WO2013159530A1 - 超临界水氧化系统中过量氧回用及二氧化碳回收方法 - Google Patents

超临界水氧化系统中过量氧回用及二氧化碳回收方法 Download PDF

Info

Publication number
WO2013159530A1
WO2013159530A1 PCT/CN2012/085882 CN2012085882W WO2013159530A1 WO 2013159530 A1 WO2013159530 A1 WO 2013159530A1 CN 2012085882 W CN2012085882 W CN 2012085882W WO 2013159530 A1 WO2013159530 A1 WO 2013159530A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
supercritical water
oxygen
water oxidation
fluid
Prior art date
Application number
PCT/CN2012/085882
Other languages
English (en)
French (fr)
Inventor
王树众
王玉珍
徐东海
唐兴颖
公彦猛
马红和
郭洋
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2013159530A1 publication Critical patent/WO2013159530A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • C02F11/086Wet air oxidation in the supercritical state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/52Separating high boiling, i.e. less volatile components from oxygen, e.g. Kr, Xe, Hydrocarbons, Nitrous oxides, O3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/50Integration in an installation using oxygen, e.g. in the burner of a glass facility, waste incineration or oxygen based process [OBP] in general

Definitions

  • the invention relates to the recycling of organic wastewater treatment, in particular to a method for recycling excess oxygen and carbon dioxide in a supercritical water oxidation system. Background technique
  • Supercritical Water Oxidation is a new and efficient high-concentration refractory organic wastewater treatment technology. Under supercritical conditions (T>374.15°C, P>22.12MPa), water has both gas and liquid properties. In this state, only a small amount of hydrogen bonds exist, which has liquid-like density, solubility and good fluidity. A non-polar organic solvent with a gas-like high diffusion coefficient and low viscosity.
  • the supercritical water oxidation technology utilizes the unique physicochemical properties of water under supercritical conditions. With the participation of oxygen, the organic matter undergoes a free radical-dominated oxidation reaction, which rapidly and thoroughly oxidizes carbon-containing organic matter in wastewater to carbon dioxide and water. It has the advantages of quick response, thoroughness, cleanliness and environmental protection.
  • the oxidation coefficient (the ratio of the amount of oxidant added to the theoretical oxygen demand) and temperature are two important factors affecting the efficiency of organic matter treatment, in order to make organic matter more Thorough removal usually requires increasing the temperature or increasing the oxidation coefficient.
  • the temperature is higher than 500 °C, the corrosion of the reactor is severe. Therefore, the method of increasing the oxygen peroxide coefficient is generally used to improve the organic removal efficiency, and the general control oxidation coefficient is between 1.5 and 4.
  • oxygen consumption accounts for more than 70%. With the increase of peroxygen, the operating cost of the system also increases significantly, which seriously affects the process economy.
  • the reacted fluid contains a large amount of excess oxygen and carbon dioxide produced by oxidation of organic matter. If the oxygen is recycled and the carbon dioxide is recovered, the system economy can be improved.
  • the invention aims at the problem of high oxygen cost in the operation of the supercritical water oxidation system, and proposes a method for recovering carbon dioxide while realizing excess oxygen reuse outside the reactor.
  • the method mainly utilizes the conditions of high-pressure effluent of the supercritical reactor, cools the mixed gas of oxygen and carbon dioxide by heat exchange, controls the temperature below the temperature of the liquefaction boundary of carbon dioxide, and liquefies and purifies the carbon dioxide to realize separation of oxygen and carbon dioxide.
  • a method for recycling excess oxygen and recovering carbon dioxide in a supercritical water oxidation system characterized in that it comprises the following steps:
  • the effluent of the supercritical water oxidation reactor enters the high-pressure gas-liquid separator after heat exchange by the heat exchanger, and the upper fluid of the high-pressure gas-liquid separator acts as a thermal fluid medium, and sequentially enters the heat exchange coil in the purification tower and the outside of the purification tower.
  • a condenser that causes the fluid temperature to be lower than the carbon dioxide liquefaction temperature
  • the gas phase fluid at the top of the purification tower enters the oxygen buffer tank, and is mixed with the oxygen supplied by the supercritical water oxidation system, and then enters the supercritical water oxidation reactor through the high pressure oxygen compressor to realize the oxygen reuse.
  • the supercritical water oxidation reactor has a reaction temperature of 375 to 700 ° C and a pressure of 23 to 30 MPa.
  • the temperature is lower than the water vaporization temperature at the corresponding pressure.
  • the cold fluid required for the condenser is supplied by the refrigeration unit or by the liquid oxygen cooling energy in the supercritical water oxidation system.
  • the cold fluid medium is an aqueous solution, or a mixed solution of ethylene glycol and water, or liquid oxygen.
  • the invention proposes that the oxygen recycling and the carbon dioxide recovery outside the reactor can effectively reduce the oxidation coefficient in the supercritical water oxidation system, recover carbon dioxide, significantly improve the economical operation of the system, and can be widely applied to supercritical water oxidation. Dispose of in an organic waste/waste treatment system.
  • Figure 1 is a schematic flow chart of the method of the present invention.
  • Figure 1 1, heat exchanger; 2, high pressure gas-liquid separator; 3, heat exchange coil; 4, condenser; 5, purification tower; 6, oxygen buffer tank; 7, high pressure oxygen compressor; Supercritical water oxidation reactor
  • the pesticide wastewater with a treatment capacity of 100t/d, COD is
  • reaction temperature is 500 ° C
  • pressure is 25MPa
  • the upper fluid of the high-pressure gas-liquid separator is mainly carbon dioxide produced by oxidation of excess oxygen and organic matter.
  • the upper fluid of the high-pressure gas-liquid separator 2 first enters the heat exchange coil 3 as a hot fluid medium, and then enters the condenser 4 for heat exchange.
  • the condenser hot fluid medium inlet temperature is 25 ° C
  • the outlet temperature is 10 ° C
  • the cooling medium is supplied by the refrigeration unit and is a mixed solution of 16 W t% ethylene glycol and 84% water.
  • the inlet temperature is 0 ° C and the outlet temperature is 6 ° C.
  • the condenser outlet fluid enters the purification tower 5 to realize liquid carbon dioxide and gaseous oxygen. Separation, the separated liquid carbon dioxide is exchanged with the high-pressure gas-liquid separator outlet fluid under the action of the bottom heat exchange coil, and the temperature is raised from 10 ° C to 20 ° C to promote the dissolution of oxygen in the liquid carbon dioxide. Escape, deep purification of carbon dioxide, liquid carbon dioxide filling and recovery at the bottom of the tower.
  • the top outlet gas on the purification tower is mainly oxygen, and the oxygen buffer tank 6 is mixed with the oxygen supplied by the supercritical system oxygen supply system, and then transported by the high pressure oxygen compressor 7 to the supercritical water oxidation reactor 8 to realize the oxygen reuse.
  • the oxygen recovery rate of this example is 99%, and the purity of the liquid carbon dioxide produced is 99.5%, which can reach the industrial first-class standard, and the output is 5t/d.
  • the heat exchange coil at the bottom of the purification tower uses the gas outlet fluid of the high-pressure gas-liquid separator to heat the liquid carbon dioxide in the tower, and promotes the escape of oxygen dissolved in the liquid carbon dioxide by increasing the temperature of the fluid, thereby achieving deep purification of carbon dioxide, controlling the temperature of the fluid after heat exchange. Not higher than the liquefaction temperature at the corresponding pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

一种超临界水氧化系统中过量氧回用及二氧化碳回收方法,其包括下述步骤:1)超临界水氧化反应器(8)出水经换热器(1)换热后进入高压气液分离器(2),上部流体作为热流体介质,依次进入提纯塔(5)内的换热盘管(3)、提纯塔(5)外的冷凝器(4),使流体温度低于二氧化碳液化温度;2)冷凝器(4)出口流体进入提纯塔(5),塔底液态二氧化碳通过换热盘管(3)与高压气液分离器(2)出口流体换热,实现二氧化碳纯化,塔底出口液体二氧化碳灌装回收;3)提纯塔(5)顶部气相流体进入氧缓冲罐(6),与超临界水氧化系统所供氧混合后通过高压氧压缩机(7)进入超临界水氧化反应器(8)实现氧的回用。本方法可广泛应用于超临界水氧化处理有机废水/废物系统中。

Description

超临界水氧化系统中过量氧回用及二氧化碳回收方法 技术领域
本发明涉及有机废水处理的循环利用, 特别涉及一种超临界水氧化系统 中过量氧回用及二氧化碳回收方法。 背景技术
超临界水氧化技术 (Supercritical Water Oxidation) 是一种新型高效的高 浓度难降解有机废水处理技术。水在超临界条件下(T>374.15°C,P>22.12MPa) 兼具气体和液体的性质, 该状态下只有少量氢键存在, 具有类似液体的密度、 溶解能力和良好的流动性, 是一种非极性有机溶剂, 又具有类似气体的高的 扩散系数和低的粘度。 超临界水氧化技术即利用水在超临界条件下独特的物 理化学性质, 在氧的参与下, 有机物发生以自由基为主导的氧化反应, 使废 水中含碳有机物迅速彻底的氧化为二氧化碳和水, 具有反应迅速、 彻底、 清 洁环保的优点。
商业化的超临界水氧化装置常用液氧做氧化剂, 在超临界系统中氧化系 数 (氧化剂加入量与理论需氧量之比) 和温度是影响有机物处理效率的两个 重要因素, 为使有机物更彻底的去除, 通常需要提高温度或增大氧化系数。 然而, 当温度高于 500°C时, 对反应器的腐蚀较严重, 所以, 通常采用提高过 氧系数的方法来提高有机物去除效率, 一般控制氧化系数在 1.5-4之间。 但在 超临界水氧化系统的总耗资中, 氧气消耗约占 70%以上, 随着过氧量的增加, 系统运行成本也显著增加, 严重影响了过程经济性。 反应后的流体中含有大 量过剩的氧及有机物氧化产生的二氧化碳, 若能有效实现氧的循环回用并回 收二氧化碳可提高系统经济性。
在目前国内外超临界水氧化系统中, 关于氧回用方法的报道很少。 国内 仅"一种提高超临界水氧化系统氧气利用率的方法"(公开号 CN101830554A) 通过高压气液分离器与水进行分离后, 气体直接回用至反应器来实现氧的回 用。 但该方法中高压气液分离器上部气态流体中除氧外, 还有大量二氧化碳 存在。 对于 COD (化学需氧量) 70000mg/L的废水, 气相中的二氧化碳仍占 到总二氧化碳的 60%以上。 若不对二氧化碳和氧进行有效的分离, 二氧化碳 量随运行时间而增大, 导致系统压力不稳定, 且积累的大量二氧化碳在对氧 进行了稀释, 影响有机物的去除效率。 因此, 二氧化碳与氧的有效分离是实 现氧的高效回用保证系统安全稳定运行的关键。 发明内容
本发明针对超临界水氧化系统运行中氧成本高的问题, 提出了一种在反 应器外实现过量氧回用的同时回收二氧化碳的方法。 该方法主要利用超临界 反应器出水高压的条件, 通过换热对氧和二氧化碳混合气体冷却, 控制温度 低于二氧化碳液化界温度, 使二氧化碳液化并提纯来实现氧与二氧化碳分离。
为达到以上目的, 本发明是采取如下技术方案予以实现的:
超临界水氧化系统中过量氧回用及二氧化碳回收方法,
一种超临界水氧化系统中过量氧回用及二氧化碳回收方法, 其特征在于, 包括下述歩骤:
( 1 )超临界水氧化反应器出水经换热器换热后进入高压气液分离器, 高 压气液分离器上部流体作为热流体介质, 依次进入提纯塔内的换热盘管、 提 纯塔外的冷凝器, 使流体温度低于二氧化碳液化温度;
(2)冷凝器出口流体进入提纯塔, 塔底液态二氧化碳通过换热盘管与高 压气液分离器出口流体换热, 实现二氧化碳纯化, 塔底出口液体二氧化碳灌 装回收;
(3 )提纯塔顶部气相流体进入氧缓冲罐, 与超临界水氧化系统所供氧混 合后通过高压氧压缩机进入超临界水氧化反应器实现氧的回用。
上述方法中, 所述超临界水氧化反应器反应温度为 375-700°C、 压力为 23-30MPa。
所述超临界水氧化反应器出口流体经换热器换热后, 温度低于相应压力 下的水汽化温度。
所述冷凝器所需冷流体由冷冻机组提供, 或者利用超临界水氧化系统中 液氧冷能。
所述冷流体介质为水溶液, 或者为乙二醇和水的混合溶液, 或者为液氧。 本发明提出通过在反应器外实现氧的循环回用及二氧化碳回收, 能有效 降低超临界水氧化系统中的氧化系数, 回收二氧化碳, 显著提高系统运行的 经济性, 可广泛应用于超临界水氧化处理有机废液 /废物处理系统中。 附图说明
图 1为本发明方法的流程示意图。
图 1中: 1、 换热器; 2、 高压气液分离器; 3、 换热盘管; 4、 冷凝器; 5、 提纯塔; 6、 氧缓冲罐; 7、 高压氧压缩机; 8、 超临界水氧化反应器 具体实施方式
下面结合附图及发明人给出的一个具体实施例对本发明作进一歩详细说 明。
按照图 1所示的工艺流程, 处理量为 100t/d的农药废水, COD为
70000mg/L, 氧化系数为 4, 超临界水氧化反应器 8反应温度为 500 °C、 压力 为 25MPa, 反应后流体经换热器 1换热至 45 °C, 进入高压气液分离器 2; 反 应器出水换热后温度低于相应压力下的水汽化温度, 保证水气的有效分离。 高压气液分离器上部流体中主要为过量的氧和有机物氧化产生的二氧化碳。 高压气液分离器 2上部流体作为热流体介质首先进入换热盘管 3,然后进入冷 凝器 4进行换热, 冷凝器热流体介质进口温度为 25 °C, 出口温度为 10°C, 冷 凝器冷却介质由冷冻机组提供, 为 16Wt%乙二醇和 84%水的混合溶液, 进口 温度为 0°C, 出口温度为 6°C ; 冷凝器出口流体进入提纯塔 5实现液体二氧化 碳和气态氧的分离, 分离后的液体二氧化碳在塔底换热盘管的作用下, 通过 与高压气液分离器出口流体换热, 温度由 10°C提高至 20 °C, 促进溶解在液体 二氧化碳中氧的逸出, 达到二氧化碳的深度纯化, 塔底液体二氧化碳灌装回 收。 提纯塔上顶部出口气体主要为氧, 进入氧缓冲罐 6与超临界系统供氧系 统提供的氧混合后由高压氧压缩机 7输运至超临界水氧化反应器 8实现氧的 回用。 该实例氧气回收率达 99%, 所产液体二氧化碳纯度为 99.5%, 可达工 业一级标准, 产量为 5t/d。
提纯塔底部换热盘管利用高压气液分离器气相出口流体对塔内液体二氧 化碳加热, 通过提高流体温度促进溶解在液体二氧化碳中氧的逸出, 达到二 氧化碳的深度纯化, 控制换热后流体温度不高于相应压力下的液化温度。

