WO2017126623A1 - 無線端末及びプロセッサ - Google Patents

無線端末及びプロセッサ Download PDF

Info

Publication number
WO2017126623A1
WO2017126623A1 PCT/JP2017/001799 JP2017001799W WO2017126623A1 WO 2017126623 A1 WO2017126623 A1 WO 2017126623A1 JP 2017001799 W JP2017001799 W JP 2017001799W WO 2017126623 A1 WO2017126623 A1 WO 2017126623A1
Authority
WO
WIPO (PCT)
Prior art keywords
rssi
wireless terminal
measurement
information
network
Prior art date
Application number
PCT/JP2017/001799
Other languages
English (en)
French (fr)
Inventor
憲由 福田
ヘンリー チャン
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2017562901A priority Critical patent/JP6910308B2/ja
Publication of WO2017126623A1 publication Critical patent/WO2017126623A1/ja
Priority to US16/041,185 priority patent/US10348425B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/26Monitoring; Testing of receivers using historical data, averaging values or statistics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to a wireless terminal and a processor used in a mobile communication system.
  • the MDT is a function that mainly optimizes the network by measuring the wireless environment by the wireless terminal and reporting the measurement result to the network together with the location information.
  • LTE Long Term Evolution
  • attempts to upgrade LTE are being advanced in order to meet the rapidly increasing traffic demand.
  • LTE Long Term Evolution
  • the unlicensed frequency band may be referred to as an unlicensed spectrum.
  • the wireless terminal supports MDT.
  • the wireless terminal includes: a receiving unit configured to receive setting information for setting measurement of RSSI in an unlicensed frequency band and acquisition of position information of the wireless terminal; from the network, based on the setting information, A control unit that acquires position information; and a transmission unit that transmits an RSSI measurement result to the network together with the position information.
  • the processor controls a wireless terminal that supports MDT.
  • the processor is configured to receive, from the network, setting information for setting measurement of RSSI in an unlicensed frequency band and acquisition of position information of the wireless terminal, and measurement of the RSSI and position information based on the setting information. And a process of transmitting the RSSI measurement result to the network together with the position information.
  • FIG. 1 is a diagram illustrating a configuration of an LTE system.
  • FIG. 2 is a diagram illustrating a protocol stack of a radio interface in the LTE system.
  • FIG. 3 is a diagram illustrating a configuration of a radio frame used in the LTE system.
  • FIG. 4 is a diagram illustrating the configuration of the UE.
  • FIG. 5 is a diagram illustrating a configuration of the eNB.
  • FIG. 6 is a diagram illustrating an example of LAA.
  • FIG. 7 is a diagram illustrating a sequence of use case 1 according to the embodiment.
  • FIG. 8 is a diagram illustrating a specific example of use case 1 according to the embodiment.
  • FIG. 9 is a diagram illustrating a sequence of use case 2 according to the embodiment.
  • FIG. 10A and FIG. 10B are diagrams illustrating a specific example of use case 2 according to the embodiment.
  • a wireless terminal supports MDT.
  • the wireless terminal includes: a receiving unit configured to receive setting information for setting measurement of RSSI in an unlicensed frequency band and acquisition of position information of the wireless terminal; from the network, based on the setting information, A control unit that acquires position information; and a transmission unit that transmits an RSSI measurement result to the network together with the position information.
  • the setting information includes information indicating an RSSI measurement window.
  • the control unit calculates an average RSSI that is an average of a plurality of RSSI measurement values in the RSSI measurement window.
  • the RSSI measurement result includes the average RSSI.
  • control unit compares each of the plurality of RSSI measurement values with a threshold value, and calculates a ratio occupied by an RSSI measurement value larger than the threshold value among the plurality of RSSI measurement values.
  • the said transmission part further transmits the said ratio with the said RSSI measurement result.
  • control unit performs reception processing of a radio signal detected in the unlicensed frequency band, and generates auxiliary information based on the content of the radio signal.
  • the transmission unit further transmits the auxiliary information together with the RSSI measurement result.
  • the unlicensed frequency band includes a plurality of sub-frequency bands.
  • the setting information includes frequency information specifying a measurement target sub-frequency band among the plurality of sub-frequency bands.
  • the MDT is Immediate MDT.
  • the receiving unit transmits a measurement report including the RSSI measurement result and the location information to the network.
  • the MDT is a Logged MDT.
  • the control unit stores a measurement log including the RSSI measurement result, the position information, and a time stamp.
  • the transmission unit transmits a notification indicating that the wireless terminal has the measurement log to the network at a predetermined timing.
  • the transmission unit transmits the measurement log to the network when the wireless terminal receives a transmission request from the network.
  • control unit includes an AS entity that executes the Logged MDT, and an upper layer entity that is positioned higher than the AS entity and stores higher layer data different from the measurement log. .
  • the AS entity executes the Logged MDT in cooperation with the higher layer entity.
  • the AS entity shares a timer for obtaining the time stamp with the upper layer entity.
  • the upper layer entity adds a time stamp to the upper layer data using the timer.
  • the AS entity stores the measurement log triggered by a notification from the higher layer entity.
  • the processor controls a wireless terminal that supports MDT.
  • the processor is configured to receive, from the network, setting information for setting measurement of RSSI in an unlicensed frequency band and acquisition of position information of the wireless terminal, and measurement of the RSSI and position information based on the setting information. And a process of transmitting the RSSI measurement result to the network together with the position information.
  • FIG. 1 is a diagram illustrating a configuration of an LTE system.
  • the LTE system includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network.
  • the UE 100 corresponds to a wireless terminal.
  • the UE 100 is a mobile radio terminal.
  • the UE 100 performs radio communication with a cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • ENB 200 manages one or a plurality of cells.
  • the eNB 200 performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a wireless communication area.
  • Cell is also used as a term indicating a function of performing wireless communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • MME performs various mobility control etc. with respect to UE100.
  • the S-GW performs data transfer control.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the E-UTRAN 10 and the EPC 20 constitute a network.
  • FIG. 2 is a diagram showing a protocol stack of a radio interface in the LTE system.
  • the radio interface protocol is divided into the first to third layers of the OSI reference model.
  • the first layer includes a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer, the MAC layer, the RLC layer, the PDCP layer, and the RRC layer constitute an AS (Access Stratum) entity 100a.
  • the higher layer entity 100b is positioned in a higher layer than the AS entity 100a.
  • the upper layer entity 100b includes a NAS (Non-Access Stratum) layer.
  • the upper layer entity 100b may further include an application layer and the like.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • Data and control signals are transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control signals are transmitted between the MAC layer of the UE 100 and the MAC layer of the eNB 200 via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler. The scheduler determines the uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and the resource blocks allocated to the UE 100.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection connection between the RRC of the UE 100 and the RRC of the eNB 200
  • the UE 100 is in the RRC connected mode.
  • RRC connection When there is no connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC idle mode.
  • the NAS layer located above the RRC layer performs session management and mobility management.
  • FIG. 3 is a diagram illustrating a configuration of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms.
  • the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction.
  • Each subframe includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • One symbol and one subcarrier constitute one resource element (RE).
