式会社エヌ・ティ・ティ・ドコモ 無線基地局及び通信制御方法
JP2011166721A (ja) 2009-07-31 2011-08-25 Sony Corp 送信電力決定方法、通信装置及びプログラム

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088590A (en) * 1993-11-01 2000-07-11 Omnipoint Corporation Method and system for mobile controlled handoff and link maintenance in spread spectrum communication
EP1313822B1 (en) 2000-08-30 2004-11-10 Cambridge Display Technology Limited A formulation for depositing a conjugated polymer layer
US8537802B2 (en) * 2008-07-23 2013-09-17 Marvell World Trade Ltd. Channel measurements in aggregated-spectrum wireless systems
US8605616B2 (en) 2008-12-26 2013-12-10 Sharp Kabushiki Kaisha Mobile station apparatus, base station apparatus, management method in a mobile station apparatus, processing section and communication system
EP2408240B1 (en) * 2009-03-10 2017-05-03 Sharp Kabushiki Kaisha Mobile station device, communications system, communications method, and program
US8811350B2 (en) * 2009-03-13 2014-08-19 Lg Electronics Inc. Handover performed in consideration of uplink/downlink component carrier setup
WO2010113490A1 (ja) * 2009-03-31 2010-10-07 パナソニック株式会社 無線通信装置、無線通信基地局、及び無線通信システム
KR101695811B1 (ko) 2009-06-02 2017-01-23 엘지전자 주식회사 다중 하향링크 반송파에 대한 측정 방법 및 이를 위한 장치
EP3474621B1 (en) 2009-09-25 2022-05-04 BlackBerry Limited System and method for multi-carrier network operation
EP2508023B1 (en) * 2009-11-30 2014-01-22 Telefonaktiebolaget L M Ericsson (publ) Technique for performing physical layer measurements
EP2518919A4 (en) 2009-12-22 2016-12-28 Lg Electronics Inc METHOD AND APPARATUS FOR EFFICIENT CHANNEL MEASUREMENT IN A MULTI-CARRIER WIRELESS COMMUNICATION SYSTEM
US8749714B2 (en) * 2010-01-05 2014-06-10 Qualcomm Incorporated Distinguishing and communicating between white space devices transmitting ATSC-compatible signals
CA2784274C (en) * 2010-03-17 2016-02-16 Lg Electronics Inc. Method and apparatus for providing channel state information-reference signal (csi-rs) configuration information in a wireless communication system supporting multiple antennas
US9451492B2 (en) * 2010-03-31 2016-09-20 Htc Corporation Apparatuses and methods for reporting availability of measurement log
US8670496B2 (en) * 2010-04-14 2014-03-11 Samsung Electronics Co., Ltd. Method and system for mapping uplink control information
GB201007012D0 (en) 2010-04-27 2010-06-09 Vodafone Ip Licensing Ltd Improving data rate in mobile communication network
MX2012012953A (es) * 2010-05-10 2012-12-17 Ericsson Telefon Ab L M Metodos y aparatos para soporte de configuracion de medicion.
US8744506B2 (en) * 2010-06-17 2014-06-03 Qualcomm Incorporated Device discovery on white space frequencies
CN102316510B (zh) * 2010-06-30 2016-01-20 中兴通讯股份有限公司 一种协作发送点的选择方法及选择装置
JP5814246B2 (ja) * 2010-09-03 2015-11-17 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 無線通信システム、低送信電力セル基地局、マクロセル基地局、無線端末及び負荷分散方法
JP5674102B2 (ja) * 2010-09-09 2015-02-25 独立行政法人情報通信研究機構 補助装置
EP2620028B1 (en) 2010-09-23 2020-04-29 BlackBerry Limited System and method for dynamic coordination of radio resources usage in a wireless network environment
US9602177B2 (en) 2010-09-26 2017-03-21 Lg Electronics Inc. Method and apparatus for efficient feedback in a wireless communication system supporting multiple antennas
WO2012046853A1 (ja) * 2010-10-07 2012-04-12 京セラ株式会社 無線測定収集方法及び無線端末
TWI524799B (zh) * 2010-10-12 2016-03-01 內數位專利控股公司 電視閒置頻段頻道選擇及網路配置以服務為基礎之方法
US9351185B2 (en) 2011-04-15 2016-05-24 Broadcom Corporation LTE carrier aggregation configuration on TV white space bands
US20120282942A1 (en) * 2011-05-02 2012-11-08 Nokia Siemens Networks Oy Methods, apparatuses and computer program products for configuring frequency aggregation
US9549326B2 (en) * 2011-07-14 2017-01-17 Broadcom Corporation Methods and apparatuses for provision of a flexible time sharing scheme on an unlicensed band of a system
WO2013052805A1 (en) 2011-10-07 2013-04-11 Interdigital Patent Holdings Inc. Method and apparatus for integrating different radio access technologies using carrier aggregation
GB2496204A (en) * 2011-11-07 2013-05-08 Renesas Mobile Corp Enabling mobility in a downlink packet access service
GB2498988B (en) 2012-02-02 2014-08-06 Broadcom Corp Communications apparatus and methods
EP2823683A1 (en) * 2012-02-03 2015-01-14 Interdigital Patent Holdings, Inc. Method and apparatus for coexistence among wireless transmit/receive units (wtrus) operating in the same spectrum
ES2761836T3 (es) 2012-04-27 2020-05-21 Nec Corp Terminal de radio, estación de radio y métodos

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011350A (ja) * 2008-06-30 2010-01-14 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム、協調センシング方法、及び、総合判定局装置
JP2010021648A (ja) * 2008-07-08 2010-01-28 Fujitsu Ltd 移動端末局および受信品質測定方法
WO2010088586A2 (en) * 2009-02-01 2010-08-05 Qualcomm Incorporated Multichannel dynamic frequency selection
JP2011166721A (ja) 2009-07-31 2011-08-25 Sony Corp 送信電力決定方法、通信装置及びプログラム
WO2011099634A1 (ja) * 2010-02-15 2011-08-18 株式会社エヌ・ティ・ティ・ドコモ 無線基地局及び通信制御方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Radio measurement collection for Minimization of Drive Tests (MDT); Overall description", 3GPP TS 37.320 V10.4.0, December 2011 (2011-12-01)
"Reconfigurable Radio Systems (RRS); Use Cases for Operation in White Space Frequency Bands", ETSI TR 102 907 V1.1.1 (2011-10, October 2011 (2011-10-01)
See also references of EP2843856A4

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104837140A (zh) * 2014-02-09 2015-08-12 上海朗帛通信技术有限公司 一种在非授权频谱上的通信方法和装置
CN105075326A (zh) * 2014-02-11 2015-11-18 华为技术有限公司 获取非授权频率信息的方法及设备
JP2020096377A (ja) * 2014-03-18 2020-06-18 ソニー株式会社 ユーザ装置の方法、ユーザ装置、第1の基地局の方法、及び第1の基地局
KR20180132172A (ko) * 2014-03-18 2018-12-11 소니 주식회사 기지국 및 단말 장치
US11224038B2 (en) 2014-03-18 2022-01-11 Sony Corporation Device
KR20160132374A (ko) * 2014-03-18 2016-11-18 소니 주식회사 장치
KR102127880B1 (ko) 2014-03-18 2020-06-29 소니 주식회사 기지국 및 단말 장치
KR101939890B1 (ko) 2014-03-18 2019-01-17 소니 주식회사 장치
JP2017516339A (ja) * 2014-03-20 2017-06-15 インテル アイピー コーポレイション ダイナミックなセルオン及びオフのためのeNodeB及びUE
US9900881B2 (en) 2014-03-20 2018-02-20 Intel IP Corporation eNodeB and UE for dynamic cell on and off
EP3130187A4 (en) * 2014-04-07 2017-04-12 Huawei Technologies Co., Ltd. System and method for discontinuous transmissions and measurements
US9655048B2 (en) 2014-04-07 2017-05-16 Futurewei Technologies, Inc. System and method for discontinuous transmissions and measurements
CN106233762A (zh) * 2014-04-17 2016-12-14 高通股份有限公司 使用设备内共存消息在非许可频带中进行干扰管理
US10524148B2 (en) 2014-04-17 2019-12-31 Qualcomm Incorporated Utilizing in-device coexistence message for interference management in unlicensed bands
CN106233762B (zh) * 2014-04-17 2020-02-21 高通股份有限公司 使用设备内共存消息在非许可频带中进行干扰管理
JP2017516430A (ja) * 2014-04-25 2017-06-15 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 基地局、ユーザ機器、リソース取得方法、及びシステム
JP2017517985A (ja) * 2014-07-02 2017-06-29 インテル アイピー コーポレイション 未認可スペクトルにおける測定報告のためのシステムおよび方法
US10075864B2 (en) 2014-07-02 2018-09-11 Intel IP Corporation System and method for measurement reporting in an unlicensed spectrum
JP2017526218A (ja) * 2014-07-07 2017-09-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるデータ送受信方法及びその装置
US10595310B2 (en) 2014-07-07 2020-03-17 Lg Electronics Inc. Method and apparatus for transceiving data in wireless communication system
US10701579B2 (en) 2014-08-05 2020-06-30 Kyocera Corporation Base station and user terminal for performing measurement and communication in unlicensed frequency bands
EP3179810A4 (en) * 2014-08-05 2018-03-28 KYOCERA Corporation Base station and user terminal
JPWO2016021625A1 (ja) * 2014-08-05 2017-06-08 京セラ株式会社 ユーザ端末、プロセッサ及び基地局
JP2018098806A (ja) * 2014-08-05 2018-06-21 京セラ株式会社 通信方法、ユーザ端末及びプロセッサ
US9894551B2 (en) 2014-08-05 2018-02-13 Kyocera Corporation Base station and user terminal for performing measurement and communication in unlicensed frequency bands
JP2020074623A (ja) * 2014-08-05 2020-05-14 京セラ株式会社 通信方法、ユーザ装置及びプロセッサ
US11159974B2 (en) 2014-08-05 2021-10-26 Kyocera Corporation Base station and user terminal for performing measurement and communication in unlicensed frequency bands
JP2017532824A (ja) * 2014-08-19 2017-11-02 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無認可無線周波数スペクトル帯域を使用するセルラにおける広帯域測距
CN108650679A (zh) * 2014-09-11 2018-10-12 华为技术有限公司 网络设备、终端,以及确定通信频谱可用性的方法
CN108650679B (zh) * 2014-09-11 2021-10-26 华为技术有限公司 网络设备、终端,以及确定通信频谱可用性的方法
JPWO2016039179A1 (ja) * 2014-09-12 2017-08-17 シャープ株式会社 基地局装置および端末装置
JP7081641B2 (ja) 2014-09-12 2022-06-07 日本電気株式会社 無線局、無線局において行われる方法、及び無線端末
EP3826390A1 (en) * 2014-09-12 2021-05-26 NEC Corporation Radio station, radio terminal, and method therefor
CN112492639A (zh) * 2014-09-12 2021-03-12 日本电气株式会社 无线电站、无线电终端、和用于终端测量的方法
US10945135B2 (en) 2014-09-12 2021-03-09 Nec Corporation Radio station, radio terminal, and method therefor
JP2021002882A (ja) * 2014-09-12 2021-01-07 日本電気株式会社 無線局、無線局において行われる方法、及び無線端末
WO2016038762A1 (ja) * 2014-09-12 2016-03-17 日本電気株式会社 無線局、無線端末、及びこれらの方法
US10182430B2 (en) 2014-09-12 2019-01-15 Nec Corporation Radio station, radio terminal, and method for terminal measurement
WO2016038763A1 (ja) * 2014-09-12 2016-03-17 日本電気株式会社 無線局、無線端末、及び端末測定のための方法
US10575183B2 (en) 2014-09-12 2020-02-25 Nec Corporation Radio station, radio terminal, and method therefor
CN107172890A (zh) * 2014-09-12 2017-09-15 日本电气株式会社 无线电站、无线电终端、和用于终端测量的方法
JPWO2016038763A1 (ja) * 2014-09-12 2017-06-29 日本電気株式会社 無線局、無線端末、及び端末測定のための方法
US10798694B2 (en) 2014-09-12 2020-10-06 Nec Corporation Radio station, radio terminal, and method for terminal measurement
CN113411893A (zh) * 2014-09-12 2021-09-17 日本电气株式会社 无线电站、无线电终端、及其方法
US11452086B2 (en) 2014-09-12 2022-09-20 Nec Corporation Radio station, radio terminal, and method for terminal measurement
US11533630B2 (en) 2014-09-12 2022-12-20 Nec Corporation Radio station, radio terminal, and method therefor
CN113411893B (zh) * 2014-09-12 2024-06-07 日本电气株式会社 无线电站、无线电终端、及其方法
JP2017532880A (ja) * 2014-09-23 2017-11-02 富士通株式会社 アンライセンスバンドにおける通信方法、装置及びシステム
JP2017533637A (ja) * 2014-09-24 2017-11-09 アルカテル−ルーセント Lteライセンス支援アクセス・ベースの通信システムにおける高速なチャネルの測定およびフィードバックのための方法
US10085155B2 (en) 2014-09-24 2018-09-25 Alcatel Lucent Method for fast channel measurement and feedback in a LTE licensed-assisted access based communication system
JPWO2016047513A1 (ja) * 2014-09-26 2017-07-13 京セラ株式会社 基地局及びユーザ端末
EP3200510A4 (en) * 2014-09-26 2018-06-27 Kyocera Corporation Base station and mobile station
WO2016047513A1 (ja) * 2014-09-26 2016-03-31 京セラ株式会社 基地局及びユーザ端末
US10285146B2 (en) 2014-09-26 2019-05-07 Kyocera Corporation Base station and user terminal
EP3200516A4 (en) * 2014-09-26 2018-05-30 Kyocera Corporation Base station and user terminal
JP2018506901A (ja) * 2015-01-20 2018-03-08 ソニー株式会社 ユーザ機器、セルラーネットワークノード、およびライセンス補助アクセスを提供するための方法
JP7061152B2 (ja) 2015-01-30 2022-04-27 クゥアルコム・インコーポレイテッド 免許不要スペクトルを通じてのlteにおける信号強度測定に基づくrrm
JP2020162125A (ja) * 2015-01-30 2020-10-01 クゥアルコム・インコーポレイテッドQualcomm Incorporated 免許不要スペクトルを通じてのlteにおける信号強度測定に基づくrrm
JP2018110441A (ja) * 2015-03-06 2018-07-12 京セラ株式会社 移動通信システム、無線端末及び基地局
US10425983B2 (en) 2015-03-06 2019-09-24 Kyocera Corporation Radio terminal and base station for WWAN-WLAN aggregation communication
WO2016143560A1 (ja) * 2015-03-06 2016-09-15 京セラ株式会社 無線端末及び基地局
JP2018521541A (ja) * 2015-05-13 2018-08-02 クゥアルコム・インコーポレイテッドQualcomm Incorporated ライセンス支援アクセスのためのrrm測定および報告
CN108029030A (zh) * 2015-09-24 2018-05-11 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
WO2017051902A1 (ja) * 2015-09-24 2017-03-30 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP2017063326A (ja) * 2015-09-24 2017-03-30 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JPWO2017126623A1 (ja) * 2016-01-22 2018-11-08 京セラ株式会社 無線端末及びプロセッサ
WO2017126623A1 (ja) * 2016-01-22 2017-07-27 京セラ株式会社 無線端末及びプロセッサ
US10348425B2 (en) 2016-01-22 2019-07-09 Kyocera Corporation Radio terminal and processor

