WO2020029684A1 - 一种处理高盐高有机废水并回收能量的系统及方法 - Google Patents

一种处理高盐高有机废水并回收能量的系统及方法 Download PDF

Info

Publication number
WO2020029684A1
WO2020029684A1 PCT/CN2019/091473 CN2019091473W WO2020029684A1 WO 2020029684 A1 WO2020029684 A1 WO 2020029684A1 CN 2019091473 W CN2019091473 W CN 2019091473W WO 2020029684 A1 WO2020029684 A1 WO 2020029684A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
inlet
outlet
salt
water
Prior art date
Application number
PCT/CN2019/091473
Other languages
English (en)
French (fr)
Inventor
张凤鸣
苏闯建
陈智宇
丁雅馨
陈顺权
Original Assignee
中国科学院深圳先进技术研究院
广州中国科学院先进技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810893326.XA external-priority patent/CN109264914B/zh
Priority claimed from CN201810893327.4A external-priority patent/CN109179825B/zh
Application filed by 中国科学院深圳先进技术研究院, 广州中国科学院先进技术研究所 filed Critical 中国科学院深圳先进技术研究院
Priority to US17/057,113 priority Critical patent/US11459260B2/en
Priority to CN201980005245.4A priority patent/CN111417598B/zh
Publication of WO2020029684A1 publication Critical patent/WO2020029684A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • C02F1/385Treatment of water, waste water, or sewage by centrifugal separation by centrifuging suspensions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • C02F11/086Wet air oxidation in the supercritical state
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the invention belongs to the technical field of high-salt and high-organic wastewater treatment, and particularly relates to a system and method for treating high-salt and high-organic wastewater and recovering energy.
  • This technology utilizes the unique properties of supercritical water (such as density, viscosity, dielectric constant, reduced ion product, weakened hydrogen bonding, diffusion performance, significantly enhanced non-polar characteristics, etc.) to completely oxidize organic pollutants to CO 2 and H 2 O and other non-toxic products, with the reaction rate is fast, complete degradation, no secondary pollution unique advantages, one of the most promising is an organic wastewater treatment technologies.
  • the present invention provides a system for treating high-salt and high-organic wastewater and recovering energy, including a cold-wall reactor, a multi-stage cyclone separation device, a waste liquid feeding system, an oxidant feeding system, and a fuel feeding system. ;
  • the cold wall reactor has a double shell structure, a cooling medium inlet is provided at the top and bottom of the double shell structure, a cooling medium outlet is provided at the side of the double shell, and the double shell
  • An inner pipe is provided at the center of the top of the body structure, an inner pipe is provided outside the inner pipe, an outer pipe is provided outside the outer pipe, and a waste liquid inlet is respectively provided on the inner pipe, the intermediate pipe, and the outer pipe.
  • Oxidant inlet and fuel inlet; the bottom of the double shell is also provided with a reaction fluid outlet; the cold wall reactor is used for supercritical water oxidation reaction of waste liquid; the reaction fluid outlet is connected to a buffer tank, the The top outlet of the buffer tank is connected to the multi-stage cyclone separation device;
  • the multi-stage cyclone separation device is used for steam recovery and partial salt crystallization of inorganic salts in a reaction product in a cold wall reactor;
  • the waste liquid feeding system includes an organic waste liquid regulating tank, and the organic waste liquid regulating tank is connected to a waste liquid inlet on the outer pipe;
  • the oxidant feeding system includes an oxidant storage tank connected to an oxidant inlet on the intermediate pipe;
  • the fuel feed system includes a fuel storage tank connected to a fuel inlet on the inner pipe.
  • two cooling medium inlets are respectively provided on the top and bottom of the double-layer casing, two cooling medium outlets are provided on the side of the double-layer casing, and the two cooling medium inlets on the top are connected respectively.
  • the two cooling medium inlets connecting to the bottom and the two cooling medium outlets connecting to the side are connected at 90 °.
  • two cooling medium inlets at the bottom of the double-layer casing are symmetrically arranged on the left and right sides of the reaction fluid outlet as a center.
  • the length of the inner tube is 100 to 200 mm
  • the middle tube is 50 to 150 mm longer than the inner tube
  • the outer tube is 50 to 150 mm longer than the middle tube.
  • a 50-150 mm portion of the outer tube that is longer than the middle tube has a porous structure.
  • the multi-stage cyclone separation device is a 2 to 4 stage cyclone separation device.
  • the multi-stage cyclone separation device is a 3-stage cyclone separation device, and its structure specifically includes: a first heat exchanger, a second heat exchanger, a third heat exchanger, a fourth heat exchanger, and a first cyclone separation.
  • the outlet of the first heat exchanger is connected to the inlet of the first cyclone separator, and the first heat exchange
  • the water inlet of the separator is respectively connected to the water outlet of the first cyclone separator and the water outlet of the fourth heat exchanger; the outlet of the first cyclone separator is connected to the feed of the second heat exchanger
  • the high-pressure steam outlet of the first cyclone separator is connected to the feed inlet of the fourth heat exchanger, and the water inlet of the first cyclone separator is connected to the water outlet of the second heat exchanger;
  • the outlet of the second heat exchanger is connected to the inlet of the second cyclone separator, and the inlet of the second heat exchanger is connected to the outlet of the third heat exchanger; the second cyclone is separated
  • the high-pressure steam outlet of the compressor is connected to the inlet of the third heat exchanger.
  • the outlet of the third heat exchanger is connected to the inlet of the third cyclone, and the outlet of the third heat exchanger is also connected to the inlet of the fourth heat exchanger;
  • the outlet of the fourth heat exchanger is connected to the inlet of the fourth cyclone separator.
  • the multi-stage cyclone separation device further includes a fifth heat exchanger and a sixth heat exchanger, and a feed port of the fifth heat exchanger is connected to a discharge port of the oxidant storage tank, and the fifth
  • the water inlet of the heat exchanger is connected to the water outlet of the first heat exchanger
  • the outlet of the fifth heat exchanger is connected to the oxidant inlet
  • the water outlet of the fifth heat exchanger is connected to the first Water inlets of three heat exchangers
  • the inlet of the sixth heat exchanger is connected to the outlet of the fuel storage tank
  • the water inlet of the sixth heat exchanger is connected to the outlet of the first heat exchanger
  • the water outlet, the outlet of the sixth heat exchanger is connected to the fuel inlet, and the water outlet of the sixth heat exchanger is connected to the water inlet of the third heat exchanger.
  • a heater is provided on a connection pipe between the fifth heat exchanger and the oxidant inlet, the sixth heat exchanger and the fuel inlet.
  • system further includes a slag removing tank connected to a bottom outlet of the buffer tank.
  • system further includes a turbo expander connected to the cooling wall of the cold wall reactor, and the turbo expander is connected to a cooling device, a cooling water circulation pump, and a cooling medium pipeline in order to form a cycle. .
  • the turbine expander is also connected to a generator to generate power through expansion.
  • the present invention provides a method for treating high-salt and high-organic wastewater and recovering energy, including the following steps:
  • Step 1 Open the fuel storage tank and the oxidant storage tank, introduce the fuel and oxidant into the cold wall reactor for reaction, and pass cooling water between the double shells of the cold wall reactor, waiting for the cold wall reactor After the internal temperature and pressure exceed the supercritical state point of water, the waste liquid is introduced into a cold wall reactor for supercritical water oxidation reaction;
  • Step two discharge the reaction product from the reaction fluid outlet of the cold wall reactor and enter the buffer tank;
  • step three the reaction product in the buffer tank is introduced into a multi-stage heat exchanger and a cyclone separator for steam recovery and partial salt crystallization of the inorganic salt.
  • the cold wall reactor designed by the present invention is composed of an inner and outer double shell structure.
  • Supercritical water oxidation reaction occurs in the inner shell of the reactor under the action of fuel and oxidant, releasing a large amount of reaction heat, resulting in a sharp temperature of the reaction fluid.
  • a cooling medium such as water is introduced into the gap between the inner shell and the outer shell of the reactor, and the inner wall of the inner shell of the reactor is cooled by countercurrent heat exchange. Below the supercritical temperature of water, the inorganic salt is dissolved in the subcritical fluid and discharged from the outlet at the bottom of the reactor, thereby effectively preventing the blocking of the inorganic salt.