  • the frequency resource can be specified by the resource block.
  • Time resources can be specified by subframes (or slots).
  • FIG. 4 is a diagram illustrating a configuration of the UE 100. As illustrated in FIG.
  • the UE 100 includes a receiving unit 110, a transmitting unit 120, and a control unit 130.
  • the UE 100 may further include a GNSS (Global Navigation Satellite System) receiver.
  • GNSS Global Navigation Satellite System
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal).
  • the receiver outputs a baseband signal to control unit 130.
  • the receiving unit 110 may include a first receiver and a second receiver.
  • the first receiver receives a radio signal in the licensed frequency band.
  • the second receiver receives a radio signal in the unlicensed frequency band.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmission unit 120 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) output from the control unit 130 into a radio signal.
  • the transmitter transmits a radio signal from the antenna.
  • the transmission unit 120 may include a first transmitter and a second transmitter. The first transmitter transmits a radio signal in the licensed frequency band. The second transmitter transmits a radio signal in the unlicensed frequency band.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor may include a codec.
  • the codec performs encoding / decoding of audio / video signals.
  • the processor executes various processes described later and various communication protocols described above.
  • FIG. 5 is a diagram illustrating a configuration of the eNB 200.
  • the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmission unit 210 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) output from the control unit 230 into a radio signal.
  • the transmitter transmits a radio signal from the antenna.
  • the transmission unit 210 may include a first transmitter and a second transmitter. The first transmitter transmits a radio signal in the licensed frequency band. The second transmitter transmits a radio signal in the unlicensed frequency band.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal).
  • the receiver outputs the baseband signal to the control unit 230.
  • the receiving unit 220 may include a first receiver and a second receiver. The first receiver receives a radio signal in the licensed frequency band. The second receiver receives a radio signal in the unlicensed frequency band.
  • the control unit 230 performs various controls in the eNB 200.
  • the control unit 230 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor executes various processes described later and various communication protocols described above.
  • the backhaul communication unit 240 is connected to the neighboring eNB 200 via the X2 interface.
  • the backhaul communication unit 240 is connected to the MME / S-GW 300 via the S1 interface.
  • the backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
  • LAA Licensed-Assisted Access
  • the LTE system uses not only the licensed frequency band but also the unlicensed frequency band for LTE communication.
  • LAA is a function that enables access to an unlicensed frequency band with the assistance of a licensed frequency band.
  • FIG. 6 is a diagram illustrating an example of LAA. As illustrated in FIG. 6, the eNB 200 manages the cell # 1 and the cell # 2. Cell # 1 is operated in the licensed frequency band. Cell # 2 is operated in an unlicensed frequency band. FIG. 6 illustrates an example in which cell # 1 is a macro cell and cell # 2 is a small cell. However, the cell size is not limited to this.
  • UE 100 is located in the overlapping area of cell # 1 and cell # 2.
  • UE100 sets cell # 2 as a secondary cell (SCell), setting cell # 1 as a primary cell (PCell), and performs communication by a carrier aggregation (CA).
  • carrier aggregation carrier aggregation
  • UE 100 is provided with radio resources in the unlicensed frequency band in addition to radio resources in the licensed frequency band.
  • the UE 100 according to the embodiment supports MDT.
  • the UE 100 according to the embodiment has a function of receiving a radio signal transmitted in an unlicensed frequency band.
  • An unlicensed frequency band is shared by a plurality of systems.
  • the plurality of systems include an LTE system, a WLAN (Wireless LAN) system, a DSRC (Dedicated Short Range Communication) system, and the like.
  • Unlicensed frequency bands are 5 GHz band and 5.9 GHz band.
  • LTE systems and WLAN (Wireless LAN) systems mainly use the 5 GHz band among the unlicensed frequency bands.
  • the DSRC system uses the 5.9 GHz band.
  • the receiving unit 110 of the UE 100 receives setting information from the network (eNB 200).
  • the setting information sets measurement of RSSI (Received Signal Strength Indicator) in the unlicensed frequency band and acquisition of location information of the UE 100.
  • the location information is information for specifying the geographical location of the UE 100.
  • the position information is, for example, GNSS position information or an RF (Radio Frequency) fingerprint.
  • the setting information is transmitted / received by RRC signaling, for example.
  • the control unit 130 of the UE 100 measures RSSI in the unlicensed frequency band and acquires location information based on the setting information.
  • the transmission part 120 of UE100 transmits an RSSI measurement result to a network (eNB200) with a positional information.
  • the RSSI measurement result is transmitted / received by RRC signaling, for example.
  • the setting information may include information indicating an RSSI measurement window.
  • the RSSI measurement window has a longer time length than the RSSI measurement interval.
  • the control unit 130 calculates an average RSSI that is an average of a plurality of RSSI measurement values within the RSSI measurement window.
  • the transmission part 120 transmits average RSSI to a network (eNB200) as an RSSI measurement result. By reporting such average RSSI, it is possible to reduce the influence of instantaneous RSSI fluctuation and to grasp long-term communication quality in the unlicensed frequency band.
  • the control unit 130 may compare each of the plurality of RSSI measurement values with a threshold value, and calculate a ratio occupied by an RSSI measurement value larger than the threshold value among the plurality of RSSI measurement values.
  • the threshold value may be included in the setting information.
  • Such a ratio can be used as an index indicating how often the unlicensed frequency band is used.
  • a ratio is referred to as a channel utilization rate.
  • the transmission unit 120 transmits the RSSI measurement result (average RSSI) to the network (eNB 200) together with the channel usage rate.
  • the control unit 130 may perform reception processing (signal detection) of a radio signal detected in the unlicensed frequency band, and generate auxiliary information based on the content of the radio signal.
  • the transmission unit 120 further transmits auxiliary information together with the RSSI measurement result. By reporting such auxiliary information, the network can grasp the situation of the unlicensed frequency band in more detail.
  • the radio signal to be detected is, for example, a WLAN beacon signal, an LTE broadcast signal, a DSRC signal, or the like.
  • the LTE broadcast signal is a reference signal or system information.
  • the auxiliary information includes the identifier of the source node of the received radio signal, the type (type) of the source node, the received signal strength / received signal quality of the received radio signal, the number of identified nodes, and the load information of the source node At least one of them.
  • the identifier of the transmission source node is, for example, a WLAN identifier or a cell identifier.
  • the WLAN identifier is BSSID (basic Service Set IDentification) or the like.
  • the cell identifier is a physical cell ID or a global cell ID.
  • the identifier of the transmission source node may be a ProSe UE ID used in the proximity service (ProSe).
  • the received signal strength / received signal quality of the received radio signal is different from RSSI, which is the overall received signal strength of a certain frequency band.
  • the received signal strength / received signal quality of the received radio signal is the received signal strength / received signal quality of the specific radio signal.
  • the received signal strength / received signal quality is reference signal received power (RSRP), reference signal received power (RSRQ), beacon RSSI, or the like.
  • the load information of the transmission source node is, for example, a backhaul rate (such as a WLAN backhaul rate).
  • the setting information may include frequency information specifying a measurement target sub-frequency band among a plurality of sub-frequency bands included in the unlicensed frequency band.
  • the sub frequency band is, for example, a WLAN band or a WLAN channel.
  • the control unit 130 measures the RSSI of the band or channel specified by the frequency information (band number or channel number).
  • FIG. 7 is a diagram showing a sequence of use case 1.
  • step S101 the eNB 200 transmits setting information (RSSI measurement configuration) to the UE 100.
  • the setting information sets RSSI measurement in the unlicensed frequency band and acquisition of location information of the UE 100.
  • the UE 100 receives the setting information.
  • the setting information includes information (request location info) for requesting acquisition of the location information of the UE 100.
  • the setting information may include timing information that specifies report timing.
  • the timing information includes information designating either a periodic report or an event trigger report.
  • periodic reporting the timing information may include information specifying the period of measurement reporting.
  • event trigger report the timing information may include information specifying a trigger type (event).
  • step S102 the UE 100 performs RSSI measurement (RSSI measurement) in the unlicensed frequency band in the RRC connected mode.
  • RSSI measurement RSSI measurement
  • the UE 100 performs RSSI measurement for a designated frequency band (configured frequency).
  • the UE 100 starts processing for reporting the RSSI measurement result to the serving cell at the timing when the physical layer reports the first RSSI sample value. This process is performed in the RRC layer of the UE 100.
  • the UE 100 starts a process for reporting the RSSI measurement result to the serving cell at the timing when the physical layer reports the first RSSI sample value.
  • the UE 100 reports the RSSI measurement result to the serving cell at the timing when the RSSI value averaged over the report interval exceeds the threshold. This process is performed in the RRC layer of the UE 100.
  • the RRC layer does not start the measurement report immediately after the RRC measurement is set, but starts the measurement report after the physical layer starts the RSSI measurement.
  • step S103 the UE 100 acquires location information.
  • the order of step S102 and step S103 may be reversed.
  • step S104 the UE 100 determines whether it is the timing of the measurement report.
  • the UE 100 transmits a measurement report including an RSSI measurement result and location information to the eNB 200.
  • the measurement report may include the channel utilization and / or auxiliary information described above.
  • the eNB 200 receives the measurement report.
  • the eNB 200 receives the measurement report including the RSSI measurement result and the location information from the UE 100 in the RRC connected mode within the own cell.
  • FIG. 8 is a diagram showing a specific example of use case 1.
  • the eNB 200 manages a cell (Pico Cell) operated in the 3.5 GHz band which is a licensed frequency band. Further, the eNB 200 has RRH (Remote Radio Head) operated in an unlicensed frequency band. RRH is a remote radio unit (LAA RRH) used for LAA. A WLAN access point (WiFi AP) 400 is installed around the RRH.
  • a cell Pico Cell
  • RRH Remote Radio Head
  • LAA RRH remote radio unit
  • WiFi AP WiFi access point
  • the eNB 200 receives a measurement report including an RSSI measurement result (RSSI measurement result), location information, and the like from each UE 100 in its own cell using Immediate MDT (IMM MDT).
  • RSSI measurement result RSSI measurement result
  • IMM MDT Immediate MDT
  • ENB200 specifies UE100 located in the periphery of RRH based on position information.
  • the eNB 200 confirms the RSSI measurement result of the specified UE 100 and determines whether or not the unlicensed frequency band can be used. When determining that it cannot be used, the eNB 200 stops the RRH operation. When it is determined that the eNB 200 can be used, the eNB 200 continues the operation of the RRH or resumes the operation. Thereby, RRH can be operated appropriately.
  • Logged MDT is assumed.
  • Logged MDT may be Logged MDT in Idle which UE100 of RRC idle mode logs.
  • the Logged MDT may be Logged MDT in Connected in which the UE 100 in the RRC connected mode performs logging. Logging is a series of processes including measurement and storage of measurement results.
  • UE 100 detects a DSRC signal (DSRC beacon).
  • the UE 100 may be a vehicle-mounted UE (vehicle-mounted terminal) mounted on a vehicle.
  • FIG. 9 is a diagram showing a sequence of use case 2.
  • step S201 the eNB 200 transmits setting information (DSRC Beacon RSSI measurement logging config) to the UE 100.
  • the setting information sets RSSI measurement in the unlicensed frequency band and acquisition of location information of the UE 100.
  • the UE 100 receives the setting information.
  • the setting information includes a network absolute time serving as a time stamp reference, a logging period that is a period for performing logging, and the like.
  • the UE 100 performs RSSI measurement (RSSI measurement) in the unlicensed frequency band in the RRC idle mode or the RRC connected mode.
  • RSSI measurement RSSI measurement
  • the UE 100 can detect the DSRC beacon
  • the UE 100 performs beacon RSSI measurement (Beacon RSSI measurement).
  • the UE 100 generates auxiliary information based on the detected DSRC beacon.
  • the auxiliary information includes the source node information (Tx info) of the DSRC beacon.
  • the UE 100 may include the location information of the transmission source node in the auxiliary information.
  • step S203 the UE 100 acquires location information.
  • the order of step S202 and step S203 may be reversed.
  • the UE100 memorize
  • the UE 100 has a timer, and measures an elapsed time from the network absolute time using the timer.
  • the UE 100 includes the timer value at the time of measurement in the measurement log as a time stamp.
  • the AS entity 100a of the UE 100 continues logging until the logging period ends.
  • the upper layer entity 100b of the UE 100 stores upper layer data different from the measurement log stored in the AS entity 100a.
  • the upper layer data is data related to the vehicle.
  • the upper layer data may be image data obtained by an in-vehicle camera.
  • the AS entity 100a of the UE 100 preferably executes logging in cooperation with the upper layer entity 100b.
  • the AS entity 100a shares a timer for obtaining a time stamp with the upper layer entity 100b.
  • the upper layer entity 100b adds a time stamp to the upper layer data using a timer shared with the AS entity 100a.
  • the network can associate the measurement log and the upper layer data using the time stamp.
  • the AS entity 100a may store the measurement log using the notification from the higher layer entity 100b as a trigger.
  • the upper layer entity 100b notifies the AS entity 100a when a danger is detected by the in-vehicle camera.
  • the AS entity 100a can perform logging by using the occurrence of an event related to the vehicle as a trigger.
  • step S204 when the UE 100 has a measurement log after the end of the logging period (step S204: Yes), in step S205, a notification (Log availability) indicating that the UE 100 has the measurement log is given timing.
  • the predetermined timing is, for example, a timing at which the UE 100 performs a handover or a timing at which a transition from the RRC idle mode to the RRC connected mode is performed.
  • the predetermined timing may be a time or a time zone specified by the setting information. For example, it may be possible to designate a midnight time or time zone with a small traffic volume.
  • the eNB 200 determines whether to acquire a measurement log based on the notification from the UE 100.
  • the description will be made assuming that the eNB 200 determines to acquire the measurement log.
  • step S206 the eNB 200 transmits a transmission request (Request) for requesting transmission of the measurement log to the UE 100.
  • step S207 the UE 100 transmits a measurement log to the network in response to receiving a transmission request from the eNB 200.
  • UE100 transmits upper layer data to eNB200 with a measurement log.
  • UE100 may transmit upper layer data to eNB200 at a timing different from a measurement log.
  • the network acquires the measurement log and the upper layer data from the UE 100.
  • FIG. 10 is a diagram showing a specific example of use case 2.
  • a vehicle (automobile) on which the UE 100 is mounted is traveling on a roadway.
  • UE100 detects (Detect) the DRSC beacon transmitted from the communication node which a pedestrian has.
  • UE100 may detect a pedestrian with a vehicle-mounted camera.
  • the UE 100 stores a measurement log when a pedestrian is detected.
  • the measurement log includes, for example, a time stamp (Time), position information (Location), beacon RSSI (Beacon RSSI value), and information on a transmission source node (Tx is pedestrian).
  • Tx transmission source node
  • the LTE system is exemplified as the mobile communication system.
  • the present invention is not limited to LTE systems.
  • the present invention may be applied to a system other than the LTE system.
  • the present invention is useful in the communication field.