Also Published As

Publication number Publication date
JP6399142B2 (ja) 2018-10-03
JP2019205196A (ja) 2019-11-28
US20160316386A1 (en) 2016-10-27
JPWO2013161135A1 (ja) 2015-12-21
JP6146408B2 (ja) 2017-06-14
US20210235295A1 (en) 2021-07-29
US10750389B2 (en) 2020-08-18
TR201905025T4 (tr) 2019-05-21
EP2843856B1 (en) 2019-02-27
ES2761836T3 (es) 2020-05-21
US10237772B2 (en) 2019-03-19
US20150050939A1 (en) 2015-02-19
US20200351684A1 (en) 2020-11-05
JP6573010B2 (ja) 2019-09-11
US11528627B2 (en) 2022-12-13
US20200092736A1 (en) 2020-03-19
JP7131600B2 (ja) 2022-09-06
EP2843856A1 (en) 2015-03-04
US20170332266A1 (en) 2017-11-16
EP3589005B1 (en) 2022-05-11
JP2017147754A (ja) 2017-08-24
US10524146B2 (en) 2019-12-31
EP2843856A4 (en) 2015-11-04
EP3094126B1 (en) 2019-09-11
US10028158B2 (en) 2018-07-17
US9781618B2 (en) 2017-10-03
EP3094126A1 (en) 2016-11-16
JP2018170808A (ja) 2018-11-01
US20180249357A1 (en) 2018-08-30
US20230044557A1 (en) 2023-02-09
US20190159050A1 (en) 2019-05-23
IN2014DN08965A (ja) 2015-05-22
EP3589005A1 (en) 2020-01-01
ES2728235T3 (es) 2019-10-23
JP2021040350A (ja) 2021-03-11
US9420482B2 (en) 2016-08-16
US11012876B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
JP6573010B2 (ja) 無線端末、無線基地局、及びこれらの制御方法
US11516686B2 (en) Measurement method, configuration method, related device, and system
JP6402808B2 (ja) 制御装置及び制御方法
TW201715904A (zh) 對頻率間量測的管理

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512299

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013782054

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14396268

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE