WO2013159467A1 - 空气-金属-电池和电化学发电方法 - Google Patents

空气-金属-电池和电化学发电方法 Download PDF

Info

Publication number
WO2013159467A1
WO2013159467A1 PCT/CN2012/079489 CN2012079489W WO2013159467A1 WO 2013159467 A1 WO2013159467 A1 WO 2013159467A1 CN 2012079489 W CN2012079489 W CN 2012079489W WO 2013159467 A1 WO2013159467 A1 WO 2013159467A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
air
tube
electrolyte
electrode
Prior art date
Application number
PCT/CN2012/079489
Other languages
English (en)
French (fr)
Inventor
克罗普林贝恩德-赫尔穆特
Original Assignee
新能源动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新能源动力科技有限公司 filed Critical 新能源动力科技有限公司
Priority to JP2015507335A priority Critical patent/JP2015518637A/ja
Priority to KR20147032882A priority patent/KR20150021028A/ko
Priority to EP12875429.8A priority patent/EP2843752A4/en
Priority to RU2014146773A priority patent/RU2014146773A/ru
Priority to US14/396,712 priority patent/US20150222001A1/en
Publication of WO2013159467A1 publication Critical patent/WO2013159467A1/zh
Priority to IN9715DEN2014 priority patent/IN2014DN09715A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/32Deferred-action cells activated through external addition of electrolyte or of electrolyte components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an air-metal-battery comprising a plurality of interleaved tubular members for electrochemical power generation using an electrolyte, and to a method for electrochemically generating electricity using the electrolyte by the air-metal-battery.
  • a redox liquid flow type air-metal-battery containing a liquid electrolyte and a method for generating electric energy by using the redox flow type air-metal-battery are disclosed.
  • the battery comprises two tubular elements, a cavity for fluid electrolyte between the two tubular elements, and two electrodes disposed on the tubular element.
  • the air-metal unit used to generate electricity is a planar film.
  • the redox flow type battery tube described above uses a cylindrical surface because the material transfer is thereby more advantageous, and the mechanical configuration can be simplified. Thereby, the advantages of the unit cell or the battery with respect to the plane in terms of electrical efficiency and weight are obtained, particularly when the unit cell is miniaturized. In this case, the capacity is increased more than the weight.
  • the object of the invention is to achieve an air-metal battery comprising a plurality of interleaved tubular elements and a method of applying the air-metal battery, which significantly improves the capacity and the method The ratio of weight.
  • the present invention provides an air-metal-battery composed of a plurality of interleaved elements and electrochemically generating electricity using an electrolyte, characterized by comprising: a first internal component composed of a tube, which is composed of a porous, electrolyte-resistant material, a cavity for the electrolyte formed in the tube, and an electric current collector as a first electrode surrounding the tube, closely adhering to the a separator outside the electric current collector, and an air electrode as a second electrode coated on the outside of the diaphragm.
  • the present invention provides a method of electrochemically generating electricity using the electrolyte using the air-metal-battery, wherein the electrolyte is injected into a central inner tube, and by passing the electrolyte through the wall of the perforated tube The openings are distributed into the dry metal powder outside the inner tube to wet the metal powder attached to the metal grid.
  • the present invention relates to a composite structural system composed of tubes for electrochemical power generation, the system being capable of charging with a reactive metal. Oxygen in the air oxidizes the metal by means of a preferred alkaline electrolyte to generate an electrical current through an electrochemical route in an air-metal-cell or battery.
  • Oxygen from the air is reduced, for which purpose OH_ ions formed by oxygen in the air migrate from the preferred multilayer air electrode in an alkaline environment, through a porous membrane, and then through an electrolyte such as caustic potash The solution reaches the metal electrode with the current collector.
  • the air electrode consists of a multi-layer system comprising a hydrophobic outer layer, such as a conductive carbon layer made of Teflon, having an extremely large internal surface area, and a current collector layer composed of a conductive metal grid or metal mesh. Subsequent to the layer structure is a porous, ion permeable membrane that electrically isolates the air side from the metal side.
  • the metal side is provided with an oxidizable metal in the form of a very fine metal powder or a very fine metal dust, or an oxidizable metal compound such as a boride.
  • oxidizable refers specifically to the "cold combustion” process.
  • As the oxidizable metal or metal compound zinc, lithium and boron, or titanium boride and vanadium boride are particularly used.
  • the metal electrode has a current collector.
  • the current collector forms the two poles of the reactor or battery.
  • the entire composite structure is wetted with an electrolyte.
  • the hydrophobic outer layer of the air electrode is as thin as possible, i.e. preferably from about 0.01 mm to 0.2 mm thick, with a particularly preferred thickness of 0.08 mm.
  • the diaphragm is preferably a perforated tube, and a plurality of small holes for permeating the electrolyte are disposed, wherein the diameter of the holes is preferably in the range of 0.1 cm to 0.9 cm, particularly preferably 0.5 cm.
  • the combination of the perforated tube having the cavity formed therein and the diaphragm according to the present invention is more advantageous for material transfer, and the mechanical configuration is simplified. Thereby, advantages in terms of electrical efficiency and weight are obtained, especially with respect to planar batteries and currently known tubular batteries, particularly when the batteries are miniaturized. In this case, the capacity is significantly higher than the weight increase.
  • the air-metal-battery according to the present invention is functionally composed of a cylindrical air electrode and a metal electrode separated by a porous membrane, and an ionic current is passed through the electrolyte, particularly an alkaline electrolyte such as a caustic potash solution, in which Flowed through. Its effectiveness depends on the participating members and structure that determine the ion current. Collecting electricity is accumulated in the metal electrode and the air electrode.
  • the electrolyte is sprayed into or through a tube into a perforated, electrolyte-resistant inner tube made of carbon or polymer. The tube constitutes a cavity for the electrolyte and ensures chargeability at any point in time.
  • the tube is surrounded by an electrical current collector composed of a wire or a metal grid.
  • Metal powder or metal dust is applied to the grid with water or other suitable fluid.
  • the diaphragm is fitted concentrically around the metal dust, and the outside is covered with an air electrode. The composite structure is firmly pressed together.
  • the electrolyte is filled in the inner cavity and wetted by the metal powder prepared for oxidation or the metal dust prepared for oxidation through the opening in the inner wall of the perforated tube, the metal powder or metal dust is deposited at the center Around the inner tube.
  • the metal layer introduced in the form of dry metal powder or metal dust on the outside of the inner inner tube brings the benefits according to the invention. Therefore, the battery can be placed for any length of time until it is refilled with the electrolyte. Thereby, the self-discharge process is minimized.
  • the inner tube is comprised of carbon or a polymer.
  • the electrical current collector of the first electrode is composed of a metal grid in which metal powder or metal dust is applied by means of a fluid, in particular water.
  • the cylindrical surface of the central perforated tube is constructed of electrically conductive, spirally wound wires of copper or gold.
  • the cylindrical surface of the central perforated tube is constructed of a mesh of copper or other foil of conductive metal (especially by an etching process).
  • the mesh has a thickness of from 0.01 mm to 0.05 mm.
  • the composite structure consisting of the tube, the current collector, the diaphragm and the air electrode is concentrically intertwined and pressed together.
  • Wetting of the metal powder or metal dust is accomplished by spraying the electrolyte into the inner inner tube and by dispensing the electrolyte through the opening in the wall of the perforated tube into the dry metal powder outside the tube.
  • the number and size of the holes or openings in the perforated tube are distributed to directly and completely wet the metal powder.
  • the cylindrical surface of the inner inner tube is composed of an electrically conductive, spirally wound wire around the center of the perforated tube, the wire being made of copper or gold.
  • the wire instead of the wire, it is also possible to form a cylindrical surface having a thickness of 0.01 mm to 0.05 mm by a mesh obtained by etching a foil made of copper or other conductive metal.
  • Metal powder deposition of the metal electrode is accomplished by combining with water or other suitable fluid, and by coating in a current collector.
  • the arrangement of the porous membrane as thin as paper is accomplished by winding the core portion, which is composed of an inner tube as a center tube, a current collector, and a metal powder.
  • a flat air electrode is used to wind a tube consisting of a central tube, a current collector, a metal powder or a metal dust, and a separator, which is sealed with an adhesive, and the core is made of an elastic wire, preferably Kevlar or poly The elastic strands made of ethylene are wound to make the layers firmly adhere.
  • Figure 1 shows the cross section of the air-metal-battery
  • Fig. 2 shows an axial section of the air-metal-battery portion according to Fig. 1.
  • the air-metal-battery is composed of a plurality of interleaved elements for electrochemical power generation using the electrolyte 4.
  • the first inner element 1 here consists of a tube 2 made of a porous electrolyte-resistant material, wherein a hole or opening 10 having a diameter of preferably 0.1 cm to 0.9 cm is introduced, here particularly preferably 0.5 cm in diameter.
  • a cavity 3 for the electrolyte 4 is constructed.
  • the tube 2 is externally surrounded by a metal electrode 6 with an electric current collector 5 as the first electrode 6.
  • the separator 7 is closely attached to the outside of the metal electrode 6 or the current collector 5, and the outside of the separator 7 is covered with the air electrode 8 as the second electrode 9.
  • the arrangement of the thin film-like diaphragm 7 is accomplished by: winding the core portion, which is composed of an inner tube 2 as a center tube 2, a current collector 5, and metal powder or metal dust.
  • Tube 2 is made of carbon or a polymer.
  • the electric current collector 5 serving as the first electrode 6 is composed of a metal grid in which metal powder or metal dust is applied by means of a fluid, particularly water.
  • the cylindrical surface 11 of the central perforated tube 2 is composed of a conductive, spirally wound wire made of copper or gold.
  • the cylindrical surface 11 of the central perforated tube 2 is constructed of a mesh made of copper or other conductive metal foil, in particular by an etching process.
  • the web has a thickness of 0.01 mm to 0.05 mm.
  • the composite structure consisting of the tube 2, the current collector 5, the diaphragm 7 and the air electrode 8 is concentrically staggered and pressed together tightly.
  • the air electrode 8 is composed of a multi-layer system comprising a hydrophobic outer layer, such as a conductive carbon layer made of Teflon having a very large internal surface area and a current collector layer composed of a conductive metal grid or a metal mesh.
  • the hydrophobic outer layer is non-absorbent and preferably has a thickness in the range of 0.01 mm to 0.20 mm, and a particularly preferred thickness is 0.08 mm.
  • the air electrode is generally structurally conformable to the structure of an air electrode applied to other fuel cells. Inwardly in the layer structure is a porous, ion permeable membrane 7, which is electrically isolated from the air side and the metal side.
  • the oxidizable metal powder here a very fine metal dust, is necessary for the metal side, as well as the metal electrode 6 or the current collector 5. It is also possible to replace metal dust or metal powder with an oxidizable metal compound such as a metal boride, and boron. Particularly suitable as electrode materials for metal electrodes are zinc, titanium boride, vanadium boride, lithium and boron.
  • the current collector forms the two poles of the reactor or battery. The entire composite structure was wetted with an electrolyte 4.
  • the material used as the current collector or the separator is a relatively rare metal, and is particularly preferably a noble metal to achieve better resistance to an undesired oxidation process, and thereby overall increase the life of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种空气-金属-电池,其由多个交错连接的元件构成,用于利用电解液进行电化学发电。为了明显改善容量和重量的比率,用管(2)构成第一内部元件(1),所述管(2)由带孔的、耐电解液的材料制成,在所述管(2)中构造用于电解液(4)的空腔(3),在所述管(2)的外部围绕作为第一电极(6)的电集流体(5),在所述电集流体(5)的外部紧密贴合隔膜(7),在所述隔膜(7)外侧包覆作为第二电极(9)的空气电极(8)。

Description

空气-金属-电池和电化学发电方法 技术领域
本发明涉及一种由多个交错连接的管状元件构成的利用电解液进行电化学发电的 空气-金属-电池, 还涉及应用所述空气-金属-电池利用电解液进行电化学发电的方法。 背景技术
根据 DE 10 2009 035 314 B4, 公开了一种含有液体电解质的氧化还原液流型的空 气-金属-电池以及一种通过使用所述氧化还原液流型的空气 -金属 -电池产生电能的方 法。 所述电池包括两个管状元件, 在所述两个管状元件之间构成的用于流体态电解质 的空腔, 以及两个设置在所述管状元件上的电极。
通常, 用以发电的空气-金属单电池为平面膜。 与此相反, 在上文所述的氧化还原 液流型电池管使用圆柱形面, 因为由此更有利于物质传输, 而且机械构造可以得以简 化。 从而, 得到在电效率方面以及重量方面相对于平面的单电池或电池的优势, 特别 是当将单电池微型化时。 在这种情况下, 容量比重量提高更多。
本发明的任务在于,实现一种由多个交错连接的管状元件构成的空气-金属-电池以 及一种应用所述空气-金属-电池的方法, 由所述电池和所述方法明显改善容量与重量 的比率。 发明内容
为解决上述任务, 本发明提供一种由多个交错连接的元件构成的、 利用电解液进 行电化学发电的空气-金属-电池, 其特征在于包括: 由管构成的第一内部元件, 其由 带孔的、 耐电解液的材料制成, 在所述管中构成的用于电解液的空腔, 在所述管的外 部围绕的作为第一电极的电集流体, 紧密贴合在所述电集流体外部的隔膜, 和包覆在 所述隔膜外部的作为第二电极的空气电极。
此外,本发明提供一种应用所述空气-金属-电池利用电解液进行电化学发电的方法, 其中通过将电解液喷入中心的内部管中, 并且通过将电解液经由带孔管的壁上的开口 分布到在内部管外的干燥金属粉末中, 将附着在金属格栅上的金属粉末润湿。 本发明涉及一种用于电化学发电的由管构成的复合结构系统, 所述系统能够利用 反应性金属充电。 空气中的氧借助优选的碱性电解液氧化金属, 得以在空气-金属-单 电池或电池中通过电化学途径产生电流。 来自空气中的氧被还原, 为此, 在碱性环境 中由空气中的氧形成的 OH_离子从优选的多层空气电极中迁移出来,通过多孔的隔膜, 并随后通过电解液例如苛性钾溶液, 到达带有集流体的金属电极。 空气电极由多叠层 系统组成, 包括疏水的外层, 例如由 Teflon制成, 具有极大的内部表面积的导电碳层 和由导电金属格栅或金属网构成的集流体层。 在层结构中随后是一个多孔的、 离子渗 透性隔膜, 所述隔膜将空气侧与金属侧电隔离。 金属侧设置以极细的金属粉末或极细 的金属粉尘形式存在的可氧化的金属, 或可氧化的金属化合物例如硼化物。 此处, 术 语 "可氧化的"特别指 "冷燃烧"过程。 作为可氧化的金属或金属化合物, 特别使用 锌、 锂和硼, 或硼化钛和硼化钒。 金属电极具有集流体。 所述集流体形成反应器或电 池的两极。 整个复合结构用电解液浸湿。 空气电极的疏水外层尽可能薄, 即优选约为 0.01 mm至 0.2 mm厚, 特别优选的厚度为 0.08 mm。 隔膜优选为带孔的管, 布置有多 个供电解液透过的小孔, 在此, 孔的直径优选在 0.1 cm至 0.9 cm范围内, 特别优选为 0.5 cm。
由根据本发明所述的具有在其内部构成的空腔的带孔的管以及隔膜的组合, 更有 利于物质传输, 而且机械构造得以简化。 从而, 得到在电效率方面以及重量方面的优 势, 尤其是相对于平面的电池以及目前公知的管状电池, 特别是当将所述电池微型化 时。 在这种情况下, 容量比重量提高明显更多。
根据本发明所述的空气-金属-电池功能上由被多孔隔膜隔开的圆柱状空气电极和 金属电极构成, 并且离子电流通过电解液, 特别是碱性电解液如苛性钾溶液, 在它们 之间流过。 其效能取决于决定离子流的参与成员以及结构。 集电累积在金属电极和空 气电极中。 在此, 为了对电池充电, 将电解液喷射入或通过管泵入由碳或聚合物制成 的带孔的、 耐电解液的内部管。 所述管构成用于电解液的空腔并且确保在任意时间点 的可充电性。 所述管被由导线或金属格栅构成的电集流体围绕。 用水或其它适合的流 体将金属粉末或金属粉尘涂敷在格栅中。 围绕金属粉尘同心地贴合隔膜, 其外部包覆 空气电极。 将所述复合结构牢固地压在一起。
对本发明特别重要的是电解液的进入和引导。 电解液填充在内部空腔内, 并且通 过带孔的内管壁上的开口,润湿为氧化所准备的金属粉末或为氧化所准备的金属粉尘, 所述金属粉末或金属粉尘沉积在中心的内部管周围。 由此, 非常有效地在很短的路径 上发生反应。 特别是在中心的内部管的外侧作为干燥金属粉末或金属粉尘形式引入的 金属层, 带来了根据本发明的益处。 因此, 能够将电池放置任意长时间, 直到需要时 再充入电解液。 由此, 将自放电过程降低到最小。
在本发明的另一个实施方案中, 内部管由碳或由聚合物构成。 第一电极的电集流 体由金属格栅构成,利用流体,特别是水,将金属粉末或金属粉尘涂敷在所述格栅中。
在本发明的又另一个实施方案中, 中心的带孔的管的圆柱面由导电的、 螺旋形卷 起的铜或金制成的线构成。 在此, 中心的带孔的管的圆柱面由铜或其它导电金属的箔 形成的网 (;特别是通过蚀刻工艺)构成。 所述网具有 0.01 mm至 0.05 mm的厚度。
最后, 将由管、 集流体、 隔膜和空气电极组成的复合结构同心地交错配合并紧密 地压在一起。
通过将电解液喷入中心的内部管中, 并且通过电解液经由带孔管的壁上的开口分 布到所述管外的干燥金属粉末中, 完成金属粉末或金属粉尘的润湿。 将带孔的管上的 孔或开口的数量和大小分配为, 将金属粉末直接并且完全地润湿。
中心的内部管的圆柱面由导电的、 围绕着中心的有孔管螺旋形卷起的线构成, 所 述线由铜或金制成。 代替所述线, 也能够用通过将由铜或其它导电金属制成的箔蚀刻 而得到的网形成 0.01 mm-0.05 mm厚度的圆柱面。
通过与水或其它适合的流体结合, 以及涂敷在集流体中, 完成金属电极的金属粉 末沉积。
像纸一样薄的多孔隔膜的设置通过如下完成: 卷绕核心部分, 所述核心部分由作 为中心管的内部管、 集流体和金属粉末构成。
最后, 实施用平面的空气电极卷绕由中心管、 集流体、 金属粉末或金属粉尘以及 隔膜构成的管, 将其用粘合剂密封, 并将此芯组用弹性线, 优选用 Kevlar或聚乙烯制 成的弹性线缠绕, 使各层牢固贴合。 附图说明
现在借助一个根据本发明的空气-金属-电池实施例,更详细地说明本发明。其中: 图 1示出空气-金属-电池的横截面且
图 2示出根据图 1所示的空气 -金属 -电池部分轴截面。 具体实施方式 所述空气-金属-电池由多个交错连接的元件构成, 用于利用电解液 4 进行电化学 发电。 此处第一内部元件 1由带孔的耐电解液的材料制成的管 2构成, 其中, 引入直 径优选为 0.1 cm至 0.9 cm的孔或开口 10, 此处, 特别优选直径为 0.5 cm。在管 2中, 构造用于电解液 4的空腔 3。 管 2外部围绕作为第一电极 6的带有电集流体 5的金属 电极 6。在金属电极 6或电集流体 5外部紧密贴合隔膜 7, 隔膜 7外侧包覆作为第二电 极 9的空气电极 8。
像纸一样薄的隔膜 7的设置通过如下完成: 卷住核心部分, 所述核心部分由作为 中心管的内部管 2、 集流体 5和金属粉末或金属粉尘构成。
管 2由碳或聚合物制成。 用作第一电极 6的电集流体 5由金属格栅构成, 利用流 体, 特别是水, 将金属粉末或金属粉尘涂敷在所述格栅中。
中心的带孔的管 2的圆柱面 11由导电的、螺旋形卷起的线构成, 所述线由铜或金 制成。
中心的带孔的管 2的圆柱面 11由铜或其它导电金属箔制成的、特别是通过蚀刻工 艺制成的网构成。 所述网的厚度为 0.01 mm至 0.05 mm。
所述由管 2、集流体 5、隔膜 7和空气电极 8构成的复合结构同心地交错配合并紧 密地压在一起。
空气电极 8由多叠层系统组成, 包括疏水的外层, 例如由 Teflon制成, 具有极大 内部表面积的导电碳层和由导电金属格栅或金属网构成的集流体层。 所述的疏水外层 是不吸水的, 并优选具有 0.01 mm至 0.20 mm范围内的厚度, 特别优选的厚度为 0.08 mm。所述空气电极在结构上通常符合应用于其它燃料电池的空气电极的结构。在层结 构中向内接着是多孔的、 离子渗透性隔膜 7, 所述隔膜 7将空气侧和金属侧电隔离。 可氧化的金属粉末, 此处为极细的金属粉尘, 对于金属侧, 以及金属电极 6或集流体 5 是必要的。 也能够用可氧化的金属化合物, 例如金属硼化物, 以及硼, 来代替金属 粉尘或金属粉末。 特别适合作为用于金属电极的电极材料是锌、 硼化钛、 硼化钒、 锂 和硼。 集流体形成反应器或电池的两极。 整个复合结构用电解液 4浸湿。 作为用于集 流体或隔膜的材料为较稀有的金属, 并特别优选是贵金属, 以达到更好的对不希望发 生的氧化过程的抗性, 并由此整体提高电池的寿命。

Claims

1. 一种空气-金属-电池, 其由多个交错连接的元件构成, 用于通过电解液进行电 化学发电, 其特征在于:
a) 由管 (2) 构成第一内部元件 (1 ), 其由带孔的、 耐电解液的材料制成, b) 在所述管 (2) 中构造用于电解液 (4) 的空腔 (3 ),
c)在所述管(2)外部围绕作为金属电极(6)或第一电极(6) 的电集流体(5 ), d) 在所述电集流体 (5 ) 外部紧密贴合隔膜 (7), 和
e) 在所述隔膜 (7) 外部包覆作为第二电极 (9) 的空气电极 (8)。
2. 根据权利要求 1 所述的空气-金属-电池, 其特征在于: 所述管 (2) 由碳或由 聚合物制成。
3. 根据权利要求 1或 2所述的空气-金属-电池,其特征在于: 用作第一电极(6) 的电集流体(5 ) 由金属格栅构成, 利用流体, 特别是水, 将金属粉末涂敷到所述金属 格栅中。
4. 根据权利要求 1-3 中任一项所述的空气-金属-电池, 其特征在于: 中心的带孔 的管 (2) 的圆柱面 (11 ) 由导电的、 螺旋形卷起的线构成, 所述线由铜或金制成。
5. 根据权利要求 1-3 中任一项所述的空气-金属-电池, 其特征在于: 中心的带孔 的管 (2) 的圆柱面 (11 ) 由网构成, 所述网由铜或其它导电材料的箔制成, 特别是通 过蚀刻工艺制成。
6. 根据权利要求 5所述的空气-金属-电池,其特征在于:所述网的厚度为 0.01 mm 至 0.05 mm。
7. 根据权利要求 1-6 中任一项所述的空气-金属-电池, 其特征在于: 由管 (2)、 集流体 (5 )、 隔膜 (7) 和空气电极 (8 ) 构成的复合结构同心地交错配合并牢固地压 在一起。
8. 一种应用根据权利要求 1至 7中任一项或多项所述的空气-金属-电池利用电解 液进行电化学发电的方法, 其特征在于: 通过将电解液喷入中心的内部管中, 并且通 过将电解液经由带孔管的壁上的开口分布到内部管外的干燥金属粉末中, 将附着在金 属格栅上的金属粉末润湿。
9. 根据权利要求 8所述的方法, 其特征在于: 将所述开口的数量和大小分配为将 金属粉末直接并且完全地润湿。
10. 根据权利要求 8或 9所述的方法, 其特征在于, 金属电极的金属粉末通过用水 或其它适合的流体润湿以及涂敷, 而沉积在集流体上。
PCT/CN2012/079489 2012-04-25 2012-08-01 空气-金属-电池和电化学发电方法 WO2013159467A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015507335A JP2015518637A (ja) 2012-04-25 2012-08-01 金属空気電池及び電気化学発電方法
KR20147032882A KR20150021028A (ko) 2012-04-25 2012-08-01 금속-공기 전지 및 전기 화학적 발전방법
EP12875429.8A EP2843752A4 (en) 2012-04-25 2012-08-01 AIR-METAL CELL AND METHOD FOR GENERATING ELECTROCHEMICAL ELECTRICITY
RU2014146773A RU2014146773A (ru) 2012-04-25 2012-08-01 Воздушно-металлическая батарея и способ электрохимической выработки энергии
US14/396,712 US20150222001A1 (en) 2012-04-25 2012-08-01 Air-metal-battery and electrochemical power generation method
IN9715DEN2014 IN2014DN09715A (zh) 2012-04-25 2014-11-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210125988.5A CN103378384B (zh) 2012-04-25 2012-04-25 空气-金属-电池和电化学发电方法
CN201210125988.5 2012-04-25

Publications (1)

Publication Number Publication Date
WO2013159467A1 true WO2013159467A1 (zh) 2013-10-31

Family

ID=49463181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079489 WO2013159467A1 (zh) 2012-04-25 2012-08-01 空气-金属-电池和电化学发电方法

Country Status (8)

Country Link
US (1) US20150222001A1 (zh)
EP (1) EP2843752A4 (zh)
JP (2) JP2015518637A (zh)
KR (1) KR20150021028A (zh)
CN (1) CN103378384B (zh)
IN (1) IN2014DN09715A (zh)
RU (1) RU2014146773A (zh)
WO (1) WO2013159467A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934660B (zh) * 2015-07-14 2017-03-01 北京航空航天大学 一种便捷卷式超薄氧‑金属电池
KR102481423B1 (ko) * 2016-12-22 2022-12-27 하이드라 라이트 인터내셔널 엘티디 금속-공기 연료 전지
CN108598627B (zh) * 2018-05-16 2020-11-13 东北大学秦皇岛分校 一种高容量钾-氧气电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081585A (en) * 1976-03-22 1978-03-28 Compagnie Generale D'electricite S.A. Forced flow electrochemical battery
US4341847A (en) * 1980-10-14 1982-07-27 Institute Of Gas Technology Electrochemical zinc-oxygen cell
WO2011002792A1 (en) * 2009-06-30 2011-01-06 Revolt Technology Ltd. Metal-air flow battery
DE102009035314B4 (de) 2009-07-30 2011-07-21 Bauer, Bernd, Dr., 71665 Redoxbatterie mit Flüssigelektrolyt und Verfahren zum Erzeugen elektrischer Energie unter Einsatz einer solchen Batterie