Abstract

実施形態に係る無線端末は、MDTをサポートする。前記無線端末は、アンライセンスド周波数帯におけるRSSIの測定及び前記無線端末の位置情報の取得を設定する設定情報をネットワークから受信する受信部と、前記設定情報に基づいて、前記RSSIの測定及び前記位置情報の取得を行う制御部と、RSSI測定結果を前記位置情報と共に前記ネットワークに送信する送信部と、を備える。

Description

無線端末及びプロセッサ
 本発明は、移動通信システムにおいて用いられる無線端末及びプロセッサに関する。
 移動通信システムの標準化プロジェクトである3GPP(Third Generation Partnership Project)において、MDT(Minimization of Drive Tests)機能が仕様化されている。MDTは、無線端末が無線環境を測定し、測定結果を位置情報と共にネットワークに報告することにより、主にネットワークの最適化を図る機能である。
 また、3GPPにおいては、急増するトラフィック需要に応えるべく、LTE(Long Term Evolution)を高度化する試みが進められている。そのような試みの一つとして、オペレータに免許が付与された周波数帯であるライセンスド周波数帯だけではなく、免許が不要な周波数帯であるアンライセンスド周波数帯もLTE通信に使用することが検討されている。アンライセンスド周波数帯は、アンライセンスドスペクトルと称されてもよい。
 一実施形態に係る無線端末は、MDTをサポートする。前記無線端末は、アンライセンスド周波数帯におけるRSSIの測定及び前記無線端末の位置情報の取得を設定する設定情報をネットワークから受信する受信部と、前記設定情報に基づいて、前記RSSIの測定及び前記位置情報の取得を行う制御部と、RSSI測定結果を前記位置情報と共に前記ネットワークに送信する送信部と、を備える。
 一実施形態に係るプロセッサは、MDTをサポートする無線端末を制御する。前記プロセッサは、アンライセンスド周波数帯におけるRSSIの測定及び前記無線端末の位置情報の取得を設定する設定情報をネットワークから受信する処理と、前記設定情報に基づいて、前記RSSIの測定及び前記位置情報の取得を行う処理と、RSSI測定結果を前記位置情報と共に前記ネットワークに送信する処理と、を実行する。
図1は、LTEシステムの構成を示す図である。 図2は、LTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。 図3は、LTEシステムで用いられる無線フレームの構成を示す図である。 図4は、UEの構成を示す図である。 図5は、eNBの構成を示す図である。 図6は、LAAの一例を示す図である。 図7は、実施形態に係るユースケース1のシーケンスを示す図である。 図8は、実施形態に係るユースケース1の具体例を示す図である。 図9は、実施形態に係るユースケース2のシーケンスを示す図である。 図10(a)及び図10(b)は、実施形態に係るユースケース2の具体例を示す図である。
 [実施形態の概要]
 一実施形態に係る無線端末は、MDTをサポートする。前記無線端末は、アンライセンスド周波数帯におけるRSSIの測定及び前記無線端末の位置情報の取得を設定する設定情報をネットワークから受信する受信部と、前記設定情報に基づいて、前記RSSIの測定及び前記位置情報の取得を行う制御部と、RSSI測定結果を前記位置情報と共に前記ネットワークに送信する送信部と、を備える。
 一実施形態において、前記設定情報は、RSSI測定ウィンドウを示す情報を含む。前記制御部は、前記RSSI測定ウィンドウ内の複数のRSSI測定値の平均である平均RSSIを算出する。前記RSSI測定結果は、前記平均RSSIを含む。
 一実施形態において、前記制御部は、前記複数のRSSI測定値のそれぞれを閾値と比較し、前記複数のRSSI測定値のうち閾値よりも大きいRSSI測定値が占める割合を算出する。前記送信部は、前記RSSI測定結果と共に前記割合をさらに送信する。
 一実施形態において、前記制御部は、前記アンライセンスド周波数帯において検出した無線信号の受信処理を行い、前記無線信号の内容に基づく補助情報を生成する。前記送信部は、前記RSSI測定結果と共に前記補助情報をさらに送信する。
 一実施形態において、前記アンライセンスド周波数帯は、複数のサブ周波数帯を含む。前記設定情報は、前記複数のサブ周波数帯のうち測定対象のサブ周波数帯を指定する周波数情報を含む。
 一実施形態において、前記MDTは、Immediate MDTである。前記受信部は、前記RSSI測定結果と前記位置情報とを含む測定報告を前記ネットワークに送信する。
 一実施形態において、前記MDTは、Logged MDTである。前記制御部は、前記RSSI測定結果と前記位置情報とタイムスタンプとを含む測定ログを記憶する。前記送信部は、前記無線端末が前記測定ログを有することを示す通知を所定のタイミングで前記ネットワークに送信する。前記送信部は、前記無線端末が前記ネットワークから送信要求を受信した場合に、前記測定ログを前記ネットワークに送信する。
 一実施形態において、前記制御部は、前記Logged MDTを実行するASエンティティと、前記ASエンティティよりも上位層に位置付けられ、前記測定ログとは異なる上位層データを記憶する上位層エンティティと、を含む。前記ASエンティティは、前記上位層エンティティと協調した前記Logged MDTを実行する。
 一実施形態において、前記ASエンティティは、前記タイムスタンプを得るためのタイマを前記上位層エンティティと共有する。前記上位層エンティティは、前記タイマを用いて前記上位層データにタイムスタンプを付加する。
 一実施形態において、前記ASエンティティは、前記上位層エンティティからの通知をトリガとして、前記測定ログを記憶する。
 一実施形態に係るプロセッサは、MDTをサポートする無線端末を制御する。前記プロセッサは、アンライセンスド周波数帯におけるRSSIの測定及び前記無線端末の位置情報の取得を設定する設定情報をネットワークから受信する処理と、前記設定情報に基づいて、前記RSSIの測定及び前記位置情報の取得を行う処理と、RSSI測定結果を前記位置情報と共に前記ネットワークに送信する処理と、を実行する。
 [実施形態]
 (1)システム構成
 以下において、実施形態に係る移動通信システムであるLTEシステムの構成について説明する。図1は、LTEシステムの構成を示す図である。
 図1に示すように、LTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。E-UTRAN10及びEPC20は、LTEシステムのネットワークを構成する。
 UE100は、無線端末に相当する。UE100は、移動型の無線端末である。UE100は、セル(サービングセル)との無線通信を行う。UE100の構成については後述する。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。
 eNB200は、1又は複数のセルを管理している。eNB200は、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能を示す用語としても用いられる。
 EPC20は、コアネットワークに相当する。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。S-GWは、データの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。E-UTRAN10及びEPC20は、ネットワークを構成する。
 図2は、LTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。図2に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されている。第1層は物理(PHY)層を含む。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層、MAC層、RLC層、PDCP層、RRC層は、AS(Access Stratum)エンティティ100aを構成する。上位層エンティティ100bは、ASエンティティ100aよりも上位層に位置付けられる。上位層エンティティ100bは、NAS(Non-Access Stratum)層を含む。上位層エンティティ100bは、アプリケーション層等をさらに含んでもよい。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してデータ及び制御信号が伝送される。
 MAC層は、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセス手順等を行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してデータ及び制御信号が伝送される。eNB200のMAC層は、スケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定する。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してデータ及び制御信号が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッドモードである。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドルモードである。
 RRC層の上位に位置するNAS層は、セッション管理及びモビリティ管理等を行う。
 図3は、LTEシステムで用いられる無線フレームの構成を示す図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)が適用される。LTEシステムは、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)が適用される。
 図3に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msである。各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含む。各サブフレームは、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定できる。時間リソースはサブフレーム(又はスロット)により特定できる。
 (2)無線端末の構成
 以下において、実施形態に係るUE100(無線端末)について説明する。図4は、UE100の構成を示す図である。
 図4に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。UE100は、GNSS(Global Navigation Satellite System)受信機をさらに備えてもよい。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換する。受信機は、ベースバンド信号を制御部130に出力する。受信部110は、第1の受信機と、第2の受信機と、を含んでもよい。第1の受信機は、ライセンスド周波数帯において無線信号を受信する。第2の受信機は、アンライセンスド周波数帯において無線信号を受信する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換する。送信機は、無線信号をアンテナから送信する。送信部120は、第1の送信機と、第2の送信機と、を含んでもよい。第1の送信機は、ライセンスド周波数帯において無線信号を送信する。第2の送信機は、アンライセンスド周波数帯において無線信号を送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含む。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、コーデックを含んでもよい。コーデックは、音声・映像信号の符号化・復号を行う。プロセッサは、後述する各種の処理及び上述した各種の通信プロトコルを実行する。
 (3)基地局の構成
 以下において、eNB200(基地局)の構成について説明する。図5は、eNB200の構成を示す図である。
 図5に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換する。送信機は、無線信号をアンテナから送信する。送信部210は、第1の送信機と、第2の送信機と、を含んでもよい。第1の送信機は、ライセンスド周波数帯において無線信号を送信する。第2の送信機は、アンライセンスド周波数帯において無線信号を送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換する。受信機は、ベースバンド信号を制御部230に出力する。受信部220は、第1の受信機と、第2の受信機と、を含んでもよい。第1の受信機は、ライセンスド周波数帯において無線信号を受信する。第2の受信機は、アンライセンスド周波数帯において無線信号を受信する。
 制御部230は、eNB200における各種の制御を行う。制御部230は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含む。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する各種の処理及び上述した各種の通信プロトコルを実行する。
 バックホール通信部240は、X2インターフェイスを介して隣接eNB200と接続される。バックホール通信部240は、S1インターフェイスを介してMME/S-GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に用いられる。
 (4)LAA
 以下において、LAA(Licensed-Assisted Access)について説明する。
 実施形態に係るLTEシステムは、ライセンスド周波数帯だけではなくアンライセンスド周波数帯もLTE通信に使用する。LAAは、ライセンスド周波数帯の補助によりアンライセンスド周波数帯にアクセス可能とする機能である。
 図6は、LAAの一例を示す図である。図6に示すように、eNB200は、セル#1と、セル#2と、を管理している。セル#1は、ライセンスド周波数帯で運用される。セル#2は、アンライセンスド周波数帯で運用される。図6において、セル#1がマクロセルであり、セル#2が小セルである一例を図示している。しかしながら、セルサイズはこれに限定されない。
 UE100は、セル#1及びセル#2の重複エリアに位置する。UE100は、セル#1をプライマリセル(PCell)として設定しつつ、セル#2をセカンダリセル(SCell)として設定し、キャリアアグリゲーション(CA)による通信を行う。このようなキャリアアグリゲーションにより、UE100には、ライセンスド周波数帯の無線リソースに加えて、アンライセンスド周波数帯の無線リソースが提供される。
 (5)実施形態に係る動作
 以下において、実施形態に係る動作について説明する。
 実施形態に係るUE100は、MDTをサポートする。実施形態に係るUE100は、アンライセンスド周波数帯において送信される無線信号を受信する機能を有する。アンライセンスド周波数帯は、複数のシステムにより共用される。複数のシステムは、LTEシステム、WLAN(Wireless LAN)システム、DSRC(Dedicated Short Range Communication)システム等を含む。
 アンライセンスド周波数帯は、5GHz帯及び5.9GHz帯等である。例えば、LTEシステム及びWLAN(Wireless LAN)システムは、アンライセンスド周波数帯のうち主として5GHz帯を用いる。DSRCシステムは、5.9GHz帯を用いる。
 UE100の受信部110は、設定情報をネットワーク(eNB200)から受信する。設定情報は、アンライセンスド周波数帯におけるRSSI(Received Signal Strength Indicator)の測定及びUE100の位置情報の取得を設定する。位置情報は、UE100の地理的な位置を特定するための情報である。位置情報は、例えばGNSS位置情報又はRF(Radio Frequency)フィンガープリントである。設定情報は、例えばRRCシグナリングにより送受信される。
 UE100の制御部130は、設定情報に基づいて、アンライセンスド周波数帯におけるRSSIの測定、及び位置情報の取得を行う。UE100の送信部120は、RSSI測定結果を位置情報と共にネットワーク(eNB200)に送信する。RSSI測定結果は、例えばRRCシグナリングにより送受信される。
 設定情報は、RSSI測定ウィンドウを示す情報を含んでもよい。RSSI測定ウィンドウは、RSSI測定間隔よりも時間長が長い。制御部130は、RSSI測定ウィンドウ内の複数のRSSI測定値の平均である平均RSSIを算出する。送信部120は、平均RSSIをRSSI測定結果としてネットワーク(eNB200)に送信する。このような平均RSSIを報告することにより、瞬間的なRSSIの変動の影響を小さくして、アンライセンスド周波数帯の長期的な通信品質を把握可能とすることができる。
 制御部130は、当該複数のRSSI測定値のそれぞれを閾値と比較し、複数のRSSI測定値のうち閾値よりも大きいRSSI測定値が占める割合を算出してもよい。閾値は、設定情報に含まれていてもよい。このような割合は、アンライセンスド周波数帯がどの程度頻度に利用されているかを示す指標とすることができる。以下において、このような割合をチャネル利用率と称する。送信部120は、RSSI測定結果(平均RSSI)をチャネル利用率と共にネットワーク(eNB200)に送信する。
 制御部130は、アンライセンスド周波数帯において検出した無線信号の受信処理(信号検出)を行い、無線信号の内容に基づく補助情報を生成してもよい。送信部120は、RSSI測定結果と共に補助情報をさらに送信する。このような補助情報も報告することにより、ネットワークがアンライセンスド周波数帯の状況をより詳細に把握することができる。
 検出する無線信号は、例えば、WLANビーコン信号、LTEブロードキャスト信号、又はDSRC信号等である。LTEブロードキャスト信号は、参照信号又はシステム情報等である。
 補助情報は、受信した無線信号の送信元ノードの識別子、送信元ノードの種類(タイプ)、受信した無線信号の受信信号強度/受信信号品質、特定できたノード数、及び送信元ノードの負荷情報のうち少なくとも1つである。ここで、送信元ノードの識別子は、例えばWLAN識別子又はセル識別子である。WLAN識別子は、BSSID(Basic Service Set IDentification)等である。セル識別子は、物理セルID又はグローバルセルIDである。送信元ノードの識別子は、近傍サービス(ProSe)において用いられるProSe UE IDであってもよい。受信した無線信号の受信信号強度/受信信号品質は、ある周波数帯の全体的な受信信号強度であるRSSIとは異なる。受信した無線信号の受信信号強度/受信信号品質は、特定の無線信号の受信信号強度/受信信号品質である。例えば、受信信号強度/受信信号品質は、参照信号受信電力(RSRP)、参照信号受信電力(RSRQ)、又はビーコンRSSI等である。送信元ノードの負荷情報は、例えばバックホールレート(WLANバックホールレート等)である。
 設定情報は、アンライセンスド周波数帯に含まれる複数のサブ周波数帯のうち測定対象のサブ周波数帯を指定する周波数情報を含んでもよい。サブ周波数帯は、例えばWLANバンド又はWLANチャネルである。制御部130は、周波数情報(バンド番号又はチャネル番号)により指定されたバンド又はチャネルのRSSIを測定する。
 (5.1)ユースケース1
 以下において、アンライセンスド周波数帯におけるRSSI測定を伴うMDTのユースケース1について説明する。ユースケース1においては、Immediate MDTを想定する。
 図7は、ユースケース1のシーケンスを示す図である。
 図7に示すように、ステップS101において、eNB200は、設定情報(RSSI measurement config)をUE100に送信する。設定情報は、アンライセンスド周波数帯におけるRSSIの測定及びUE100の位置情報の取得を設定する。UE100は、設定情報を受信する。
 設定情報は、UE100の位置情報の取得を要求する情報(request location info)を含む。設定情報は、報告タイミングを指定するタイミング情報を含んでもよい。タイミング情報は、周期的な報告及びイベントトリガ報告の何れかを指定する情報を含む。周期的な報告の場合、タイミング情報は、測定報告の周期を指定する情報を含んでもよい。イベントトリガ報告の場合、タイミング情報は、トリガの種類(イベント)を指定する情報を含んでもよい。
 ステップS102において、UE100は、RRCコネクティッドモードにおいて、アンライセンスド周波数帯におけるRSSIの測定(RSSI measurement)を行う。設定情報が周波数情報を含む場合、UE100は、指定された周波数帯(configured frequency)についてRSSIの測定を行う。
 周期的な報告(Periodic Reporting)の場合、UE100は、物理層がはじめのRSSIサンプル値を報告してきたタイミングで、RSSI測定結果をサービングセルに報告するための処理を開始する。この処理は、UE100のRRC層において行われる。
 イベントトリガ報告(Event triggered Reporting)の場合、UE100は、物理層がはじめのRSSIサンプル値を報告してきたタイミングで、RSSI測定結果をサービングセルに報告するための処理を開始する。UE100は、報告間隔(Report interval)間で平均化したRSSI値が閾値を超えたタイミングで、RSSI測定結果をサービングセルに報告する。この処理は、UE100のRRC層において行われる。
 このように、RRC層は、RRC測定が設定された後すぐに測定報告を開始するわけでなく、物理層がRSSI測定を開始した後で測定報告を開始する。
 ステップS103において、UE100は、位置情報(location info)を取得する。ステップS102及びステップS103の順は逆であってもよい。
 ステップS104において、UE100は、測定報告のタイミングであるか否かを判定する。
 測定報告のタイミングである場合、ステップS105において、UE100は、RSSI測定結果及び位置情報を含む測定報告をeNB200に送信する。測定報告は、上述したチャネル利用率及び/又は補助情報を含んでもよい。eNB200は、測定報告を受信する。
 このように、ユースケース1において、eNB200は、自セル内でRRCコネクティッドモードのUE100から、RSSI測定結果及び位置情報を含む測定報告を受信する。
 図8は、ユースケース1の具体例を示す図である。
 図8に示すように、eNB200は、ライセンスド周波数帯である3.5GHz帯で運用されるセル(Pico Cell)を管理する。また、eNB200は、アンライセンスド周波数帯で運用されるRRH(Remote Radio Head)を有する。RRHは、LAAに用いられる遠隔無線部(LAA RRH)である。RRHの周辺には、WLANアクセスポイント(WiFi AP)400が設置されている。
 このような動作環境において、eNB200は、Immediate MDT(IMM MDT)を用いて、RSSI測定結果(RSSI measurement result)及び位置情報等を含む測定報告を自セル内の各UE100から受信する。
 eNB200は、RRHの周辺に位置するUE100を位置情報に基づいて特定する。eNB200は、特定したUE100のRSSI測定結果等を確認し、アンライセンスド周波数帯を使用可能か否か判断する。使用不可と判断した場合、eNB200は、RRHの運用を停止する。使用可能と判断した場合、eNB200は、RRHの運用を継続又は運用を再開する。これにより、RRHを適切に運用することができる。
 (5.2)ユースケース2
 以下において、アンライセンスド周波数帯におけるRSSI測定を伴うMDTのユースケース2について説明する。ユースケース2においては、Logged MDTを想定する。なお、Logged MDTは、RRCアイドルモードのUE100がロギングを行うLogged MDT in Idleであってもよい。Logged MDTは、RRCコネクティッドモードのUE100がロギングを行うLogged MDT in Connectedであってもよい。ロギングは、測定及び測定結果の記憶を含む一連の処理である。
 ユースケース2においては、UE100がDSRC信号(DSRCビーコン)を検出するケースを想定する。UE100は、車両に搭載される車載型のUE(車載端末)であってもよい。
 図9は、ユースケース2のシーケンスを示す図である。
 図9に示すように、ステップS201において、eNB200は、設定情報(DSRC Beacon RSSI measurement logging config)をUE100に送信する。設定情報は、アンライセンスド周波数帯におけるRSSIの測定及びUE100の位置情報の取得を設定する。UE100は、設定情報を受信する。設定情報は、タイムスタンプの基準となるネットワーク絶対時間、及びロギングを行うべき期間であるロギング期間等を含む。
 ステップS202において、UE100は、RRCアイドルモード又はRRCコネクティッドモードにおいて、アンライセンスド周波数帯におけるRSSIの測定(RSSI measurement)を行う。UE100は、DSRCビーコンを検出できた場合、ビーコンRSSIの測定(Beacon RSSI measurement)を行う。UE100は、検出したDSRCビーコンに基づく補助情報を生成する。補助情報は、DSRCビーコンの送信元ノード情報(Tx info)を含む。DSRCビーコンに送信元ノードの位置情報が含まれている場合、UE100は、送信元ノードの位置情報を補助情報に含めてもよい。
 ステップS203において、UE100は、位置情報(location info)を取得する。ステップS202及びステップS203の順は逆であってもよい。
 UE100は、RSSI測定結果、位置情報、補助情報、及びタイムスタンプを含む測定ログを記憶する。UE100はタイマを有しており、ネットワーク絶対時間からの経過時間をタイマにより測定する。UE100は、測定時のタイマの値をタイムスタンプとして測定ログに含める。UE100のASエンティティ100aは、ロギング期間が終了するまでロギングを継続する。
 UE100の上位層エンティティ100bは、ASエンティティ100aが記憶する測定ログとは異なる上位層データを記憶する。例えば、上位層エンティティ100bが車両向けアプリケーションを実行する場合、上位層データは、車両に関連するデータである。上位層データは、車載カメラにより得られた画像データであってもよい。
 UE100のASエンティティ100aは、上位層エンティティ100bと協調したロギングを実行することが好ましい。
 例えば、ASエンティティ100aは、タイムスタンプを得るためのタイマを上位層エンティティ100bと共有する。上位層エンティティ100bは、ASエンティティ100aと共有するタイマを用いて上位層データにタイムスタンプを付加する。これにより、測定ログ及び上位層データをネットワークが取得した際、ネットワークは、タイムスタンプを用いて測定ログ及び上位層データを対応付けることができる。
 ASエンティティ100aは、上位層エンティティ100bからの通知をトリガとして、測定ログを記憶してもよい。例えば、上位層エンティティ100bは、車載カメラにより危険を検知した際にASエンティティ100aに通知を行う。これにより、ASエンティティ100aは、車両に関連するイベントの発生をトリガとしてロギングを行うことができる。
 ステップS204において、UE100は、ロギング期間の終了後、測定ログを有している場合(ステップS204:Yes)、ステップS205において、自身が測定ログを有することを示す通知(Log availability)を所定のタイミングでeNB200に送信する。所定のタイミングは、例えば、UE100がハンドオーバを行うタイミング、又はRRCアイドルモードからRRCコネクティッドモードに遷移するタイミングである。所定のタイミングは、設定情報により指定される時刻又は時間帯であってもよい。例えば、トラフィック量の少ない深夜の時刻又は時間帯を指定することが考えられる。
 eNB200は、UE100からの通知に基づいて、測定ログを取得するか否かを判断する。ここでは、eNB200が測定ログを取得すると判断したと仮定して説明を進める。
 ステップS206において、eNB200は、測定ログの送信を要求する送信要求(Request)をUE100に送信する。
 ステップS207において、UE100は、eNB200から送信要求を受信したことに応じて、測定ログをネットワークに送信(Report)する。UE100は、測定ログと共に上位層データをeNB200に送信する。或いは、UE100は、測定ログとは別のタイミングで上位層データをeNB200に送信してもよい。
 このように、ユースケース2において、ネットワークは、UE100から測定ログ及び上位層データを取得する。
 図10は、ユースケース2の具体例を示す図である。
 図10(a)に示すように、UE100が搭載された車両(自動車)が車道を走行している。UE100は、歩行者が所持する通信ノードから送信されるDRSCビーコンを検出(Detect)する。或いは、UE100は、車載カメラにより歩行者を検出してもよい。図10(b)に示すように、UE100は、歩行者を検出した際の測定ログを記憶する。測定ログは、例えば、タイムスタンプ(Time)、位置情報(Location)、ビーコンRSSI(Beacon RSSI value)、送信元ノードに関する情報(Tx is pedestrian)を含む。これにより、危険が発生した際の状況を測定ログとして記録することができる。また、上位層データと測定ログとを組み合わせて、危険が発生した際の詳細な状況を把握可能とすることができる。
 [その他の実施形態]
 上述した実施形態において、移動通信システムとしてLTEシステムを例示した。しかしながら、本発明はLTEシステムに限定されない。LTEシステム以外のシステムに本発明を適用してもよい。
 本願は米国仮出願第62/281848号(2016年1月22日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。
 本発明は、通信分野において有用である。

Claims (11)

  1.  MDTをサポートする無線端末であって、
     アンライセンスド周波数帯におけるRSSIの測定及び前記無線端末の位置情報の取得を設定する設定情報をネットワークから受信する受信部と、
     前記設定情報に基づいて、前記RSSIの測定及び前記位置情報の取得を行う制御部と、
     RSSI測定結果を前記位置情報と共に前記ネットワークに送信する送信部と、を備える無線端末。
  2.  前記設定情報は、RSSI測定ウィンドウを示す情報を含み、
     前記制御部は、前記RSSI測定ウィンドウ内の複数のRSSI測定値の平均である平均RSSIを算出し、
     前記RSSI測定結果は、前記平均RSSIを含む請求項1に記載の無線端末。
  3.  前記制御部は、前記複数のRSSI測定値のそれぞれを閾値と比較し、前記複数のRSSI測定値のうち閾値よりも大きいRSSI測定値が占める割合を算出し、
     前記送信部は、前記RSSI測定結果と共に前記割合をさらに送信する請求項1に記載の無線端末。
  4.  前記制御部は、前記アンライセンスド周波数帯において検出した無線信号の受信処理を行い、前記無線信号の内容に基づく補助情報を生成し、
     前記送信部は、前記RSSI測定結果と共に前記補助情報をさらに送信する請求項1に記載の無線端末。
  5.  前記アンライセンスド周波数帯は、複数のサブ周波数帯を含み、
     前記設定情報は、前記複数のサブ周波数帯のうち測定対象のサブ周波数帯を指定する周波数情報を含む請求項1に記載の無線端末。
  6.  前記MDTは、Immediate MDTであり、
     前記送信部は、前記RSSI測定結果と前記位置情報とを含む測定報告を前記ネットワークに送信する請求項1に記載の無線端末。
  7.  前記MDTは、Logged MDTであり、
     前記制御部は、前記RSSI測定結果と前記位置情報とタイムスタンプとを含む測定ログを記憶し、
     前記送信部は、
      前記無線端末が前記測定ログを有することを示す通知を所定のタイミングで前記ネットワークに送信し、
      前記無線端末が前記ネットワークから送信要求を受信した場合に、前記測定ログを前記ネットワークに送信する請求項1に記載の無線端末。
  8.  前記制御部は、
     前記Logged MDTを実行するASエンティティと、
     前記ASエンティティよりも上位層に位置付けられ、前記測定ログとは異なる上位層データを記憶する上位層エンティティと、を含み、
     前記ASエンティティは、前記上位層エンティティと協調した前記Logged MDTを実行する請求項7に記載の無線端末。
  9.  前記ASエンティティは、前記タイムスタンプを得るためのタイマを前記上位層エンティティと共有し、
     前記上位層エンティティは、前記タイマを用いて前記上位層データにタイムスタンプを付加する請求項8に記載の無線端末。
  10.  前記ASエンティティは、前記上位層エンティティからの通知をトリガとして、前記測定ログを記憶する請求項8に記載の無線端末。
  11.  MDTをサポートする無線端末を制御するプロセッサであって、
     アンライセンスド周波数帯におけるRSSIの測定及び前記無線端末の位置情報の取得を設定する設定情報をネットワークから受信する処理と、
     前記設定情報に基づいて、前記RSSIの測定及び前記位置情報の取得を行う処理と、
     RSSI測定結果を前記位置情報と共に前記ネットワークに送信する処理と、を実行するプロセッサ。
PCT/JP2017/001799 2016-01-22 2017-01-19 無線端末及びプロセッサ WO2017126623A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017562901A JP6910308B2 (ja) 2016-01-22 2017-01-19 無線端末及びプロセッサ
US16/041,185 US10348425B2 (en) 2016-01-22 2018-07-20 Radio terminal and processor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662281848P 2016-01-22 2016-01-22
US62/281,848 2016-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/041,185 Continuation US10348425B2 (en) 2016-01-22 2018-07-20 Radio terminal and processor

Publications (1)

Publication Number Publication Date
WO2017126623A1 true WO2017126623A1 (ja) 2017-07-27

Family

ID=59362167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001799 WO2017126623A1 (ja) 2016-01-22 2017-01-19 無線端末及びプロセッサ

Country Status (3)

Country Link
US (1) US10348425B2 (ja)
JP (1) JP6910308B2 (ja)
WO (1) WO2017126623A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8302111B2 (en) 2003-11-24 2012-10-30 Time Warner Cable Inc. Methods and apparatus for hardware registration in a network device
US9264751B2 (en) 2013-02-15 2016-02-16 Time Warner Cable Enterprises Llc Method and system for device discovery and content management on a network
US9472091B2 (en) 2013-10-21 2016-10-18 Time Warner Cable Enterprises Llc Systems and methods for providing emergency alerts
US10536859B2 (en) 2017-08-15 2020-01-14 Charter Communications Operating, Llc Methods and apparatus for dynamic control and utilization of quasi-licensed wireless spectrum
US10492204B2 (en) 2017-11-15 2019-11-26 Charter Communications Operating, Llc Methods and apparatus for utilization of quasi-licensed wireless spectrum for IoT (Internet-of-Things) services
US10966073B2 (en) * 2017-11-22 2021-03-30 Charter Communications Operating, Llc Apparatus and methods for premises device existence and capability determination
US11716558B2 (en) 2018-04-16 2023-08-01 Charter Communications Operating, Llc Apparatus and methods for integrated high-capacity data and wireless network services
EP3700108B1 (en) * 2019-02-20 2023-08-09 Volkswagen Aktiengesellschaft Method for supporting a first mobile station to predict the channel quality for a planned decentralized wireless communication to a communication partner station und mobile station
CA3115813A1 (en) 2018-10-12 2020-04-16 Charter Communications Operating, Llc Apparatus and methods for cell identification in wireless networks
US11129171B2 (en) 2019-02-27 2021-09-21 Charter Communications Operating, Llc Methods and apparatus for wireless signal maximization and management in a quasi-licensed wireless system
AU2019451789A1 (en) * 2019-06-21 2021-12-09 Ntt Docomo, Inc. Terminal and communication method
US11374779B2 (en) 2019-06-30 2022-06-28 Charter Communications Operating, Llc Wireless enabled distributed data apparatus and methods
US11182222B2 (en) 2019-07-26 2021-11-23 Charter Communications Operating, Llc Methods and apparatus for multi-processor device software development and operation
US11026205B2 (en) 2019-10-23 2021-06-01 Charter Communications Operating, Llc Methods and apparatus for device registration in a quasi-licensed wireless system
US11470687B2 (en) 2020-01-21 2022-10-11 Charter Communications Operating, Llc Multi-mode wireless apparatus and methods of operation
CN113676910A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 Mdt方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132881A (ja) * 1992-10-15 1994-05-13 Sanyo Electric Co Ltd デジタル移動電話装置
JP2013150049A (ja) * 2012-01-17 2013-08-01 Hitachi Ltd 無線通信装置、無線通信システム、及び無線通信制御方法
WO2013161135A1 (ja) * 2012-04-27 2013-10-31 日本電気株式会社 無線端末、無線局、無線通信システム、及びこれらに実装される方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157838A (en) * 1998-07-31 2000-12-05 Lucent Technologies Inc. Parallel optimization of wireless networks
US8971913B2 (en) * 2003-06-27 2015-03-03 Qualcomm Incorporated Method and apparatus for wireless network hybrid positioning
US7509131B2 (en) * 2004-06-29 2009-03-24 Microsoft Corporation Proximity detection using wireless signal strengths
FR2876862B1 (fr) * 2004-10-20 2007-04-27 Cit Alcatel Serveur de gestion pour la determination de cartographies de qualite de service percue au sein d'un reseau de communication mobile
US7305245B2 (en) * 2004-10-29 2007-12-04 Skyhook Wireless, Inc. Location-based services that choose location algorithms based on number of detected access points within range of user device
US8369264B2 (en) * 2005-10-28 2013-02-05 Skyhook Wireless, Inc. Method and system for selecting and providing a relevant subset of Wi-Fi location information to a mobile client device so the client device may estimate its position with efficient utilization of resources
EP2503832B1 (en) * 2005-02-22 2019-08-21 Skyhook Wireless, Inc. Method for calculating the position of WiFi-enabled devices
US9078084B2 (en) * 2005-12-22 2015-07-07 Qualcomm Incorporated Method and apparatus for end node assisted neighbor discovery
US9246207B2 (en) * 2005-09-22 2016-01-26 Purdue Research Foundation Antenna aiming system and method for broadband wireless access
JP5233454B2 (ja) * 2008-07-08 2013-07-10 富士通株式会社 移動端末局および受信品質測定方法
JP5767449B2 (ja) * 2010-07-28 2015-08-19 京セラ株式会社 無線基地局及びその制御方法、無線端末、プロセッサ
WO2012091529A2 (ko) * 2010-12-30 2012-07-05 (주)노르마 단말기
WO2013047002A1 (ja) * 2011-09-30 2013-04-04 京セラ株式会社 移動通信方法、ユーザ端末、及びプロセッサ
JP5855278B2 (ja) * 2012-01-20 2016-02-09 聯發科技股▲ふん▼有限公司Mediatek Inc. Lteシステムにおけるドライブ試験の省力化の位置オプション制御方法
JP6618801B2 (ja) * 2013-05-20 2019-12-11 京セラ株式会社 通信制御方法及びユーザ端末
US9872233B2 (en) * 2014-06-02 2018-01-16 Intel IP Corporation Devices and method for retrieving and utilizing neighboring WLAN information for LTE LAA operation
EP3198293A1 (en) * 2014-09-24 2017-08-02 Telefonaktiebolaget LM Ericsson (publ) Method in communication device for providing location information in wireless communication environment.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132881A (ja) * 1992-10-15 1994-05-13 Sanyo Electric Co Ltd デジタル移動電話装置
JP2013150049A (ja) * 2012-01-17 2013-08-01 Hitachi Ltd 無線通信装置、無線通信システム、及び無線通信制御方法
WO2013161135A1 (ja) * 2012-04-27 2013-10-31 日本電気株式会社 無線端末、無線局、無線通信システム、及びこれらに実装される方法

Also Published As

Publication number Publication date
JPWO2017126623A1 (ja) 2018-11-08
JP6910308B2 (ja) 2021-07-28
US20180351665A1 (en) 2018-12-06
US10348425B2 (en) 2019-07-09

Similar Documents

Publication Publication Date Title
JP6910308B2 (ja) 無線端末及びプロセッサ
JP6780051B2 (ja) 通信システム、基地局及びプロセッサ
JP6337045B2 (ja) セルラー無線ネットワークに対する未ライセンス無線スペクトラムのチャネルの測定結果の報告
US20190141664A1 (en) Communication control method and user terminal
US11470494B2 (en) User equipment
US9832698B2 (en) Cellular communication system, user terminal, and cellular base station
US11197220B2 (en) Radio terminal, communication device, and base station
WO2014208559A1 (ja) 通信制御方法、基地局及びユーザ端末
US10433227B2 (en) Base station and wireless LAN termination apparatus
JP6538026B2 (ja) ネットワーク選択制御方法、基地局、及びユーザ端末
WO2021066161A1 (ja) 通信制御方法及びユーザ装置
JP6804452B2 (ja) 基地局及び無線端末
US10182380B2 (en) Radio terminal, communication system, and radio base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017562901

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741500

Country of ref document: EP

Kind code of ref document: A1