WO2013159704A1 - 一种焊接检测装置及自动焊接机 - Google Patents

一种焊接检测装置及自动焊接机 Download PDF

Info

Publication number
WO2013159704A1
WO2013159704A1 PCT/CN2013/074648 CN2013074648W WO2013159704A1 WO 2013159704 A1 WO2013159704 A1 WO 2013159704A1 CN 2013074648 W CN2013074648 W CN 2013074648W WO 2013159704 A1 WO2013159704 A1 WO 2013159704A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
detecting
welding
concentricity
force
Prior art date
Application number
PCT/CN2013/074648
Other languages
English (en)
French (fr)
Inventor
郑青焕
Original Assignee
深圳深蓝精机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳深蓝精机有限公司 filed Critical 深圳深蓝精机有限公司
Publication of WO2013159704A1 publication Critical patent/WO2013159704A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0296Welds

Definitions

  • the invention belongs to the technical field of welding, and in particular relates to a welding detecting device and an automatic welding machine.
  • the concentricity, bending resistance and pull-out resistance of the blade and the shank are important parameters for detecting the welding quality.
  • the parameters are generally detected by hand, the efficiency is extremely low, and the unqualified products cannot be classified.
  • the welding detecting device comprises a concentricity detecting mechanism, a bending force detecting mechanism and a pull-out force detecting mechanism for respectively detecting the concentricity, the folding force and the pull-out force of the workpiece;
  • the concentricity detecting mechanism transmits the workpiece to the bending force detecting mechanism via the rotation transmitting mechanism, and the bending force detecting mechanism transmits the workpiece to the pull-out force detecting mechanism via the cam transmitting mechanism;
  • the cam transmitting mechanism is in the process of transferring the workpiece
  • the pushing mechanism detects the unqualified workpiece detected by each detecting mechanism to the corresponding cartridge.
  • Another object of an embodiment of the present invention is to provide an automatic welding machine that employs the above-described welding detecting device.
  • the concentricity detecting mechanism, the folding force detecting mechanism and the pull-out force detecting mechanism respectively detecting the concentricity, the folding force and the pull-out force of the workpiece constitute a welding detecting device, and the workpiece is detected after the concentricity is detected.
  • the cam transmitting mechanism transmits the anti-drawing force detecting mechanism, and the cam transmitting mechanism is driven by the pushing mechanism during the transfer of the workpiece
  • the unqualified workpieces detected by each detecting mechanism are pushed to the corresponding material box, so that the concentricity, the folding force and the pull-out force of the workpiece are detected in sequence, and the efficiency is extremely high, and in the process of workpiece transfer, the pushing mechanism will each
  • the unqualified workpiece detected by the testing mechanism is pushed to the corresponding material box, which is beneficial to control the quality of the welded product.
  • FIG. 1 is a schematic structural view of a welding detecting device according to an embodiment of the present invention.
  • FIG. 2 is a distribution diagram of a cam in a cam transmission mechanism according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a rotation transmitting mechanism and a folding force detecting mechanism according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a folding force detecting mechanism, a pull-out force detecting mechanism, a cam transmitting mechanism, and a pushing mechanism according to an embodiment of the present invention.
  • the concentricity detecting mechanism, the folding force detecting mechanism and the pull-out force detecting mechanism respectively detecting the concentricity, the folding force and the pull-out force of the workpiece constitute a welding detecting device, and the workpiece is detected after the concentricity is detected.
  • the cam transmitting mechanism transmits the anti-drawing force detecting mechanism, and the cam transmitting mechanism is driven by the pushing mechanism during the transfer of the workpiece
  • the unqualified workpieces detected by each detecting mechanism are pushed to the corresponding material box, so that the concentricity, the folding force and the pull-out force of the workpiece are detected in sequence, and the efficiency is extremely high, and in the process of workpiece transfer, the pushing mechanism will each
  • the unqualified workpiece detected by the testing mechanism is pushed to the corresponding material box, which is beneficial to control the quality of the welded product.
  • the implementation of the present invention will be described in detail below by using a micro-drill as a workpiece.
  • the micro-drill is formed by welding a blade to the shank and has a long column shape.
  • the welding detecting device includes a concentricity detecting mechanism, a bending force detecting mechanism and a pull-out force detecting mechanism for respectively detecting micro-drill concentricity, bending resistance and pull-out resistance.
  • the micro-drill 4 is transmitted to the anti-folding force detecting mechanism by the rotation transmitting mechanism; after detecting the bending resistance, the cam transmitting mechanism transmits the anti-drawing force detecting mechanism; the cam transmitting mechanism transmits the micro
  • the unqualified micro-drills detected by each detecting mechanism are pushed to the corresponding cartridge by the pushing mechanism.
  • the pushing mechanism detects the unqualified micro-drills detected by each detecting mechanism to Corresponding cartridges help to control the quality of the products being welded.
  • the cam transmission mechanism includes a movable partition 61 and at least one cam 62 that drives the movable partition 61 to reciprocate, and the movable partition 61 is provided with a plurality of first grooves for limiting the micro drill 4 63, as shown in Figure 2.
  • the movable partition 61 is driven by the cam 62 to reciprocate, and the structure is simple.
  • the first groove 63 is preferably a V-shaped groove to facilitate the limitation of the micro drill 4 .
  • the cam transmission mechanism has three cams 62 of the same size and uniform in motion, one of which is a driving wheel connected to a stepping motor (not shown), and the other two are driven wheels.
  • the three cams 62 are evenly spaced along the axial direction of the movable partition, that is, one cam is disposed in the middle of the movable partition 61, and the other two cams are disposed on the movable partition. Both ends of the board 61.
  • the driving wheel is connected to the stepping motor via a gear, and drives the driven wheel to operate synchronously.
  • only one stepping motor and driving wheel are needed here, which has low cost and is favorable for ensuring the consistency of the movement steps of each cam.
  • a plurality of rails 64 for placing the micro drills 4 and parallel to each other are respectively disposed on two sides of the movable partition plate 61, and the rails 64 are provided with a plurality of second grooves 65 for positioning the micro drills 4, adjacent to the second recesses
  • the pitch of the grooves 65 is equal to the pitch of the adjacent first grooves 63.
  • the movable partition 61 moves forward under the driving of the cam, so that each micro drill 4 advances by one step (ie, the spacing of the adjacent second grooves 65), and the micro grooves 4 are respectively formed by the second grooves 65. Positioning is performed to be separated from the first groove 63. Then, the micro-drills 4 are correspondingly detected by the respective detecting mechanisms, and are circulated until the required parameters are detected. Here, the micro-drills 4 are kept stable during the detection, and the movement is smooth after the detection. It should be understood that the first groove 63 coincides with the central axis of the second groove 65 when the movable partition 61 is moved to be flush with the track 64.
  • the welding detecting device comprises a plurality of pushing mechanisms, and each pushing mechanism corresponds to different detecting parameters and a magazine, thereby classifying the unqualified micro-drills, which is beneficial to control quality.