Claims

WO 2013/159530 权 禾 ^ 求 书 PCT/CN2012/085882
1、 一种超临界水氧化系统中过量氧回用及二氧化碳回收方法, 其特征在 于, 包括下述歩骤:
( 1 )超临界水氧化反应器出水经换热器换热后进入高压气液分离器, 高 压气液分离器上部流体作为热流体介质, 依次进入提纯塔内的换热盘管、 提 纯塔外的冷凝器, 使流体温度低于二氧化碳液化温度;
(2)冷凝器出口流体进入提纯塔, 塔底液态二氧化碳通过换热盘管与高 压气液分离器出口流体换热, 实现二氧化碳纯化, 塔底出口液体二氧化碳灌 装回收;
(3 )提纯塔顶部气相流体进入氧缓冲罐, 与超临界水氧化系统所供氧混 合后通过高压氧压缩机进入超临界水氧化反应器实现氧的回用。
2、 如权利要求 1所述的超临界水氧化系统中过量氧回用及二氧化碳回收 方法, 其特征在于, 超临界水氧化反应器反应温度为 375-700°C、 压力为 23-30MPa。
3、 如权利要求 1所述的超临界水氧化系统中过量氧回用及二氧化碳回收 方法, 其特征在于, 超临界水氧化反应器出口流体经换热器换热后, 温度低 于相应压力下的水汽化温度。
4、 如权利要求 1所述的超临界水氧化系统中过量氧回用及二氧化碳回收 方法, 其特征在于, 冷凝器所需冷流体由冷冻机组提供, 或者利用超临界水 氧化系统中液氧冷能。
5、 如权利要求 4所述的超临界水氧化系统中过量氧回用及二氧化碳回收 方法, 其特征在于, 所述冷流体介质为水溶液, 或者为乙二醇和水的混合溶 液, 或者为液氧。
6、 如权利要求 5所述的超临界水氧化系统中过量氧回用及二氧化碳回收 方法, 其特征在于, 所述冷流体介质乙二醇和水的混合溶液, 为 16wt%乙二 醇和 84%水。
PCT/CN2012/085882 2012-04-23 2012-12-05 超临界水氧化系统中过量氧回用及二氧化碳回收方法 WO2013159530A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101201371A CN102633350B (zh) 2012-04-23 2012-04-23 超临界水氧化系统中过量氧回用及二氧化碳回收方法
CN201210120137.1 2012-04-23

Publications (1)

Publication Number Publication Date
WO2013159530A1 true WO2013159530A1 (zh) 2013-10-31

Family

ID=46617953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085882 WO2013159530A1 (zh) 2012-04-23 2012-12-05 超临界水氧化系统中过量氧回用及二氧化碳回收方法

Country Status (2)

Country Link
CN (1) CN102633350B (zh)
WO (1) WO2013159530A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019040277A1 (en) * 2017-08-22 2019-02-28 Michael Modell SUPERCRITICAL WATER OXIDATION SYSTEMS FOR ENERGY RECOVERY AND USE THEREOF
CN114835237A (zh) * 2022-04-29 2022-08-02 西安交通大学 一种有机废物超临界水氧化处理系统及其调控方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633350B (zh) * 2012-04-23 2013-11-06 西安交通大学 超临界水氧化系统中过量氧回用及二氧化碳回收方法
CN103616858B (zh) * 2013-11-06 2015-12-02 西安交通大学 Scwo处理难生化含氮浓有机废水的氧气回收控制系统及方法
CN108150232A (zh) * 2017-12-22 2018-06-12 西安交通大学 一种分离超临界混合工质汽轮机排气的系统及抽吸方法
CN110372084B (zh) * 2019-07-24 2022-02-11 天津市德信成环保科技有限公司 一种超临界水氧化系统回收co2的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2819409A1 (fr) * 2001-01-17 2002-07-19 Sederma Sa Utilisation de diosgenine dans des compositions a usage cosmetique ou dermopharmaceutique
CN1604882A (zh) * 2001-10-17 2005-04-06 普莱克斯技术有限公司 超临界二氧化碳的回收
CN101053804A (zh) * 2007-02-14 2007-10-17 浙江大学 水力空化增强超临界辅助雾化制备微粒的系统及其方法
CN101993143A (zh) * 2010-10-27 2011-03-30 南京工业大学 一种利用超临界水氧化法处理碱渣废水的系统和方法
CN102633350A (zh) * 2012-04-23 2012-08-15 西安交通大学 超临界水氧化系统中过量氧回用及二氧化碳回收方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830554B (zh) * 2010-05-18 2012-03-07 山东大学 一种提高超临界水氧化系统氧气利用率的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2819409A1 (fr) * 2001-01-17 2002-07-19 Sederma Sa Utilisation de diosgenine dans des compositions a usage cosmetique ou dermopharmaceutique
CN1604882A (zh) * 2001-10-17 2005-04-06 普莱克斯技术有限公司 超临界二氧化碳的回收
CN101053804A (zh) * 2007-02-14 2007-10-17 浙江大学 水力空化增强超临界辅助雾化制备微粒的系统及其方法
CN101993143A (zh) * 2010-10-27 2011-03-30 南京工业大学 一种利用超临界水氧化法处理碱渣废水的系统和方法
CN102633350A (zh) * 2012-04-23 2012-08-15 西安交通大学 超临界水氧化系统中过量氧回用及二氧化碳回收方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019040277A1 (en) * 2017-08-22 2019-02-28 Michael Modell SUPERCRITICAL WATER OXIDATION SYSTEMS FOR ENERGY RECOVERY AND USE THEREOF
CN114835237A (zh) * 2022-04-29 2022-08-02 西安交通大学 一种有机废物超临界水氧化处理系统及其调控方法

Also Published As

Publication number Publication date
CN102633350A (zh) 2012-08-15
CN102633350B (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
WO2013159530A1 (zh) 超临界水氧化系统中过量氧回用及二氧化碳回收方法
CN102225297B (zh) 溶剂循环吸收法烟气脱硫中脱硫溶剂的热泵再生流程
CN210974475U (zh) 一种氨肟化反应的叔丁醇回收装置
CN114804036B (zh) 一种生产g1-g5电子级硫酸的方法及系统
CN103896280A (zh) 一种多晶硅冷氢化的运行方法
CN105776224B (zh) 一种清洗精馏塔再沸器的方法
CN104370404A (zh) 一种三聚氰胺装置废水处理方法及其处理系统
CN105169740A (zh) 苯酚丙酮装置氧化尾气能量回收的方法
WO2020029684A1 (zh) 一种处理高盐高有机废水并回收能量的系统及方法
CN205084440U (zh) 一种溶剂蒸馏回收冷凝系统
CN105174675A (zh) 一种煤气化废水生化污泥的处理方法
CN102351149B (zh) 氯化氢中氯气的去除和回收系统
CN104016352A (zh) 处理多晶硅尾气的方法和系统
JP2024502218A (ja) 復水を処理するための分離塔及びその方法
RU2517524C2 (ru) Способ и установка для переработки водорода в узле очистки устройства для очистки терефталевой кислоты
CN212299665U (zh) 一种回收单晶硅生产中氩气尾气的装置
CN210506160U (zh) 锂电池生产中nmp回收及超重力精馏提纯系统
CN106117018B (zh) 苯酚丙酮装置过氧化氢异丙苯提浓系统余热回收的方法
CN107998689B (zh) 脱除中变气酸性凝液中co2和o2的热集成精馏工艺
CN219885675U (zh) 一种酸法溶铁联产氢气装置
CN201906471U (zh) 稀酸真空浓缩装置
CN221245101U (zh) 一种基于湿式氧化的含氯酚类废盐酸资源化处理装置
CN220496334U (zh) 一种异丁烷正构反应废气回收系统
CN215138495U (zh) 一种亚硝酸甲酯回收装置
CN104629818B (zh) 真空碳酸盐法脱硫富液双效解吸工艺及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875500

Country of ref document: EP

Kind code of ref document: A1