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963519A (en) * 1968-06-10 1976-06-15 Leesona Corporation Metal/air cell
GB1256419A (en) * 1969-05-27 1971-12-08 Energy Conversion Ltd Improvements in and relating to metal/oxygen cells
US3671318A (en) * 1969-06-12 1972-06-20 Mc Donnell Douglas Corp Method for producing a water activatable battery
CA982215A (en) * 1971-12-20 1976-01-20 Jean-Paul Pompon Electrochemical storage battery of the forced flow type
US4005246A (en) * 1973-02-20 1977-01-25 Yardney Electric Corporation Reserve-type cell
US5190833A (en) * 1990-12-31 1993-03-02 Luz Electric Fuel Israel Ltd. Electrodes for metal/air batteries and fuel cells and bipolar metal/air batteries incorporating the same
US5716726A (en) * 1994-12-22 1998-02-10 Dreisbach Electromotive, Inc. Electrolyte starved metal-air battery
US6753108B1 (en) * 1998-02-24 2004-06-22 Superior Micropowders, Llc Energy devices and methods for the fabrication of energy devices
US20070141440A1 (en) * 2005-12-21 2007-06-21 General Electric Company Cylindrical structure fuel cell
WO2012085887A2 (en) * 2010-12-23 2012-06-28 Garal Pty Ltd Fuel cell and electrolyser structure
CN201946716U (zh) * 2011-03-15 2011-08-24 余建岳 一种金属空气电池
CN202871940U (zh) * 2012-04-25 2013-04-10 新能源动力科技有限公司 带有空气电极和金属电极的电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081585A (en) * 1976-03-22 1978-03-28 Compagnie Generale D'electricite S.A. Forced flow electrochemical battery
US4341847A (en) * 1980-10-14 1982-07-27 Institute Of Gas Technology Electrochemical zinc-oxygen cell
WO2011002792A1 (en) * 2009-06-30 2011-01-06 Revolt Technology Ltd. Metal-air flow battery
DE102009035314B4 (de) 2009-07-30 2011-07-21 Bauer, Bernd, Dr., 71665 Redoxbatterie mit Flüssigelektrolyt und Verfahren zum Erzeugen elektrischer Energie unter Einsatz einer solchen Batterie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2843752A4

Also Published As

Publication number Publication date
KR20150021028A (ko) 2015-02-27
RU2014146773A (ru) 2016-06-10
JP2015518637A (ja) 2015-07-02
CN103378384A (zh) 2013-10-30
JP2017033942A (ja) 2017-02-09
CN103378384B (zh) 2019-06-28
EP2843752A4 (en) 2015-12-30
US20150222001A1 (en) 2015-08-06
EP2843752A1 (en) 2015-03-04
IN2014DN09715A (zh) 2015-07-31

Similar Documents

Publication Publication Date Title
CN103682476B (zh) 电池
US6004691A (en) Fibrous battery cells
WO2011152464A1 (ja) 金属空気電池
CN105280942B (zh) 一种锂双液流电池
WO2015109994A1 (zh) 一种新型锂离子液流电池
JP6070671B2 (ja) 空気電池
CN106159302A (zh) 一种锂浆料电池反应器
TWI553942B (zh) 可充電電池
CN107305942B (zh) 一种卷绕式负极片以及设有该负极片的电芯及锂浆料电池
TW201327991A (zh) 集流體、電化學電池電極及電化學電池
JP2015525457A (ja) 金属空気電池及びガス不透過性アノード伝導性マトリクス
CN108346772B (zh) 一种锂浆料电池及其非对称式电极片
JP2010536122A (ja) バイポーラー電池用プレートおよびバイポーラー電池
CN106469821B (zh) 一种半流态锂液流电池
WO2013159467A1 (zh) 空气-金属-电池和电化学发电方法
JP2016009522A (ja) リチウム空気電池の負極および負極複合体、ならびにリチウム空気電池
CN109088093B (zh) 静态沉积型浆料电池
JP2016004714A (ja) 金属空気電池
CN109065814A (zh) 适用于沉积型浆料电池的导电复合隔膜
US20120015275A1 (en) Solid oxide fuel cell and fuel cell stack
CN216052084U (zh) 一种参比电极及带有该参比电极的锂电池
CN202871940U (zh) 带有空气电极和金属电极的电池
JP2011527502A (ja) 電源
JP2007128908A (ja) 固体高分子電解質型燃料電池のセルユニット
JP5273584B2 (ja) 固体酸化物形燃料電池セルと固体酸化物形燃料電池セルユニット、及びそれを備える燃料電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012875429

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147032882

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014146773

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14396712

Country of ref document: US