  • the welding detecting device shown in FIG. 1 includes a concentricity pushing mechanism 71 for pushing a concentric unqualified micro-drill, a bending force pushing mechanism 72 for pushing a folding-resistant micro-drill, and a push-resistant pulling force.
  • the pull-out pushing mechanism 73 of the unqualified micro-drill, each pushing mechanism includes a pushing cylinder and a chute 75 and a magazine 76 corresponding to the pushing cylinder.
  • the rotation transmitting mechanism in the embodiment of the present invention includes a holding rotating block 51 for placing the micro drill 4, a rotating cylinder for driving the holding rotating block 51, and a sliding for limiting the rotation of the micro drill 4 Road 53, as shown in Figure 3.
  • the vertically placed microdrills 4 are rotated 90° by holding the rotating block 51 to be placed laterally, which not only transmits the micro drill but also adjusts the placement direction of the micro drill to prepare for subsequent detection.
  • the rotating shaft of the rotary cylinder is uniformly provided with four holding rotating blocks 51, and each holding rotating block 51 has a through hole 54 through which the micro drill 4 passes; the handle of the micro drill The portion 41 is exposed from the through hole 54 and is in operative contact with the slide path 53.
  • the slide 53 is preferably arcuate with a central angle of 90°.
  • the concentricity detecting mechanism in the embodiment of the present invention includes a laterally placed concentricity detector 11 and a first clamp 12 vertically clamping the micro drill 4, the anti-folding force detecting mechanism including the micro-boring handle a second clamp 22 for clamping, and a folding force detector 21 adjacent to the micro-drilling edge portion 42, the anti-drawing force detecting mechanism including a third clamp for clamping the micro-drill handle portion 41 33 and an anti-drawing force detector 31 adjacent to the micro-drilling edge portion 42, as shown in FIG.
  • a push rod 67 for pushing the micro drill 4 out of the through hole 54 is added to the rotation transmitting mechanism.
  • the push rod 67 is driven and controlled by the push cylinder, thereby pushing the micro drill 4 into the exact position of the second groove 65 of the folding force detecting mechanism.
  • the second groove 65 located in the bending force detecting mechanism extends a guiding groove 66 toward the rotation transmitting mechanism.
  • the welding detection device can increase the detection mechanism according to the requirements of the user and the characteristics of the welding product to detect more parameters.
  • the welding detection device is compact in structure and low in cost, and is matched with the welding mechanism, and has high applicability.
  • a length detecting mechanism 8 for detecting the length of the micro drill 4 is provided between the bending force detecting mechanism and the pull-out force detecting mechanism.
  • the subsequent testing mechanism does not need to further detect the micro-drill, and when the micro-drill is transmitted to the corresponding pushing mechanism, the corresponding pushing is performed.
  • the mechanism can be pushed to the corresponding cartridge. For example, if the micro-drill concentricity detection fails, the subsequent bending force detecting mechanism and the length detecting mechanism 8 no longer detect it, and when the micro-drill is transmitted to the concentricity pushing mechanism 71, the concentricity pushing mechanism 71 is used. Push to the corresponding cartridge.
  • the length detecting mechanism 8 does not detect it, and when the micro-drill is transmitted to the folding force pushing mechanism 72, the anti-folding is performed.
  • the force pushing mechanism 72 can be pushed to the corresponding cartridge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Quality & Reliability (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种焊接检测装置,包括对工件同心度、抗折力、抗拔力分别进行检测的同心度检测机构、抗折力检测机构、抗拔力检测机构;所述同心度检测机构经由旋转传递机构将工件传递至抗折力检测机构,所述抗折力检测机构经由凸轮传递机构将工件传递至抗拔力检测机构;所述凸轮传递机构在传递工件过程中,由推送机构(71,72,73)将各检测机构所检出不合格工件推送至相应料盒(76)。这样依序对工件的同心度、抗折力、抗拔力进行检测,效率较高,且有利于控制所焊产品质量。

Description

一种焊接检测装置及自动焊接机 技术领域
本发明属于焊接技术领域,尤其涉及一种焊接检测装置及自动焊接机。
背景技术
在焊接领域,通常需对所焊产品进行检测。例如制作微钻时,刃部与柄部焊接后其同心度、抗折力、抗拔力是检测焊接质量的重要参数。然而,目前一般通过手工对各参量进行检测,效率极低,且无法对不合格产品进行分类。
技术问题
本发明实施例的目的在于提供一种焊接检测装置,旨在解决现有焊接检测装置效率低的问题。
技术解决方案
本发明实施例是这样实现的,一种焊接检测装置,包括对工件同心度、抗折力、抗拔力分别进行检测的同心度检测机构、抗折力检测机构、抗拔力检测机构;所述同心度检测机构经由旋转传递机构将工件传递至抗折力检测机构,所述抗折力检测机构经由凸轮传递机构将工件传递至抗拔力检测机构;所述凸轮传递机构在传递工件过程中,由推送机构将各检测机构所检出不合格工件推送至相应料盒。
本发明实施例的另一目的在于提供一种自动焊接机,所述自动焊接机采用上述焊接检测装置。
有益效果
本发明实施例由对工件同心度、抗折力、抗拔力分别进行检测的同心度检测机构、抗折力检测机构、抗拔力检测机构构成焊接检测装置,所述工件检测完同心度后,由旋转传递机构传递至抗折力检测机构,所述工件检测完抗折力后,由凸轮传递机构传递至抗拔力检测机构,所述凸轮传递机构在传递工件过程中,由推送机构将各检测机构所检出不合格工件推送至相应料盒,这样依序对工件的同心度、抗折力、抗拔力进行检测,效率极高,而在工件传递过程中,由推送机构将各检测机构所检出不合格工件推送至相应料盒,利于控制所焊产品质量。
附图说明
图1是本发明实施例提供的焊接检测装置的结构示意图;
图2是本发明实施例提供的凸轮传递机构中凸轮的分布图;
图3是本发明实施例提供的旋转传递机构及抗折力检测机构的结构示意图;
图4是本发明实施例提供的抗折力检测机构、抗拔力检测机构、凸轮传递机构及推送机构的结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例由对工件同心度、抗折力、抗拔力分别进行检测的同心度检测机构、抗折力检测机构、抗拔力检测机构构成焊接检测装置,所述工件检测完同心度后,由旋转传递机构传递至抗折力检测机构,所述工件检测完抗折力后,由凸轮传递机构传递至抗拔力检测机构,所述凸轮传递机构在传递工件过程中,由推送机构将各检测机构所检出不合格工件推送至相应料盒,这样依序对工件的同心度、抗折力、抗拔力进行检测,效率极高,而在工件传递过程中,由推送机构将各检测机构所检出不合格工件推送至相应料盒,利于控制所焊产品质量。
下面以微钻为工件对本发明的实现进行详细描述,所述微钻由刃部焊接于柄部形成,为长条柱状。
如图1所示,本发明实施例提供的焊接检测装置包括对微钻同心度、抗折力、抗拔力分别进行检测的同心度检测机构、抗折力检测机构、抗拔力检测机构。所述微钻4检测完同心度后,由旋转传递机构传递至抗折力检测机构;检测完抗折力后,由凸轮传递机构传递至抗拔力检测机构;所述凸轮传递机构在传递微钻4过程中,由推送机构将各检测机构所检出不合格微钻推送至相应料盒。这样依序对各微钻的同心度、抗折力、抗拔力进行检测,效率极高,而在微钻4传递过程中,由推送机构将各检测机构所检出不合格微钻推送至相应料盒,利于控制所焊产品质量。
具体地,所述凸轮传递机构包括活动隔板61以及至少一个驱动所述活动隔板61往复运动的凸轮62,所述活动隔板61设多个对微钻4进行限位的第一凹槽63,如图2所示。此处由凸轮62驱动活动隔板61往复运动,结构简单。其中,第一凹槽63优选为V型槽,利于对所述微钻4进行限位。
本发明实施例中所述凸轮传递机构具有三个尺寸相同、运动步调一致的凸轮62,其中一个为与步进电机(图中未示出)相连的主动轮,另两个为从动轮。为保证所述活动隔板61往复运动的稳定性,使此三个凸轮62沿活动隔板轴向均匀间隔分布,即将一个凸轮设于活动隔板61的中部,另两个凸轮分设于活动隔板61的两端。其中,所述主动轮经由齿轮与步进电机传动连接,并带动所述从动轮同步运转。另外,此处只需一个步进电机及主动轮,成本低,且利于保证各凸轮运动步调的一致性。
前述活动隔板61两侧分别设有用于放置所述微钻4、且相互平行的轨道64,所述轨道64设多个对微钻4进行定位的第二凹槽65,相邻第二凹槽65的间距等于相邻第一凹槽63的间距。这样凸轮传递机构启动传递时,活动隔板61由下往上运动,先将各位于第二凹槽65的微钻4承托起,使各微钻4被限位在第一凹槽63,与第二凹槽65分离。接着,所述活动隔板61在凸轮的带动下向前运动,使各微钻4前进一个步长(即相邻第二凹槽65的间距),由第二凹槽65对各微钻4进行定位,使之与第一凹槽63分离。然后,由各检测机构对微钻4进行相应检测,如此循环,直至检测完所需参量。在此使各微钻4检测时保持稳定,检测完后移动顺畅。应当理解,所述活动隔板61运动至与轨道64平齐时,所述第一凹槽63与第二凹槽65的中轴线重合。
通常,本焊接检测装置包括多个推送机构,各推送机构对应不同检测参量和料盒,从而对不合格微钻进行分类,利于控制质量。例如,图1所示焊接检测装置包括用于推送同心度不合格微钻的同心度推送机构71、用于推送抗折力不合格微钻的抗折力推送机构72以及用于推送抗拔力不合格微钻的抗拔力推送机构73,各推送机构包括推送气缸及与所述推送气缸对应的滑槽75和料盒76。如此即可将同心度不合格、抗折力不合格、抗拔力不合格的微钻先后分离出来,效率高,且便于对焊接质量进行分析与控制。
本发明实施例中所述旋转传递机构包括用以放置所述微钻4的固持旋转块51、用以驱动所述固持旋转块51的旋转气缸以及对所述微钻4旋转进行限位的滑道53,如图3所示。此处通过固持旋转块51将竖向放置的微钻4旋转90°使其横向放置,这样既传递了微钻又调整了微钻的放置方向,为后续检测做准备。
为进一步提高检测效率,使所述旋转气缸的旋转轴均布有四个固持旋转块51,各固持旋转块51具有一供所述微钻4穿过的通孔54;所述微钻的柄部41从通孔54露出,与所述滑道53活动接触。这样每传递一个微钻4,所述旋转气缸的旋转轴旋转四分之一圈即可。其中,所述滑道53优选为弧状,其圆心角为90°。
本发明实施例中所述同心度检测机构包括横向放置的同心度检测仪11以及竖向夹持所述微钻4的第一夹具12,所述抗折力检测机构包括对所述微钻柄部41进行夹持的第二夹具22以及靠近所述微钻刃部42的抗折力检测仪21,所述抗拔力检测机构包括对所述微钻柄部41进行夹持的第三夹具33以及靠近所述微钻刃部42的抗拔力检测仪31,如图4所示。为使所述微钻4进入位于所述抗折力检测机构的第二凹槽65准确位置,于所述旋转传递机构增设将微钻4推出通孔54的推杆67。其中,所述推杆67由推动气缸驱动并控制,由此将微钻4推入位于所述抗折力检测机构的第二凹槽65准确位置。应当注意的是,位于所述抗折力检测机构的第二凹槽65往旋转传递机构处延伸出一导向槽66。
本焊接检测装置可根据用户要求以及焊接产品的特性,增加检测机构,以对更多参量进行检测。同时,使本焊接检测装置结构紧凑,成本低,其与焊接机构相配套,具有很高的适用性。例如,于所述抗折力检测机构与抗拔力检测机构之间设对微钻4长度进行检测的长度检测机构8。
为更进一步提高本焊接检测装置的效率,若检出某一微钻其中一个参量不合格时,后续检测机构无需对该微钻做进一步检测,该微钻传递至相应推送机构时,由相应推送机构推送至相应料盒即可。例如,某一微钻同心度检测不合格,之后的抗折力检测机构及长度检测机构8不再对其进行检测,当该微钻传递至同心度推送机构71时,由同心度推送机构71推送至相应料盒即可。又如,某一微钻同心度检测合格,而抗折力检测不合格,之后的长度检测机构8不再对其进行检测,当该微钻传递至抗折力推送机构72时,由抗折力推送机构72推送至相应料盒即可。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种焊接检测装置,其特征在于,所述焊接检测装置包括对工件同心度、抗折力、抗拔力分别进行检测的同心度检测机构、抗折力检测机构、抗拔力检测机构;所述同心度检测机构经由旋转传递机构将工件传递至抗折力检测机构,所述抗折力检测机构经由凸轮传递机构将工件传递至抗拔力检测机构;所述凸轮传递机构在传递工件过程中,由推送机构将各检测机构所检出不合格工件推送至相应料盒。
  2. 如权利要求1所述的焊接检测装置,其特征在于,所述凸轮传递机构包括活动隔板以及至少一个驱动所述活动隔板往复运动的凸轮,所述活动隔板设多个对工件进行限位的第一凹槽。
  3. 如权利要求2所述的焊接检测装置,其特征在于,所述凸轮传递机构具有三个尺寸相同、运动步调一致的凸轮,其中一个为与步进电机相连的主动轮,另两个为从动轮。
  4. 如权利要求2或3所述的焊接检测装置,其特征在于,所述活动隔板两侧分别设有用于放置所述工件、且相互平行的轨道,所述轨道设多个对工件进行定位的第二凹槽,相邻第二凹槽的间距等于相邻第一凹槽的间距。
  5. 如权利要求4所述的焊接检测装置,其特征在于,所述焊接检测装置包括多个推送机构,各推送机构对应不同检测参量和料盒。
  6. 如权利要求4所述的焊接检测装置,其特征在于,所述旋转传递机构包括用以放置所述工件的固持旋转块、用以驱动所述固持旋转块的旋转气缸以及对所述工件旋转进行限位的滑道。
  7. 如权利要求6所述的焊接检测装置,其特征在于,所述旋转气缸的旋转轴均布有四个固持旋转块,各固持旋转块具有一供所述工件穿过的通孔;所述工件的尾部从通孔露出,与所述滑道活动接触。
  8. 如权利要求4所述的焊接检测装置,其特征在于,所述抗折力检测机构与抗拔力检测机构之间设对工件长度进行检测的长度检测机构。
  9. 如权利要求5~8中任一项所述的焊接检测装置,其特征在于,所述同心度检测机构包括横向放置的同心度检测仪以及竖向夹持所述工件的第一夹具,所述抗折力检测机构包括对所述工件尾部进行夹持的第二夹具以及靠近所述工件首部的抗折力检测仪,所述抗拔力检测机构包括对所述工件尾部进行夹持的第三夹具以及靠近所述工件首部的抗拔力检测仪。
  10. 一种自动焊接机,其特征在于,所述自动焊接机包括如权利要求1~9中任一项所述的焊接检测装置。
PCT/CN2013/074648 2012-04-27 2013-04-24 一种焊接检测装置及自动焊接机 WO2013159704A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210128468.X 2012-04-27
CN201210128468.XA CN102901480B (zh) 2012-04-27 2012-04-27 一种焊接检测装置及自动焊接机

