WO2013157276A1 - 窒素酸化物による滅菌法及び滅菌装置 - Google Patents

窒素酸化物による滅菌法及び滅菌装置 Download PDF

Info

Publication number
WO2013157276A1
WO2013157276A1 PCT/JP2013/002662 JP2013002662W WO2013157276A1 WO 2013157276 A1 WO2013157276 A1 WO 2013157276A1 JP 2013002662 W JP2013002662 W JP 2013002662W WO 2013157276 A1 WO2013157276 A1 WO 2013157276A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen oxide
space
sterilization
liquid nitrogen
container
Prior art date
Application number
PCT/JP2013/002662
Other languages
English (en)
French (fr)
Inventor
東真 阿久津
Original Assignee
株式会社エナ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エナ filed Critical 株式会社エナ
Priority to CN201380020461.9A priority Critical patent/CN104302328B/zh
Priority to US14/375,046 priority patent/US9731041B2/en
Priority to DK13778168.8T priority patent/DK2839845T3/en
Priority to EP13778168.8A priority patent/EP2839845B1/en
Publication of WO2013157276A1 publication Critical patent/WO2013157276A1/ja
Priority to US15/646,162 priority patent/US20170348450A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23L3/3445Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere comprising other gases in addition to CO2, N2, O2 or H2O
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/22Phase substances, e.g. smokes, aerosols or sprayed or atomised substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/046Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating with the help of a non-organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/36Nitrogen dioxide (NO2, N2O4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/23Containers, e.g. vials, bottles, syringes, mail
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps

Definitions

  • the present invention relates to a sterilization method and sterilization apparatus for sterilizing a microorganism adherent using nitrogen oxides.
  • the present invention also relates to a sterilization apparatus and a sterilization method for sterilizing a microbial adherent disposed in a spatial region or a spatial region using nitrogen oxides.
  • autoclave sterilization for example, a used medical device is placed in a pressure chamber, pressurized and heated in the presence of moisture, and the medical device is held in the pressure chamber for several tens of minutes. A sterilization treatment is adopted that decomposes the biopolymers that make up and kills all bacteria. Autoclave sterilization that heats up to 130 ° C cannot sterilize instruments composed of materials with low heat resistance such as rubber, and when instruments composed of resin materials are sterilized, the instruments physically expand due to heat cycles. The compressed water vapor of about 2 atm penetrates into the gap between the resins by repeating the contraction, and therefore, deterioration of the resin is promoted by the repeated sterilization operation.
  • ethylene oxide (C 2 H 4 O) gas can be sterilized at a lower temperature, lower pressure and lower humidity than autoclave sterilization, so sterilizing rubber and resin with low heat resistance and water resistance. can do.
  • ethylene oxide gas is highly reactive, and there is a danger of ignition and explosion due to pressurization. It is very troublesome to handle, and is very toxic to the human body. When inhaled, mucous membrane irritation, vomiting, headache, etc. In the United States Pharmacopeia (USP), restrictions on use are strengthened, and the need for alternative substances is increasing.
  • Nitrogen oxide has attracted attention as a sterilant that does not require heating and pressurization and is relatively easy to handle.
  • Nitrogen oxides include nitric oxide (NO), nitrogen dioxide (NO 2 ), nitrous oxide (dinitrogen monoxide) (N 2 O), dinitrogen trioxide (N 2 O 3 ), dinitrogen tetroxide ( N 2 O 4 ) and dinitrogen pentoxide (N 2 O 5 ) are generic names for compounds composed of nitrogen and oxygen.
  • Patent Document 1 is directed to a sterilant gas containing one or more nitrogen oxides of NO, NO 2 , NO 3 , N 2 O 3 , N 2 O 4 , N 2 O 5 , N 2 O and mixtures thereof.
  • Nitrogen oxide gas is generated from the sterilant gas generating composition, and an object accommodated in a sealed sterilization chamber is sterilized with the nitrogen oxide gas.
  • Patent Document 2 includes a sterilization chamber that forms a sealed space for sterilization, and an atmospheric pressure plasma generation unit that generates nitrogen oxide gas, and nitrogen dioxide gas is transferred from the atmospheric pressure plasma generation unit to the sterilization chamber via a catalyst unit.
  • a sterilization apparatus is disclosed that performs sterilization treatment by exposing a medical instrument such as a scalpel, forceps, and catheter of a sterilization target or a food packaging material such as a packaging sheet, tray, and bottle to nitrogen dioxide gas.
  • the atmospheric pressure plasma generator includes a microwave supply device and a plasma nozzle that converts the source gas into plasma by applying microwave energy from the microwave supply device.
  • nitrogen and oxygen in raw material air are converted into plasma to generate nitrogen oxide gas.
  • a diazeniumdiolate compound (R 3 —C (R 1 ) x (N 2 O 2 R 2 ) y ) as a sterilant gas generating composition is reacted with oxalic acid in a gas generating chamber. Or other sterilant gas generating composition and an acid are reacted to generate nitrogen oxide gas. That is, since a plurality of substances are mixed in the gas generation chamber and nitrogen oxide gas is supplied to the sterilization chamber, the nitrogen oxides supplied to the sterilization chamber must be controlled unless the reaction conditions in the gas generation chamber are appropriately controlled. The concentration may become unstable and the object may not be sterilized sufficiently.
  • Patent Documents 1 and 2 and other conventional sterilization methods there has been no study or research on a method for efficiently recovering the sterilant from the sterilization chamber after the sterilization process is completed. For this reason, depending on the shape of the medical device and the concentration of the sterilizing agent, there is a possibility that the toxic sterilizing agent component may not be completely removed from the sterilized medical device. It was a big safety issue.
  • the air in the clean room is aspirated or circulated by blowing air to remove suspended fine particles with a filter, and the clean room is maintained in a substantially sterilized state.
  • the clean room is maintained in a substantially sterilized state.
  • the removal of particulates with a filter alone cannot sufficiently remove bacteria contained in the air stagnating in the corners of the clean room, and contamination such as microorganisms adhering to the walls and floors.
  • the material cannot be removed with a filter by aspiration or ventilation. For this reason, it is necessary to periodically sterilize the clean room.
  • a gas sterilization method using formaldehyde, hydrogen peroxide (H 2 O 2 ) or ozone (O 3 ) which is a sterilization gas is known.
  • a sterilization gas is supplied from a gas production device or gas cylinder to the sterilization chamber, filled, and held for a certain period of time, thereby killing microorganisms and bacteria floating in the air in the sterilization chamber or adhering to walls. Can be made.
  • gas sterilization is also used when reusing a used medical device contaminated with microorganisms.
  • an autoclave high-pressure steam sterilizer
  • autoclave sterilization that heats up to about 130 ° C cannot be used for heat-sensitive materials such as rubber.
  • pressurized water vapor of about 2 atm enters the resin gap, and repeated sterilization operations promote the deterioration of the resin.
  • gas sterilization is particularly effective for sterilizing medical devices that are vulnerable to high temperatures and pressure.
  • ethylene oxide gas In the gas sterilization of medical equipment, ethylene oxide gas (EOG) is often used. Ethylene oxide is a colorless and transparent substance having an ether odor and becomes a gas around 20 ° C.
  • the ethylene oxide gas for sterilization is diluted with carbon dioxide, and filled in a high pressure container with a mixed gas of about 20% ethylene oxide and about 80% carbon dioxide.
  • a mixed gas containing ethylene oxide is supplied from a high-pressure container to a space region of a sterilization chamber in which a clean room or a medical device is disposed, and the ethylene oxide gas concentration in the space region is maintained for a certain period of time to sterilize the medical device.
  • Patent Document 3 As a method for sterilizing a space region, a system for sterilizing an isolator with hydrogen peroxide disclosed in Patent Document 3 is known.
  • the system of Patent Document 3 includes a sterilization gas supply means, a gas passage connecting the sterilization gas supply means and the isolator, and the sterilization gas supply means includes an evaporator for evaporating liquid hydrogen peroxide, and an evaporator. It has an injector for dripping liquid hydrogen peroxide and a heater for heating the air blown to the evaporator, and the inside of the isolator is sterilized by the vaporized hydrogen peroxide.
  • Citation 2 discloses an apparatus for sterilizing an object to be sterilized (medical equipment, chemical container, etc.) in a sterilization area with an ozone sterilization apparatus. That is, ozone gas is exposed to an object to be sterilized for a certain period of time, air is introduced from an aeration line, and the ozone inside the sterilization area is ventilated.
  • Ethylene oxide gas is highly toxic to the human body, causing mucosal irritation of the upper respiratory tract, vomiting, and headache, and may become a carcinogenic substance that damages DNA. For this reason, it is not preferable for health to suck the ethylene oxide gas remaining after the sterilization operation.
  • ozone is supplied to the sterilization area after adjusting the inside of the sterilization area not to normal pressure but to a negative pressure state.
  • ozone generation efficiency is low, and it takes a long time to fill the inside of a large volume sterilization area with ozone at a predetermined concentration, and the amount of ozone generated can be strictly controlled. It is not possible to accurately control the ozone concentration in the sterilization area. Since ozone gradually decomposes at room temperature and is chemically unstable, ozone must be generated on site immediately before use, and an ozone generator is required.
  • Patent Document 1 using nitrogen oxide as a sterilant as described above, a plurality of substances are mixed in the gas generation chamber and nitrogen oxide gas is supplied to the space region. It cannot be grasped and managed, the concentration of nitrogen oxides supplied to the space region becomes unstable, and the medical device may not be sufficiently sterilized. On the other hand, if an excessive amount of nitrogen oxide is supplied, the nitrogen oxide adheres to the sterilized medical device at a high concentration, which is not preferable for safety. In addition, if it is necessary to mix a solid sterilant gas generating composition and an acid for each sterilization, it is realistic to use it for sterilization of a clean room or a medical device in an actual medical field. difficult. Furthermore, the use of acids is dangerous for handling, including transportation and storage.
  • an object of the present invention is to provide a sterilization method and a sterilization apparatus that can safely sterilize microbial adherents with nitrogen oxides. Another object of the present invention is to provide a sterilization method and a sterilization apparatus that can quickly and reliably sterilize an object to be sterilized in any shape. Furthermore, an object of the present invention is to provide a sterilization method and a sterilization apparatus in which no harmful sterilant components remain in an object to be sterilized and the sterilant can be efficiently recovered after the sterilization operation.
  • An object of the present invention is to provide a sterilization apparatus and a sterilization method for safely sterilizing microorganisms floating in a space region under almost atmospheric pressure and a sterilization target in the space region. Another object of the present invention is to provide a sterilization apparatus and a sterilization method that are easy to handle and safe using liquid nitrogen oxide as a sterilant raw material. Furthermore, an object of the present invention is to provide a sterilization apparatus and a sterilization method capable of generating a sterilizing agent quickly and at a constant concentration and reliably sterilizing microorganisms in the space region and objects to be sterilized in the space region. Another object of the present invention is to provide a compact and inexpensive sterilization apparatus and sterilization method that do not require a large sterilizing agent generator.
  • the sterilization method using nitrogen oxides includes a process of placing the object (1) in the space region (2) and a space region (2) by holding the space region (2) in a hermetically sealed state using a decompression device (3). ), A process of introducing and vaporizing liquid nitrogen oxides from a container (4) containing liquid nitrogen oxides into a vacuum or vacuum space region (2), and a space region (2). And sterilizing the object (1) with gaseous nitrogen oxides.
  • Nitrogen oxide gas with strong oxidizing power instantly disperses in the space region (2) and diffuses to the details of the object (1), so that the surface of the complex-shaped object (1) can be quickly and completely Can be sterilized.
  • sterilization means aseptic conditions that completely kill or remove any proliferating microorganisms (mainly bacteria), or conditions where the possibility of growth of microorganisms is as close to zero as possible.
  • the sterility assurance level (SAL), which is an index indicating the probability of the presence of microorganisms after sterilization, is 10 -6 or less. Therefore, it is different from “disinfection” that diminishes the ability of pathogenic microorganisms but does not mean to kill all microorganisms, and “sterilization” that kills bacteria but does not include the target and degree of killing. “Sterilization” is required to completely inactivate the function of microorganisms in molecular biology or biotechnology. In the present invention, endotoxin, which is a dead body of bacteria, can also be effectively removed, and depyrogen treatment that is more advanced than sterilization can be performed.
  • liquid nitrogen oxides are introduced into the space region (2) under negative pressure and vaporized to sterilize, nitrogen can be stabilized at a stable concentration without the need for mixing of multiple substances and expensive plasma generators and catalytic metals. Oxide can be supplied to the space region (2). Furthermore, if liquid nitrogen oxides are used at normal temperature and normal pressure, a high pressure tank for storing nitrogen oxides is not required, handling is easy, and transportation and maintenance costs of the sterilant can be greatly reduced. .
  • the sterilization method of the present invention comprises a process of connecting a container (4) containing liquid nitrogen oxides to a metering pump (34, 34 ') and a predetermined pump from the container (4) by the metering pump (34, 34').
  • the nitrogen oxide sterilization apparatus of the present invention includes a container (4) for storing liquid nitrogen oxide, and a space region that is connected to the container (4) and that can hold the object (1) and can be kept sealed. (2) and a decompression device (3) for decompressing the space region (2). Nitrogen oxide is introduced and vaporized from the container (4) into the space region (2) held in a reduced pressure state or a vacuum state by the pressure reducing device (3), and the object (1) in the space region (2) is made effective. Sterilization can be performed, and a sterilization apparatus can be manufactured relatively easily.
  • the sterilization apparatus of the present invention includes a space region (2 ′, 2 ′′) that is substantially maintained under atmospheric pressure, a container (4) that contains liquid nitrogen oxide and can be sealed, and a container (4). And an injection device (32) that injects or atomizes liquid nitrogen oxide that is pressurized from the inside to the space region (2 ′, 2 ′′) and supplied in a predetermined amount.
  • the nitrogen oxide liquid having a strong oxidizing power is pumped from the container (4) to the injection device (32) by a predetermined amount by the metering pump (34, 34 '), and is substantially transferred from the injection device (32).
  • the liquid nitrogen oxide is released into the space region (2 ', 2 ") under atmospheric pressure and is instantly vaporized.
  • the vaporized nitrogen oxide is, for example, the space region (3) of the clean room (50). It is dispersed and diffused as a gas throughout, maintaining the space region (2 ′, 2 ′′) at a predetermined concentration, and sterilizing the entire space region (2 ′, 2 ′′) quickly and efficiently.
  • an object to be sterilized such as a medical device (1) disposed in a space region (2 ′, 2 ′′) in the sterilization chamber (30)
  • the vaporized nitrogen oxides are removed from the object to be sterilized (1 ) Sterilize the object to be sterilized (1).
  • sterilization refers to a process that completely destroys all types of proliferating microorganisms (mainly bacteria) or a process that converges to a completely sterile condition in which the growth potential of microorganisms is zero, ie, after sterilization.
  • the existence probability index of microorganisms, etc . Sterility Assurance level (SAL) is a treatment that reduces the level to 10 -6 or less.
  • SAL Sterility Assurance level
  • “sterilization” is the function of microorganisms completely. It is required to be inactivated.
  • sterilization means “disinfection” that does not mean that the ability of pathogenic microorganisms is reduced but that all microorganisms are annihilated, or “sterilization” that does not include the target and extent of bacteria that disappear, but some bacteria disappear. Is different. Further, in the present invention, endotoxin that is a dead body of bacteria can also be effectively removed, and depyrogen treatment that is more advanced than sterilization can be performed.
  • liquid nitrogen oxide can be stored in the container (4) by applying a slight pressure at room temperature, liquid nitrogen oxidation can be safely and easily performed in the container (4) without using a high pressure resistant container. Objects can be stored, taken out and used. For this reason, compared with a gaseous sterilant, the transportation cost and maintenance cost of a liquid nitrogen oxide can be reduced significantly, and furthermore, a small and inexpensive sterilization apparatus can be obtained.
  • microorganisms including bacteria and viruses adhering to an object to be sterilized can be completely killed and destroyed by nitrogen oxides to prevent infection of microorganisms and damage to precision parts.
  • liquid nitrogen oxide that does not mix multiple substances is efficiently introduced into the space region under negative pressure, nitrogen oxide can be supplied safely at a predetermined concentration, and the time and energy cost required for sterilization operation can be reduced. Can be reduced. Further, after the sterilization treatment, nitrogen oxides are efficiently removed and no nitrogen oxide component remains in the sterilization target, so that the sterilized instrument can be safely reused.
  • the sterilization apparatus and sterilization method according to the present invention introduces nitrogen oxides into the sterilization chamber, floats in the space area, or completely kills microorganisms including bacteria and viruses attached to objects (for example, medical devices) in the space area. And can be destroyed to prevent microbial and bacterial infections and damage to precision parts.
  • an apparatus for generating a sterilizing agent such as an ozone generator or a plasma apparatus is unnecessary, the entire apparatus can be reduced in size, and the initial and operating costs can be reduced.
  • a medical device (1) of an object to be sterilized is placed in a space region (accommodating cavity) (2) formed in a sterilization chamber (10).
  • the present invention can be applied to medical devices (1) made of any material that does not deteriorate against nitrogen oxides, such as metal, plastic, rubber, etc., and the medical device (1) is a surgical instrument such as a scalpel, forceps, scissors, tweezers, etc. Diagnostic instruments such as soft and rigid endoscopes, thermometers, stethoscopes, ophthalmoscopes, otoscopes, therapeutic instruments such as catheters, syringes, medical tubes, pacemakers, implantable aggregates, surgical bolts, etc. Includes medical equipment.
  • the objects (1) to be sterilized include plastic containers, glass containers, vials, spray containers, aluminum tubes, rubber stoppers, elastomer resin parts, and pharmaceutical containers such as injection needles.
  • the present invention can be applied not only to pre-sterilization but also to in-use sterilization immediately before use.
  • a lid (not shown) is attached to the accommodation cavity (2) in which the medical device (1) is arranged, and the accommodation cavity (2) is hermetically closed, and the sealed state of the accommodation cavity (2) is maintained.
  • a suction pipe (11) connected to the discharge port (6) and the discharge port (6) provided in the sterilization chamber (10).
  • the vacuum pump (decompression device) (3) is connected, and when the vacuum valve (24) is open, the vacuum pump (3) sucks the gas (gas) in the storage cavity (2) into the storage cavity. (2) is depressurized. It is preferable to release the suction gas into the atmosphere after the bacteria in the suction gas are filtered and removed by the removal filter (19) connected to the vacuum pump (3).
  • a container (4) containing liquid dinitrogen tetroxide (N 2 O 4 ) is connected to the accommodation cavity (2) via the introduction pipe (12) and the introduction valve (5).
  • Nitrogen tetroxide is a strong oxidizer, but it can be safely in a liquid state if it is pressurized and filled into the container (4) at a temperature of 21 ° C (boiling point) or lower or an absolute pressure of about 200 kPa (about 2 atmospheres). Can be saved.
  • FIG. 2 shows a saturated vapor pressure curve of dinitrogen tetroxide (nitrogen dioxide) that is in chemical equilibrium with the temperature [° C.] on the horizontal axis and the vapor pressure [kPa] on the vertical axis. Represents a liquid state and a gas state, respectively.
  • it is a liquid at point O2 in a state where the container (4) is pressurized and filled with liquid dinitrogen tetroxide at 15 ° C. under atmospheric pressure as indicated by point O1 at an absolute pressure of 200 kPa (about 2 atm).
  • the pressure of the dinitrogen tetroxide filled in the container (4) is increased by the nitrogen gas pressure of the pressurizer (16) connected to the container (4).
  • Dinitrogen tetroxide has the following chemical equilibrium with nitrogen dioxide (NO 2 ).
  • the introduction valve (5) When the introduction valve (5) is opened while the pressure of the storage cavity (2) is reduced by the vacuum pump (3) or the pressure of the storage cavity (2) is kept in vacuum, the liquid nitrous oxide is stored. Nitrogen tetroxide is supplied from the container (4) to the accommodation cavity (2) through the introduction pipe (12) in a pressurized state. For this reason, nitrous oxide does not evaporate between the container (4) and the inlet of the receiving cavity (2), and an accurate amount of liquid nitrous oxide can be supplied. A certain sterilization process is possible by always keeping the dinitrogen oxide at a desired concentration.
  • a spray device (25) for atomizing dinitrogen tetroxide is provided at the entrance of the housing cavity (2). The spray device (25) is a nozzle or a valve.
  • any spraying device (25) capable of adjusting or not adjusting the nozzle hole area can be used.
  • the flow rate of dinitrogen tetroxide supplied to the accommodation cavity (2) is measured by a flow meter (13) disposed in the introduction pipe (12).
  • the flow rate of nitrous oxide can also be calculated from the pressure difference between the liquid container (4) passing through the introduction valve (5) and the containing cavity (2).
  • the pressure and temperature of the housing cavity (2) are measured by the pressure gauge (14) and the thermometer (15) connected to the housing cavity (2).
  • the degree of vacuum of the housing cavity (2) is preferably 0.5 kPa to 80 kPa, which is included in the range of low vacuum (absolute pressure 100 Pa to atmospheric pressure).
  • At least a portion of the nitrous oxide introduced into the housing cavity (2) under negative pressure moves from the point O2 at 15 ° C. and 200 kPa in FIG. And the proportion of nitrogen dioxide increases according to the chemical equilibrium equation.
  • the liquid is instantly vaporized and gaseous nitrogen dioxide is dispersed throughout the containing cavity (2), and instantly enters the details of the medical device (1).
  • Gaseous nitrogen dioxide comes into contact with and adheres to the entire surface, which strongly oxidizes or nitrates the deposits on the surface and sterilizes the medical device (1) quickly and reliably.
  • the sterilization time while maintaining the negative pressure and the predetermined temperature of the housing cavity (2) is several tens of seconds to several tens of minutes depending on the capacity of the housing cavity (2) and the size and quantity of the medical device (1). It selects suitably in the range of.
  • a heater (21) is provided adjacent to or in the introduction pipe (12), the dinitrogen tetroxide introduced into the accommodation cavity (2) is heated to promote vaporization. The rate at which nitrogen dioxide increases can be controlled.