  • the invention can realize step utilization of the reaction heat of the high-salt and high-organic waste liquid supercritical water oxidation system, and maximize the energy recovery and utilization rate of the system. Oxidation of organic waste liquid by supercritical water will release a large amount of thermal energy. Cooling medium such as cooling water is injected into the gap between the inner shell and the outer shell of the reactor to exchange heat to cool the reaction products to subcritical. The heat-absorbing cooling water becomes high temperature and high pressure steam. It can further enter the turbine expander for power generation, and generate electricity for the compensation of electrical equipment (electric heaters, booster pumps) in this system, and the surplus electricity can be sold to bring benefits. Recovering the thermal energy of the reaction fluid discharged from the reactor can also be used to preheat the fuel and oxidant. The final recovered salts can be used as industrial raw materials.
  • Cooling medium such as cooling water is injected into the gap between the inner shell and the outer shell of the reactor to exchange heat to cool the reaction products to subcritical.
  • the heat-absorbing cooling water becomes high temperature and high pressure
  • FIG. 1 is a schematic structural diagram of a system for treating high-salt and high-organic wastewater and recovering energy according to the present invention.
  • FIG. 2 is a schematic structural diagram of a cold wall reactor according to the present invention.
  • Fig. 3 is a schematic diagram of another structure of the cold wall reactor of the present invention.
  • Fig. 4 is a view of the A-A plane in Fig. 2.
  • Fig. 5 is a view of the B-B plane in Fig. 2.
  • FIG. 6 is a partially enlarged view at D in FIG. 2.
  • Fig. 7 is a view of the C-C plane in Fig. 2.
  • the terms 'connected' and 'connected' should be understood in a broad sense, for example, they may be fixed, detachable, or integrally connected; they may be mechanical or It is an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the internal connection of two elements, it can be a wireless connection, or it can be a wired connection.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • this embodiment provides a system for treating high-salt and high-organic wastewater and recovering energy, including a cold-wall reactor, a multi-stage cyclone separation device, a waste liquid feeding system, an oxidant feeding system, and Fuel feed system, turboexpander 3.
  • the cold wall reactor 6 has a double-layered shell structure and a cylindrical structure.
  • the inner shell is made of a corrosion-resistant material
  • the outer shell is made of a material resistant to high temperature and high pressure.
  • There are two cooling water inlets at the top and bottom of the double-layered shell structure (6011-3 # cooling water inlet, 6012-4 # cooling water inlet, 606-1 # cooling water inlet, 608-2 # cooling)
  • Water inlet, 1 # cooling water regulating valve 8 is connected to 3 # cooling water inlet 6011 and 4 # cooling water inlet 6012 respectively;
  • 2 # cooling water regulating valve 9 is connected to 1 # cooling water inlet 606 and 2 # cooling water inlet 608, respectively;
  • the top and bottom cooling water inlets are symmetrical around the top and bottom centers respectively;
  • the side of the double-layer casing is provided with 2 cooling medium outlets (603-1 # cooling water outlet, 609-2 # cooling water outlet ),
  • 603 and 602 are symmetrically arranged on the left and right sides with the reaction fluid
  • the two cooling medium inlets (6011 and 6012) at the top are connected to the two cooling medium inlets (606 and 608) at the bottom, and the two cooling medium outlets (603 and 609) at the side are connected.
  • the connection is 90 °.
  • An inner pipe 6001 is provided at the center of the top of the double-layered shell structure, and an inner pipe 6002 is provided outside the inner pipe 6001, and an outer pipe 6003 is provided outside the inner pipe 6002, the inner pipe 6001, and the intermediate pipe 6002
  • a waste liquid inlet 6010, an oxidant inlet 602, and a fuel inlet 601 are respectively provided on the outer tube 6003 and the outer tube 6003.
  • the length of the inner tube 6001 is 100-200 mm
  • the middle tube 6002 is shorter than the inner tube.
  • 6001 is 50 to 150 mm long
  • the outer tube 6003 is 50 to 150 mm longer than the middle tube 6002.
  • a 50-150 mm portion of the outer tube 6003 that is longer than the intermediate tube 6002 has a porous structure.
  • the bottom of the double-layer shell is also provided with a reaction fluid outlet 607; the cold-wall reactor 6 is used for supercritical water oxidation reaction on three materials of the waste liquid feed system, the oxidant feed system and the fuel feed system
  • the reaction fluid outlet 607 is connected to the buffer tank 10, the top outlet of the buffer tank 10 is connected to the multi-stage cyclone separation device, and the bottom outlet is connected to the slag removal tank 12, the buffer tank 10 and the slag removal tank 12
  • the connecting pipeline is provided with a 1 # regulating valve 11 and the outlet of the slag removing tank 12 is provided with a 2 # regulating valve 13.
  • the multi-stage cyclone separation device is a 3-stage cyclone separation device, and its structure specifically includes: a first heat exchanger 14, a second heat exchanger 17, a third heat exchanger 22, and a fourth heat exchange.
  • Separator 33, first cyclone separator 16, second cyclone separator 19, third cyclone separator 25, and fourth cyclone separator 30, and the outlet of the first heat exchanger 14 is connected to the first cyclone separator
  • the inlet of the first heat exchanger 16 and the water inlet of the first heat exchanger 14 are respectively connected to the water outlet of the first cyclone separator 16 and the water outlet of the fourth heat exchanger 33; the first cyclone is separated
  • the outlet of the heat exchanger 16 is connected to the inlet of the second heat exchanger 17, and the high-pressure steam outlet of the first cyclone separator 16 is connected to the inlet of the fourth heat exchanger 33.
  • the water inlet of the cyclone separator 16 is connected to the water outlet of the second heat exchanger 17; the outlet of the second heat exchanger 17 is connected to the inlet of the second cyclone 19, and the second The water inlet of the heat exchanger 17 is connected to the water outlet of the third heat exchanger 22;
  • the high-pressure steam outlet is connected to the inlet of the third heat exchanger 22;
  • the outlet of the third heat exchanger 22 is connected to the inlet of the third cyclone 25, and the third heat exchanger
  • the water outlet of 22 is also connected to the water inlet of the fourth heat exchanger 33; the outlet of the fourth heat exchanger 33 is connected to the inlet of the fourth cyclonic separator 30.
  • the multi-stage cyclone separation device further includes a fifth heat exchanger 39 and a sixth heat exchanger 40.
  • a feed port of the fifth heat exchanger 39 is connected to a discharge port of the oxidant storage tank 2.
  • the water inlet of the fifth heat exchanger 39 is connected to the water outlet of the first heat exchanger 14, and the outlet of the fifth heat exchanger 39 is connected to the oxidant inlet 602.
  • the water outlet is connected to the water inlet of the third heat exchanger 22; the inlet of the sixth heat exchanger 40 is connected to the outlet of the fuel storage tank 1, and the water inlet of the sixth heat exchanger 40 Connected to the water outlet of the first heat exchanger 14, the outlet of the sixth heat exchanger 40 is connected to the fuel inlet 601, and the outlet of the sixth heat exchanger 40 is connected to the third heat exchange Water inlet of the device 22.
  • Heaters (37 and 38) are also provided on connection pipes of the fifth heat exchanger 39 and the oxidant inlet 602, the sixth heat exchanger 40, and the fuel inlet 601.
  • a regulating valve is provided between the heat exchanger and the cyclone separator, and at the exit of the cyclone separator.
  • the waste liquid feeding system includes an organic waste liquid regulating tank 35 and a waste water booster pump 36 connected to the organic waste liquid regulating tank 35.
  • the waste water booster pump 36 is connected to the waste liquid inlet 6010.
  • the oxidant feeding system includes an oxidant storage tank 2 and an oxidant booster pump 41.
  • the oxidant booster pump 41 is connected to a feed port of the fifth heat exchanger 39.
  • the oxidant is oxygen.
  • the fuel feeding system includes a fuel storage tank 1 and a fuel booster pump 42.
  • the fuel booster pump 42 is connected to a feeding port of the sixth heat exchanger 40.
  • the fuel can be methanol, glycerol, or a mixture of the two.
  • the turbine expander 3 is connected to a cooling device 5, a cooling water circulation pump 7, and a cooling medium pipeline in order to form a cycle.
  • the cooling water circulation pump 7 is connected to 1 # cooling water regulating valve 8 and 2 # cooling water regulating valve 9, respectively.
  • the turbine expander 3 is also connected to a generator 4 and generates power through expansion.
  • the device of Example 1 is used to treat a kind of high-salt and high-organic wastewater and recover energy.
  • the wastewater comes from a chemical wastewater. Its main salts are sodium chloride and sodium sulfate.
  • the indexes before and after the wastewater treatment are shown in Table 1.
  • the specific methods for processing and recovering energy are as follows:
  • the glycerol fuel in the fuel storage tank 1 is boosted to supercritical pressure by the fuel booster pump 42 and then enters the sixth heat exchanger 40 to absorb heat and heat up, and then continues to absorb heat and heat up the fuel at the 2 # heater 38
  • the inlet 601 is injected into the cold wall reactor 6; the oxygen in the oxygen pipe 2 is boosted by the oxygen booster pump 41 and enters the fifth heat exchanger 39 to absorb the heat and rise to 350 ° C, and continues to absorb heat and increase the temperature in the 1 # heater 37 It is injected into the cold-wall reactor 6 through the oxygen inlet 602.
  • the fuel first contacts the oxygen and undergoes a severe oxidation reaction and releases a large amount of heat, forming a high-temperature reaction fluid at a temperature of 600-800 ° C.
  • the high-salt and high-organic waste liquid is adjusted in the wastewater. After being homogenized in the pool 35, it enters the waste water booster pump 36 to increase the pressure to supercritical pressure and is injected into the cold wall reactor 6 through the waste liquid inlet 6010. Preheat the waste liquid to 350-450 ° C.
  • the central high-temperature reaction fluid re-inhales the unreacted organic matter and oxygen outside the tube into the reaction space formed by the outer tube and the middle tube outlet through jet entrainment to achieve efficient degradation of waste liquid and efficient use of oxygen;
  • the cooling water is injected into the reactor inner shell 605 and the reactor pressure shell 604 through the heat exchange between the 1 # cooling water inlet 606, the 2 # cooling water inlet 608, the 3 # cooling water inlet 6011 and the 4 # cooling water inlet 6012.
  • the product of the supercritical oxidation reaction is cooled to subcritical, and the cooling water after endothermic heating becomes high-temperature and high-pressure steam, which is discharged through the cooling water outlet 603 and cooling water outlet 609 and enters the turboexpander 3 to drive the generator 4 Generate electricity and generate electricity for the compensation of electrical equipment (electric heaters, booster pumps) in this system.
  • the remaining electricity can be sold for revenue; the steam enters the cooling device 5 to condense the cooling water after the work is performed; the cooling water is boosted by 7 Then, it is injected into the reactor inner shell 605 and the reactor pressure shell 604 to complete the circulation through 1 # cooling water inlet 606, 2 # cooling water inlet 608, 3 # cooling water inlet 6011, and 4 # cooling water inlet 6012, and 1 # cooling water
  • the regulating valve and 2 # cooling water regulating valve play a role in regulating the flow of cooling water injected into the reactor from the upper and lower portions of the reactor;
  • the reaction fluid discharged from the reaction product outlet 607 at the bottom of the cold wall reactor enters the buffer tank 10, that is, the reaction fluid is discharged while reacting to ensure that the supercritical water oxidation reaction is continued. Intermittently, the solid slag in the reaction product is deposited on the bottom of the buffer tank 10 under the action of gravity. After running for a period of time, the 2 # regulating valve 13 is closed and the 1 # regulating valve 11 is opened.
  • the reaction fluid discharged from the top of the buffer tank 10 exotherms and cools in the first heat exchanger 14, and then passes through Two-stage flash evaporation realizes steam recovery and salt crystallization of inorganic salts. It mainly uses the sensitivity difference of the solubility of inorganic salts in the phase change zone under the influence of high pressure. The solubility of Na 2 SO 4 in the waste liquid decreases rapidly by several orders of magnitude during the phase change, but the solubility of NaCl decreases slowly.
  • the high-salt solution is cooled down through the 3 # regulating valve 15 and then flashed into the first cyclone separator 16. Most of the NaCl is still dissolved in the high-pressure steam, and almost all of the Na 2 SO 4 will be precipitated.
  • the precipitated Na 2 SO 4 inorganic salt particles are initially cooled to form a slurry, which is discharged from the bottom of the first cyclone separator 16. The slurry is further cooled by the second heat exchanger 17, and the pressure is further reduced in the 4 # regulating valve 18 to enter the second cyclone separator.
  • the separator 19 is separated; the separated fluid is cooled in the third heat exchanger 22 and the 2 # outlet regulating valve 23 is reduced in pressure and enters the third cyclone separator 25 to continue the separation; the remaining NaCl in the original high salt solution is dissolved in the high-pressure steam
  • the fluid in the first cyclone separator 16 is discharged from the top, and the temperature and pressure are reduced by the 8 # regulating valve 34, the fourth heat exchanger 33, and the 7 # regulating valve 32 in sequence, and the steam is further separated in the fourth cyclone separator 30.
  • Inorganic salts the final reaction fluid is cooled and decompressed and separated by cyclones to obtain steam to realize the recycling of inorganic salts;
  • 1 # outlet adjustment valve 20 plays the role of adjusting the back pressure of the second cyclone separator 19; the same, 3 # outlet adjustment Valve 24 and 4 # outlet regulating valve 26 regulate the back pressure of the third cyclonic separator 25; 5 # outlet regulating 28 and 6 # outlet regulating valve 31 regulate the back pressure of the fourth cyclonic separator 30; guarantee the performance of the cyclonic separator; recycling Chlorinated And sodium sulfate may be used as industrial raw materials;
  • the cooling water is boosted by the circulating water pump 27, and then enters the second heat exchanger 17 and the fourth heat exchanger 33 and absorbs heat through the 5 # regulating valve 21 and the 6 # regulating valve 29;
  • the cooling water enters the first cyclone separator 16 to further absorb heat and merges with the cooling water discharged from the fourth heat exchanger 33 to enter the first heat exchanger 14 to continue to absorb heat and rise to the sixth heat exchanger 40 and the fifth heat, respectively.
  • the exchanger 39 preheats the fuel and the oxidant, and then enters the third heat exchanger 22 and finally enters the circulating water pump 27 to complete the cycle.
  • the device of Example 1 is used to treat a kind of high-salt and high-organic wastewater and recover energy.
  • the wastewater comes from a pharmaceutical wastewater. Its main salts are potassium chloride, sodium chloride and sodium sulfate.
  • the specific method for processing and recovering energy is the same as that in Example 2, and the difference from Example 2 is that in step (1), the waste liquid is quickly preheated to 430 ° C through sufficient mixing.
  • Example 1 The device of Example 1 was used to treat a high-salt, high-organic wastewater and recover energy.
  • the wastewater came from a printing and dyeing wastewater.
  • the main salts were potassium chloride, sodium chloride, and sodium sulfate.
  • Table 1 the specific method for treating and recovering energy is the same as that in Example 2.
  • the difference from Example 2 is that in step (1), the waste liquid is quickly pre-heated to 380 ° C through sufficient mixing.
  • the data in Table 1 show that the methods of Examples 2 to 4 can be used to treat high-salt and high-organic wastewater and recover energy, and the COD removal rate in different wastewaters can reach more than 99.95%, and the ammonia nitrogen removal rate can reach more than 97%.
  • the cold wall reactor designed by the present invention is composed of an inner and outer double shell structure.
  • Supercritical water oxidation reaction occurs in the inner shell of the reactor under the action of fuel and oxidant, releasing a large amount of reaction heat, resulting in the temperature of the reaction fluid. The temperature rises sharply.
  • a cooling medium such as water is introduced into the gap between the inner shell and the outer shell of the reactor. After cooling to below the critical temperature of water, the inorganic salt is dissolved in the subcritical fluid and discharged from the outlet at the bottom of the reactor, thereby effectively preventing the blocking of the inorganic salt.
  • the part of the outer tube that is longer than the middle tube on the top of the cold wall reactor is designed as a porous structure.
  • the waste water diffused to the top area of the reactor is sucked into the supercritical reaction area through the porous by using the jet entrainment effect of high-pressure waste liquid to thoroughly remove the organic matter. Oxidative degradation.
  • the cooling medium injection openings in the annular gap between the inner and outer shells of the reactor are arranged at the top and bottom of the reactor and are distributed at 90 °.
  • the annular cooling water outlets are arranged on the side and 90 ° from the cooling water injection openings on the top of the reactor. ° distribution, this design method can greatly improve the cooling rate and cooling efficiency.
  • the invention realizes the stepwise utilization of the reaction heat of the high-salt and high-organic waste liquid supercritical water oxidation system, and maximizes the energy recovery and utilization rate of the system.
  • Oxidation of organic waste liquid by supercritical water will release a large amount of thermal energy.
  • Cooling medium such as cooling water is injected into the gap between the inner shell and the outer shell of the reactor to exchange heat to cool the reaction products to subcritical.
  • the heat-absorbing cooling water becomes high temperature and high pressure steam. It can further enter the turbine expander for power generation, and generate electricity for the compensation of electrical equipment (electric heaters, booster pumps) in this system, and the surplus electricity can be sold to bring benefits.
  • Recovering the heat of the reaction fluid discharged from the reactor can also be used to preheat the fuel and oxidant.
  • the final recovered salts can be used as industrial raw materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

一种处理高盐高有机废水并回收能量的系统,该系统包括冷壁式反应器(6)、多级旋风分离装置(16、19、25)、废料进料系统、氧化剂进料系统和燃料进料系统;冷壁式反应器(6)顶部和底部均设有冷却介质入口(6011、6012、606、608),侧部设有冷却介质出口(603、609),并且其顶部中央还依次设有内管(6001)、中间管(6002)和外管(6003);双层壳体底部还设有反应流体出口(607);反应流体出口(607)连接缓冲罐(10),缓冲罐(10)的顶部出口连接多级旋风分离装置;多级旋风分离装置用于对冷壁式反应器(6)内的反应产物进行蒸汽回收及无机盐的分盐结晶;废料进料系统连接外管(6003)上的废料入口(6010);氧化剂进料系统连接中间管(6002)上的氧化剂入口(602);燃料进料系统连接内管(6001)上的燃料入口(601);还公开了一种处理高盐高有机废水并回收能量的方法。

Description

一种处理高盐高有机废水并回收能量的系统及方法 技术领域
本发明属于高盐高有机废水处理技术领域,具体涉及一种处理高盐高有机废水并回收能量的系统及方法。
背景技术
在医药、化工、农药、印染等行业中产生大量的母液、蒸发残液等高盐高有机危废液。这类废水中有机物含量高达几万至十几万mg/L,含有大量的环芳烃、杂环、酚类等有毒、难降解有机物。此外,该类废液中含有十几万甚至更高浓度的无机盐。在环保要求日益提高的背景下,该类废水不仅要实现有机物的彻底无害化降解,后续的浓盐水/废盐渣处理也迫在眉睫。因此,该类危废每吨的处理成本达数千甚至上万元。传统的高盐高有机危废液的零排放/近零排放处理都无法实现废物的有效处理。
超临界水氧化是在超过水的临界点(Pc=22.1MPa,Tc=374℃)的条件下,利用氧化剂将有机物进行“燃烧”氧化的方法。该技术利用超临界水的独特性质(如密度、粘度、介电常数、离子积降低、氢键减弱、扩散性能、非极性特征显著增强等),将有机污染物彻底氧化为CO 2、H 2O等无毒无害产物,具有反应速率快、降解彻底、无二次污染等独特优势,是目前最具潜力的有机废水处理技术之一。
由于超临界水氧化技术的独特优势,国内外已陆续建成超临界水氧化小试、中试装置,但腐蚀、盐沉积以及运行成本过高等问题阻碍了超临界水氧化技术进一步工业化推广。超临界水氧化反应过程中形成的无机酸(如HCl、H 2SO 4等)以及高温、高压、高氧浓度的反应环境,大大加速了反应器的腐蚀;绝大多数无机盐在超临界水中溶解度很低,反应过程大量无机盐的析出会造成反应 器出口及阀门堵塞,引起系统压力波动,最终导致超临界水氧化系统设备停机;在超临界水氧化运行过程中,需要将物料提升至高温高压(一般临界点以上),该过程需要消耗大量电能,导致系统运行成本较高。
发明内容
有鉴于此,有必要针对现有高盐高有机废水处理技术存在的腐蚀、盐沉积、热能利用率低或者为零、处理效率低等问题,提供一种处理高盐高有机废水并回收能量的系统及方法。本发明的技术方案为:
第一个方面,本发明提供一种处理高盐高有机废水并回收能量的系统,包括冷壁式反应器、多级旋风分离装置、废液进料系统、氧化剂进料系统和燃料进料系统;
所述冷壁式反应器为双层壳体结构,所述双层壳体结构顶部和底部均设有冷却介质入口,所述双层壳体侧部设有冷却介质出口,所述双层壳体结构顶部中央设有内管,所述内管外部设有中间管,所述中间管外部设有外管,所述内管、所述中间管和所述外管上分别设有废液入口、氧化剂入口和燃料入口;所述双层壳体底部还设有反应流体出口;所述冷壁式反应器用于对废液进行超临界水氧化反应;所述反应流体出口连接缓冲罐,所述缓冲罐的顶部出口连接所述多级旋风分离装置;
所述多级旋风分离装置用于对冷壁式反应器内的反应产物进行蒸汽回收及无机盐的分盐结晶;
所述废液进料系统包括有机废液调节池,所述有机废液调节池连接所述外管上的废液入口;
所述氧化剂进料系统包括氧化剂储罐,所述氧化剂储罐连接所述中间管上的氧化剂入口;
所述燃料进料系统包括燃料储罐,所述燃料储罐连接所述内管上的燃料入 口。
进一步地,所述双层壳体顶部和底部分别设有两个冷却介质入口,所述双层壳体侧部设有两个冷却介质出口,并且所述顶部的两个冷却介质入口连线分别和所述底部的两个冷却介质入口连线、所述侧部的两个冷却介质出口连线呈90°。
进一步地,所述双层壳体底部的两个冷却介质入口以所述反应流体出口为中心对称设置在其左右两边。
进一步地,所述内管长度为100~200mm,所述中间管比所述内管长50~150mm,所述外管比所述中间管长50~150mm。
进一步地,所述外管比所述中间管长的50~150mm部分为多孔结构。
进一步地,所述多级旋风分离装置为2~4级旋风分离装置。
进一步地,所述多级旋风分离装置为3级旋风分离装置,其结构具体包括:第一热交换器、第二热交换器、第三热交换器、第四热交换器、第一旋风分离器、第二旋风分离器、第三旋风分离器和第四旋风分离器,所述第一热交换器的出料口连接所述第一旋风分离器的进料口,所述第一热交换器的进水口分别连接所述第一旋风分离器的出水口和所述第四热交换器的出水口;所述第一旋风分离器的出料口连接所述第二热交换器的进料口,所述第一旋风分离器的高压蒸汽出口连接所述第四热交换器的进料口,所述第一旋风分离器的进水口连接所述第二热交换器的出水口;所述第二热交换器的出料口连接所述第二旋风分离器的进料口,所述第二热交换器的进水口连接所述第三热交换器的出水口;所述第二旋风分离器的高压蒸汽出口连接所述第三热交换器的进料口;所述第三热交换器的出料口连接所述第三旋风分离器的进料口,所述第三热交换器的出水口还连接所述第四热交换器的进水口;所述第四热交换器的出料口连接所述第四旋风分离器的进料口。
进一步地,所述多级旋风分离装置还包括第五热交换器和第六热交换器, 所述第五热交换器的进料口连接所述氧化剂储罐的出料口,所述第五热交换器的进水口连接所述第一热交换器的出水口,所述第五热交换器的出料口连接与所述氧化剂入口,所述第五热交换器的出水口连接所述第三热交换器的进水口;所述第六热交换器的进料口连接所述燃料储罐的出料口,所述第六热交换器的进水口连接所述第一热交换器的出水口,所述第六热交换器的出料口连接所述燃料入口,所述第六热交换器的出水口连接所述第三热交换器的进水口。
进一步地,所述第五热交换器和所述氧化剂入口、所述第六热交换器和所述燃料入口的连接管道上还设有加热器。
进一步地,所述系统还包括除渣罐,所述除渣罐连接所述缓冲罐的底部出口。
进一步地,所述系统还包括与所述冷壁式反应器冷却管路相连接的透平膨胀机,所述透平膨胀机依次与冷却装置、冷却水循环泵及冷却介质管路连接,形成循环。
进一步地,所述透平膨胀机还与发电机连接,通过膨胀做功发电。
第二个方面,本发明提供一种处理高盐高有机废水并回收能量的方法,包括如下步骤:
步骤一,开启燃料储罐和氧化剂储罐,将燃料和氧化剂引入冷壁式反应器中进行反应,同时在冷壁式反应器的双层壳体之间通冷却水,待冷壁式反应器内温度和压力超过水的超临界状态点后,将废液引入冷壁式反应器中进行超临界水氧化反应;
步骤二,从冷壁式反应器的反应流体出口排出反应产物,进入缓冲罐;
步骤三,然后将缓冲罐中的反应产物引入多级热交换器和旋风分离器,进行蒸汽回收及无机盐的分盐结晶。
本发明的优势和有益效果是:
1)本发明设计的冷壁式反应器由内外双壳结构组成,有机废液在燃料和氧 化剂作用下在反应器内壳中发生超临界水氧化反应,释放大量反应热,导致反应流体温度急剧升高,为了防止无机盐在超临界水中析出并附着沉积在反应器内壳内壁,在反应器内壳与外壳间隙通入冷却介质比如水,利用逆流换热将反应器内壳内壁面流体冷却至水的超临界温度以下,无机盐溶解在亚临界流体中从反应器底部出口排出,从而有效阻止无机盐的堵塞。
2)本发明对高盐高有机废液超临界水氧化系统反应热可实现梯级利用,最大限度提高系统能量回收利用率。超临界水氧化有机废液会释放大量的热能,利用冷却介质比如冷却水注入反应器内壳与外壳间隙换热将反应产物冷却至亚临界,吸热升温后的冷却水变为高温高压蒸汽,可进一步进入透平膨胀机中做功发电,产生电能用于本系统用电设备(电加热器、增压泵)的补偿,剩余电能可出售带来收益。回收从反应器排出的反应流体热能还可用于预热燃料和氧化剂。而最终回收的盐类可用作工业原料。
附图说明
图1为本发明的处理高盐高有机废水并回收能量的系统的结构示意图。
图2为本发明冷壁式反应器的一种结构示意图。
图3为本发明冷壁式反应器的另一种结构示意图。
图4为图2中A-A面的视图。
图5为图2中B-B面的视图。
图6为图2中D处的局部放大图。
图7为图2中C-C面的视图。
图1~7中,1-燃料储罐,2-氧气储罐,3-透平膨胀机,4-发电机,5-冷却装置,6-冷壁式反应器,7-冷却水循环泵,8-1#冷却水调节阀,9-2#冷却水调节阀,10-缓冲罐,11-1#调节阀,12-除渣罐,13-2#调节阀,14-第一热交换器,15-3#调节阀,16-第一旋风分离器,17-第二热交换器,18-4#调节阀,19-第二旋风分离器,20-1#出口调节阀,21-5#调节阀,22-第三热交换器,23-2#出口调节阀,24-3#出 口调节阀,25-第三旋风分离器,26-4#出口调节阀,27-循环水泵,28-5#出口调节阀,29-6#调节阀,30-第四旋风分离器,31-(4)6#出口调节阀,32-7#调节阀,33-第四热交换器,34-8#调节阀,35-废水调节池,36-废水增压泵,37-1#加热器,38-2#加热器,39-第五热交换器,40-第六热交换器,41-氧气增压泵,42-燃料增压泵,601-燃料入口,602-氧气入口,603-1#冷却水出口,604-反应器承压外壳,605-反应器内壳,606-1#冷却水入口,607-反应流体出口,608-2#冷却水入口,609-2#冷却水出口,6010-废液入口,6011-3#冷却水入口,6012-4#冷却水入口,6013-上法兰,6014-下法兰,6015-螺栓,6001-内管,6002-中间管,6003-外管,6004-多孔管。
具体实施方式
在本发明的描述中,需要说明的是,术语‘顶部’、‘底部’、‘侧部’、‘内’、‘外’等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。并且,除非另有明确的规定和限定,术语‘相连’、‘连接’应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,在本发明的描述中,需要说明的是,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面结合附图和具体的实施例对本发明做进一步详细说明,所述是对本发明的解释而不是限定。
实施例1
如图1~7所示,本实施例提供一种处理高盐高有机废水并回收能量的系统,包括冷壁式反应器、多级旋风分离装置、废液进料系统、氧化剂进料系统和燃料进料系统、透平膨胀机3。
所述冷壁式反应器6为双层壳体结构,并且为圆柱体结构,内壳选用耐腐蚀性材料,外壳选择耐高温高压材料。所述双层壳体结构顶部和底部均设有2个冷却水入口(依次为6011-3#冷却水入口,6012-4#冷却水入口,606-1#冷却水入口,608-2#冷却水入口,1#冷却水调节阀8分别与3#冷却水入口6011和4#冷却水入口6012相连;2#冷却水调节阀9分别连接1#冷却水入口606和2#冷却水入口608;),并且顶部和底部的冷却水入口都分别以顶部和底部圆心为对称;所述双层壳体侧部设有2冷却介质出口(603-1#冷却水出口,609-2#冷却水出口),并且603和602以冷壁式反应器6底部的反应流体出口607为中心对称设置在其左右两边。在本实施例中,顶部的两个冷却介质入口(6011和6012)连线分别和底部的两个冷却介质入口(606和608)连线、侧部的两个冷却介质出口(603和609)连线呈90°,这种设计方式可以降低顶部和底部的换热温差,减小换热损失,并且大大提高冷壁式反应器6的冷却效率。
所述双层壳体结构顶部中央设有内管6001,所述内管6001外部设有中间管6002,所述中间管6002外部设有外管6003,所述内管6001、所述中间管6002和所述外管6003上分别设有废液入口6010、氧化剂入口602和燃料入口601;在本实施例中,所述内管6001长度为100~200mm,所述中间管6002比所述内管6001长50~150mm,所述外管6003比所述中间管6002长50~150mm。并且,所述外管6003比所述中间管6002长的50~150mm部分为多孔结构。所述双层壳体底部还设有反应流体出口607;所述冷壁式反应器6用于对废液进料系统、氧化剂进料系统和燃料进料系统的三股物料进行超临界水氧化反应;所述反应流体出口607连接缓冲罐10,所述缓冲罐10的顶部出口连接所述多级旋风分离装置,底部出口连接除渣罐12,所述缓冲罐10和所述除渣罐12的连接管路上 设有1#调节阀11,除渣罐12的出口设有2#调节阀13。
在本实施例中,所述多级旋风分离装置为3级旋风分离装置,其结构具体包括:第一热交换器14、第二热交换器17、第三热交换器22、第四热交换器33、第一旋风分离器16、第二旋风分离器19、第三旋风分离器25和第四旋风分离器30,所述第一热交换器14的出料口连接所述第一旋风分离器16的进料口,所述第一热交换器14的进水口分别连接所述第一旋风分离器16的出水口和所述第四热交换器33的出水口;所述第一旋风分离器16的出料口连接所述第二热交换器17的进料口,所述第一旋风分离器16的高压蒸汽出口连接所述第四热交换器33的进料口,所述第一旋风分离器16的进水口连接所述第二热交换器17的出水口;所述第二热交换器17的出料口连接所述第二旋风分离器19的进料口,所述第二热交换器17的进水口连接所述第三热交换器22的出水口;所述第二旋风分离器19的高压蒸汽出口连接所述第三热交换器22的进料口;所述第三热交换器22的出料口连接所述第三旋风分离器25的进料口,所述第三热交换器22的出水口还连接所述第四热交换器33的进水口;所述第四热交换器33的出料口连接所述第四旋风分离器30的进料口。所述多级旋风分离装置还包括第五热交换器39和第六热交换器40,所述第五热交换器39的进料口连接所述氧化剂储罐2的出料口,所述第五热交换器39的进水口连接所述第一热交换器14的出水口,所述第五热交换器39的出料口连接与所述氧化剂入口602,所述第五热交换器39的出水口连接所述第三热交换器22的进水口;所述第六热交换器40的进料口连接所述燃料储罐1的出料口,所述第六热交换器40的进水口连接所述第一热交换器14的出水口,所述第六热交换器40的出料口连接所述燃料入口601,所述第六热交换器40的出水口连接所述第三热交换器22的进水口。所述第五热交换器39和所述氧化剂入口602、所述第六热交换器40和所述燃料入口601的连接管道上还设有加热器(37和38)。在上述热交换器和旋风分离器之间、以及旋风分离器出口处均设有调节阀。