Publications (1)

Publication Number Publication Date
WO2013159704A1 true WO2013159704A1 (zh) 2013-10-31

Family

ID=47573846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074648 WO2013159704A1 (zh) 2012-04-27 2013-04-24 一种焊接检测装置及自动焊接机

Country Status (2)

Country Link
CN (1) CN102901480B (zh)
WO (1) WO2013159704A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901480B (zh) * 2012-04-27 2015-08-19 深圳深蓝精机有限公司 一种焊接检测装置及自动焊接机
CN105021463B (zh) * 2014-04-28 2018-02-23 深圳市金洲精工科技股份有限公司 一种焊接强度检测机构
CN105618950B (zh) * 2016-03-21 2018-01-26 华东交通大学 一种双模式消声器阀门自动预扭焊接检测设备
CN106423906B (zh) * 2016-10-27 2018-11-30 浙江长华汽车零部件股份有限公司 焊接强度自动测试分选装置
CN106825977B (zh) * 2017-03-20 2017-12-08 盐城中咏投资发展有限公司 一种焊接检测装置
TWI659794B (zh) * 2018-06-29 2019-05-21 欣竑科技有限公司 全自動微鑽焊接技術
CN115319254B (zh) * 2022-08-23 2024-05-14 东莞市荣城智能装备有限公司 焊接机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007631A (en) * 1975-08-18 1977-02-15 Western Electric Company, Inc. Method and apparatus for evaluating welds using stress-wave emission techniques
DE3921653A1 (de) * 1989-06-30 1991-01-10 Siemens Ag Schweisspresse zum verschweissen von werkstuecken
CN101071126A (zh) * 2007-06-15 2007-11-14 哈尔滨工业大学 微小凸焊焊点质量的无损检测方法
CN101364106A (zh) * 2008-09-19 2009-02-11 广州(从化)亨龙机电制造实业有限公司 电阻焊焊接质量控制系统及方法
CN201387387Y (zh) * 2009-03-27 2010-01-20 东莞市金泽鑫实业有限公司 抗折力测试机
CN101900651A (zh) * 2010-07-06 2010-12-01 奇瑞汽车股份有限公司 一种测量焊点正向拉伸强度的方法及夹具
CN102901480A (zh) * 2012-04-27 2013-01-30 深圳深蓝精机有限公司 一种焊接检测装置及自动焊接机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325353B1 (ko) * 1999-07-20 2002-03-04 신현준 열영향부 폭의 산출에 의한 플래쉬버트 용접기의 용접품질 판정장치 및 용접품질 판정방법
JP4818029B2 (ja) * 2006-08-29 2011-11-16 東急車輛製造株式会社 レーザ溶接評価方法
CN101293287A (zh) * 2008-06-06 2008-10-29 深圳市金洲精工科技股份有限公司 一种用于印刷电路板行业的微型钻头及其加工方法
DE202008012268U1 (de) * 2008-09-16 2009-02-05 Honda Motor Co., Ltd., Minato-ku Widerstandsschweißvorrichtung
CN201348501Y (zh) * 2008-12-29 2009-11-18 深圳深蓝精机有限公司 一种微钻长度外径检测机
CN101706256B (zh) * 2009-11-20 2011-04-20 上海交通大学 Pcb板钻孔用微型钻针全自动质量检测装置
CN102423853A (zh) * 2011-09-22 2012-04-25 苏州慧捷自动化科技有限公司 自动焊接机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007631A (en) * 1975-08-18 1977-02-15 Western Electric Company, Inc. Method and apparatus for evaluating welds using stress-wave emission techniques
DE3921653A1 (de) * 1989-06-30 1991-01-10 Siemens Ag Schweisspresse zum verschweissen von werkstuecken
CN101071126A (zh) * 2007-06-15 2007-11-14 哈尔滨工业大学 微小凸焊焊点质量的无损检测方法
CN101364106A (zh) * 2008-09-19 2009-02-11 广州(从化)亨龙机电制造实业有限公司 电阻焊焊接质量控制系统及方法
CN201387387Y (zh) * 2009-03-27 2010-01-20 东莞市金泽鑫实业有限公司 抗折力测试机
CN101900651A (zh) * 2010-07-06 2010-12-01 奇瑞汽车股份有限公司 一种测量焊点正向拉伸强度的方法及夹具
CN102901480A (zh) * 2012-04-27 2013-01-30 深圳深蓝精机有限公司 一种焊接检测装置及自动焊接机

Also Published As

Publication number Publication date
CN102901480B (zh) 2015-08-19
CN102901480A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
WO2013159704A1 (zh) 一种焊接检测装置及自动焊接机
CN109158646B (zh) 一种圆盘工件钻孔设备
CN104015054B (zh) 一种摩轮全自动粗加工方法及加工系统
CN106363207A (zh) 一种全自动钻销机
KR20150097468A (ko) 선반에서 크로스핀의 가공 공정
CN202639944U (zh) 薄壁管材在线倒角夹管装置
CN108856823A (zh) 用于汽车零部件曲柄连杆的铣削装置
JP2000024819A (ja) ワ―クピ―ス用機械加工装置
CN203448707U (zh) 一种用于钢管钻孔的半自动对头钻床
CN208391569U (zh) 一种快速装夹气动夹具
KR101599513B1 (ko) 원 웨지 센터링 유압척
CN107253060A (zh) 一种轴用全自动方孔机
CN107186245A (zh) 一种数控锁壳钻孔机
CN202174427U (zh) 一种多工件钻孔夹具
SE462390B (sv) Anordning bestaaende av flera arbetsstationer foer tillverkning av kaernhylsor, vilka hylsor gripes och fasthaalles i orienteringskontrollerat laege
CN207387033U (zh) 活塞销端孔及油槽全自动加工装置
CN103008716A (zh) 一种用于钢管钻孔的半自动对头钻床
CN109290770A (zh) 一种羊角架自动装配装置
CN108856826A (zh) 用于曲柄连杆的双端面连续铣削机
CN105598216B (zh) 方钢扭拧生产线及其加工方法
CN211304879U (zh) 一种高稳定性铁管钻孔装置
CN106624708A (zh) 一种别针加工设备
CN206169343U (zh) 一种全自动钻销机
CN105033334A (zh) 一种销块端面铣装置
CN213729417U (zh) 一种多连杆式气动卡盘

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13780546

Country of ref document: EP

Kind code of ref document: A1