WO2013159537A1 - 半透射半反射彩膜基板及其制造方法和液晶显示装置 - Google Patents

半透射半反射彩膜基板及其制造方法和液晶显示装置 Download PDF

Info

Publication number
WO2013159537A1
WO2013159537A1 PCT/CN2012/086196 CN2012086196W WO2013159537A1 WO 2013159537 A1 WO2013159537 A1 WO 2013159537A1 CN 2012086196 W CN2012086196 W CN 2012086196W WO 2013159537 A1 WO2013159537 A1 WO 2013159537A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
color filter
color
layer
resin layer
Prior art date
Application number
PCT/CN2012/086196
Other languages
English (en)
French (fr)
Inventor
牛菁
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/127,299 priority Critical patent/US9360700B2/en
Publication of WO2013159537A1 publication Critical patent/WO2013159537A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133519Overcoatings

Definitions

  • Embodiments of the present invention relate to a transflective color filter substrate, a method of fabricating the same, and a liquid crystal display device. Background technique
  • the display mode of the existing liquid crystal display can be roughly classified into a transmissive type, a reflective type, and a transflective type.
  • a transmissive liquid crystal display needs to have a backlight inside it, and the brightness of the panel can be generated when the light generated by the backlight is transmitted through the panel. Therefore, when a transmissive liquid crystal display device is used in a case where the ambient light such as outdoors is strong, it is difficult to obtain a normal display through the transmissive liquid crystal display.
  • the reflective liquid crystal display needs to be coated with a reflective film on the lower glass substrate of the panel to reflect the ambient light for display purposes. Since there is no backlight, the reflective liquid crystal display consumes less power than the transmissive display device, but when the ambient light is weak, the display quality is poor. Therefore, a transflective liquid crystal display having both the effects of a transmissive liquid crystal display and a reflective liquid crystal display has attracted wide attention.
  • the panel When the external ambient light is strong, the panel reflects the external ambient light transmitted to achieve the purpose of illuminating; when the ambient light is weak, the panel uses the backlight to achieve the purpose of illuminating, so the transflective liquid crystal display has The better outdoor visibility and reflection effect are more widely used.
  • the transflective color film substrate is an important component in the transflective liquid crystal display, and the reflection effect of the transflective color film substrate on the ambient light directly affects the display effect of the transflective liquid crystal display.
  • a transparent substrate 1 In the structure of the conventional transflective color film substrate (taking red, green, and blue primary colors as an example), as shown in FIG. 1, a transparent substrate 1, a black matrix 2, and three color filters are usually provided.
  • the films 3, 4, 5 (corresponding to the three primary colors of red, green, and blue, respectively), the reflective film 6, the insulating layer 7 (i.e., the OC layer), and the common electrode layer 8 (i.e., the ITO layer).
  • the manufacturing process of the transflective color film substrate having the above structure requires five mask exposures, including: first coating a black photoresist on the transparent substrate, then performing a first mask exposure, and developing on the transparent substrate.
  • a black matrix (BM) with a gap Next, a second mask exposure is performed to form a first type color filter film in the notch of the BM; then, the third and fourth mask exposures are respectively performed in the same manner to be adjacent to the BM Two other color filters are formed in the notch; then, the reflective metal layer is sputtered on the color filter film and the BM, and the photosensitive resin (ie, the PR glue) is applied, and then subjected to the fifth mask exposure, development, and wetness. After the etching, a reflective film 6 having a certain pattern on the BM is formed. Finally, the insulating layer 7 and the common electrode layer 8 are formed.
  • FIG. 1 is a cross-sectional view of a transflective color filter substrate manufactured by a prior art process.
  • the five mask exposures are from the front side of the color filter substrate (the side of the color filter substrate provided with the color filter film), that is, from the top of the color filter substrate. It is done, and both need to be exposed using a specific mask. In this process, precise alignment of the color filter substrate and the mask is required. Once the offset of the mask relative to the color filter substrate exceeds a small value, the upper and lower layers of the pattern may be mismatched, resulting in light leakage and display on the panel. The more serious problems such as abnormalities lead to the complicated production process of the existing transflective color film substrate. Summary of the invention
  • a transflective color filter substrate comprising: a transparent substrate; a black matrix disposed on the transparent substrate, the black matrix having a plurality of notches; and a plurality of a color filter disposed in the notch of the black matrix, wherein the plurality of color filters are used to present different primary colors, wherein a material of the first color filter of the plurality of color filters is Negative photosensitive resin, the material of other color filters is a positive photosensitive resin.
  • a method of fabricating a transflective color filter substrate for fabricating the above-described transflective color filter substrate comprising: forming a black matrix on a transparent substrate The other color filter and the black matrix are coated with a negative photosensitive resin to form a negative photosensitive resin layer, and a negative photosensitive resin layer is coated on the negative photosensitive resin layer to form a positive photosensitive a resin layer on which a reflective film layer is formed, the other color filter is a color filter whose material is a positive photosensitive resin; the back exposure is performed from the bottom of the transparent substrate; Developing a positive photosensitive resin layer to remove the other color filter and the positive photosensitive resin layer above the corresponding position of the first color filter and the reflective film layer to expose the other color The color filter and the corresponding position of the first color filter a negative photosensitive resin layer; ashing the negative photosensitive resin layer above the corresponding positions of the other color filter and the first color filter to remove the cover on the other color filter A negative photosensitive resin layer
  • a liquid crystal display device including a transflective liquid crystal display panel including the above-described transflective color filter substrate is provided.
  • FIG. 1 is a cross-sectional view of a transflective color filter substrate manufactured by a prior art
  • FIG. 2 is a cross-sectional view of a transflective color filter substrate according to an embodiment of the present invention
  • FIG. 3 is a schematic view of a method for fabricating a transflective color filter substrate according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram 2 of a method for manufacturing a transflective color film substrate according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram 3 of a method for manufacturing a transflective color film substrate according to an embodiment of the present invention.
  • FIG. 6 is a schematic view of a method of manufacturing a transflective color filter substrate according to an embodiment of the present invention.
  • FIG. 7 is a schematic view 5 of a method for fabricating a transflective color filter substrate according to an embodiment of the present invention.
  • FIG. 8 is a schematic view of a method of manufacturing a transflective color filter substrate according to an embodiment of the present invention.
  • FIG. 9 is a schematic view of a method for fabricating a transflective color filter substrate according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram 8 of a method for fabricating a transflective color film substrate according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing a method of fabricating a transflective color filter substrate according to an embodiment of the present invention. Intent IX;
  • FIG. 12 is a schematic view showing a method of manufacturing a transflective color filter substrate according to an embodiment of the present invention.
  • FIG. 13 is a schematic view showing a method of manufacturing a transflective color filter substrate according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a transflective color film substrate and a method of fabricating the same, thereby simplifying the production process of the transflective color film substrate. Further, an embodiment of the present invention also provides a liquid crystal display device including the above-described transflective color film substrate.
  • the transflective color filter substrate may include: a transparent substrate 1; a black matrix 2 disposed on the transparent substrate 1, the black matrix 2 having a plurality of notches; a plurality of color filters (for example, color filters 3, 4, 5) for presenting different primary colors in the notches of the black matrix 2, wherein finally formed by back exposure from the bottom direction of the transparent substrate 1
  • the material of the first color filter 5 is a negative photosensitive resin, and other color filters (including color) formed by positive mask exposure from the top direction of the transparent substrate 1 before the first color filter
  • the material of the color filter 3 and the color filter 4) is a positive photosensitive resin.
  • the transflective color filter substrate may further include: a negative photosensitive resin layer 10 disposed on the black matrix 2; and a positive photosensitive resin layer 9 disposed on the negative photosensitive resin layer 10. And a reflective film layer 6 disposed on the positive photosensitive resin layer 9.
  • the transflective color filter substrate may further include: an insulating layer 7 disposed on the reflective film layer 6 and the color filters 3, 4, 5; and disposed on the insulating layer 7. Common electrode layer 8.
  • the transflective color film substrate shown in Figure 2 is illustrative only and not A restrictive example, wherein the primary colors involved may be three primary colors, for example, three primary colors of red, green, and blue, respectively corresponding to the color filter 3, the color filter 4, and the color filter 5 shown in FIG. s color.
  • the transflective color film substrate provided by the embodiment of the present invention does not include only three color filters.
  • the transflective color filter substrate provided by the embodiment of the present invention may further include four colors, five color filters, and the like corresponding to the four primary colors, the five primary colors, respectively.
  • the first color filters in the embodiments of the present invention are the final color filters ( The material is a negative photosensitive resin), and the other color filters are color filters formed before the first color filter (the material is a positive photosensitive resin).
  • the transflective color film substrate provided by the embodiment of the invention improves the structure, material and manufacturing process of the existing transflective color film substrate, and does not affect the function of the color film substrate. .
  • an embodiment of the present invention further provides a method of manufacturing a transflective color film substrate, the method comprising:
  • Step 31 Applying a negative photosensitive resin on the black matrix 2, other color filters (for example, the color filters 3, 4) and the notches of the black matrix 2 which have been formed on the transparent substrate 1 to form a negative a photosensitive resin layer 10, followed by coating a positive photosensitive resin layer 10 on the negative photosensitive resin layer 10 to form a positive photosensitive resin layer 9, and then forming a reflective film layer 6 on the positive photosensitive resin layer 9, wherein
  • Other color filters are color filters whose materials are positive photosensitive resins;
  • Step 32 performing back exposure from the bottom direction of the transparent substrate 1;
  • Step 33 developing the exposed positive photosensitive resin layer 9 to remove other color filters (for example, the color filters 3, 4) and the positive position above the corresponding positions of the first color filter 5.
  • the photosensitive resin layer 9 and the reflective film layer 6 expose other color filters (for example, the color filters 3, 4) and the negative photosensitive resin layer 10 above the corresponding positions of the first color filter 5;
  • Step 34 ashing the negative photosensitive resin layer 10 at the corresponding positions of the other color filters (for example, the color filters 3, 4) and the first color filter 5, and removing the cover in other colors.
  • the negative photosensitive resin layer 10 on the color filters (for example, the color filters 3, 4), and the first color filter 5 is formed.
  • the pattern or the knot which needs to be formed by two forward mask exposures in the prior art can be realized by one back exposure.
  • the manufacturing process of the transflective color filter substrate is simplified; and the back exposure in the embodiment of the present invention uses a pattern or structure formed on the transparent substrate 1 as a mask, which is a self-aligned exposure. , thus ensuring the accuracy of the back exposure, effectively improving the product excellent rate.
  • the method may further include:
  • the black photoresist is subjected to forward mask exposure from the top direction of the transparent substrate 1, and the exposed black photoresist is developed to form a black matrix 2 having a notch.
  • a method for manufacturing a transflective color film substrate provided by an embodiment of the present invention, a black matrix 2 formed on the transparent substrate 1, other color filters (for example, color filters 3, 4), and black Before the gap of the matrix 2 is coated with a negative photosensitive resin to form the negative photosensitive resin layer 10, it may further include:
  • other color filters for example, color filters 3, 4 whose materials are positive photosensitive resins are sequentially formed by exposure through a forward mask, and are exposed in the forward mask in this step.
  • the number of times corresponds to the type of the primary color exhibited by the other color filters. For example, when it is required to form a red color corresponding color filter, a forward mask exposure is required; when a green corresponding color filter needs to be formed, a forward mask exposure is required, and so on, until All other color filters are formed.
  • the method for manufacturing a transflective color film substrate may further include: after forming the first color filter,
  • a common electrode layer 8 is formed on the insulating layer 7.
  • the method is for manufacturing a half including three color filters corresponding to the three primary colors (i.e., the color filter 3, the color filter 4, and the color filter 5 shown in FIG. 2). Transmissive semi-reflective color film substrate.
  • the method may include: Step 1. A black matrix is formed on the transparent substrate 1.
  • the formation process of the black matrix (BM) may be the same as in the prior art.
  • a transparent photoresist is coated on the transparent substrate 1.
  • the black photoresist is subjected to a forward mask exposure, that is, the first positive mask exposure is performed on the transparent substrate 1 from the top direction of the transparent substrate 1, and the exposed black photoresist is developed to form, for example, The black matrix 2 having a notch shown in FIG. 4, that is, BM 2 is shown.
  • Step 2 Form color filters 3, 4.
  • the formation process of the color filters 3, 4 can be the same as in the prior art.
  • a transparent photosensitive resin is coated on the transparent substrate 1 on which the black matrix 2 has been formed.
  • a positive mask exposure is performed on the coated positive photosensitive resin layer (it is to be noted that the positive photosensitive resin layer of the exposure is not the positive photosensitive resin layer 9 provided in the color filter substrate), that is,
  • a second forward mask exposure is performed from the top direction of the transparent substrate 1 to form a color filter 3 having a positive photosensitive resin as shown in FIG.
  • a color filter 4 whose material is also a positive photosensitive resin is formed by the same forming process, that is, after the third forward mask exposure, as shown in Figs.
  • Step 3 A negative photosensitive resin layer 10, a positive photosensitive resin layer 9, a reflective film layer 6, and a color filter 5 are formed.
  • the formation process of the color filter 5 is different from the prior art.
  • the process can include, for example, the following steps.
  • a transparent photosensitive resin is coated on the transparent substrate 1 to a thickness slightly larger than the other two color filters.
  • a positive photosensitive resin i.e., a photoresist
  • a photoresist is directly coated on the negative photosensitive resin layer 10 to form a positive photosensitive resin layer 9.
  • the reflective film layer 6 may be formed of a metal material, which may be aluminum (A1), silver (Ag), gold (Au), and alloy materials thereof, or may have other good reflection properties. Metal or alloy, for example, platinum (Pt), chromium (Cr), copper (Cu), and the like.
  • the back exposure does not require the use of a mask, and the pattern of the BM 2 and the color filters 3, 4 which have been formed on the substrate is directly used as a mask for self-alignment exposure.
  • the BM 2 is opaque, and the color filters 3, 4 are light transmissive, as shown in FIG.
  • the transparent substrate 1 is developed with a developer of a positive photoresist, that is, the exposed upper portions of the patterned color filters 3, 4 and the color filter 5 are removed.
  • the negative photosensitive resin layer 10 above the corresponding positions of the partially negative photosensitive resin layers 10, i.e., the color filters 3, 4 and the color filter 5, has been exposed.
  • the exposed negative photosensitive resin layer 10 may be subjected to ashing treatment to remove the negative photosensitive resin layer covering the color filters 3, 4, thereby exposing the color filter color of the positive photosensitive resin. Slices 3, 4.
  • the negative photosensitive resin layer 10 above the corresponding position of the color filter 5 can be subjected to ashing treatment to form a color filter 5 having a negative photosensitive resin.
  • a color filter substrate in which the BM 2 and the three color filters are alternately arranged and the BM is covered with the reflective film layer 6 can be formed as shown in FIG.
  • Step 4 coating an insulating layer (for example, an OC layer) on the substrate, and sputtering a common electrode layer (for example, an ITO layer) 8. Finally, a transflective color film substrate as shown in Fig. 2 was obtained.
  • an insulating layer for example, an OC layer
  • a common electrode layer for example, an ITO layer
  • the manufacturing method of the transflective color film substrate provided by the embodiment of the present invention is a completely new production process, in which three mask exposures and one self-aligned exposure are required in total, compared to the prior art. 5 mask exposures (corresponding to only three color filters), reducing the exposure process, greatly reducing the process difficulty, reducing the process, effectively improving the yield of the product, and contributing to the production cost. reduce.
  • the pattern formed on the transparent substrate 1 can be used as a mask for self-aligned exposure, thereby reducing the alignment of the primary mask. That is to say, the entire process only needs to perform alignment of the mask three times and a simple self-aligned exposure, which greatly simplifies the manufacturing process of the transflective color film substrate.
  • the transflective color film substrate produced by the method for manufacturing a transflective color film substrate provided by the embodiment of the present invention may further provide a liquid crystal display device.
  • the liquid crystal display may include a transflective liquid crystal display panel.
  • the transflective liquid crystal display panel may include: an array substrate, a transflective color filter substrate as shown in FIG. 2, and a semi-transmissive semi-reflective color filter substrate and an array substrate.
  • the liquid crystal layer between.
  • embodiments of the present invention may further provide an electronic product including the liquid crystal display device provided by the embodiment of the present invention, the liquid crystal display device including the transflective color filter substrate as shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

一种半透射半反射彩膜基板及其制造方法和液晶显示装置,该半透射半反射彩膜基板包括:透明基板(1);黑矩阵(2),设置于所述透明基板(1)之上,所述黑矩阵(2)具有多个缺口;以及多个彩色滤光片(3,4,5),设置于所述黑矩阵(2)的缺口中,所述多个彩色滤色片(3,4,5)用于呈现不同原色,其中,所述多个彩色滤色片(3,4,5)中的第一彩色滤色片(5)的材料为负性光敏树脂,其他彩色滤色片(3,4)的材料为正性光敏树脂。

Description

半透射半反射彩膜基板及其制造方法和液晶显示装置 技术领域
本发明的实施例涉及半透射半反射彩膜基板及其制造方法和液晶显示装 置。 背景技术
现有的液晶显示器的显示方式大体可分为透射型( Transmissive )、 反射 型 (Reflective )和半透射半反射型 ( Transflective ) 。
透射型液晶显示器需要在其内部设置有背光源, 当背光源产生的光线透 射面板时才能使面板产生亮度。 因此, 在室外等外界环境光较强的情况下使 用透射型液晶显示器件时, 难以通过透射型液晶显示器获得正常的显示。 反 射型液晶显示器需要在面板的下层玻璃基板上镀反射膜, 通过反射外界环境 光达到显示的目的。 由于没有背光源, 与透射型显示器件相比, 反射型液晶 显示器功耗较小, 但当外界环境光即光源微弱时则会引起显示品质不佳等问 题。 因此, 兼具透射型液晶显示器和反射型液晶显示器两者功效的半透射半 反射型液晶显示器引起了人们的广泛关注。 在外界环境光较强时, 面板反射 透射进来的外界环境光来达到发光的目的; 当外界环境光较弱时, 面板则利 用背光源来达到发光的目的, 所以半透射半反射型液晶显示器具有较佳的室 外辨视性与反射效果, 用途更为广泛。
半透射半反射彩膜基板是半透射半反射型液晶显示器中的重要器件, 半 透射半反射彩膜基板对于外界环境光的反射效果, 直接影响了半透射半反射 型液晶显示器的显示效果。
在现有的半透射半反射彩膜基板的结构中 (以釆用红、 绿、 蓝三原色为 例) , 如图 1所示, 通常设置有透明基板 1、 黑矩阵 2、 三种彩色滤色膜 3、 4、 5 (分别对应于红、 绿、 蓝三原色) 、 反射膜 6、 绝缘层 7 (即 OC层)以 及公共电极层 8 (即 ITO层) 。 具有上述结构的半透射半反射彩膜基板的制 造工艺需要 5次掩模曝光, 包括: 首先在透明基板上涂覆黑色光阻, 然后进 行第一次掩模曝光, 显影后在透明基板上形成具有缺口的黑矩阵(BM ) ; 接下来, 进行第二次掩模曝光, 以在 BM的缺口中形成第一型彩色滤色膜; 然后, 以相同的方式分别进行第三、 第四次掩模曝光, 以在相邻的 BM缺口 中形成另外两种彩色滤色片; 然后, 在彩色滤色膜和 BM上溅射反射膜金属 层以及涂覆感光树脂 (即 PR胶) , 之后经过第五次掩模曝光、 显影和湿蚀 刻之后形成位于 BM上具有一定图形的反射膜 6。 最后, 形成绝缘层 7和公 共电极层 8。
图 1为现有工艺制造的半透射半反射型彩膜基板的剖面图。
在现有的半透射半反射彩膜基板的制造工艺中, 五次掩模曝光均从彩膜 基板的正面 (彩膜基板设置有彩色滤色膜的一面) 、 即从彩膜基板的顶部方 向进行, 而且都需要使用特定的掩模板(mask )进行曝光。 在此过程中需要 对彩膜基板和掩模板进行精确对准, 一旦掩模板相对于彩膜基板的偏移超过 一个微小的数值, 则会使得上下两层图形不匹配, 导致面板出现漏光、 显示 异常等较为严重的问题, 从而导致现有的半透射半反射彩膜基板的生产工艺 较为复杂。 发明内容
在本发明的一个实施例中, 提供一种半透射半反射彩膜基板, 其包括: 透明基板; 黑矩阵, 设置于所述透明基板之上, 所述黑矩阵具有多个缺口; 以及多个彩色滤色片, 设置于所述黑矩阵的缺口中, 所述多个彩色滤色片用 于呈现不同原色, 其中, 所述多个彩色滤色片中的第一彩色滤色片的材料为 负性光敏树脂, 其他彩色滤色片的材料为正性光敏树脂。
在本发明的另一个实施例中, 提供一种半透射半反射彩膜基板的制造方 法, 用于制造上述半透射半反射彩膜基板, 所述方法包括: 在透明基板上已 形成的黑矩阵、 其他彩色滤色片以及黑矩阵的缺口上涂覆一层负性光敏树脂 以形成负性光敏树脂层, 在所述负性光敏树脂层上涂覆一层正性光敏树脂以 形成正性光敏树脂层, 在所述正性光敏树脂层上形成反射膜层, 所述其他彩 色滤色片为材料是正性光敏树脂的彩色滤色片; 从透明基板的底部方向进行 背向曝光; 对曝光后的正性光敏树脂层进行显影处理, 移除所述其他彩色滤 色片以及第一彩色滤色片的对应位置上方的所述正性光敏树脂层以及所述反 射膜层, 露出所述其他彩色滤色片以及第一彩色滤色片的对应位置上方的所 述负性光敏树脂层; 对所述其他彩色滤色片以及第一彩色滤色片的对应位置 上方的负性光敏树脂层进行灰化处理, 以移除覆盖在所述其他彩色滤色片上 的负性光敏树脂层, 并且形成第一彩色滤色片。
在本发明的另一个实施例中, 提供一种液晶显示装置, 其包括半透射半 反射液晶显示面板, 所述半透射半反射液晶显示面板包括上述半透射半反射 彩膜基板。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有工艺制造的半透射半反射型彩膜基板的剖面图;
图 2为本发明实施例提供的半透射半反射型彩膜基板的剖面图; 图 3为本发明实施例提供的半透射半反射型彩膜基板的制造方法的示意 图一;
图 4为本发明实施例提供的半透射半反射型彩膜基板的制造方法的示意 图二;
图 5为本发明实施例提供的半透射半反射型彩膜基板的制造方法的示意 图三;
图 6为本发明实施例提供的半透射半反射型彩膜基板的制造方法的示意 图四;
图 7为本发明实施例提供的半透射半反射型彩膜基板的制造方法的示意 图五;
图 8为本发明实施例提供的半透射半反射型彩膜基板的制造方法的示意 图六;
图 9为本发明实施例提供的半透射半反射型彩膜基板的制造方法的示意 图七;
图 10 为本发明实施例提供的半透射半反射型彩膜基板的制造方法的示 意图八;
图 11 为本发明实施例提供的半透射半反射型彩膜基板的制造方法的示 意图九;
图 12 为本发明实施例提供的半透射半反射型彩膜基板的制造方法的示 意图十; 以及
图 13 为本发明实施例提供的半透射半反射型彩膜基板的制造方法的示 意图十一。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明的实施例提供了一种半透射半反射彩膜基板及其制造方法, 从而 简化了半透射半反射彩膜基板的生产工艺。 此外, 本发明的实施例还提供了 包括上述半透射半反射彩膜基板的液晶显示装置。
下面参照图 2详细描述本发明的实施例提供的半透射半反射彩膜基板。 在本发明的实施例中, 如图 2所示, 半透射半反射彩膜基板可以包括: 透明 基板 1 ; 设置于透明基板 1之上的黑矩阵 2, 黑矩阵 2具有多个缺口; 设置于 黑矩阵 2的缺口中的用于呈现不同原色的多个彩色滤色片 (例如, 彩色滤色 片 3、 4、 5 ) , 其中, 通过从透明基板 1的底部方向进行背向曝光而最后形 成的第一彩色滤色片 5的材料为负性光敏树脂, 而在第一彩色滤色片之前通 过从透明基板 1的顶部方向进行正向掩模曝光而形成的其他彩色滤色片 (包 括彩色滤色 3以及彩色滤色片 4 ) 的材料为正性光敏树脂。
在本发明的实施例中, 该半透射半反射彩膜基板还可以包括: 设置于黑 矩阵 2上的负性光敏树脂层 10; 设置于负性光敏树脂层 10上的正性光敏树 脂层 9; 以及设置于正性光敏树脂层 9上的反射膜层 6。
在本发明的实施例中, 该半透射半反射彩膜基板还可以包括: 设置于反 射膜层 6以及彩色滤色片 3、 4、 5上的绝缘层 7; 以及设置于绝缘层 7上的 公共电极层 8。
这里需要说明的是, 图 2所示的半透射半反射彩膜基板仅为说明性而非 限制性的示例, 其中所涉及的原色可为三原色, 例如, 红、 绿、 蓝三原色, 分别由图 2中所示的彩色滤色片 3、彩色滤色片 4、彩色滤色片 5呈现对应的 颜色。 但是, 本发明的实施例提供的半透射半反射彩膜基板并非仅包括三种 彩色滤色片。 例如, 本发明的实施例提供的半透射半反射彩膜基板还可包括 分别对应于四原色、 五原色的四种、 五种彩色滤色片等。
需要进一步说明的是, 无论是三种彩色滤色片, 还是四种或更多种彩色 滤色片,本发明的实施例中的第一彩色滤色片均为最后形成的彩色滤色片(其 材料为负性光敏树脂) , 而其他彩色滤色片则为第一彩色滤色片之前形成的 彩色滤色片 (其材料为正性光敏树脂) 。
此外, 本发明的实施例提供的半透射半反射彩膜基板对现有的半透射半 反射彩膜基板的结构、 材料以及制造工艺进行了改进, 而对彩膜基板的功能 并不会造成影响。
为了制造如图 2所示的半透射半反射彩膜基板, 本发明的实施例还提供 了一种半透射半反射彩膜基板的制造方法, 所述方法包括:
步骤 31 , 在透明基板 1上已形成的黑矩阵 2、 其他彩色滤色片 (例如, 彩色滤色片 3、 4 )以及黑矩阵 2的缺口上涂覆一层负性光敏树脂以形成负性 光敏树脂层 10, 接着, 在负性光敏树脂层 10上涂覆一层正性光敏树脂以形 成正性光敏树脂层 9, 之后, 在正性光敏树脂层 9上形成反射膜层 6, 其中, 其他彩色滤色片为材料是正性光敏树脂的彩色滤色片;
步骤 32, 从透明基板 1的底部方向进行背向曝光;
步骤 33 , 对曝光后的正性光敏树脂层 9进行显影处理, 移除其他彩色滤 色片 (例如, 彩色滤色片 3、 4 )以及第一彩色滤色片 5的对应位置上方的正 性光敏树脂层 9以及反射膜层 6,露出其他彩色滤色片(例如,彩色滤色片 3、 4 ) 以及第一彩色滤色片 5的对应位置上方的负性光敏树脂层 10;
步骤 34, 对其他彩色滤色片 (例如, 彩色滤色片 3、 4 ) 以及第一彩色滤 色片 5的对应位置上的负性光敏树脂层 10进行灰化处理,移除覆盖在其他彩 色滤色片 (例如, 彩色滤色片 3、 4 )上的负性光敏树脂层 10, 并形成第一彩 色滤色片 5。
在本发明的实施例提供的半透射半反射彩膜基板的制造方法中, 通过一 次背向曝光即可实现现有技术中需要两次正向掩模曝光才能形成的图形或结 构, 使得半透射半反射彩膜基板的制造工艺得以简化; 并且, 本发明的实施 例中的背向曝光使用透明基板 1上已形成的图形或结构作为掩模板, 是一种 自对准曝光, 从而确保了背向曝光的精度, 有效地提高了产品优良率。
另外, 本发明的实施例提供的半透射半反射彩膜基板的制造方法, 在透 明基板 1上已形成的黑矩阵 2、 其他彩色滤色片 (例如, 彩色滤色片 3、 4 ) 以及黑矩阵 2的缺口上涂覆一层负性光敏树脂以形成负性光敏树脂层 10之 前, 还可以包括:
在透明基板 1上涂覆一层黑色光阻; 以及
从透明基板 1的顶部方向, 对所述黑色光阻进行正向掩模曝光, 并对曝 光后的黑色光阻进行显影处理, 以形成具有缺口的黑矩阵 2。
另外, 本发明的实施例提供的半透射半反射彩膜基板的制造方法, 在透 明基板 1上已形成的黑矩阵 2、 其他彩色滤色片 (例如, 彩色滤色片 3、 4 ) 以及黑矩阵 2的缺口上涂覆一层负性光敏树脂以形成负性光敏树脂层 10之前 还可以包括:
在黑矩阵 2的缺口处, 通过正向掩模曝光依次形成材料为正性光敏树脂 的其他彩色滤色片 (例如, 彩色滤色片 3、 4 ) , 并且在此步骤中正向掩模曝 光的次数与其他彩色滤色片所呈现的原色的种类对应。 例如, 当需要形成红 色对应的彩色滤色片时, 需要进行一次正向掩模曝光; 当需要形成绿色对应 的彩色滤色片时, 需要再进行一次正向掩模曝光, 依此类推, 直到形成全部 其他彩色滤色片。
另外, 本发明的实施例提供的半透射半反射彩膜基板的制造方法, 在形 成第一彩色滤色片之后, 还可以包括:
在彩色滤色片以及剩余的反射膜层 6上形成绝缘层 7; 以及
在绝缘层 7形成公共电极层 8。
为了便于理解本发明的实施例提供的半透射半反射彩膜基板的制造方 法, 下面结合图 3至图 13详细描述该方法的一个示例性实施例。
在本实施例中,该方法用于制造包括与三原色对应的三种彩色滤色片(即 如图 2所示的彩色滤色片 3、彩色滤色片 4和彩色滤色片 5 )的半透射半反射 彩膜基板。
在本实施例中, 该方法可以包括: 步骤 1、 在透明基板 1上形成黑矩阵。
在本发明的实施例中, 黑矩阵(BM ) 的形成工艺可与现有技术相同。 如图 3所示, 首先, 在透明基板 1上涂覆一层黑色光阻。 然后, 对黑色光阻 进行一次正向掩模曝光, 即从透明基板 1的顶部方向对透明基板 1进行第一 次正向掩模曝光, 并对曝光后的黑色光阻进行显影处理, 形成如图 4所示的 具有缺口的黑矩阵 2、 即 BM 2。
步骤 2、 形成彩色滤色片 3、 4。
在本发明的实施例中, 彩色滤色片 3、 4的形成工艺可与现有技术相同。 如图 5所示, 首先, 在已形成黑矩阵 2的透明基板 1上, 涂覆一层正性光敏 树脂。 然后, 对涂覆后的正性光敏树脂层进行一次正向掩模曝光(需要说明 的是, 此次曝光的正性光敏树脂层不是彩膜基板中设置的正性光敏树脂层 9 ) , 即从透明基板 1的顶部方向进行第二次正向掩模曝光, 形成如图 6所示 的材料为正性光敏树脂的彩色滤色片 3。 然后, 以相同的形成过程, 即经过 第三次正向掩模曝光, 形成材料也为正性光敏树脂的彩色滤色片 4, 如图 7、 8所示。
步骤 3、 形成负性光敏树脂层 10、 正性光敏树脂层 9、 反射膜层 6以及 彩色滤色片 5。
在本发明的实施例中, 彩色滤色片 5的形成工艺与现有技术不同。 该工 艺例如可以包括以下步骤。
首先, 在透明基板 1上涂覆一层负性光敏树脂, 其厚度略大于其他两种 彩色滤色片。
然后, 将负性光敏树脂的上表面刮平, 以形成负性光敏树脂层 10, 如图 9所示。
接下来,直接在负性光敏树脂层 10上涂覆一层正性光敏树脂、即光刻胶, 以形成正性光敏树脂层 9。
然后, 通过例如溅射在正性光敏树脂层 9上形成反射膜层 6, 如图 10所 示。
在本发明的实施例中, 反射膜层 6可以由金属材料形成, 该金属材料可 以是铝(A1 ) 、 银(Ag ) 、 金(Au )及其合金材料, 也可以是其他反射性能 较好的金属或合金, 例如, 金属铂(Pt ) 、 铬(Cr ) 、 铜 (Cu )等。 在形成负性光敏树脂层 10、 正性光敏树脂层 9以及反射膜层 6之后, 从 透明基板 1的底部方向、 即下方进行背向曝光。
在本发明的实施例中, 该背向曝光不需要使用掩模板, 直接以基板上已 形成的 BM 2和彩色滤色片 3、 4的图形为掩膜板, 自对准进行曝光。 BM 2 是不透光的, 而彩色滤色片 3、 4是可以透光的, 如图 11所示。
进行曝光之后, 釆用正性光刻胶的显影液对透明基板 1进行显影处理, 即移除图形化后的彩色滤色片 3、4和彩色滤色片 5的对应位置上方的被曝光 的正性光敏树脂层 9, 并且因为被曝光的正性光敏树脂层 9被移除, 一并剥 离位于其上的反射膜层 6, 从而形成如图 12所示的彩膜基板。
从图 12可以看出, 部分负性光敏树脂层 10、 即彩色滤色片 3、 4和彩色 滤色片 5的对应位置上方的负性光敏树脂层 10已暴露出来。
接下来,可以对暴露出来的负性光敏树脂层 10进行灰化处理,移除覆盖 在彩色滤色片 3、 4上的负性光敏树脂层,从而露出材料为正性光敏树脂的彩 色滤色片 3、 4。 同时, 还可以对彩色滤色片 5的对应位置上方的负性光敏树 脂层 10进行灰化处理, 从而形成材料为负性光敏树脂的彩色滤色片 5。
通过上述工艺, 可以形成 BM 2与三种彩色滤色片交替排列并且 BM上 覆盖了反射膜层 6的彩膜基板, 如图 13所示。
步骤 4, 在基板上涂覆绝缘层(例如, OC层) 7 , 溅射公共电极层(例 如, ITO层) 8。 最终得到了如图 2所示的半透射半反射彩膜基板。
如上所述, 本发明的实施例提供的半透射半反射彩膜基板的制造方法是 一种全新的生产工艺, 其中, 总共需要三次掩模曝光和一次自对准曝光, 相 比于现有技术的 5次掩模曝光(仅对应于包括三种彩色滤色片) , 减少了一 次曝光工艺, 工艺难度大大降低, 工艺过程也得到了减少, 有效地提高了产 品良率, 有利于生产成本的降低。
此外, 在本发明的实施例中, 在从背面对透明基板 1进行曝光时, 可以 使用透明基板 1上已形成的图形作为掩模板进行自对准曝光, 减少了一次掩 模板的对准, 也就是说, 整个工艺过程仅需要进行三次掩模板的对准以及一 次简单的自对准曝光即可, 大大简化了半透射半反射彩膜基板的制造工艺。
基于本发明的实施例提供的半透射半反射彩膜基板的制造方法而制成的 半透射半反射彩膜基板, 本发明的实施例还可以提供一种液晶显示装置, 该 液晶显示器可以包括半透射半反射液晶显示面板。
在本发明的实施例中, 该半透射半反射液晶显示面板可以包括: 阵列基 板、 如图 2所示的半透射半反射彩膜基板、 以及设置于半透射半反射彩膜基 板与阵列基板之间的液晶层。
另外, 本发明的实施例还可以提供一种电子产品, 该电子产品包括本发 明的实施例提供的液晶显示装置, 该液晶显示装置包括如图 2所示的半透射 半反射彩膜基板。
以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前 述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其 依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术 特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离 本发明各实施例技术方案的精神和范围。

Claims

权利要求书
1、 一种半透射半反射彩膜基板, 包括:
透明基板;
黑矩阵, 设置于所述透明基板之上, 所述黑矩阵具有多个缺口; 以及 多个彩色滤色片, 设置于所述黑矩阵的缺口中, 所述多个彩色滤色片用 于呈现不同原色,
其中,所述多个彩色滤色片中的第一彩色滤色片的材料为负性光敏树脂 , 其他彩色滤色片的材料为正性光敏树脂。
2、 如权利要求 1所述的半透射半反射彩膜基板, 还包括:
负性光敏树脂层, 设置于所述黑矩阵上, 所述负性光敏树脂层的材料与 第一彩色滤色片的材料相同;
正性光敏树脂层, 设置于所述负性光敏树脂层上; 以及
反射膜层, 设置于所述正性光敏树脂层上。
3、 如权利要求 2所述的半透射半反射彩膜基板, 还包括:
绝缘层, 设置于所述反射膜层以及所述多个彩色滤色片上; 以及 公共电极层, 设置于所述绝缘层上。
4、 一种半透射半反射彩膜基板的制造方法, 用于制造如权利要求 1至 3 任一项所述的半透射半反射彩膜基板, 所述方法包括:
在透明基板上已形成的黑矩阵、 其他彩色滤色片以及黑矩阵的缺口上涂 覆一层负性光敏树脂以形成负性光敏树脂层, 在所述负性光敏树脂层上涂覆 一层正性光敏树脂以形成正性光敏树脂层, 在所述正性光敏树脂层上形成反 射膜层, 所述其他彩色滤色片为材料是正性光敏树脂的彩色滤色片;
从透明基板的底部方向进行背向曝光;
对曝光后的正性光敏树脂层进行显影处理, 移除所述其他彩色滤色片以 及第一彩色滤色片的对应位置上方的所述正性光敏树脂层以及所述反射膜 层, 露出所述其他彩色滤色片以及第一彩色滤色片的对应位置上方的所述负 性光敏树脂层;
对所述其他彩色滤色片以及第一彩色滤色片的对应位置上方的负性光敏 树脂层进行灰化处理, 以移除覆盖在所述其他彩色滤色片上的负性光敏树脂 层, 并且形成第一彩色滤色片。
5、 如权利要求 4所述的方法, 其中, 在透明基板上已形成的黑矩阵、 其 他彩色滤色片以及黑矩阵的缺口上涂覆一层负性光敏树脂以形成负性光敏树 脂层之前, 所述方法还包括:
在透明基板上涂覆一层黑色光阻; 以及
从所述透明基板的顶部方向, 对所述黑色光阻进行正向掩模曝光, 并对 曝光后的黑色光阻进行显影处理, 以形成具有缺口的黑矩阵。
6、 如权利要求 5所述的方法, 其中, 在透明基板上已形成的黑矩阵、 其 他彩色滤色片以及黑矩阵的缺口上涂覆一层负性光敏树脂以形成负性光敏树 脂层之前, 所述方法还包括:
在黑矩阵的缺口处, 经过正向掩模曝光, 依次形成材料为正性光敏树脂 的其他彩色滤色片, 并且所述正向掩模曝光的次数与其他彩色滤色片所呈现 的原色的种类数目对应。
7、如权利要求 4至 6任一项所述的方法, 其中, 在形成第一彩色滤色片 之后, 所述方法还包括:
在彩色滤色片以及剩余的反射膜层上形成绝缘层; 以及
在所述绝缘层上形成公共电极层。
8、一种液晶显示装置, 包括半透射半反射液晶显示面板, 所述半透射半 反射液晶显示面板包括如权利要求 1至 3任一项所述的半透射半反射彩膜基 板。
PCT/CN2012/086196 2012-04-24 2012-12-07 半透射半反射彩膜基板及其制造方法和液晶显示装置 WO2013159537A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/127,299 US9360700B2 (en) 2012-04-24 2012-12-07 Half-transmitting and half-reflecting color film substrate, manufacture method thereof and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210122750.7 2012-04-24
CN201210122750.7A CN102707484B (zh) 2012-04-24 2012-04-24 半透射半反射彩膜基板及其制作方法,以及液晶显示装置

Publications (1)

Publication Number Publication Date
WO2013159537A1 true WO2013159537A1 (zh) 2013-10-31

Family

ID=46900396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086196 WO2013159537A1 (zh) 2012-04-24 2012-12-07 半透射半反射彩膜基板及其制造方法和液晶显示装置

Country Status (3)

Country Link
US (1) US9360700B2 (zh)
CN (1) CN102707484B (zh)
WO (1) WO2013159537A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707484B (zh) * 2012-04-24 2014-07-09 京东方科技集团股份有限公司 半透射半反射彩膜基板及其制作方法,以及液晶显示装置
CN103033981B (zh) * 2013-01-09 2016-05-11 深圳市华星光电技术有限公司 彩色滤光片基板及其制造方法和液晶面板
CN103325732B (zh) * 2013-06-28 2016-03-30 京东方科技集团股份有限公司 一种coa基板及其制造方法、显示装置
CN103760717A (zh) * 2014-01-29 2014-04-30 京东方科技集团股份有限公司 彩色滤光片基板及其制备方法、显示装置
TWI557772B (zh) * 2014-04-10 2016-11-11 友達光電股份有限公司 元件基板及其製造方法
CN104156130B (zh) * 2014-07-17 2019-02-05 重庆京东方光电科技有限公司 一种触摸屏和显示装置
CN104156131B (zh) * 2014-08-20 2017-07-28 深圳市华星光电技术有限公司 触摸屏的制造方法
CN104360428B (zh) * 2014-11-28 2016-08-24 京东方科技集团股份有限公司 制作彩色滤光片的方法及彩色滤光片、显示装置
CN104571716B (zh) * 2015-02-03 2017-08-29 京东方科技集团股份有限公司 上基板及制备方法、触控显示面板及制备方法
CN105118928B (zh) * 2015-07-29 2018-02-09 京东方科技集团股份有限公司 彩膜基板、其制作方法、oled显示面板及显示装置
US10996515B2 (en) * 2015-08-28 2021-05-04 Samsung Display Co., Ltd. Color conversion panel, display device comprising the same and manufacturing method of the color conversion panel
CN205942207U (zh) * 2016-05-17 2017-02-08 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106019708A (zh) * 2016-07-15 2016-10-12 京东方科技集团股份有限公司 背光模组以及包括这样的背光模组的透明显示装置
CN106226945A (zh) * 2016-07-29 2016-12-14 信利(惠州)智能显示有限公司 彩色滤光片及其制作方法、显示组件与显示装置
CN107065292A (zh) * 2017-06-12 2017-08-18 京东方科技集团股份有限公司 黑矩阵及其制备方法和系统、显示基板和显示装置
KR102454192B1 (ko) * 2017-07-19 2022-10-13 삼성디스플레이 주식회사 색변환 패널 및 이를 포함하는 표시 장치
CN110412790A (zh) 2018-04-26 2019-11-05 京东方科技集团股份有限公司 彩膜基板、显示面板、显示装置及显示装置操作方法
JP6908116B2 (ja) * 2018-07-05 2021-07-21 東レ株式会社 樹脂組成物、遮光膜および遮光膜の製造方法
CN110858035B (zh) * 2018-08-24 2022-12-02 夏普株式会社 液晶显示装置
CN111724816B (zh) * 2019-03-20 2023-09-22 新科实业有限公司 在衬底上形成图案的方法
CN110224076B (zh) 2019-05-15 2020-08-11 武汉华星光电半导体显示技术有限公司 Oled面板及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040218123A1 (en) * 2003-04-30 2004-11-04 Samsung Electronics Co., Ltd Upper substrate, liquid crystal display apparatus having the same and method of manufacturing the same
CN1773314A (zh) * 2004-11-11 2006-05-17 Lg.菲利浦Lcd株式会社 薄膜构图装置及使用其制造滤色片阵列基板的方法
CN1975544A (zh) * 2006-12-06 2007-06-06 友达光电股份有限公司 液晶显示装置基板的制造方法
CN102707484A (zh) * 2012-04-24 2012-10-03 京东方科技集团股份有限公司 半透射半反射彩膜基板及其制作方法,以及液晶显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004046801A1 (ja) * 2002-11-15 2004-06-03 Seiko Instruments Inc. 液晶表示装置
JP2004218123A (ja) 2003-01-14 2004-08-05 Teijin Ltd 複合繊維の製造方法、その方法により製造された複合繊維、及び、該複合繊維からなる不織布
KR101041088B1 (ko) * 2003-06-10 2011-06-13 삼성전자주식회사 반사-투과형 어레이 기판과, 이의 제조 방법 및 이를 갖는액정 표시 장치
JP4741177B2 (ja) * 2003-08-29 2011-08-03 株式会社半導体エネルギー研究所 表示装置の作製方法
TWI263104B (en) * 2003-11-13 2006-10-01 Hannstar Display Corp A dual-display reflective type liquid crystal display panel
KR101007207B1 (ko) * 2003-12-27 2011-01-14 엘지디스플레이 주식회사 액정표시장치용 기판 제조방법
JP4919043B2 (ja) * 2007-03-28 2012-04-18 大日本印刷株式会社 半透過型液晶表示装置用カラーフィルタの製造方法
KR20100038617A (ko) * 2008-10-06 2010-04-15 삼성전자주식회사 액정 표시 장치 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040218123A1 (en) * 2003-04-30 2004-11-04 Samsung Electronics Co., Ltd Upper substrate, liquid crystal display apparatus having the same and method of manufacturing the same
CN1773314A (zh) * 2004-11-11 2006-05-17 Lg.菲利浦Lcd株式会社 薄膜构图装置及使用其制造滤色片阵列基板的方法
CN1975544A (zh) * 2006-12-06 2007-06-06 友达光电股份有限公司 液晶显示装置基板的制造方法
CN102707484A (zh) * 2012-04-24 2012-10-03 京东方科技集团股份有限公司 半透射半反射彩膜基板及其制作方法,以及液晶显示装置

Also Published As

Publication number Publication date
US9360700B2 (en) 2016-06-07
CN102707484A (zh) 2012-10-03
CN102707484B (zh) 2014-07-09
US20140125931A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
WO2013159537A1 (zh) 半透射半反射彩膜基板及其制造方法和液晶显示装置
US20150253473A1 (en) Color filter array substrate, method for fabricating the same and display device
US8305528B2 (en) Liquid crystal display and manufacturing method thereof
WO2016138670A1 (zh) Ffs型薄膜晶体管阵列基板及其制备方法
JP2000171794A (ja) 液晶表示装置の製造方法
US10288928B2 (en) Photomask and method of manufacturing color filter substrate
US20150323835A1 (en) Pixel structure, lcd panel, and manufacturing method thereof
WO2014134886A1 (zh) 彩膜基板及其制作方法、液晶显示屏
TWI326491B (en) Trans-reflective liquid crystal display and manufacturing method thereof
WO2015043023A1 (zh) Tft-lcd阵列基板的制造方法、液晶面板及液晶显示器
WO2019214108A1 (zh) 一种显示面板的制作方法以及显示面板
JP2004004602A (ja) カラー液晶表示装置およびカラー液晶表示装置の製造方法
TWI282584B (en) Method for fabricating trans-reflective liquid crystal displays
JP2012123287A (ja) カラーフィルタ、横電界駆動式液晶表示装置、ブラックマトリクスの形成方法およびカラーフィルタの製造方法
JP2004310048A (ja) 色フィルター表示板及びこれを含む半透過型液晶表示装置
TWI375839B (en) Liquid crystal panel and method of making the same
US20080024702A1 (en) Pixel structure and fabrication method thereof
WO2018205700A1 (zh) 触摸基板及其制作方法、显示面板及显示装置
TWI276843B (en) Method of manufacturing color filter substrate
WO2013131282A1 (zh) 半穿半反液晶显示器的阵列基板制造方法
TW200416427A (en) Manufacturing method of electro-optical device substrate and manufacturing method of electro-optical device
TWI299574B (en) Method for fabricating transflective liquid crystal display
WO2020078180A1 (zh) 掩膜板、显示基板及其制作方法、显示装置
WO2013131283A1 (zh) 穿透式液晶显示器的阵列基板制造方法
TWI247141B (en) Method and device for manufacturing a color filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875188

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14127299

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12-03-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12875188

Country of ref document: EP

Kind code of ref document: A1