所述废液进料系统包括有机废液调节池35和与所述有机废液调节池35相连接的废水增压泵36,所述废水增压泵36连接所述废液入口6010。
所述氧化剂进料系统包括氧化剂储罐2和氧化剂增压泵41,所述氧化剂增压泵41连接所述第五热交换器39的进料口,在本实施例中,氧化剂为氧气。
所述燃料进料系统包括燃料储罐1和燃料增压泵42,所述燃料增压泵42连接所述第六热交换器40的进料口。燃料可以是甲醇、丙三醇或者两者的混合物。
所述透平膨胀机3依次与冷却装置5、冷却水循环泵7及冷却介质管路连接,形成循环,冷却水循环泵7分别连接1#冷却水调节阀8和2#冷却水调节阀9。所述透平膨胀机3还与发电机4连接,通过膨胀做功发电。
实施例2
利用实施例1的装置处理一种处理高盐高有机废水并回收能量,该废水来自某化工废水,其主要的盐类为氯化钠和硫酸钠,该废水处理前后的指标如表1所示,具体处理及回收能量的方法如下:
(1)燃料储罐1中的丙三醇燃料经燃料增压泵42升压至超临界压力后进入第六热交换器40吸收热量升温,然后在2#加热器38继续吸热升温经燃料入口601注入冷壁式反应器6中;氧气管2中氧气经氧气增压泵41升压后进入第五热交换器39吸收热量升温至350℃,并在1#加热器37继续吸热升温经氧气入口602注入冷壁式反应器6中,燃料首先与氧气接触并进行剧烈的氧化反应并释放大量热量,形成温度为600-800℃的高温反应流体;高盐高有机废液在废水调节池35中均量均质后进入废水增压泵36升压至超临界压力并经废液入口6010注入冷壁式反应器6中,高温反应流体通过射流卷吸低温废液,通过充分混合快速将废液预热到350-450℃。此外,由于外管的多孔结构,中心高温反应流体通过射流卷吸将管外尚未反应的有机物及氧气重新吸入外管和中间管出口形成的反应空间,实现废液高效降解和氧气高效利用;
(2)冷却水经1#冷却水入口606、2#冷却水入口608、3#冷却水入口6011 和4#冷却水入口6012注入反应器内壳605与反应器承压外壳604间隙换热将超临界氧化反应产物冷却至亚临界,吸热升温后的冷却水变为高温高压蒸汽经1#冷却水出口603和2#冷却水出口609排出后进入透平膨胀机3中做功带动发电机4发电,产生电能用于本系统用电设备(电加热器、增压泵)的补偿,剩余电能可出售带来收益;蒸汽做功后进入冷却装置5冷凝冷却水;冷却水补给后经7升压后通过1#冷却水入口606、2#冷却水入口608、3#冷却水入口6011和4#冷却水入口6012注入反应器内壳605与反应器承压外壳604间隙完成循环,1#冷却水调节阀和2#冷却水调节阀起到调节从反应器上部和下部注入反应器冷却水的流量;
(3)超临界水氧化反应过程中,从冷壁式反应器底部反应产物出口607排出的反应流体进入缓冲罐10中,即边反应边排出反应流体,以保证超临界水氧化反应的持续不间断进行,反应产物中固态渣在重力作用下沉积在缓冲罐10底部,运行一段时间后,关闭2#调节阀13,打开1#调节阀11,缓冲罐10底部固态渣进入除渣罐12中,当无机盐储量达到一定时,关闭1#调节阀11,打开2#调节阀13进行排渣;从缓冲罐10顶端排出的反应流体在第一热交换器14中放热降温,后续再通过2级的闪蒸,实现蒸汽回收及无机盐的分盐结晶。其主要利用高压条件下,无机盐溶解度在相变区受温度影响的敏感度差异,废液中的Na 2SO 4在相变过程中溶解度迅速下降几个数量级,但NaCl溶解度为缓慢下降。超临界反应后的高盐溶液降温后经3#调节阀15降压后闪蒸进入第一旋风分离器16,大部分NaCl仍然溶解于高压蒸汽中,而几乎全部Na 2SO 4都将析出。析出的Na 2SO 4无机盐颗粒初步降温后形成浆液从第一旋风分离器16底部排出,浆液通过第二热交换器17进一步降温后在4#调节阀18中进一步降压进入第二旋风分离器19进行分离;分离出流体在第三热交换器22中降温和2#出口调节阀23降压后进入和第三旋风分离器25继续分离;原高盐溶液中剩余的NaCl溶解在高压蒸汽,第一旋风分离器16中流体从顶部排出,依次经8#调节 阀34、第四热交换器33和7#调节阀32降温降压后在第四旋风分离器30中进一步分离获得蒸汽和无机盐,最终反应流体经降温降压和旋风分离,获得蒸汽,实现无机盐的回收利用;1#出口调节阀20起调节第二旋风分离器19背压的作用;同样的,3#出口调节阀24和4#出口调节阀26起到调节第三旋风分离器25背压;5#出口调节28和6#出口调节阀31调节第四旋风分离器30背压;保证旋风分离器性能;回收得到的氯化钠和硫酸钠可用作工业原料;
(4)冷却水经循环水泵27升压后经5#调节阀21和6#调节阀29分别进入第二热交换器17和第四热交换器33和吸收热量;第二热交换器17中冷却水进入第一旋风分离器16进一步吸热后与第四热交换器33中排出冷却水汇流进入第一热交换器14中继续吸热升温后分别进入第六热交换器40和第五热交换器39预热燃料和氧化剂,然后分别进入第三热交换器22,最后进入循环水泵27完成循环。
实施例3
利用实施例1的装置处理一种处理高盐高有机废水并回收能量,该废水来自某制药废水,其主要的盐类为氯化钾、氯化钠和硫酸钠,该废水处理前后的指标如表1所示,具体处理及回收能量的方法同实施例2,与实施例2的区别在于:步骤(1)中通过充分混合快速将废液预热到430℃。
实施例4
利用实施例1的装置处理一种处理高盐高有机废水并回收能量,该废水来自某印染废水,其主要的盐类为氯化钾、氯化钠和硫酸钠,该废水处理前后的指标如表1所示,具体处理及回收能量的方法同实施例2,与实施例2的区别在于:步骤(1)中通过充分混合快速将废液预热到380℃。
表1废水处理前后的指标
Figure PCTCN2019091473-appb-000001
表1中的数据表明,采用实施例2~4的方法处理高盐高有机废水并回收能量,可以使不同废水中的COD去除率达到99.95%以上,氨氮去除率达到97%以上。
综上,本发明设计的冷壁式反应器由内外双壳结构组成,有机废液在燃料和氧化剂作用下在反应器内壳中发生超临界水氧化反应,释放大量反应热,导致反应流体温度急剧升高,为了防止无机盐在超临界水中析出并附着沉积在反应器内壳内壁,在反应器内壳与外壳间隙通入冷却介质比如水,利用逆流换热将反应器内壳内壁面流体冷却至水的临界温度以下,无机盐溶解在亚临界流体中从反应器底部出口排出,从而有效阻止无机盐的堵塞。另外,冷壁式反应器顶部外管长于中间管的部分设计成多孔结构,利用高压废液的射流卷吸作用,将扩散到反应器顶部区域的废水经多孔吸入超临界反应区域,将有机物彻底氧化降解。最后,反应器内壳与外壳之间环隙的冷却介质注入口设置在反应器顶部和底部且呈90°分布,另外环隙冷却水出口设置在侧面并与反应器顶部冷却水注入口呈90°分布,这种设计方式可以大大提高降温速率和冷却效率。此外,本发明对高盐高有机废液超临界水氧化系统反应热实现梯级利用,最大限度提高 系统能量回收利用率。超临界水氧化有机废液会释放大量的热能,利用冷却介质比如冷却水注入反应器内壳与外壳间隙换热将反应产物冷却至亚临界,吸热升温后的冷却水变为高温高压蒸汽,可进一步进入透平膨胀机中做功发电,产生电能用于本系统用电设备(电加热器、增压泵)的补偿,剩余电能可出售带来收益。回收从反应器排出的反应流体热还能用于预热燃料和氧化剂。而最终回收的盐类可用作工业原料。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种处理高盐高有机废水并回收能量的系统,其特征在于:包括冷壁式反应器、多级旋风分离装置、废液进料系统、氧化剂进料系统和燃料进料系统;
    所述冷壁式反应器为双层壳体结构,所述双层壳体结构顶部和底部均设有冷却介质入口,所述双层壳体侧部设有冷却介质出口,所述双层壳体结构顶部中央设有内管,所述内管外部设有中间管,所述中间管外部设有外管,所述内管、所述中间管和所述外管上分别设有废液入口、氧化剂入口和燃料入口;所述双层壳体底部还设有反应流体出口;所述冷壁式反应器用于对废液进行超临界水氧化反应;所述反应流体出口连接缓冲罐,所述缓冲罐的顶部出口连接所述多级旋风分离装置;
    所述多级旋风分离装置用于对冷壁式反应器内的反应产物进行蒸汽回收及无机盐的分盐结晶;
    所述废液进料系统包括有机废液调节池,所述有机废液调节池连接所述外管上的废液入口;
    所述氧化剂进料系统包括氧化剂储罐,所述氧化剂储罐连接所述中间管上的氧化剂入口;
    所述燃料进料系统包括燃料储罐,所述燃料储罐连接所述内管上的燃料入口。
  2. 根据权利要求1所述的一种处理高盐高有机废水并回收能量的系统,其特征在于:所述双层壳体顶部和底部分别设有两个冷却介质入口,所述双层壳体侧部设有两个冷却介质出口,并且所述顶部的两个冷却介质入口连线分别和所述底部的两个冷却介质入口连线、所述侧部的两个冷却介质出口连线呈90°。
  3. 根据权利要求2所述的一种处理高盐高有机废水并回收能量的系统,其特征在于:所述双层壳体底部的两个冷却介质入口以所述反应流体出口为中心对称设置在其左右两边。
  4. 根据权利要求1所述的一种处理高盐高有机废水并回收能量的系统,其 特征在于:所述内管长度为100~200mm,所述中间管比所述内管长50~150mm,所述外管比所述中间管长50~150mm。
  5. 根据权利要求4所述的一种处理高盐高有机废水并回收能量的系统,其特征在于:所述外管比所述中间管长的50~150mm部分为多孔结构。
  6. 根据权利要求1所述的一种处理高盐高有机废水并回收能量的系统,其特征在于:所述多级旋风分离装置为2~4级旋风分离装置。
  7. 根据权利要求6所述的一种处理高盐高有机废水并回收能量的系统,其特征在于:所述多级旋风分离装置为3级旋风分离装置,其结构具体包括:第一热交换器、第二热交换器、第三热交换器、第四热交换器、第一旋风分离器、第二旋风分离器、第三旋风分离器和第四旋风分离器,所述第一热交换器的出料口连接所述第一旋风分离器的进料口,所述第一热交换器的进水口分别连接所述第一旋风分离器的出水口和所述第四热交换器的出水口;所述第一旋风分离器的出料口连接所述第二热交换器的进料口,所述第一旋风分离器的高压蒸汽出口连接所述第四热交换器的进料口,所述第一旋风分离器的进水口连接所述第二热交换器的出水口;所述第二热交换器的出料口连接所述第二旋风分离器的进料口,所述第二热交换器的进水口连接所述第三热交换器的出水口;所述第二旋风分离器的高压蒸汽出口连接所述第三热交换器的进料口;所述第三热交换器的出料口连接所述第三旋风分离器的进料口,所述第三热交换器的出水口还连接所述第四热交换器的进水口;所述第四热交换器的出料口连接所述第四旋风分离器的进料口。
  8. 根据权利要求7所述的一种处理高盐高有机废水并回收能量的系统,其特征在于:所述多级旋风分离装置还包括第五热交换器和第六热交换器,所述第五热交换器的进料口连接所述氧化剂储罐的出料口,所述第五热交换器的进水口连接所述第一热交换器的出水口,所述第五热交换器的出料口连接与所述氧化剂入口,所述第五热交换器的出水口连接所述第三热交换器的进水口;所述第六热交换器的进料口连接所述燃料储罐的出料口,所述第六热交换器的进水口连接所述第一热交换器的出水口,所述第六热交换器的出料口连接所述燃料入口,所述第六热交换器的出水口连接所述第三热交换器的进水口。
  9. 根据权利要求8所述的一种处理高盐高有机废水并回收能量的系统,其特征在于:所述第五热交换器和所述氧化剂入口、所述第六热交换器和所述燃料入口的连接管道上还设有加热器。
  10. 根据权利要求1所述的一种处理高盐高有机废水并回收能量的系统,其特征在于:所述系统还包括除渣罐,所述除渣罐连接所述缓冲罐的底部出口。
  11. 根据权利要求1所述的一种处理高盐高有机废水并回收能量的系统,其特征在于:所述系统还包括与所述冷壁式反应器冷却管路相连接的透平膨胀机,所述透平膨胀机依次与冷却装置、冷却水循环泵及冷却介质管路连接,形成循环。
  12. 根据权利要求11所述的一种处理高盐高有机废水并回收能量的系统,其特征在于:所述透平膨胀机还与发电机连接,通过膨胀做功发电。
  13. 一种处理高盐高有机废水并回收能量的方法,是采用权利要求1~12任意一项权利要求所述的系统,包括如下步骤:
    步骤一,开启燃料储罐和氧化剂储罐,将燃料和氧化剂引入冷壁式反应器中进行反应,同时在冷壁式反应器的双层壳体之间通冷却水,待冷壁式反应器内温度和压力超过水的超临界状态点后,将废液引入冷壁式反应器中进行超临界水氧化反应;
    步骤二,从冷壁式反应器的反应流体出口排出反应产物,进入缓冲罐;
    步骤三,然后将缓冲罐中的反应产物引入多级热交换器和旋风分离器,进行蒸汽回收及无机盐的分盐结晶。
PCT/CN2019/091473 2018-08-07 2019-06-17 一种处理高盐高有机废水并回收能量的系统及方法 WO2020029684A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/057,113 US11459260B2 (en) 2018-08-07 2019-06-17 System and method for treating high-salt high-organic wastewater and recovering energy
CN201980005245.4A CN111417598B (zh) 2018-08-07 2019-06-17 一种处理高盐高有机废水并回收能量的系统及方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810893327.4 2018-08-07
CN201810893326.XA CN109264914B (zh) 2018-08-07 2018-08-07 一种超临界水氧化能量综合利用系统及能量回收方法
CN201810893326.X 2018-08-07
CN201810893327.4A CN109179825B (zh) 2018-08-07 2018-08-07 一种高盐高cod废水零排放系统及废水零排放工艺

Publications (1)

Publication Number Publication Date
WO2020029684A1 true WO2020029684A1 (zh) 2020-02-13

Family

ID=69415181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091473 WO2020029684A1 (zh) 2018-08-07 2019-06-17 一种处理高盐高有机废水并回收能量的系统及方法

Country Status (3)

Country Link
US (1) US11459260B2 (zh)
CN (1) CN111417598B (zh)
WO (1) WO2020029684A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772698A (zh) * 2022-03-31 2022-07-22 深圳市华尔信环保科技有限公司 一种有机废液超临界水氧化系统
CN115806367A (zh) * 2022-12-16 2023-03-17 湖南汉华京电清洁能源科技有限公司 一种有机废水处理系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024102756A1 (en) * 2022-11-08 2024-05-16 Beyond The Dome, Inc. System and method for separating waste solids from a supercritical reactor effluent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273459A (ja) * 2001-03-23 2002-09-24 Kurita Water Ind Ltd 水熱酸化反応方法および装置
WO2012151794A1 (zh) * 2011-05-12 2012-11-15 西安交通大学 利用辅助燃料补给热量的超临界水氧化反应器
CN103508547A (zh) * 2013-09-30 2014-01-15 西安交通大学 高含盐腐蚀性有机废水超临界水氧化反应装置
CN107935287A (zh) * 2017-12-08 2018-04-20 陕西科技大学 一种超临界水氧化能量回收系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549529A (en) * 1968-07-01 1970-12-22 Black Clawson Co Methods and apparatus for disposing of waste materials
US4822497A (en) * 1987-09-22 1989-04-18 Modar, Inc. Method for solids separation in a wet oxidation type process
US5384051A (en) * 1993-02-05 1995-01-24 Mcginness; Thomas G. Supercritical oxidation reactor
US20020086150A1 (en) * 2000-12-28 2002-07-04 Hazlebeck David A. System and method for hydrothermal reactions-two layer liner
CN104671388B (zh) 2015-01-28 2016-08-24 广州中国科学院先进技术研究所 一种以空气作为保护膜的超临界水氧化系统及反应工艺
CN106219725B (zh) * 2016-09-06 2019-06-21 广州中国科学院先进技术研究所 一种超临界水氧化反应器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273459A (ja) * 2001-03-23 2002-09-24 Kurita Water Ind Ltd 水熱酸化反応方法および装置
WO2012151794A1 (zh) * 2011-05-12 2012-11-15 西安交通大学 利用辅助燃料补给热量的超临界水氧化反应器
CN103508547A (zh) * 2013-09-30 2014-01-15 西安交通大学 高含盐腐蚀性有机废水超临界水氧化反应装置
CN107935287A (zh) * 2017-12-08 2018-04-20 陕西科技大学 一种超临界水氧化能量回收系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772698A (zh) * 2022-03-31 2022-07-22 深圳市华尔信环保科技有限公司 一种有机废液超临界水氧化系统
CN114772698B (zh) * 2022-03-31 2024-01-05 深圳市华尔信环保科技有限公司 一种有机废液超临界水氧化系统
CN115806367A (zh) * 2022-12-16 2023-03-17 湖南汉华京电清洁能源科技有限公司 一种有机废水处理系统

Also Published As

Publication number Publication date
CN111417598A (zh) 2020-07-14
US20210188683A1 (en) 2021-06-24
CN111417598B (zh) 2021-10-22
US11459260B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
CN109264914B (zh) 一种超临界水氧化能量综合利用系统及能量回收方法
US9328008B2 (en) Supercritical water oxidation treatment system for organic wastewater with high salinity
WO2020029684A1 (zh) 一种处理高盐高有机废水并回收能量的系统及方法
WO2016086741A1 (zh) 一种新型超临界水氧化综合处理系统及处理方法
CN102249461B (zh) 高含盐高含氯有机废水的超临界水氧化处理系统
CN109179825B (zh) 一种高盐高cod废水零排放系统及废水零排放工艺
CN113582507B (zh) 一种能量综合利用的含油污泥热水解-超临界氧化资源化处理系统及方法
CN109399893A (zh) 一种超临界水氧化污泥处理的余热梯级利用系统及方法
CN112250157B (zh) 一种低能耗的超临界水氧化系统
CN207998481U (zh) 一种超临界水氧化处理系统
CN204251405U (zh) 一种新型超临界水氧化综合处理系统
CN210278295U (zh) 一种硫酸法钛白钛液浓缩系统
CN110793369B (zh) 一种超临界水氧化反应产物余热余压利用系统
CN211012606U (zh) 一种超临界水氧化反应产物余热余压利用系统
CN107266320B (zh) 一种硝基氯苯精馏分离中综合能耗回收的工艺方法
CN214791014U (zh) 一种so3磺化系统的节能环保装置
CN102351149A (zh) 氯化氢中氯气的去除和回收系统
CN105668891A (zh) 一种超临界水氧化废水预热纯化系统
CN217274452U (zh) 一种超临界水氧化余热回收系统
CN105782994B (zh) 一种用于工业危险废物处置行业的余热发电系统
CN114772698B (zh) 一种有机废液超临界水氧化系统
CN214307170U (zh) 一种酒精催化乙醛产生尾气的处理装置
CN217004410U (zh) 一种四氯化钛预热器和氧气预热器的余热再利用装置
CN113007687A (zh) 一种so3磺化系统的节能环保装置
CN216236226U (zh) 一种新型超临界氧化设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847210

Country of ref document: EP

Kind code of ref document: A1