  • the temperature of dinitrogen tetroxide may be controlled in the range of 30 to 50 ° C. or 50 to 80 ° C. by the heater (21).
  • the heater (21) is provided with a housing that surrounds the introduction pipe (12), and a heating medium such as a spiral, fin, coil, or serpentine pipe has a large surface area on the outer surface of the introduction pipe (12).
  • a heating medium such as a spiral, fin, coil, or serpentine pipe
  • the liquid nitrogen oxide passing through the inside of the introduction pipe (12) can be heated by contact with steam or a heating fluid by thermal contact.
  • heating elements such as nichrome wire and film heater provided on the outer surface of the introduction pipe (12) can be used as the heater (21), and a part of the introduction pipe (12) is electrically insulated and insulated.
  • the introduction pipe (12) itself may be used as a heating element by energizing from both ends.
  • an electrode may be installed inside the introduction pipe (12) (in the fluid), and the internal fluid may be directly heated by Joule heat by applying a voltage.
  • dinitrogen tetroxide is introduced into the accommodation cavity (2), but also the dilute gas is accommodated by the gas supply device (17) before, after or simultaneously with the introduction of dinitrogen tetroxide. Can be added to the cavity (2). If a diluting gas is added to the housing cavity (2), the nitrogen dioxide changed from dinitrogen tetroxide can be diluted to reduce the amount of dinitrogen tetroxide to be used and sterilize at low cost.
  • the concentration of nitrogen dioxide can be freely adjusted according to the size, quantity, shape, and material of the medical device (1) to be sterilized placed in the containing cavity (2), and water vapor, oxygen, nitrogen, air
  • an appropriate diluting gas can be selected from one or more of inert gases.
  • the diluting gas not only dilutes nitrogen oxides containing nitrogen dioxide as a main component in the housing cavity (2), but also water vapor adjusts the humidity and oxygen exerts a bactericidal action as an oxidizing agent.
  • the concentration of nitrogen dioxide with respect to the total gas including the dilution gas is, for example, 0.01 to 80% on a volume basis.
  • the vacuum valve (24) is closed, and the gaseous nitrogen oxide in the storage cavity (2) is sucked from the discharge port (6) by the vacuum pump (3) and stored.
  • a cooling device (22) connected to the cavity (2) is passed.
  • the gaseous nitrogen oxide is cooled below the temperature at which the nitrogen oxide used is sufficiently liquefied (arrow B in FIG. 2), and dinitrogen tetroxide is the main component from the drain pipe (23).
  • the liquefied nitrogen oxide is recovered. If nitrogen oxides are cooled at 4 to 10 ° C., liquefied dinitrogen tetroxide can be efficiently recovered.
  • nitrogen gas is introduced into the accommodation cavity (2) from the gas supply device (17), or air is introduced into the accommodation cavity (2) through the return pressure filter (18) by the return pressure valve (7) as a pressure control device.
  • the cleaning operation of sucking with the vacuum pump (3) may be performed again. By repeating this operation, nitrogen oxides remaining in the housing cavity (2) and the medical device (1) can be completely removed.
  • the return pressure filter (18) blocks all bacteria present in the air and supplies sterile air to the housing cavity (2).
  • the drainage valve (20) is opened, and through the discharge port (6) provided at the bottom of the sterilization chamber (10), a liquid nitrogen oxide mainly containing dinitrogen tetroxide is contained (2 ) To the outside.
  • a liquid nitrogen oxide mainly containing dinitrogen tetroxide is contained (2 ) To the outside.
  • the gas introduced to pressurize the housing cavity (2) is not limited to air, and nitrogen gas can also be used.
  • a centrifuging mechanism is provided in the sterilization chamber (10) to forcibly remove the liquefied nitrogen oxide from the medical device (1), and the liquefied nitrogen oxide remaining in the medical device (1) in the containing cavity (2) May be completely removed.
  • the nitrogen oxide is liquefied by increasing the pressure of the housing cavity (2).
  • the temperature of the housing cavity (2) is lowered by a temperature control device (not shown).
  • the nitrogen oxides contained in the accommodation cavity (2) can also be liquefied.
  • a pressure gauge (56) is provided upstream of the introduction valve (5) without providing a flow meter (13). Place. Since the unit time flow rate of liquid nitrogen oxide is determined by the pressure value of the pressure gauge (56) and the inner diameter of the introduction pipe (12), by controlling the opening and closing time of the introduction valve (5) according to the pressure value, the accommodation cavity The supply amount of liquid nitrogen oxide delivered to (2) can be easily and accurately controlled.
  • a sterilization apparatus in which the container (4) is preliminarily filled with liquid nitrogen oxide by a required amount.
  • the introduction valve (5) is opened with the container (4) connected to the accommodation cavity (2) through the introduction pipe (12). By doing so, all the liquid nitrogen oxides are discharged from the container (4). For this reason, a constant amount of liquid nitrogen oxide can always be supplied to the accommodation cavity (2) without performing flow rate control, and the object (1) can be reliably sterilized.
  • the container (4) may be a small cylinder. Further, in this embodiment, the flow meter (13), the pressurizing device (16), and the pressure gauge (56) on the upstream side of the introduction valve (5) are not required.
  • the introduction valve (5) is disposed between the container (4) and the heater (21). However, the introduction valve (5) is introduced between the heater (21) and the accommodation cavity (2). A valve (5) may be provided. Further, the spraying device (25) formed at the inlet of the housing cavity (2) with or without the introduction valve (5) may be used as the valve.
  • Embodiments of the sterilization apparatus and sterilization method according to the present invention applied to the sterilization operation of the clean room (50) and the sterilization operation of the medical device (1) as the sterilization target in the sterilization chamber (50) are shown in FIGS. explain.
  • the sterilization apparatus (40) of the present invention used for the sterilization operation of the clean room (50) includes a container (4) for storing liquid nitrogen oxides, and a space region (cover) in the clean room (50) substantially under atmospheric pressure. Sterilization space (2 ') by injecting and vaporizing nitrogen oxide into the injection device (32) and a predetermined (predetermined) amount of nitrogen oxide from the outlet (37) of the container (4) And a metering pump (34, 34 ') for pumping a predetermined amount of liquid nitrogen oxides toward the injection device (32).
  • the injection device (32) is a nozzle or a valve.
  • substantially under atmospheric pressure is a pressure in the range of 90 kPa to 110 kPa.
  • the liquid nitrogen oxide stored in the container (4) is selected from one or more of dinitrogen tetroxide, dinitrogen trioxide and dinitrogen pentoxide, with nitrous oxide being particularly preferred. Liquid dinitrogen tetroxide alone can produce a highly dispersible gas sterilant by simple pressure operation without mixing other substances.
  • Dinitrogen tetroxide has the above chemical equilibrium formula with respect to nitrogen dioxide (NO 2 ).
  • the metering pump (34, 34 ') is selected from a diaphragm pump, a piston pump, a plunger pump and a tube pump, and a piston pump is particularly preferable.
  • a metering pump pron pump (34)
  • a predetermined amount of liquid nitrogen oxide is accurately weighed and taken out from the outlet (37) at the bottom of the container (4) and accurately weighed liquid nitrogen Oxide is pumped to the injector (32).
  • the pressure value at this time is an absolute pressure of 110 kPa to 50000 kPa immediately before the injection device (2).
  • the pressure is 110 kPa or less
  • the liquid nitrogen oxide is weakly pumped and the injection into the sterilized space (2 ′) is weak, so that the vaporization and dispersion of the nitrogen oxide is insufficient, and the diffusion of the nitrogen oxide is reduced. Slowly the concentration distribution becomes non-uniform.
  • the pressure is higher than 50000 kPa, the cost for producing the injection device (2) suitable for high pressure is high, and the metering pump (34, 34 ') is also enlarged.
  • the injection device (32) has an injection port (32a) whose opening degree (injection hole area) can be adjusted, and injects nitrogen oxide from the injection port (32a) into a clean room (50) at a substantially atmospheric pressure level. Or vaporize by spraying.
  • a popular injection device (32) having an injection port (32a) that cannot change the area of the injection hole can also be used.
  • the concentration of nitrogen oxides becomes uniform and adheres not only to microorganisms and bacteria floating in the clean room (50) but also to the walls and floor of the clean room (50). Sterilized microorganisms and bacteria can be reliably sterilized.
  • a three-way valve (35) having a third port (35c) to be connected is provided.
  • a ball valve having a spherical valve body (45) and a flow path (46) in the valve body (45) and having a simple internal structure and capable of suppressing microbial contamination is used as the three-way valve (35). .
  • the three-way valve (ball valve) (35) is connected to the container (4) with respect to the metering pump (34, '34'), but the suction state is to block communication with the injection device (32), and the piston pump (34) On the other hand, the communication with the container (4) is cut off, but the discharge state with the injection device (32) is switched as necessary.
  • a plunger pump, a diaphragm pump or a rotary tube pump can be used for the metering pump (34, 34 ').
  • a heating device (36) is provided between the metering pump (34, 34 ') and the injection device (32) to heat the liquid nitrogen oxide and inject the nitrogen oxide from the injection device (32). That is, referring to the saturated vapor pressure curve of dinitrogen tetroxide (nitrogen dioxide) in FIG. 7, liquid nitrogen oxide in a state filled with the container (O2 point) is added by a metering pump (34, 34 '). By pressing (arrow A), heating by the heating device (36) (arrow B), and releasing into the clean room (50) under almost atmospheric pressure (arrow C), the vaporization of nitrogen oxide proceeds rapidly, The clean room (50) can be efficiently filled with gaseous nitrogen oxides.
  • the heating device (36) includes a pipe line (36a) through which liquid nitrogen oxide passes and a housing (36b) surrounding the pipe line (36a), and has a spiral shape, a fin shape, a coil shape, and a serpentine shape.
  • a heating medium in the housing (36b) such as steam or a heating fluid is brought into contact with the outer surface having a large surface area of the pipe (36a), etc., and the liquid nitrogen oxide passing through the inside of the pipe (36a) is thermally contacted. Heat. Heating efficiency can be improved by using a spiral pipe (36a) having a large contact area with the heating medium.
  • Heating elements such as nichrome wires and film heaters provided on the outer surface of the pipe line (36a) can also be used as the heating device (36), and part of the pipe line (36a) is electrically insulated and energized from both insulated ends.
  • the pipe (6a) itself may be a heating element.
  • an electrode may be installed inside the pipe line (36a) (in the fluid), and a voltage may be applied to heat the internal fluid directly with Joule heat.
  • the liquid nitrogen oxide is heated to 25 ° C. to 150 ° C. by the heating device (36) and supplied to the spraying device (32).
  • liquid nitrous oxide is stored in the container (4).
  • Dinitrogen tetroxide is a strong oxidizer, but if it is pressurized and filled into the container (4) at a temperature of 21 ° C. (boiling point) or less and an absolute pressure of about 200 kPa (about 2 atmospheres) (FIG. 7, point O1 ⁇ Point O2) can be safely stored in a liquid state.
  • the clean room (50) to be sterilized is kept sealed so that nitrogen oxides do not leak outside.
  • a predetermined (predetermined) amount of liquid dinitrogen tetroxide is sucked into a metering pump (piston pump) (34) from an outlet (37) formed at the bottom of the container (4), and the piston pump (
  • the liquid nitrous oxide is temporarily stored in the variable volume part (cylinder) (34a) of 34) and is accurately and quickly measured.
  • the three-way valve (35) communicates with the container (4) with respect to the communication state between the first port (35a) and the second port (35b), that is, the metering pump (34, 34 '). Is in a suction state that interrupts communication with the injection device (32).
  • the communication state between the second port (35b) and the third port (35c), that is, the communication with the container (4) to the metering pump (34, 34 ') is cut off, but the injection device ( 32)
  • the three-way valve (35) is switched to a discharge state in communication with (3), the liquid dinitrogen tetroxide temporarily stored in the metering pump (34, 34 ') is pumped (arrow A in FIG. 7), and the heating device ( According to 36), dinitrogen tetroxide is supplied to the injection device (2) while heating (arrow B).
  • a predetermined amount of dinitrogen tetroxide pumped from the metering pump (34, 34 ') is sterilized space (2') in the clean room (50) from the injection port (32a) of the injection device (32). (Arrow C in FIG. 7). Since the space to be sterilized (2 ′) of the clean room (50) is substantially atmospheric pressure, the pressurized and heated liquid dinitrogen tetroxide is rapidly vaporized and dispersed in the clean room (50). .
  • the dispersed gaseous nitrogen oxides are a mixture of dinitrogen tetroxide and nitrogen dioxide.
  • the amount of nitrogen oxides supplied to the sterilized space (3) of the clean room (50) can be strictly measured and managed by the metering pump (34, 34 ').
  • the nitrogen oxide concentration of ') can be kept constant at all times.
  • the state in which nitrogen oxides are present is maintained for several minutes to several hours, and microorganisms and bacteria floating in the clean room (50) or adhering to the wall surface are completely killed.
  • the liquid nitrogen oxide staying in the pressure feeding pipe (38) between the three-way valve (35) and the injection device (32) is returned to the container (4). That is, when the metering pump (34, 34 ') is sucked in a state where the metering pump (34, 34') and the injection device (32) communicate with each other, the nitrogen oxide in the pressure feeding pipe (38) is converted into the metering pump (34, 34). ') Is accommodated in the cylinder (34a).
  • the three-way valve (35) is switched to a state where the metering pump (34, 34 ') and the container (4) communicate with each other, and the nitrogen oxide in the cylinder (34a) is sent toward the container (4).
  • cleaning gas nitrogen gas or air
  • nitrogen oxides in the clean room (50) are removed by ventilation.
  • the nitrogen oxide is removed by the filter (41) through the discharge pipe (39) connected to the clean room (50), and the cleaning gas is continuously supplied to the clean room (50) to remove the nitrogen oxide by the filter (41). If removed, nitrogen oxides can be completely removed from the clean room (50).
  • the sterilization process of the clean room (50) is exemplified, but the present invention is not limited to the clean room, and can be applied to a clean booth, an isolator, a hospital room, and an operating room.
  • the target medical device (1) or pharmaceutical container is arranged.
  • medical devices (1) include surgical instruments such as scalpels, forceps, scissors, and tweezers, flexible and rigid endoscopes, thermometers, stethoscopes. Diagnostic instruments such as ophthalmoscopes and otoscopes, therapeutic instruments such as catheters, syringes and medical tubes, pacemakers, implantable aggregates, surgical devices such as surgical bolts, etc.
  • a lid (not shown) is attached to the space to be sterilized (2 ′′) in which the medical device (1) is arranged, and the space to be sterilized (2 ′′) is held in a sealed state.
  • the pressure of the space to be sterilized (2 ′′) in the sterilization chamber (60) is almost atmospheric pressure.
  • Liquid nitrogen oxides are pumped from the sterilizer (40) by the same method as in the fifth embodiment. Nitrogen oxide is released from the spray device (32) disposed in the sterilization chamber (60) into the sterilized space (2 ′′). The released nitrogen oxides are vaporized and dispersed in the space to be sterilized (2 ") to sterilize the medical device (1). Gaseous nitrogen oxides are instantaneously dispersed in the space to be sterilized (2") Therefore, the surface of the medical device (1) having a complicated shape can be quickly and completely sterilized by diffusing to the details of the medical device (1).
  • the amount of liquid nitrogen oxide supplied to the sterilization chamber (60) using the metering pump (34, 34 ') can be strictly controlled, the quantity, size, material, The supply amount of nitrogen oxides can be appropriately selected according to the degree of contamination.
  • the three-way valve (35) that connects and shuts off the container (4), the metering pump (34, 34 ') and the injection device (32) is used.
  • a pair of two-way valves (47a, 47b) are used. That is, a suction valve (47a) is provided between the container (4) and the metering pump (34, 34 '), and a delivery valve (47b) is provided between the metering pump (34, 34') and the injection device (2). Is provided.
  • the container (4) In the suction state where the intake valve (47a) is opened and the delivery valve (47b) is closed, the container (4) is contacted but communication with the injection device (32) is interrupted, and liquid nitrogen oxides are removed from the container (4). The nitrogen oxide sucked and sucked is temporarily stored in the metering pump (34, 34 '). On the other hand, in the suction state where the suction valve (47a) is closed and the delivery valve (47b) is opened, the communication with the container (4) is cut off, but the communication with the injection device (32) is made, and the metering pump (34, 34 ') The accommodated nitrogen oxide is pumped to the injection device (32).
  • diaphragm valves that use the reciprocating motion of the diaphragm (49) are used as the suction valve (47a) and the delivery valve (47b), but are not particularly limited. By alternately switching the opening and closing operations of the suction valve (47a) and the delivery valve (47b), the suction state and the discharge state can be switched.
  • the piston pump (34) that temporarily stores and measures liquid nitrogen oxide is used as the metering pump.
  • the pump (34 ′) nitrogen oxide is directly fed from the container (4) to the injection device (32).
  • the tube pump (34 ') has a flow rate proportional to the amount of rotation of the rotating body (34a'), and can pump a fixed amount.
  • the piston pump (34), the tube pump (34 '), the three-way valve (35), the suction valve (47a) and the delivery valve (47b) are not used, but the container (4 ) And a space to be sterilized (2 ′), an introduction valve (55) is provided in the pressure feeding pipe (38), and a pressure gauge (56) is disposed upstream of the introduction valve (55). Since the unit time flow rate of liquid nitrogen oxide is determined by the pressure value of the pressure gauge (56) and the inner diameter of the pressure feed pipe (38), by controlling the opening and closing time of the introduction valve (55) according to the pressure value, The supply amount of liquid nitrogen oxide delivered to the space (2 ′) can be controlled easily and accurately.
  • the tenth embodiment shown in FIG. 12 shows a sterilization apparatus in which a container (4) is preliminarily filled with liquid nitrogen oxide by a required amount.
  • the introduction valve (55) is opened with the container (4) connected to the space to be sterilized (2 ′) through the pressure feeding tube (38).
  • the container (4) may be a small cylinder.
  • the piston pump (34), the tube pump (34 '), the three-way valve (35), the suction valve (47a) and the delivery valve (47b) are not required.
  • the introduction valve (55) is arranged between the container (4) and the heating device (36), but the heating device (36) and the space to be sterilized (2 ') An introduction valve (55) may be provided between them. Further, the spray mist device (32) formed at the inlet of the sterilized space (2 ') with or without the introduction valve (55) may be used as the valve.
  • SCBI Self-Contained Biological Indicator
  • SCBI is a sterilization test kit in which a filter paper with attached microorganism spores and a glass capsule containing a culture solution are housed in a small test tube and sealed with aeration filter paper.
  • liquid dinitrogen tetroxide (N 2 O 4 ) having a pressure higher than atmospheric pressure is introduced into the storage cavity (2) and vaporized by the spraying device (25). I let you.
  • the return pressure valve (7) is opened and clean air is introduced to maintain the nitrous oxide concentration in the containing cavity (2) at 8500 ppm (16.54 mg / L) for 20 minutes for sterilization. Processed.
  • Test result 1 The sterilization SCBI showed no change, indicating that the microorganisms were not growing, and it was confirmed that the sterilization was sufficiently performed. On the other hand, non-sterilized SCBI showed discoloration, and it was confirmed that microorganisms were growing without being sterilized.
  • Sterilization test 2 SCBI (Self-Contained Biological Indicator) was placed in the space to be sterilized (2 '2 ") in a glass chamber of about 8L (20cm x 20cm x 20cm). SCBI was cultured with filter paper to which microbial spores were attached. This is a sterilization test kit in which a glass capsule containing liquid is housed in a small test tube and sealed with aeration filter paper. The metering pump (34, 34 ') for the space to be sterilized (2' 2 ") where SCBI is placed Then, liquid dinitrogen tetroxide (N 2 O 4 ) was supplied at a pressure higher than atmospheric pressure and vaporized by the injection device (32). Sterilization was performed by maintaining the nitrous oxide concentration in the space to be sterilized (2 ′ 2 ′′) at 18500 ppm (36.28 mg / L) for 20 minutes.
  • N 2 O 4 liquid dinitrogen tetroxide
  • the SCBI was taken out from the space to be sterilized (2'22 "), and dinitrogen tetroxide was removed from the SCBI small test tube by pressure operation.
  • the glass capsule was broken in the small test tube and the filter paper was cultured.
  • the sterilized SCBI was immersed in a liquid and cultured in an incubator at 58 ° C. for about 24 hours (sterilization SCBI), while SCBI that was left in the atmosphere for 20 minutes without sterilization was also similar.
  • the cells were cultured in an incubator at 58 ° C. for about 24 hours (non-sterilized SCBI).
  • Test result 2 The sterilization SCBI showed no change, indicating that the microorganisms were not growing, and it was confirmed that the sterilization was sufficiently performed. On the other hand, non-sterilized SCBI showed discoloration, and it was confirmed that microorganisms were growing without being sterilized.
  • the present invention can be applied to sterilization of medical equipment, precision machinery, electronic parts, pharmaceutical raw materials, pharmaceutical containers, foods, food raw materials, food containers, and all other microbial adherents.
  • the present invention can also be applied to the beverage field and the pharmaceutical field dealing with microorganisms.
  • the sterilization apparatus and sterilization method according to the present invention can be applied not only to the fields of pharmaceutical, medical and food, but also to the sterilization of the electronics industry and the precision machinery industry centering on semiconductors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nutrition Science (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

 窒素酸化物により空間及び対象物を安全に滅菌する。容器(4)に収容された液体の窒素酸化物を空間領域(2, 2', 2")に導入し気化させる過程と、空間領域(2, 2', 2")又は空間領域(2, 2', 2")に配置された対象物(1)を気体の窒素酸化物により滅菌する過程とを含み、細菌及びウイルスを含む微生物を窒素酸化物により完全に死滅及び破壊して、微生物の感染及び精密部品の損傷を防止することができる。

Description

窒素酸化物による滅菌法及び滅菌装置
 本発明は、窒素酸化物を使用して微生物付着体を無菌化する滅菌法及び滅菌装置に関連する。本発明はまた、窒素酸化物を使用して空間領域又は空間領域内に配置された微生物付着体を無菌化処理する滅菌装置及び滅菌法に関連する。
 医療及び研究の分野では、微生物で汚染された使用後の医療機器又は試験器具を滅菌して再使用するとき、一般にオートクレーブ(高圧蒸気滅菌器)を用い前記器具の滅菌処理が行われる。オートクレーブ滅菌では、例えば、使用後の医療機器を圧力チャンバ内に配置し、水分存在下、加圧加温して圧力チャンバ内に医療機器を数十分間保持し、高温の加水分解反応によって微生物を構成する生体高分子を分解して全細菌類を死滅させる滅菌処理が採用される。130℃まで加温するオートクレーブ滅菌では、ゴム等の耐熱性の低い材料で構成される器具を滅菌できず、また、樹脂材料で構成される器具を滅菌すると、ヒートサイクルにより器具が物理的に膨張と収縮を繰り返して、約2気圧の加圧水蒸気が樹脂の隙間内に浸入し、このため、反復滅菌操作により樹脂の劣化が促進される。
 これに対し、エチレンオキサイド(C24O)ガス(EOG)を用いる滅菌では、オートクレーブ滅菌より低い温度、低い圧力かつ低い湿度で滅菌できるので、耐熱性及び耐水性の低いゴム、樹脂を滅菌することができる。しかしながら、エチレンオキサイドガスは、反応性に富み、加圧により引火及び爆発の危険があり、取扱いが非常に厄介な上、人体への毒性が強く、吸引すると上気道の粘膜刺激、嘔吐、頭痛等の症状を起こし、DNAを損傷する発癌性物質にも成り得るため、米国薬局方(United States Pharmacopeia:USP)でも使用規制が強化され、代替物質のニーズが高まっている。
 加熱及び加圧が必要なくかつ比較的取扱いの容易な滅菌剤として、窒素酸化物が注目されている。窒素酸化物は、一酸化窒素(NO)、二酸化窒素(NO2)、亜酸化窒素(一酸化二窒素)(N2O)、三酸化二窒素(N23)、四酸化二窒素(N24)及び五酸化二窒素(N25)等、窒素と酸素からなる化合物の総称である。特許文献1は、NO、NO2、NO3、N23、N24、N25、N2O及びこれらの混合物の一種以上の窒素酸化物を含む滅菌剤ガスに、対象物の医療用具を曝露して医療用具を滅菌又は除染するシステムを開示する。滅菌剤ガス発生組成物から窒素酸化物ガスを発生させて、密閉された滅菌室内に収容される対象物は、窒素酸化物ガスにより滅菌される。
 特許文献2は、滅菌処理の密閉空間を形成する滅菌室と、窒素酸化物ガスを生成する大気圧プラズマ発生部とを備え、大気圧プラズマ発生部から触媒部を介して滅菌室に二酸化窒素ガスを導入し、滅菌対象物のメス、鉗子、カテーテル等の医療用器具又は包装シート、トレイ、ボトル等の食品包装材を二酸化窒素ガスに曝露して滅菌処理を行う滅菌装置を開示する。大気圧プラズマ発生部は、マイクロ波供給装置と、マイクロ波供給装置からマイクロ波エネルギが印加されて原料ガスをプラズマ化するプラズマノズルとを備える。特許文献2では、原料空気中の窒素と酸素とをプラズマ化し窒素酸化物ガスを生成する。
 特許文献1では、滅菌剤ガス発生組成物のジアゼニウムジオレート化合物(R3-C(R1)x(N222)y)とシュウ酸とをガス発生室内で反応させて、又はその他の滅菌剤ガス発生組成物と酸とを反応させて、窒素酸化物ガスを発生させる。即ち、ガス発生室内で複数の物質を混合して滅菌室に窒素酸化物ガスを供給するため、ガス発生室内での反応条件を適切に制御しなければ、滅菌室に供給される窒素酸化物の濃度が不安定となり、対象物を十分に滅菌できないおそれがある。逆に、過剰量の窒素酸化物が供給されると、滅菌後の医療機器に窒素酸化物が高濃度で付着残留して安全上好ましくない。また、一回の滅菌毎に、固体である滅菌剤ガス発生組成物と酸とを混合する操作が必要になれば、実際の医療現場での医療機器の滅菌に使用することは現実的に難しい。更に、酸の使用は、運搬及び保管を含む取扱いに危険を伴う。
 プラズマ化して窒素酸化物ガスを得る特許文献2の滅菌装置では、空気中の窒素と酸素を原料として使用するため、原料の運搬及び保管の危険性は無いが、窒素酸化物ガスを発生する生成効率が非常に低い。このため、所望量の窒素酸化物ガスを発生させて滅菌室内を充満させ滅菌を開始するまでの準備過程のみならず、滅菌室内の窒素酸化物濃度を保持して対象物の滅菌を完了するまでの滅菌過程に相当の時間とエネルギコストを必要とする。また、特許文献2の装置では、プラズマ発生部で生成した窒素酸化物を触媒部により滅菌性の高い二酸化窒素に変換する必要があり、触媒として使用される白金又はパラジウムにより滅菌装置の製造価格が高額となる。
 更に、特許文献1及び2並びにその他の従来の滅菌法では、滅菌処理を終了した後、滅菌剤を効率良く滅菌室から回収する方法について検討及び研究が皆無であった。このため、医療機器の形状及び滅菌剤の濃度によっては、滅菌後の医療機器から有毒な滅菌剤成分を完全に除去できないおそれがあり、滅菌剤成分が残留する医療機器を再使用することは、安全上大きな問題であった。
 医薬品製造の分野では、細菌、微生物及び塵埃の混入を防止してほぼ無菌状態に保持されるクリーンルーム、クリーンブース、アイソレータ等の滅菌室を使用し、医薬品の研究、製造、検査が行われている。クリーンルーム内では、浮遊粒子濃度が制御され、室内への微小粒子の流入、生成及び停滞を最小限に抑え、温度・湿度・圧力が必要に応じて制御される20~300m3程度の規模の部屋が形成される。クリーンブースは、局所作業環境の清浄化を目的に開発された2~30m3程度の簡易型クリーンルームを形成する。アイソレータは、装置内の空気と外気を遮断し、透明の前面部材に設けられたゴム手袋により外部から手で内部の操作を行える2~20m3程度の大型容器である。
 クリーンルーム内の空気は、吸引され又は送風により循環させて浮遊微粒子がフィルタで除去され、クリーンルーム内は、ほぼ無菌化状態に維持される。このように、基本的に、浮遊微粒子を排除すれば、微生物、細菌類も排除でき、クリーンルーム内の微生物汚染を予防できる。しかしながら、実際には、フィルタによる微粒子の除去のみでは、クリーンルームの隅に停滞する空気中に含まれる細菌類を充分に除去することはできず、また、壁面及び床面に付着する微生物等の汚染物質を吸引し又は送風によりフィルタで除去することはできない。このため、クリーンルーム内を定期的に滅菌処理する必要がある。
 クリーンルーム等の被滅菌物の滅菌処理技術として、滅菌ガスであるホルムアルデヒド、過酸化水素(H22)又はオゾン(O3)を用いるガス滅菌法が知られている。ガス滅菌では、ガス製造装置又はガスボンベから、滅菌ガスを滅菌室内に供給し充満させて、一定時間保持し、これにより、滅菌室内の空気中に浮遊し又は壁に付着する微生物、細菌類を死滅させることができる。
 他方、微生物で汚染された使用後の医療機器を再使用する際にも、ガス滅菌が用いられる。医療機器の滅菌では、一般的にオートクレーブ(高圧蒸気滅菌器)を使用するが、約130℃まで加温するオートクレーブ滅菌では、ゴム等の熱に弱い材料に使用できず、また、樹脂製器具の滅菌でも、約2気圧の加圧水蒸気が樹脂の隙間に浸入して、反復する滅菌操作により樹脂の劣化が助長される。このため、特に、高温及び加圧に弱い医療機器の滅菌にガス滅菌が有効である。
 医療機器のガス滅菌では、エチレンオキサイドガス(EOG)を使用することが多い。エチレンオキサイドは、エーテル臭を有する無色透明な物質で20℃前後では気体となる。滅菌用のエチレンオキサイドガスは炭酸ガスで希釈され、エチレンオキサイド約20%、炭酸ガス約80%の混合ガスで高圧容器に充填される。高圧容器からクリーンルーム又は医療機器を配置した滅菌チャンバの空間領域にエチレンオキサイドを含む混合ガスが供給され、空間領域のエチレンオキサイドガス濃度が一定時間保持され、医療機器が滅菌される。
 また、空間領域を無菌化する方法として、特許文献3の過酸化水素によりアイソレータを滅菌するシステムが知られる。特許文献3のシステムは、滅菌ガス供給手段と、滅菌ガス供給手段とアイソレータとを接続するガス通路とを備え、滅菌ガス供給手段は、液体の過酸化水素を蒸発させる蒸発器と、蒸発器に液体の過酸化水素を滴下する注入器と、蒸発器に送風される空気を加熱するヒータとを有し、気化した過酸化水素によりアイソレータ内を滅菌する。
 引用文献2は、オゾン滅菌装置により、滅菌エリア内の被滅菌物(医療機器、薬品容器等)を滅菌処理する装置を開示する。即ち、被滅菌物に対しオゾンガスを一定時間曝露し、エアレーションラインから空気を導入して、滅菌エリア内部のオゾンを換気する。
 エチレンオキサイドガスは、人体への毒性が強く、上気道の粘膜刺激、嘔吐、頭痛を引き起こし、DNAを損傷する発癌性物質となることもある。このため、滅菌操作後に残留したエチレンオキサイドガスを吸引することは健康上に好ましくない。
 特許文献3のアイソレータシステムでは、沸点が141℃の過酸化水素をヒータで加熱し気化させて使用するため、大きなエネルギーが必要であると共に、気化された過酸化水素の蒸気は非常に高温であり、アイソレータ内に熱に弱い材料(ゴム、樹脂)を含む場合、材料が変性及び劣化するおそれがある。特許文献3のシステムでは、過酸化水素の供給量を正確に制御できず、過剰量供給の場合、アイソレータ内の金属部分の腐食、滅菌後の過酸化水素残留を招き、過酸化水素の供給量が少ない場合、アイソレータ内の微生物、細菌類を完全に死滅させることができない。更に、過酸化水素は、反応性が高く、常温でも激しく分解し、特に高濃度では、自己分解により発火及び爆発のおそれがあり、皮膚に付着すると痛みをともなう白斑が生じるため、収容、運搬等の取り扱いが非常に厄介な物質である。金属に対する腐食性も非常に高い。
 特許文献4に示すオゾン滅菌装置では、常圧ではなく負圧状態に滅菌エリア内を調節した後、オゾンを滅菌エリアに供給する。また、空気を原料としてオゾンを生成するため、オゾンの生成効率が低く、大容積の滅菌エリア内部を所定濃度のオゾンで充満させるのに長時間要すると共に、オゾン生成量を厳密に制御することができず、滅菌エリア内のオゾン濃度を正確に管理することができない。オゾンは、常温では徐々に分解が進み化学的に不安定であるため、使用直前に現場でオゾンを発生させなければならず、オゾン発生器が必要である。このため、滅菌システム全体が大型化すると共に、イニシャルコスト、電気代を含むランニングコストが増大する。更にオゾンは、強力な酸化力を有するため、高濃度では猛毒であり吸引すると内臓が酸化され糜爛(びらん)状になり、非常に危険な物質である。
 窒素酸化物を滅菌剤として用いる特許文献1では、前記の通り、ガス発生室内で複数の物質を混合して空間領域に窒素酸化物ガスを供給するため、正確な窒素酸化物ガスの発生量を把握及び管理することができず、空間領域に供給される窒素酸化物の濃度が不安定となり、医療用具を十分に滅菌できないおそれがある。逆に、過剰量の窒素酸化物が供給されると、滅菌後の医療用具に窒素酸化物が高濃度で付着残留して安全上好ましくない。また、一回の滅菌毎に、固体である滅菌剤ガス発生組成物と酸とを混合する操作が必要になれば、実際の医療現場でクリーンルーム又は医療用具の滅菌に使用することは現実的に難しい。更に、酸の使用は、運搬及び保管を含む取扱いに危険を伴う。
特表2009-542333 特開2011-4802 特開2006-68122 特開2001-340432
 そこで本発明は、窒素酸化物により安全に微生物付着体を滅菌できる滅菌法及び滅菌装置を提供することを目的とする。また、本発明は、あらゆる形状の滅菌対象物を迅速にかつ確実に滅菌できる滅菌法及び滅菌装置を提供することを目的とする。更に、本発明は、滅菌対象物に有害な滅菌剤成分が残留せずかつ滅菌操作後、効率良く滅菌剤を回収できる滅菌法及び滅菌装置を提供することを目的とする。
 本発明は、ほぼ大気圧下の空間領域内に浮遊する微生物及び空間領域内の滅菌対象物を安全に滅菌する滅菌装置及び滅菌法を提供することを目的とする。また、本発明では、滅菌剤原料として液体の窒素酸化物を用い、取扱いが容易でかつ安全な滅菌装置及び滅菌法を提供することを目的とする。更に、本発明は、迅速にかつ一定濃度で滅菌剤を生成し空間領域の微生物及び空間領域内の滅菌対象物を確実に滅菌できる滅菌装置及び滅菌法を提供することを目的とする。また、本発明は、大型の滅菌剤発生装置が不要でコンパクトかつ安価な滅菌装置及び滅菌法を提供することを目的とする。
 本発明の窒素酸化物による滅菌法は、空間領域(2)に対象物(1)を配置する過程と、空間領域 (2)を密閉状態に保持して減圧装置(3)により空間領域(2)を減圧する過程と、液体の窒素酸化物を収容する容器(4)から減圧状態又は真空状態の空間領域(2)に液体の窒素酸化物を導入し気化させる過程と、空間領域(2)で気体の窒素酸化物により対象物(1)を滅菌する過程とを含む。
 窒素酸化物の飽和蒸気圧曲線以下の圧力の減圧状態又は真空状態の空間領域(2)に容器(4)から液体の窒素酸化物を導入すると、窒素酸化物の少なくとも一部は、空間領域(2)で液体から気体に気化する。酸化力の強い窒素酸化物ガスは、瞬時に空間領域(2)に分散しかつ対象物(1)の細部まで拡散して、複雑な形状の対象物(1)の表面を迅速にかつ完全に滅菌することができる。本明細書では、「滅菌」とは、増殖性のあるあらゆる微生物(主に細菌類)を完全に殺滅若しくは除去する無菌状態、又は微生物が生育できる可能性を限りなくゼロに近づける状態、即ち、滅菌後に微生物等が存在する確率を示す指標である無菌性保証水準(Sterility Assurance level:SAL)が、10-6以下となる状態をいう。従って、病原微生物の能力を減退させるが全ての微生物を殺す意味ではない「消毒」、菌を殺すことであるが殺す対象及び程度を含まない「殺菌」とは異なる。「滅菌」は、分子生物学又はバイオテクノロジーにおいて、微生物の機能を完全に不活化することが求められる。また、本発明では、細菌の死骸であるエンドトキシンも有効に除去して、滅菌より更に高度処理の脱パイロジェン処理も行うことが可能である。
 また、負圧下の空間領域(2)に液体の窒素酸化物を導入し気化させて滅菌するので、複数物質の混合並びに高価なプラズマ発生装置及び触媒金属を必要とせずに、安定な濃度で窒素酸化物を空間領域(2)に供給することができる。更に、常温及び常圧下で液体の窒素酸化物を用いれば、窒素酸化物を貯蔵する高耐圧タンクを必要とせず、取扱いが容易であり滅菌剤の運搬及び維持費を大幅に低減することができる。
 本発明の滅菌法は、液体の窒素酸化物を収容する容器(4)を定量ポンプ(34, 34’)に接続する過程と、定量ポンプ(34, 34’)により容器(4)から所定の量の液体の窒素酸化物を吸引し、その後吸引した液体の窒素酸化物を実質的に大気圧下の空間領域(3, 3’)に圧送する過程と、噴射装置(2)により液体の窒素酸化物を空間領域(3, 3’)に噴射又は噴霧して気化させる過程とを含む。
 本発明の窒素酸化物による滅菌装置は、液体の窒素酸化物を収容する容器(4)と、容器(4)に接続されかつ対象物(1)を収容して密閉状態に保持可能な空間領域(2)と、空間領域(2)を減圧する減圧装置(3)とを備える。減圧装置(3)により減圧状態又は真空状態に保持される空間領域(2)に容器(4)から窒素酸化物を導入し気化して、空間領域(2)の対象物(1)を有効に滅菌することができ、しかも、滅菌装置を比較的簡易に製造できる。
 本発明の滅菌装置は、実質的に大気圧下に保持される空間領域(2’, 2”)と、液体の窒素酸化物を収容しかつ密閉可能な容器(4)と、容器(4)内から空間領域(2’, 2”)に加圧して所定の量だけ供給される液体の窒素酸化物を噴射又は噴霧して気化させる噴射装置(32)とを備える。本発明では、酸化力の強い窒素酸化物の液体を定量ポンプ(34, 34’)により予め決められた量だけ容器(4)から噴射装置(32)に圧送し、噴射装置(32)から実質的に大気圧下の空間領域(2’, 2”)内に液体の窒素酸化物を放出して瞬時に気化させる。気化された窒素酸化物は、例えばクリーンルーム(50)の空間領域(3)全体にガスとして分散されかつ拡散して、空間領域(2’, 2”)を所定濃度に保持し、空間領域(2’, 2”)全体を迅速かつ効率良く無菌化する。また、例えば、滅菌チャンバ(30)内の空間領域(2’, 2”)に配置される医療機器(1)等の滅菌対象物を無菌化処理する場合、気化された窒素酸化物は、滅菌対象物(1)の全表面に接触し滅菌対象物(1)を滅菌する。
 本明細書では、「滅菌」は、全種の増殖性微生物(主に細菌類)を完全に滅却する処理又は微生物の生育可能性が零の完全な無菌状態に収斂する処理、即ち、滅菌後の微生物等の存在確率指標:無菌性保証水準(Sterility Assurance level:SAL)を10-6以下に低減する処理をいい、分子生物学又はバイオテクノロジーでは、「滅菌」は、微生物の機能を完全に不活化することが求められる。従って、「滅菌」は、病原微生物の能力を減退させるが全微生物を殲滅する意味ではない「消毒」や、一部の菌を消滅させるが、消滅する菌の対象及び程度を含まない「殺菌」とは異なる。また、本発明では、細菌の死骸であるエンドトキシンも有効に除去して、滅菌より更に高度処理の脱パイロジェン処理も行うことができる。
 また、常温で僅かな圧力を加えて容器(4)内に液体の窒素酸化物を収容できるので、高耐圧の容器を使用せずに、安全かつ簡易に容器(4)内に液体の窒素酸化物を収容し、取り出して使用することができる。このため、気体の滅菌剤に比べて、液体の窒素酸化物の運搬費と維持費を大幅に低減し、更に、小型かつ安価な滅菌装置を得ることができる。
 本発明では、滅菌対象物に付着する細菌及びウイルスを含む微生物を窒素酸化物により完全に死滅及び破壊して、微生物の感染及び精密部品の損傷を防止することができる。また、複数物質を混合しない液体の窒素酸化物を効率良く負圧下の空間領域に導入するので、予め決められた濃度でかつ安全に窒素酸化物を供給できかつ滅菌操作に要する時間及びエネルギコストを低減できる。また、滅菌処理後、効率良く窒素酸化物を除去して滅菌対象物に窒素酸化物成分が残留しないので、滅菌された器具を安全に再使用できる。
 本発明による滅菌装置及び滅菌法は、滅菌室に窒素酸化物を導入して空間領域に浮遊し、又は空間領域の対象物(例えば医療機器)に付着する細菌及びウイルスを含む微生物を完全に死滅及び破壊して、微生物及び細菌由来の感染症、精密部品の損傷を防止することができる。また、複数物質を混合せずに比較的安全な液体の窒素酸化物を正確に計量して、効率良く窒素酸化物をほぼ大気圧下の滅菌室内に導入するので、安定な濃度でかつ安全に窒素酸化物を供給すると共に、滅菌操作に要する時間及びエネルギコストを低減できる。更に、オゾン発生器、プラズマ装置等、滅菌剤を発生させる装置が不要なため、装置全体を小型化できると共に、初期及び稼動コストを低減することができる。
本発明による滅菌装置の第1の実施の形態を示す概略図 四酸化二窒素(二酸化窒素)の飽和蒸気圧曲線を示すグラフ 本発明による滅菌装置の第2の実施の形態を示す概略図 本発明による滅菌装置の第3の実施の形態を示す概略図 本発明による滅菌装置の第4の実施の形態を示す概略図 本発明による滅菌装置の第5の実施の形態を示す概略図 四酸化二窒素(二酸化窒素)の飽和蒸気圧曲線を示すグラフ 本発明による滅菌装置の第6の実施の形態を示す概略図 二方弁を使用する本発明による滅菌装置の第7の実施の形態を示す概略図 チューブポンプを使用する本発明による滅菌装置の第8の実施の形態を示す概略図 本発明による滅菌装置の第9の実施の形態を示す概略図 本発明による滅菌装置の第10の実施の形態を示す概略図
 (1)・・対象物(医療機器)、 (2, 2’, 2”)・・空間領域(収容空洞、被滅菌空間) (3)・・減圧装置(真空ポンプ)、 (4)・・容器、 (6)・・排出口、 (7)・・圧力制御装置(復圧弁) (25, 32)・・噴射装置(噴霧装置)、 (32a)・・噴射口、 (34, 34’)・・定量ポンプ、 (34a)・・可変容積部、 (35)・・弁装置(三方弁)、 (36)・・加熱装置、 (36a)・・管路、 (37)・・出口、 (47a)・・弁装置(吸引弁)、 (47b)・・弁装置(送出弁)、
 本発明の窒素酸化物による滅菌法及び滅菌装置を医療機器の無菌化操作に適用した実施の形態を図1~図5について以下説明する。
 図1に示すように、滅菌チャンバ(10)内に形成される空間領域(収容空洞)(2)に無菌化すべき対象物の医療機器(1)が配置される。金属、プラスチック、ゴム等、窒素酸化物に対して劣化しないあらゆる材料の医療機器(1)に本発明を適用でき、医療機器(1)は、例えばメス、鉗子、ハサミ、ピンセット等の手術用器具、軟性及び硬性内視鏡、体温計、聴診器、検眼鏡、耳鏡等の診断用器具、カテーテル、注射器、医療用チューブ等の治療用器具、ペースメーカ、埋込み用骨材、手術用ボルト等の埋込み用医療機器を含む。無菌化すべき対象物(1)は、プラスチック容器、ガラス容器、バイアル、スプレー容器、アルミチューブ、ゴム栓、エラストマー樹脂製部品、注射針等の医薬品容器を含む。事前滅菌だけでなく、使用直前に滅菌する用時滅菌にも本発明を適用できる。医療機器(1)を配置した収容空洞(2)に図示しない蓋を装着し、収容空洞(2)を気密に閉鎖して、収容空洞(2)の密閉状態が保持される。
 医療機器(1)を収容する滅菌チャンバ(10)内の収容空洞(2)には、滅菌チャンバ(10)に設けられる排出口(6)と排出口(6)に連結される吸引管(11)とを通じて真空ポンプ(減圧装置)(3)が接続され、真空弁(24)が開状態のとき、真空ポンプ(3)により、収容空洞(2)のガス(気体)を吸引して収容空洞(2)が減圧される。真空ポンプ(3)に接続される除去フィルタ(19)により、吸引気体中の細菌類を濾過して細菌類が除去された後、大気中に吸引気体を放出することが好ましい。導入管(12)及び導入弁(5)を介して、液体の四酸化二窒素(N24)を含む容器(4)が収容空洞(2)に連結される。四酸化二窒素は、強酸化剤であるが、21℃(沸点)以下の温度又は絶対圧200kPa(約2気圧)程度の圧力で容器(4)に加圧充填すれば、液体の状態で安全に保存することができる。図2は、横軸の温度[℃]と縦軸の蒸気圧[kPa]との特性で化学平衡となる四酸化二窒素(二酸化窒素)の飽和蒸気圧曲線を示し、曲線より上及び下では、それぞれ液体状態及び気体状態を表す。例えば、点O1で示す大気圧下15℃の液体の四酸化二窒素を絶対圧200kPa(約2気圧)で容器(4)に加圧充填した状態の点O2では液体である。容器(4)に接続される加圧装置(16)の窒素ガス圧力により、容器(4)内に充填される四酸化二窒素の圧力を上昇させる。四酸化二窒素は、二酸化窒素(NO2)に対し下式の化学平衡が成り立つ。
 N24 = 2NO2-57.2kJ
 化学平衡式では、一定温度で圧力を上昇させると反応が左側に進行して四酸化二窒素の割合が増加する。逆に、圧力を降下させると右側に反応が進行して二酸化窒素の割合が増加する。四酸化二窒素自体は、無色であるが、化学平衡を通じて二酸化窒素に由来する色、即ち気体では赤褐色、液体では黄色に呈する。本発明では、四酸化二窒素のみならず三酸化二窒素及び五酸化二窒素を液体の窒素酸化物として使用でき、また、四酸化二窒素、三酸化二窒素及び五酸化二窒素を2種以上組み合わせて使用することもできる。
 真空ポンプ(3)により収容空洞(2)を減圧しながら又は収容空洞(2)の圧力を真空に保持する状態で、導入弁(5)を開弁すると、液体の四酸化二窒素を収容する容器(4)から導入管(12)を介して加圧状態で四酸化二窒素が収容空洞(2)に供給される。このため、容器(4)と収容空洞(2)の入口との間で四酸化二窒素が気化することがなく、正確な量の液体四酸化二窒素を供給でき、収容空洞(2)の四酸化二窒素を常に所望の濃度に保持して確実な滅菌処理が可能となる。収容空洞(2)の入口には、四酸化二窒素を霧化する噴霧装置(25)が設けられる。噴霧装置(25)は、ノズル又は弁である。噴孔面積を調整できるもの又は調整できないもの、何れの噴霧装置(25)も使用可能である。収容空洞(2)に供給される四酸化二窒素の流量は、導入管(12)中に配置された流量計(13)により測定される。この場合、導入弁(5)を通る液体の容器(4)と収容空洞(2)との圧力差から四酸化二窒素の流量を算出することもできる。また、収容空洞(2)に連結された圧力計(14)及び温度計(15)により、収容空洞(2)の圧力及び温度が測定される。収容空洞(2)の真空度は、低真空(絶対圧力100Pa~大気圧)の範囲に包含される0.5kPa~80kPaで使用することが好ましい。
 負圧下の収容空洞(2)に導入される四酸化二窒素の少なくとも一部は、図2の15℃及び200kPaの点O2から矢印Aの方向に飽和蒸気圧曲線を越えて移動し液体から気体に変化すると共に、前記化学平衡式により二酸化窒素の割合が増加する。これにより、瞬間的に液体が気化して、収容空洞(2)全体に気体の二酸化窒素が分散し、医療機器(1)の細部にまで瞬時に入り込み、複雑な形状の医療機器(1)の全表面に気体の二酸化窒素が接触し付着して、表面の付着物を強力に酸化し又はニトロ化し医療機器(1)を迅速かつ確実に滅菌する。収容空洞(2)の負圧及び所定温度を保持して滅菌を行う時間を、収容空洞(2)の容量並びに医療機器(1)の大きさ及び数量に応じて、数10秒~数10分の範囲で適宜選択する。また、導入管(12)に隣接して又は導入管(12)中にヒータ(21)を設ければ、収容空洞(2)に導入される四酸化二窒素を加温し気化を促進して、二酸化窒素が増加する割合を制御できる。ヒータ(21)により、四酸化二窒素の温度を30~50℃又は50~80℃の範囲に制御してもよい。ヒータ(21)は、導入管(12)を包囲するハウジングを設けて、螺旋状、フィン状、コイル状、蛇管状等の表面積の大きい導入管(12)外面に、ハウジング内で加熱媒体、例えば蒸気又は加熱流体を接触させて、導入管(12)内部を通る液体の窒素酸化物を熱接触により加熱できる。その他にも、導入管(12)外面に設けたニクロム線、フィルムヒータ等の発熱体をヒータ(21)として使用でき、また、導入管(12)の一部を電気的に絶縁し、絶縁した両端から通電して導入管(12)自体を発熱体としてもよい。更に、導入管(12)内部(流体中)に電極を設置し、電圧を印可して内部流体を直接ジュール熱で加熱してもよい。
 本実施の形態では、四酸化二窒素のみを収容空洞(2)に導入するだけでなく、四酸化二窒素の導入前若しくは後に又は導入と同時に、希釈化ガスをガス供給装置(17)により収容空洞(2)に添加することができる。収容空洞(2)に希釈化ガスを添加すれば、四酸化二窒素から変化した二酸化窒素を希釈して、使用する四酸化二窒素の量を低減し、安価に滅菌を行うことができる。また、収容空洞(2)に配置する滅菌対象物の医療機器(1)の大きさ、数量、形状、材質に応じて、二酸化窒素の濃度を自由に調整すると共に、水蒸気、酸素、窒素、空気及び不活性ガスの1種又は2種以上から適切な希釈化ガスを選択することができる。希釈化ガスは、収容空洞(2)で二酸化窒素を主成分とする窒素酸化物を希釈するだけでなく、水蒸気は湿度を調整し、酸素は酸化剤として殺菌作用を発揮する。希釈化ガスを含む全気体に対する二酸化窒素の濃度は、例えば体積基準で0.01~80%とする。
 医療機器(1)の滅菌処理を行った後、真空弁(24)を閉じ、真空ポンプ(3)により収容空洞(2)の気体の窒素酸化物を排出口(6)から吸引して、収容空洞(2)に連結された冷却装置(22)を通過させる。冷却装置(22)では、使用する窒素酸化物が十分に液化する温度以下に気体の窒素酸化物を冷却し(図2矢印B)、排液管(23)から、四酸化二窒素が主成分の液化した窒素酸化物を回収する。4~10℃で窒素酸化物を冷却すれば、液化した四酸化二窒素を効率良く回収することができる。また、ガス供給装置(17)から窒素ガスを収容空洞(2)に導入し、又は圧力制御装置としての復圧弁(7)により復圧フィルタ(18)を介して空気を収容空洞(2)に導入して、再度、真空ポンプ(3)により吸引する洗浄の操作を行ってもよい。この操作を反復して、収容空洞(2)及び医療機器(1)に残存する窒素酸化物を完全に除去することができる。復圧フィルタ(18)は、空気中に存在する細菌類を全て遮断して収容空洞(2)に無菌空気が供給される。
 液化四酸化二窒素を排液管(23)から除去した後、復圧弁(7)及び復圧フィルタ(18)を介して空気を収容空洞(2)に導入し収容空洞(2)を大気圧にして滅菌容器(10)の蓋を開き、収容空洞(2)から医療機器(1)を取り出す。滅菌の際、医療機器(1)の全域に気体の窒素酸化物が接触して、細菌及びウイルスが完全に死滅及び破壊するので、医療機器(1)を直ちに再利用することができ、更に、収容空洞(2)内の二酸化窒素を吸引により滅菌剤成分を完全に回収するので、人体に無毒で安全性が極めて高い。
 前記実施の形態では、吸引により収容空洞(2)に充満する気体の窒素酸化物を回収する例を示したが、以下、収容空洞(2)を加圧して気体の窒素酸化物を液化し回収する第2の実施の形態を図3について説明する。
 滅菌操作終了後、圧力制御装置としての復圧弁(7)により復圧フィルタ(18)を介して空気又はその他の不活性ガスを負圧下の収容空洞(2)に導入し、蒸気圧曲線を上方に超えて(図2矢印C)収容空洞(2)の圧力を上昇させると、気体の窒素酸化物の液化が進行する。これにより、医療機器(1)の細部に接触する気体の窒素酸化物を液化すると同時に、収容空洞(2)の底部に液体の窒素酸化物が落下する。窒素酸化物が液化する一方、導入される空気は気体状態を維持するので、窒素酸化物を空気から効率良く分離でき回収時間を短縮できる。温度20℃及び大気圧(101.3kPa)下で液化した窒素酸化物は、前記化学平衡式に従い、全窒素酸化物に対し、二酸化窒素が約25%存在し、四酸化二窒素が約75%存在する。
 次に、排液弁(20)を開弁し、滅菌チャンバ(10)の底部に設けられる排出口(6)を通じて、四酸化二窒素を主成分とする液体の窒素酸化物を収容空洞(2)から外部に回収できる。これにより、気体の窒素酸化物を排気する換気装置等の追加設備を設ける必要なく、排出口(6)から高効率で四酸化二窒素を回収することができる。収容空洞(2)を加圧するために導入する気体は、空気に限らず、窒素ガスを使用することもできる。滅菌チャンバ(10)内に遠心分離機構を設けて、医療機器(1)から液化窒素酸化物を強制的に離脱させて、収容空洞(2)の医療機器(1)に残存する液化窒素酸化物を完全に除去しても良い。
 前記第2の実施の形態では、収容空洞(2)の圧力を増加させて窒素酸化物を液化するが、別法として、図示しない温度制御装置により、収容空洞(2)の温度を低下させて、収容空洞(2)に含まれる窒素酸化物を液化することもできる。
 図4に示す第3の実施の形態では、前記第1及び第2の実施の形態と相違し、流量計(13)を設けずに、導入弁(5)の上流側に圧力計(56)を配置する。圧力計(56)の圧力値と導入管(12)の内径により液体窒素酸化物の単位時間流量が決まるため、圧力値に応じて導入弁(5)の開閉時間を制御することにより、収容空洞(2)に送出する液体窒素酸化物の供給量を容易かつ正確に制御することができる。
 図5に示す第4の実施の形態では、容器(4)に予め必要量だけ液体窒素酸化物を加圧充填した滅菌装置を示す。本実施の形態では、収容空洞(2)の対象物(1)を滅菌する際、導入管(12)を通じて容器(4)を収容空洞(2)に接続した状態で導入弁(5)を開放することにより、液体の窒素酸化物は容器(4)から全ての残らず排出される。このため、流量制御を行わずに、常に一定量の液体窒素酸化物を収容空洞(2)に供給することができ、対象物(1)の確実な滅菌を行うことができる。容器(4)は小型ボンベでもよい。また、本実施の形態では、流量計(13)、加圧装置(16)及び導入弁(5)上流側の圧力計(56)を必要としない。
 前記第1~第4の実施の形態では、容器(4)とヒータ(21)との間に導入弁(5)を配置したが、ヒータ(21)と収容空洞(2)との間に導入弁(5)を設けてもよい。また、導入弁(5)を設けて又は設けずに、収容空洞(2)の入口に形成された噴霧装置(25)を弁としてもよい。
 クリーンルーム(50)の滅菌操作及び滅菌チャンバ(50)内の滅菌対象物である医療機器(1)の滅菌操作に適用した本発明による滅菌装置及び滅菌法の実施の形態を図6~図12について説明する。
 クリーンルーム(50)の滅菌操作に用いる本発明の滅菌装置(40)は、液体の窒素酸化物を収容する容器(4)と、実質的に大気圧下のクリーンルーム(50)内の空間領域(被滅菌空間)(2’)に窒素酸化物を噴射して気化させる噴射装置(32)と、容器(4)の出口(37)から所定の(予め決められた)量の窒素酸化物を吸引しかつ噴射装置(32)に向けて予め決められた量の液体の窒素酸化物を圧送する定量ポンプ(34, 34’)とを備える。噴射装置(32)はノズル又は弁である。
 本明細書では、「実質的に大気圧下」とは、90kPa~110kPa範囲の圧力である。容器(4)に収容される液体の窒素酸化物は、四酸化二窒素、三酸化二窒素及び五酸化二窒素の1種又は2種以上から選択され、特に四酸化二窒素が好ましい。液体の四酸化二窒素は、他の物質を混合せずに単体で、簡単な圧力操作により、分散性の高い気体(ガス)の滅菌剤を生成することができる。
 沸点21℃の四酸化二窒素では、沸点以下の温度で収容する場合、高圧充填が不要で耐圧性の容器(4)を用いる必要が無く、保存及び運搬の取り扱いが容易である。四酸化二窒素は、二酸化窒素(NO2)に対し前記化学平衡式が成り立つ。
 定量ポンプ(34, 34’)は、ダイヤフラムポンプ、ピストンポンプ、プランジャポンプ及びチューブポンプから選択されるが、特にピストンポンプが好ましい。定量ポンプ(ピストンポンプ(34))により、予め決められた量の液体の窒素酸化物を正確に計量して容器(4)の底部の出口(37)から取り出し、正確に計量された液体の窒素酸化物を噴射装置(32)に圧送する。このときの圧力値は、噴射装置(2)の直前で絶対圧110kPa~50000kPaである。110kPa以下であると、液体の窒素酸化物を圧送する力が弱く、被滅菌空間(2’)への噴射も弱いため、窒素酸化物の気化及び分散が不十分となり、窒素酸化物の拡散が遅く濃度分布が不均一となる。50000kPaより圧力が大きいと、高圧に適した噴射装置(2)を製造するコストが高く、また、定量ポンプ(34, 34’)も大型化する。
 噴射装置(32)は、開度(噴孔面積)が調節可能な噴射口(32a)を備え、噴射口(32a)から実質的に大気圧レベルのクリーンルーム(50)に窒素酸化物を噴射し又は噴霧して気化させる。噴孔面積を変更できない噴射口(32a)を有する普及品の噴射装置(32)も使用可能である。噴射装置(32)からクリーンルーム(50)内に噴霧すると、窒素酸化物の濃度が均一化してクリーンルーム(50)内に浮遊する微生物、細菌類だけでなく、クリーンルーム(50)の壁及び床に付着した微生物、細菌類も確実に滅菌することができる。
 本実施の形態では、容器(4)に連結される第1のポート(35a)と、定量ポンプ(34, 34’)に連結される第2のポート(35b)と、噴射装置(32)に連結される第3のポート(35c)とを有する三方弁(35)を備える。特に限定されないが、球状の弁体(45)及び弁体(45)内に流路(46)を有しかつ内部構造が単純で微生物汚染を抑止できるボール弁を三方弁(35)として使用する。三方弁(ボール弁)(35)は、定量ポンプ(34, 34’)に対して容器(4)と連絡するが噴射装置(32)との連絡を遮断する吸引状態と、ピストンポンプ(34)に対して容器(4)との連絡を遮断するが噴射装置(32)と連絡する排出状態とを必要に応じて切り替える。例えば、プランジャポンプ、ダイヤフラムポンプ又はロータリチューブポンプを定量ポンプ(34, 34’)に使用することができる。
 定量ポンプ(34, 34’)と噴射装置(32)との間に加熱装置(36)を設け、液体の窒素酸化物を加熱し、噴射装置(32)から窒素酸化物を噴射する。即ち、図7の四酸化二窒素(二酸化窒素)の飽和蒸気圧曲線を参照して、容器に充填された状態(O2点)の液体の窒素酸化物を定量ポンプ(34, 34’)により加圧し(矢印A)、加熱装置(36)により加熱し(矢印B)、ほぼ大気圧下のクリーンルーム(50)に放出する(矢印C)ことにより、窒素酸化物の気化が急激に進行して、クリーンルーム(50)を効率良く、気体の窒素酸化物で充満させることができる。
 加熱装置(36)は、内部を液体の窒素酸化物が通る管路(36a)と、管路(36a)を包囲するハウジング(36b)とを備え、螺旋状、フィン状、コイル状、蛇管状等の管路(36a)の表面積の大きい外面に、ハウジング(36b)内の加熱媒体、例えば蒸気又は加熱流体を接触させて、管路(36a)内部を通る液体の窒素酸化物を熱接触により加熱する。加熱媒体との接触面積の大きい螺旋状の管路(36a)を使用して加熱効率を向上することができる。管路(36a)外面に設けたニクロム線、フィルムヒータ等の発熱体も加熱装置(36)として使用でき、また、管路(36a)の一部を電気的に絶縁し、絶縁した両端から通電して管路(6a)自体を発熱体としてもよい。更に、管路(36a)内部(流体中)に電極を設置し、電圧を印可して内部流体を直接ジュール熱で加熱してもよい。加熱装置(36)により、液体の窒素酸化物を25℃~150℃に加熱して噴射装置(32)に供給する。
 液体の窒素酸化物(四酸化二窒素)を用いたクリーンルーム(50)の滅菌操作を図6及び図7について以下説明する。
 最初に、液体の四酸化二窒素を容器(4)内に収容する。四酸化二窒素は、強酸化剤であるが、21℃(沸点)以下の温度、絶対圧200kPa(約2気圧)程度の圧力で容器(4)に加圧充填すれば(図7点O1→点O2)、液体状態で安全に保存することができる。一方、滅菌対象のクリーンルーム(50)は、外部に窒素酸化物が漏出しないように密閉状態が保持される。
 容器(4)の底部に形成された出口(37)から、所定の(予め決められた)量の液体の四酸化二窒素を定量ポンプ(ピストンポンプ)(34)内に吸引し、ピストンポンプ(34)の可変容積部(シリンダ)(34a)内に液体の四酸化二窒素を一時的に貯えながら正確かつ迅速に計量する。このとき、三方弁(35)は、第1のポート(35a)と第2のポート(35b)との連通状態、即ち、定量ポンプ(34, 34’)に対して容器(4)と連絡するが噴射装置(32)との連絡を遮断する吸引状態にある。
 次に、第2のポート(35b)と第3のポート(35c)との連通状態、即ち、定量ポンプ(34, 34’)に対して容器(4)との連絡を遮断するが噴射装置(32)と連絡する排出状態に三方弁(35)を切り替え、定量ポンプ(34, 34’)から一時的に収容された液体の四酸化二窒素を圧送し(図7矢印A)、加熱装置(36)により、四酸化二窒素を加熱しながら(7矢印B)噴射装置(2)に供給する。
 定量ポンプ(34, 34’)から圧送された予め決められた量の四酸化二窒素は、噴射装置(32)の噴射口(32a)より、クリーンルーム(50)内の被滅菌空間(2’)に噴射される(図7矢印C)。クリーンルーム(50)の被滅菌空間(2’)は、実質的に大気圧であるため、加圧及び加熱した液体の四酸化二窒素は、急激に気化して、クリーンルーム(50)内に分散する。分散した気体の窒素酸化物は、四酸化二窒素及び二酸化窒素が混在した状態である。
 本実施の形態では、定量ポンプ(34, 34’)により、クリーンルーム(50)の被滅菌空間(3)に供給する窒素酸化物の量を厳密に測定して管理できるので、被滅菌空間(2’)の窒素酸化物濃度を常時一定に維持することができる。クリーンルーム(50)の容量に応じて数分から数時間、窒素酸化物が存在する状態を維持して、クリーンルーム(50)内に浮遊し又は壁面に付着する微生物及び細菌類を完全に死滅させる。
 クリーンルーム(50)の滅菌操作終了後、三方弁(35)と噴射装置(32)との間の圧送管(38)内に滞留する液体の窒素酸化物を容器(4)に戻す操作を行う。即ち、定量ポンプ(34, 34’)と噴射装置(32)が連通する状態で定量ポンプ(34, 34’)を吸引すると、圧送管(38)内の窒素酸化物が定量ポンプ(34, 34’)のシリンダ(34a)内に収容される。次に、定量ポンプ(34, 34’)と容器(4)が連通する状態に三方弁(35)を切り替え、シリンダ(34a)内の窒素酸化物を容器(4)に向けて送る。他方、洗浄ガス(窒素ガス又は空気)をクリーンルーム(50)内に図示しない入口から供給し、クリーンルーム(50)内の窒素酸化物を換気除去する。窒素酸化物は、クリーンルーム(50)に連結される排出管(39)を通じフィルタ(41)で除去され、連続的に洗浄ガスをクリーンルーム(50)に供給してフィルタ(41)により窒素酸化物を除去すれば、クリーンルーム(50)内から窒素酸化物を完全に除去することができる。本実施の形態では、クリーンルーム(50)の滅菌処理について例示するが、クリーンルームに限定されず、クリーンブース、アイソレータ、病室、手術室にも適用できる。
 以下、本発明による滅菌装置及び滅菌法を滅菌チャンバ(60)内の医療機器(1)に適用した第6の実施の形態を図8について説明する。前記第5の実施の形態と同一の構成には同一符号を付し説明を省略し、前記第5の実施の形態と異なる構成のみ詳述する。
 滅菌チャンバ(60)内の被滅菌空間(2”)には、対象物である医療機器(1)又は医薬品容器を配置する。例えば、金属、プラスチック、ゴム等、窒素酸化物に対して劣化しないあらゆる材料の医療機器(1)及び医薬品容器に本発明を適用でき、医療機器(1)は、例えばメス、鉗子、ハサミ、ピンセット等の手術用器具、軟性及び硬性内視鏡、体温計、聴診器、検眼鏡、耳鏡等の診断用器具、カテーテル、注射器、医療用チューブ等の治療用器具、ペースメーカ、埋込み用骨材、手術用ボルト等の埋込み用医療機器を含む。医薬品容器は、例えば、プラスチック容器、ガラス容器、バイアル、スプレー容器、アルミチューブ、ゴム栓、エラストマー樹脂製部品、注射針を含む。事前滅菌だけでなく、使用直前に滅菌する用時滅菌にも本発明を適用できる。医療機器(1)を配置した被滅菌空間(2”)に図示しない蓋を装着し、被滅菌空間(2”)を密閉状態に保持する。
 滅菌チャンバ(60)内の被滅菌空間(2”)の圧力はほぼ大気圧である。前記第5の実施の形態と同様の方法により、滅菌装置(40)から液体の窒素酸化物が圧送され、滅菌チャンバ(60)に配置された噴射装置(32)から窒素酸化物が被滅菌空間(2”)に放出される。放出された窒素酸化物は、気化して被滅菌空間(2”)に分散し、医療機器(1)を滅菌する。気体の窒素酸化物は、瞬時に被滅菌空間(2”)に分散するので、医療機器(1)の細部まで拡散して、複雑な形状の医療機器(1)の表面を迅速かつ完全に滅菌することができる。本発明では、定量ポンプ(34, 34’)を用いて滅菌チャンバ(60)に供給する液体の窒素酸化物の量を厳密に制御できるので、医療機器(1)の数量、大きさ、材質、汚染度に応じて窒素酸化物の供給量を適宜選択することができる。
 第5及び第6の実施の形態では、容器(4)、定量ポンプ(34, 34’)及び噴射装置(32)の間を互いに連絡し遮断する三方弁(35)を用いたが、三方弁(35)を使用せず、図9に示す第7の実施の形態では、一対の二方弁(47a, 47b)を用いる。即ち、容器(4)と定量ポンプ(34, 34’)との間に吸入弁(47a)を設け、定量ポンプ(34, 34’)と噴射装置(2)との間に送出弁(47b)を設ける。吸入弁(47a)が開き送出弁(47b)が閉じた吸引状態では、容器(4)に連絡するが噴射装置(32)との連絡を遮断し、容器(4)から液体の窒素酸化物を吸引しかつ吸引した窒素酸化物を一時的に定量ポンプ(34, 34’)内に収容する。他方、吸入弁(47a)が閉じ送出弁(47b)が開く吸引状態では、容器(4)との連絡を遮断するが噴射装置(32)に連絡し、定量ポンプ(34, 34’)内に収容した窒素酸化物を噴射装置(32)に圧送する。本実施の形態では、ダイアフラム(隔膜)(49)の往復運動を利用するダイヤフラムバルブを吸入弁(47a)及び送出弁(47b)として使用するが、特に限定されるものではない。吸入弁(47a)及び送出弁(47b)の開閉動作を交互に切り替えることにより、吸引状態と排出状態の切り替えが可能となる。
 第5~第7の実施の形態では、定量ポンプとして、一時的に液体の窒素酸化物を貯え計量するピストンポンプ(34)を用いたが、図10に示す第8の実施の形態では、チューブポンプ(34’)を使用して、容器(4)から噴射装置(32)に窒素酸化物を直接送液する。チューブポンプ(34’)は、回転体(34a’)の回転量に流量が比例し、定量の圧送が可能となる。
 図11に示す第9の実施の形態では、ピストンポンプ(34)、チューブポンプ(34’)、三方弁(35)、吸入弁(47a)及び送出弁(47b)を用いずに、容器(4)と被滅菌空間(2’)との間の圧送管(38)中に導入弁(55)を設け、導入弁(55)の上流側に圧力計(56)を配置する。圧力計(56)の圧力値と圧送管(38)の内径により液体窒素酸化物の単位時間流量が決まるため、圧力値に応じて導入弁(55)の開閉時間を制御することにより、被滅菌空間(2’)に送出する液体窒素酸化物の供給量を容易かつ正確に制御することができる。
 図12に示す第10の実施の形態では、容器(4)に予め必要量だけ液体窒素酸化物を加圧充填した滅菌装置を示す。本実施の形態では、被滅菌空間(2’)を滅菌する際、圧送管(38)を通じて容器(4)を被滅菌空間(2’)に接続した状態で導入弁(55)を開放することにより、液体の窒素酸化物は容器(4)から全て残らず排出される。このため、流量制御を行わずに、常に一定量の液体窒素酸化物を被滅菌空間(2’)に供給することができ、被滅菌空間(2’ )の確実な滅菌を行うことができる。容器(4)は小型ボンベでもよい。また、本実施の形態でも、ピストンポンプ(34)、チューブポンプ(34’)、三方弁(35)、吸入弁(47a)及び送出弁(47b)を必要としない。
 第5~第10の実施の形態では、容器(4)と加熱装置(36)との間に導入弁(55)を配置したが、加熱装置(36)と被滅菌空間(2’)との間に導入弁(55)を設けてもよい。また、導入弁(55)を設けて又は設けずに、被滅菌空間(2’)の入口に形成された噴射霧装置(32)を弁としてもよい。
 本発明による滅菌法及び滅菌装置により微生物の滅菌試験を行った実施例を以下説明する。
滅菌試験1
 真空チャンバ(10)内の約8L(20cm×20cm×20cm)の収容空洞(2)に、SCBI(Self-Contained Biological Indicator)を配置した。SCBIは、微生物胞子が付着した濾紙と培養液を含むガラスカプセルとを小型試験管内に収納し通気フィルタ紙で封止した滅菌試験キットである。SCBIを配置した収容空洞(2)を5kPaまで減圧した状態で、大気圧より高い圧力の液体四酸化二窒素(N24)を収容空洞(2)に導入し噴霧装置(25)により気化させた。四酸化二窒素が気化した直後に、復圧弁(7)を開き清浄な空気を導入し、収容空洞(2)の四酸化二窒素濃度を8500ppm(16.54mg/L)として20分間保持し滅菌処理を行った。
 滅菌処理後、SCBIの小型試験管内から圧力操作により四酸化二窒素を除去した後、真空チャンバ(10)を開け、収容空洞(2)からSCBIを取り出した。小型試験管内でガラスカプセルを破壊し濾紙を培養液に浸漬させて、滅菌処理後のSCBIを58℃の培養器中で約24時間培養した(滅菌処理SCBI)。他方、滅菌処理を行わず、大気中に20分間放置したSCBIも同様に、58℃の培養器中で約24時間培養した(非滅菌処理SCBI)。
試験結果1
 滅菌処理SCBIは変化を示さず、微生物が増殖していないことを現し、滅菌が十分に行われたことを確認できた。他方、非滅菌処理SCBIでは、変色を示し、滅菌されずに微生物が増殖していることを確認できた。
 本発明による滅菌装置及び滅菌法により微生物の滅菌試験を行った実施例を以下説明する。
滅菌試験2
 ガラス製のチャンバ内の約8L(20cm×20cm×20cm)の被滅菌空間(2’ 2”)に、SCBI(Self-Contained Biological Indicator)を配置した。SCBIは、微生物胞子が付着した濾紙と培養液を含むガラスカプセルとを小型試験管内に収納し通気フィルタ紙で封止した滅菌試験キットである。SCBIを配置した被滅菌空間(2’ 2”)に対し、定量ポンプ(34, 34’)により大気圧より高い圧力で液体四酸化二窒素(N24)を供給し噴射装置(32)により気化させた。被滅菌空間(2’ 2”)の四酸化二窒素濃度を18500ppm(36.28mg/L)として20分間保持し滅菌処理を行った。
 滅菌処理後、被滅菌空間(2’ 2”)からSCBIを取り出し、圧力操作によりSCBIの小型試験管内から四酸化二窒素を除去した。次に、小型試験管内でガラスカプセルを破壊し濾紙を培養液に浸漬させて、滅菌処理後のSCBIを58℃の培養器中で約24時間培養した(滅菌処理SCBI)。他方、滅菌処理を行わず、大気中に20分間放置したSCBIも同様に、58℃の培養器中で約24時間培養した(非滅菌処理SCBI)。
試験結果2
 滅菌処理SCBIは変化を示さず、微生物が増殖していないことを現し、滅菌が十分に行われたことを確認できた。他方、非滅菌処理SCBIでは、変色を示し、滅菌されずに微生物が増殖していることを確認できた。
 医療機器、精密機械、電子部品、医薬品原料、医薬品容器、食品、食品原料、食品容器、その他のあらゆる微生物付着体の滅菌処理に本発明を適用できると共に、ボトル、容器の再利用を行う食品及び飲料分野並びに微生物を扱う製薬分野でも本発明を適用することができる。本発明による滅菌装置及び滅菌法では、製薬、医療及び食品の分野だけでなく、半導体を中心とする電子工業、精密機械工業の分野の滅菌にも適用することができる。

Claims (29)

  1.  容器に収容された液体の窒素酸化物を空間領域に導入し気化させる過程と、
     空間領域又は空間領域に配置された対象物を気体の窒素酸化物により滅菌する過程とを含むことを特徴とする窒素酸化物による滅菌法。
  2.  空間領域に対象物を配置する過程と、
     空間領域を密閉状態に保持して減圧装置により空間領域を減圧する過程と、
     液体の窒素酸化物を収容する容器から減圧状態又は真空状態の空間領域に液体の窒素酸化物を導入し気化させる過程と、
     空間領域で気体の窒素酸化物により対象物を滅菌する過程とを含む請求項1に記載の滅菌法。
  3.  液体の窒素酸化物は、四酸化二窒素、三酸化二窒素及び五酸化二窒素の1種又は2種以上から選択される請求項1又は2に記載の滅菌法。
  4.  対象物は、医療機器、精密機械、電子部品、医薬品原料、医薬品容器、食品、食品原料、食品容器及び微生物付着体の1種又は2種以上から選択される請求項1~3の何れか1項に記載の滅菌法。
  5.  空間領域に液体の窒素酸化物を導入する前、後又は同時に、希釈化ガスを空間領域に導入する過程を含む請求項2~4の何れか1項に記載の滅菌法。
  6.  水蒸気、酸素、窒素、空気及び不活性ガスの1種又は2種以上から希釈化ガスを選択する請求項5に記載の滅菌法。
  7.  空間領域に液体の窒素酸化物を導入し気化させる過程は、液体の窒素酸化物を霧化する過程を含む請求項1~6の何れか1項に記載の滅菌法。
  8.  対象物を滅菌処理した後、空間領域の排出口を通じて気体の窒素酸化物を吸引して捕集する過程と、
     捕集した気体の窒素酸化物を冷却して液化し回収する過程とを含む請求項1~7の何れか1項に記載の滅菌法。
  9.  対象物を滅菌処理した後、空間領域を加圧し又は冷却して、飽和蒸気圧曲線を超えて気体の窒素酸化物を液化する過程と、
     空間領域から排出口を通じて液化した窒素酸化物を回収する過程と、
     空間領域から対象物を取り出す過程とを含む請求項1~7の何れか1項に記載の滅菌法。
  10.  液体の窒素酸化物を収容する容器を定量ポンプに接続する過程と、
     定量ポンプにより容器から所定の量の液体の窒素酸化物を吸引し、その後吸引した液体の窒素酸化物を実質的に大気圧下の被滅菌空間に圧送する過程と、
     噴射装置により液体の窒素酸化物を被滅菌空間に噴射又は噴霧して気化させる過程とを含む請求項1に記載の滅菌法。
  11.  定量ポンプにより容器から所定の量の液体の窒素酸化物を吸引するとき、容器と定量ポンプとの間を弁装置により開放しかつ定量ポンプと被滅菌空間との間を弁装置により閉鎖する過程と、
     定量ポンプにより所定の量の液体の窒素酸化物を被滅菌空間に供給するとき、容器と定量ポンプとの間を弁装置により閉鎖しかつ定量ポンプと被滅菌空間との間を弁装置により開放する過程とを含む請求項10に記載の滅菌法。
  12.  液体の窒素酸化物を収容する容器と、
     容器に連結されて窒素酸化物を送液する供給管と、
     供給管から液体の窒素酸化物が導入されて気化される空間領域とを備え、
     空間領域又は空間領域に配置された対象物を気体の窒素酸化物により滅菌することを特徴とする窒素酸化物による滅菌装置。
  13.  液体の窒素酸化物を収容する容器と、
     容器に接続されかつ対象物を収容して密閉状態に保持可能な空間領域と、
     空間領域を減圧する減圧装置とを備え、
     減圧装置により減圧状態又は真空状態に保持される空間領域に容器から液体の窒素酸化物を導入し気化して、空間領域の対象物を滅菌する請求項12に記載の滅菌装置。
  14.  液体の窒素酸化物は、四酸化二窒素、三酸化二窒素及び五酸化二窒素の1種又は2種以上から選択される請求項12又は13に記載の滅菌装置。
  15.  対象物は、医療機器、精密機械、電子部品、医薬品原料、医薬品容器、食品、食品原料、食品容器及び微生物付着体の1種又は2種以上から選択される請求項12~14の何れか1項に記載の滅菌装置。
  16.  空間領域に液体の窒素酸化物を導入するとき、液体の窒素酸化物を霧化する噴霧装置を備える請求項12~15の何れか1項に記載の滅菌装置。
  17.  空間領域に設けられかつ減圧装置に接続される排出口と、
     排出口及び減圧装置に接続される冷却装置とを備え、
     減圧装置により排出口を通じて空間領域から気体の窒素酸化物を排気するとき、冷却装置により排気した気体の窒素酸化物を冷却し液化する請求項13~16の何れか1項に記載の滅菌装置。
  18.  空間領域の気体圧力を上昇する圧力制御装置と、
     空間領域の底部に設けられる排出口とを備え、
     対象物の滅菌処理後、圧力制御装置により空間領域の気体圧力を増加させて、窒素酸化物を液化し、排出口から液化した窒素酸化物を排出する請求項13~16の何れか1項に記載の滅菌装置。
  19.  空間領域の温度を低下する温度制御装置と、
     空間領域の底部に設けられる排出口とを備え、
     対象物の滅菌処理後、温度制御装置により空間領域の温度を低下させて、窒素酸化物を液化し、排出口から液化した窒素酸化物を排出する請求項13~16の何れか1項に記載の滅菌装置。
  20.  実質的に大気圧下に保持される被滅菌空間と、
     液体の窒素酸化物を収容しかつ密閉可能な容器と、
     容器内から被滅菌空間に加圧して所定の量だけ供給される液体の窒素酸化物を噴射又は噴霧して気化させる噴射装置とを備える請求項12に記載の滅菌装置。
  21.  容器内に収容される液体の窒素酸化物を所定の量だけ被滅菌空間に加圧して供給する定量ポンプを備え、
     定量ポンプは、容器から供給される液体の窒素酸化物を一時的に収容する可変容積部を備え、
     容器と可変容積部との間及び可変容積部と被滅菌空間との間に弁装置が接続され、
     定量ポンプの吸引時に弁装置により定量ポンプと被滅菌空間との間を遮断して容器から可変容積部に液体の窒素酸化物を導入し、定量ポンプの送出時に弁装置により容器と定量ポンプとの間を遮断して可変容積部から被滅菌空間に液体の窒素酸化物を圧送する請求項20に記載の滅菌装置。
  22.  弁装置は、ボール弁である請求項21に記載の滅菌装置。
  23.  弁装置は、ダイヤフラムをそれぞれ有する吸入弁と排出弁である請求項21に記載の滅菌装置。
  24.  噴射装置は、被滅菌空間に液体の窒素酸化物を噴霧し気化する噴射口を有し、噴射口の噴孔面積を調節できる請求項20~23の何れか1項に記載の滅菌装置。
  25.  定量ポンプは、ダイヤフラムポンプ、ピストンポンプ、プランジャポンプ及びチューブポンプから選択される請求項20~24の何れか1項に記載の滅菌装置。
  26.  定量ポンプと噴射装置との間に接続される加熱装置により液体の窒素酸化物を加熱して、噴射装置から被滅菌空間に窒素酸化物を噴射又は噴霧する請求項20~25の何れか1項に記載の滅菌装置。
  27.  加熱装置は、定量ポンプと噴射装置との間に接続される管路と、管路を包囲するハウジングとを備え、
     管路内部を通る液体の窒素酸化物は、ハウジング内の加熱媒体と熱接触する請求項26に記載の滅菌装置。
  28.  液体の窒素酸化物は、四酸化二窒素、三酸化二窒素及び五酸化二窒素の1種又は2種以上から選択される請求項20~27の何れか1項に記載の滅菌装置。
  29.  被滅菌空間は、対象物を収容する請求項20~28の何れか1項に記載の滅菌装置。
PCT/JP2013/002662 2012-04-19 2013-04-19 窒素酸化物による滅菌法及び滅菌装置 WO2013157276A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380020461.9A CN104302328B (zh) 2012-04-19 2013-04-19 以氮氧化物为基础的灭菌法以及灭菌装置
US14/375,046 US9731041B2 (en) 2012-04-19 2013-04-19 Method and apparatus for sterilization with nitrogen oxide
DK13778168.8T DK2839845T3 (en) 2012-04-19 2013-04-19 Sterilization method using nitrous oxide tetraoxide and sterilizer
EP13778168.8A EP2839845B1 (en) 2012-04-19 2013-04-19 Sterilization method using dinitrogen tetraoxide and sterilization device
US15/646,162 US20170348450A1 (en) 2012-04-19 2017-07-11 Method and apparatus for producing nitrogen oxide gas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012095284 2012-04-19
JP2012-095284 2012-04-19
JP2012-095285 2012-04-19
JP2012095285 2012-04-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/375,046 A-371-Of-International US9731041B2 (en) 2012-04-19 2013-04-19 Method and apparatus for sterilization with nitrogen oxide
US15/646,162 Continuation US20170348450A1 (en) 2012-04-19 2017-07-11 Method and apparatus for producing nitrogen oxide gas

Publications (1)

Publication Number Publication Date
WO2013157276A1 true WO2013157276A1 (ja) 2013-10-24

Family

ID=49383246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002662 WO2013157276A1 (ja) 2012-04-19 2013-04-19 窒素酸化物による滅菌法及び滅菌装置

Country Status (5)

Country Link
US (2) US9731041B2 (ja)
EP (1) EP2839845B1 (ja)
CN (2) CN106620769A (ja)
DK (1) DK2839845T3 (ja)
WO (1) WO2013157276A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10506817B2 (en) 2012-08-03 2019-12-17 Pace International, Llc Filtration system
US20140033926A1 (en) 2012-08-03 2014-02-06 Robert Scott Fassel Filtration System
CN108026500A (zh) 2015-03-31 2018-05-11 兴盛生物科技股份有限公司 具有一体式细胞操纵系统的细胞培养培殖器
JP6851635B2 (ja) * 2015-03-31 2021-03-31 スライブ バイオサイエンス, インコーポレイテッド 自動細胞培養インキュベータ
CN104906611A (zh) * 2015-06-12 2015-09-16 常州大学 一种塑料包装容器消毒杀菌的方法和装置
WO2017033483A1 (ja) * 2015-08-26 2017-03-02 オリンパス株式会社 内視鏡リプロセッサ及び内視鏡リプロセッサのリークテスト方法
JP2017091802A (ja) * 2015-11-10 2017-05-25 株式会社Joled 有機el表示パネル、および、有機el表示パネルの製造方法
CN108778480B (zh) * 2015-12-14 2021-09-24 山东新华医疗器械股份有限公司 液体供给系统及其驱动方法
CA3021642A1 (en) 2016-04-20 2017-10-26 Fathhome, Inc. Vacuum-based method and apparatus for cleaning soiled articles
CN106405012B (zh) * 2016-09-30 2019-05-21 上海严复制药系统工程有限公司 用于二氧化氮气体灭菌的气源发生器
DE102017103793A1 (de) 2017-02-23 2018-08-23 Natura Foodtec Holding B.V. Vorrichtung und Verfahren zur Behandlung von Lebensmitteln
CN106693016A (zh) * 2017-02-24 2017-05-24 广州美岸生物科技有限公司 一种气体灭菌装置及方法
US20180244458A1 (en) * 2017-02-28 2018-08-30 Kori Dunn System and method for dispensing a nitric oxide solution from a vessel
CN107126124B (zh) * 2017-03-30 2020-04-07 珠海优特智厨科技有限公司 调料配料系统
CN108686241B (zh) * 2017-04-10 2021-03-26 山东新华医疗器械股份有限公司 灭菌方法和灭菌装置
EP3530292A1 (de) 2018-02-27 2019-08-28 Skan Ag Anordnung zum einbringen von dekontaminationsmittel in ein containment
CN110457722B (zh) * 2018-05-07 2022-02-18 中国石油化工股份有限公司 用于化学反应失控安全泄放系统设计的装置及方法
WO2020263986A1 (en) * 2019-06-24 2020-12-30 Noxilizer Inc. System and method for sterilization
RU2722307C1 (ru) * 2019-11-25 2020-05-28 Федеральное государственное унитарное предприятие "Российский научный центр "Прикладная химия" Способ получения тетраоксида диазота
WO2021174218A1 (en) * 2020-02-28 2021-09-02 Desktop Metal, Inc. Low-cost high-purity vacuum pumps and systems
US11964070B2 (en) * 2020-06-09 2024-04-23 Quin Global US, Inc. Disinfectant and sanitizer canister system and metering device for system
CN113171732B (zh) * 2021-03-22 2022-05-17 中船(邯郸)派瑞特种气体股份有限公司 一种危险液体上料系统及方法
WO2024151485A1 (en) * 2023-01-11 2024-07-18 Sterile State, Llc Nitric oxide sterilization devices and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04503026A (ja) * 1989-11-16 1992-06-04 アメリカン・ステリライザー・カンパニー 低蒸気圧滅菌剤を用いる滅菌法
JP2001340432A (ja) 2000-05-30 2001-12-11 Ishikawajima Harima Heavy Ind Co Ltd オゾン滅菌装置
JP2003535327A (ja) * 2000-05-31 2003-11-25 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム 気相媒体を製造する方法および装置
JP2006068122A (ja) 2004-08-31 2006-03-16 Shibuya Kogyo Co Ltd アイソレータシステム
JP2009513213A (ja) * 2005-10-29 2009-04-02 メディカート インターナショナル リミテッド 医療器具の殺菌状態を維持する方法
JP2009542333A (ja) 2006-06-30 2009-12-03 ノクシライザー,インコーポレイテッド 滅菌システム及び滅菌装置
JP2011004802A (ja) 2009-06-23 2011-01-13 Saian Corp 滅菌処理方法及び滅菌装置
JP2011050602A (ja) * 2009-09-02 2011-03-17 Saian Corp 滅菌装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB880404A (en) * 1958-12-22 1961-10-18 Charles Wilhelm Pfefferkorn Improvements in apparatus for disinfecting buildings
US4238447A (en) * 1978-05-31 1980-12-09 Better Built Machinery Corporation Steam sterilizing process
US4283593A (en) 1979-05-25 1981-08-11 Thomas & Betts Corporation Multiconductor cable
US4552728A (en) * 1981-05-11 1985-11-12 Hal Johnston Pty. Limited Decontamination apparatus
JPS6471936A (en) * 1987-09-10 1989-03-16 Inax Corp Ejector for water containing ozone
US5135721A (en) * 1990-01-18 1992-08-04 Net/Tech International, Inc. Sterilization and coating apparatus
US5122344A (en) 1990-01-31 1992-06-16 Mdt Corporation Chemical sterilizer system
US5348711A (en) * 1993-07-21 1994-09-20 Mdt Corporation Dental handpiece sterilizer
US5750072A (en) * 1995-08-14 1998-05-12 Sangster; Bruce Sterilization by magnetic field stimulation of a mist or vapor
US5676531A (en) * 1996-03-21 1997-10-14 Pulsafeeder, Inc. Autoclavable pump head assembly
JPH1147242A (ja) 1997-07-31 1999-02-23 Dainippon Printing Co Ltd 包装材料の殺菌装置及びその殺菌方法
US6451254B1 (en) * 1998-12-30 2002-09-17 Ethicon, Inc. Sterilization of diffusion-restricted area by revaporizing the condensed vapor
JP2001029440A (ja) 1999-07-21 2001-02-06 San Seal:Kk 反復使用する医療器具、衣類等の殺菌・消臭方法
US7189350B2 (en) * 1999-12-27 2007-03-13 Kabushiki Kaisha Sr Kaihatsu Method of sterilizing medical instruments
WO2001047566A1 (fr) * 1999-12-27 2001-07-05 Kabushiki Kaisha Sr Kaihatsu Procede et appareil permettant de desinfecter/steriliser des instruments medicaux
US7687045B2 (en) * 2001-11-26 2010-03-30 Biodefense Corporation Article processing apparatus and related method
GB2384185B (en) 2001-12-06 2003-12-17 Barrie Mellor Cleaning process
US7357296B2 (en) * 2001-12-24 2008-04-15 Pitney Bowes Inc. Method and system for decontaminating mail
US7691251B2 (en) * 2002-01-24 2010-04-06 Scimist, Inc. Mediated electrochemical oxidation and destruction of sharps
JP2006081802A (ja) 2004-09-17 2006-03-30 Technomax:Kk 次亜塩素酸含有水による悪臭物質収容施設の殺菌・消臭方法及びそれに用いる装置
JP4503026B2 (ja) 2007-01-24 2010-07-14 Necアクセステクニカ株式会社 ファクシミリ装置およびその給排紙機構
AU2010215774B2 (en) 2009-02-23 2015-05-21 Noxilizer, Inc. Device and method for gas sterilization
US20120164056A1 (en) 2009-07-01 2012-06-28 Haddad Louis C Generation of sterilant gasses and uses thereof
WO2012006482A1 (en) * 2010-07-09 2012-01-12 Sp Industries, Inc. Vacuum system and methods for sterilization thereof
JP6111050B2 (ja) 2012-11-16 2017-04-05 サンデンホールディングス株式会社 車両用空気調和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04503026A (ja) * 1989-11-16 1992-06-04 アメリカン・ステリライザー・カンパニー 低蒸気圧滅菌剤を用いる滅菌法
JP2001340432A (ja) 2000-05-30 2001-12-11 Ishikawajima Harima Heavy Ind Co Ltd オゾン滅菌装置
JP2003535327A (ja) * 2000-05-31 2003-11-25 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム 気相媒体を製造する方法および装置
JP2006068122A (ja) 2004-08-31 2006-03-16 Shibuya Kogyo Co Ltd アイソレータシステム
JP2009513213A (ja) * 2005-10-29 2009-04-02 メディカート インターナショナル リミテッド 医療器具の殺菌状態を維持する方法
JP2009542333A (ja) 2006-06-30 2009-12-03 ノクシライザー,インコーポレイテッド 滅菌システム及び滅菌装置
JP2011004802A (ja) 2009-06-23 2011-01-13 Saian Corp 滅菌処理方法及び滅菌装置
JP2011050602A (ja) * 2009-09-02 2011-03-17 Saian Corp 滅菌装置

Also Published As

Publication number Publication date
CN104302328B (zh) 2017-02-22
EP2839845A1 (en) 2015-02-25
CN104302328A (zh) 2015-01-21
EP2839845B1 (en) 2018-05-30
US20170348450A1 (en) 2017-12-07
DK2839845T3 (en) 2018-08-20
EP2839845A4 (en) 2015-05-27
CN106620769A (zh) 2017-05-10
US20150037206A1 (en) 2015-02-05
US9731041B2 (en) 2017-08-15

Similar Documents

Publication Publication Date Title
WO2013157276A1 (ja) 窒素酸化物による滅菌法及び滅菌装置
KR101789754B1 (ko) 살균 방법 및 장치
US8591808B2 (en) Aerosol
KR100966933B1 (ko) 오존소독방법 및 오존소독장치
CN102363045B (zh) 一种复合消毒灭菌装置及方法
US20040022673A1 (en) Sterilisation process and apparatus therefor
JP2013537433A (ja) プラズマ生成ガス滅菌法
JP2012511985A (ja) 紫外線によって液体窒素を殺菌消毒するための装置および方法
JP2014128690A (ja) サブサイクルベースのエアロゾル消毒システム
JP6590395B2 (ja) 気体窒素酸化物の発生法、発生装置及び回収法
JP5958492B2 (ja) 気体窒素酸化物の発生法と発生装置
CA3118386A1 (en) Sterilizing method and sterilizer
GB2371986A (en) Sterilisation process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14375046

Country of ref document: US

Ref document number: 2013778168

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE