WO2013155826A1 - 一种复合双金属裂解连杆的制造方法 - Google Patents

一种复合双金属裂解连杆的制造方法 Download PDF

Info

Publication number
WO2013155826A1
WO2013155826A1 PCT/CN2012/083415 CN2012083415W WO2013155826A1 WO 2013155826 A1 WO2013155826 A1 WO 2013155826A1 CN 2012083415 W CN2012083415 W CN 2012083415W WO 2013155826 A1 WO2013155826 A1 WO 2013155826A1
Authority
WO
WIPO (PCT)
Prior art keywords
cracking
connecting rod
cavity
manufacturing
rod cover
Prior art date
Application number
PCT/CN2012/083415
Other languages
English (en)
French (fr)
Inventor
姜银方
龙昆
姜文帆
戴亚春
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US14/394,692 priority Critical patent/US9695866B2/en
Publication of WO2013155826A1 publication Critical patent/WO2013155826A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/02Constructions of connecting-rods with constant length
    • F16C7/023Constructions of connecting-rods with constant length for piston engines, pumps or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/009Casting in, on, or around objects which form part of the product for casting objects the members of which can be separated afterwards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/04Casting in, on, or around objects which form part of the product for joining parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof
    • F16C9/045Connecting-rod bearings; Attachments thereof the bearing cap of the connecting rod being split by fracturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/06Shaping by casting in situ casting or moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings

Definitions

  • the invention relates to a manufacturing method of a composite bimetal cracking connecting rod, belonging to the field of engine component manufacturing. Background technique
  • the connecting rod is one of the key components of the engine. During its working process, it is mainly subjected to high-frequency alternating loads such as tensile, compression and bending caused by combustion explosive force and reciprocating inertial force. The working conditions are bad, the motion state is complex, fatigue, Wear, vibration, etc. affect the service life of the connecting rod. Therefore the connecting rod must have sufficient strength, stiffness and comprehensive mechanical properties.
  • the traditional connecting rod adopts the split machining method. After integrally forging the connecting rod blank, the joint surface of the connecting rod body and the connecting rod cover is processed by sawing, milling, grinding, etc., and the positioning pin hole and the connecting rod bolt of the connecting rod cover are finished. After the hole is completed, the two are assembled.
  • the traditional method has many processes, low efficiency, high product rejection rate, and poor carrying capacity and quality stability.
  • the link splitting processing technology is the most promising processing technology in the field of connecting rod manufacturing.
  • the cracking technology has high requirements on the material properties of the connecting rod, and it is required to limit its toughness index under the strength condition, and the fracture is required to exhibit brittle fracture characteristics.
  • the materials commonly used in cracking type connecting rods are limited to powder forging, high carbon steel, ductile iron and malleable cast iron. These materials are harsh in preparation conditions and costly, which limits the application and promotion of connecting rod cracking technology.
  • the application number is 200820040497.
  • X the patent entitled “Engine Expansion Bracelet Blank” proposes the use of powder forging material, malleable cast iron, 70 high carbon steel or C70S6 high carbon steel as the connecting rod material, and the connecting rod blank is forged.
  • the cracking process is used to complete the cracking of the connecting rod after pre-processing the stress groove on the inside of the big hole of the connecting rod.
  • Such connecting rods have strict requirements on material strength and toughness, difficult material preparation and high price, which impose limitations on the application and promotion of cracking technology.
  • the application number is 200580013038. 1.
  • the patent entitled “Link and its manufacturing method” proposes to use laser or plasma to illuminate the segment of the large head of the connecting rod and cool it in a vacuum to make the material of the divided area from Aussie.
  • the body structure becomes martensite structure, and the austenite structure undergoes brittle fracture under the action of the expansion load, and the separation of the link body and the connecting rod cover is realized.
  • the biggest problem with this method is that the area irradiated by the laser or plasma cannot be effectively controlled, so that in addition to the fracture area, the vicinity of the fracture area is also embrittled, which not only weakens the local mechanical strength of the link, but also cannot be effective. It is guaranteed that the connecting rod breaks at a predetermined splitting position, and the cracking surface is prone to offset and the like, and this process is not suitable for other materials.
  • the application number is 200710300307.
  • the patent entitled “High-strength alloy steel connecting rod deep-cooling embrittlement expansion process” proposes to put the connecting rod into liquid nitrogen for deep cooling for more than 5 minutes, changing the ductility of the material and making the connecting rod Entering the brittle state, the brittle fracture of the connecting rod is realized.
  • the method makes the entire connecting rod embrittled, so that the connecting rod has the danger of reducing the mechanical strength;
  • the brittleness of the rod is increased. It takes a large breaking load to divide the large head, which makes the breaking device itself large and the equipment investment increases. This process is not suitable for other materials.
  • US Patent No.: US20020148325A1 the patent entitled “Semi- sol id Formed, Low Elongation Aluminum Al loy Connecting Rod” proposes to manufacture the connecting rod blank by semi-solid forming technology, followed by quenching heat treatment and artificial aging to adjust the strength of the aluminum alloy connecting rod. Resilience, making it meet the technical requirements of cracking processing. It has the following disadvantages: The preparation process of semi-solid aluminum alloy raw materials is complicated and costly. The excessive or too small crystal grains formed after cooling affect the toughness of the connecting rod, and the subsequent heat treatment has a complicated influence on the performance of the connecting rod. When the connecting rod is cracked, problems such as big head tearing, cracking, slag, and deformation of the fracture surface are prone to occur.
  • the present invention proposes a composite bimetal cracking connecting rod process method, which utilizes a composite technique to realize metallurgy of two metals having different physical, chemical and mechanical properties at the interface.
  • the combination forms an integral composite casting, which makes up for the deficiency of each component material, combines the advantages of various materials, and realizes the diversity of overall performance.
  • the main body of the connecting rod is made of high-strength and high-quality materials
  • the cracking zone of the large head of the connecting rod is made of cracking material, so that the connecting rod has high strength and fatigue resistance, and has sufficient rigidity and toughness, and is externally loaded.
  • the natural canine staggered structure on the two fracture faces is used to ensure that the separated connecting rod body and the connecting rod cover are repositioned and accurately assembled, without mechanically processing the mating surface, so that the connecting rod has a high Carrying capacity and high assembly accuracy.
  • the technical problem to be solved by the present invention is that the connecting rod material for cracking is of a small variety, the material preparation is difficult, and the price is high.
  • the technical solution of the present invention is: when the blank of the cracking link is manufactured, a cracking layer is disposed in the cracking zone, the cracking layer is filled with a material different from the main body of the connecting rod, a cracked link blank is manufactured, and then cracking processing is performed in the cracking layer.
  • the two different metal materials are metallurgically combined, and the obtained composite connecting rod has excellent comprehensive performance, and the cracking zone meets the technical requirements of cracking processing.
  • the connecting rod cavity is divided into two separate parts, and the connecting rod body and the connecting rod cover are first cast, and when most of them are solidified, The separator is pulled away from the cavity, and the cavity formed by the cracking zone is injected into the separator to be filled with the cavity to fill the cavity under gravity or pressure.
  • the two materials are metallurgically combined to form a composite casting.
  • the thickness of the separator provided in the connecting rod cavity is lmnT50mm. According to the volume ratio and contact area of the two metal materials cast, the melting points of the two materials are considered, and the preheating temperature of the separator, the pouring temperature of the two metal materials, and the time interval between the two metal castings are determined. The selection of these process parameters follows the principle: preheating temperature of the insulation plate and connecting rod The casting temperature of the main material is properly matched to avoid excessive casting temperature of the metal material to burn the surface of the separator, or the preheating temperature of the separator is too low, so that the molten metal in contact with it is cooled too fast, which affects the metallurgical bonding quality of the composite layer. The time between the two metal castings is directly related to the temperature of the first cast metal material and the size of the casting, which is determined by the solidification time of the material of the connecting rod body.
  • a cracking tank is opened in the cracking material area of the big head of the connecting rod.
  • the cracking tank can be opened near the middle plane of the cracking material area, or set In the vicinity of the bonding interface of the two materials; further, the cracking device is used to complete the cracking and separation of the connecting rod body and the connecting rod cover in the cracking material region, thereby forming two fracture surfaces of the intermeshing interdigitated structure of the canine;
  • the canine staggered structure is positioned to complete the precise assembly of the connecting rod body and the connecting rod cover.
  • the bimetallic connecting rod blank can be forged before the cracking process to eliminate the casting defects, make the structure dense, and improve the mechanical properties of the connecting rod.
  • the shape of the spacer can be set to be flat or jagged, depending on the specific application of the link.
  • For the high-power engine connecting rod it is required to withstand high load and high torque.
  • a saw-toothed separating plate is arranged in the mold cavity to form a jagged joint interface between the two materials.
  • the cracking tank is opened near the joint interface of the connecting rod, and under the external load, the connecting rod body and the connecting rod cover are cracked and separated along the pre-set interface, and a natural approximate zigzag structure is formed on the two fracture surfaces.
  • the precise assembly of the link body and the connecting rod cover is completed. Due to the large contact area between the connecting rod body and the connecting rod cover, the positioning is accurate and high, so that the bearing capacity and quality stability of the joint are greatly improved.
  • a movable separating plate is arranged in the connecting rod cavity at the connecting portion between the connecting rod body and the connecting rod cover, and the connecting rod cavity is divided into two independent parts;
  • the thickness of the separating plate may be greater than the thickness of the cracking material region of the connecting rod, which is solved by the following two methods.
  • step (C) after the separator is pulled out of the cavity, the distance between the link body and the connecting rod cover is adjusted, and the thickness of the cavity injected into the cracking material region is controlled to the thickness of the predetermined cracking material region, and then the cracking material is used.
  • the liquid is injected to form a zone of cracked material.
  • step (C) after the cracking material liquid is injected into the cavity formed by the separation plate, the distance between the link body and the connecting rod cover is adjusted, the cracking material is pressed, and the thickness of the cracking material area is controlled to be predetermined.
  • the thickness of the cracked material zone is required to form a zone of cracked material.
  • the invention is also suitable for the manufacture of a high-power engine connecting rod.
  • a saw-tooth cracking layer is arranged in the cracking zone, and the cracking causes the connecting rod to break out along the cracking layer to form a distinct sawtooth structure, without machining the joint surface. .
  • the sawtooth connecting rod manufactured by the conventional machining method it has the advantages of less steps, low cost, high fitting precision, and good quality.
  • the present invention provides a new way of manufacturing a cracking type connecting rod, which expands the range of material selection of the cracking type connecting rod, and can be used for the manufacture of cracking type connecting rods, such as aluminum alloy, titanium alloy, 40Cr, etc.
  • the application of the connecting rod cracking processing technology is not limited to, but not limited to, stainless steel, stainless steel, etc.
  • the bimetal cracking link combines the advantages of the two materials to ensure the performance of the main body of the connecting rod and the anatomical requirements of the large crack of the connecting rod.
  • the invention simplifies the processing procedure of the connecting rod, reduces the investment of finishing equipment and tools, saves energy, and has high product qualification rate.
  • the method is also suitable for manufacturing high-power engine connecting rods.
  • a saw-tooth cracking layer is arranged in the cracking zone, and the cracking causes the connecting rod to break out along the cracking layer to form a distinct sawtooth structure, without processing the joint surface.
  • the sawtooth connecting rod manufactured by the traditional machining method it has the advantages of less steps, low cost, high matching precision, and good quality.
  • the connecting rod blank can be forged to eliminate the casting defects of the connecting rod, improve the compactness of the structure, and improve its mechanical and mechanical properties.
  • Figure 1 is a schematic view of the structure of a bimetal cracking link.
  • Figure 2 is a schematic view of a connecting rod using a serrated spacer.
  • Figure 3 is a casting process diagram of a composite bimetal cracking link.
  • link body 1 cracking interface 2
  • connecting rod cover 3 connecting bolt 4
  • cracking layer 5 second casting system 6
  • isolation plate 7 first casting system 8
  • cracking tank 9 serrated insulation board 30.
  • the connecting rod of the embodiment is composed of a connecting rod body 1 and a connecting rod cover 3, which are positioned and engaged with each other by a dog-toothed staggered structure on the cracking interface 2, and the connecting rod body 1 and the connecting rod cover are bolted 4 3 connected as one.
  • the technical solution of the present invention is to provide a cracking layer 5 in a cracking zone during the manufacture of the connecting rod blank, so that the cracking layer 5 is filled with a material different from the connecting rod body, and then cracked at the position of the cracking layer 5.
  • the specific method is to design the connecting material of the connecting rod material, using two independent casting systems, firstly using the No. 1 pouring system 8 to inject the connecting rod body material with high strength and toughness and fatigue resistance into the connecting rod body 1 and the connecting rod cover. 3.
  • the second casting system 6 is used to inject the cracking material into the cracking zone cavity.
  • the two metal materials are metallurgically combined in the casting process, and the obtained composite casting has excellent comprehensive mechanical properties and fatigue resistance, and The cracking layer 5 of the large head of the connecting rod is brittle under the action of external force, so that the connecting rod meets the technical requirements of cracking processing.
  • the material of the connecting rod body is LD10 aluminum alloy; the brittle material of the cracking zone is A390 high silicon aluminum alloy, and the interface contact area is 50x 80mm2.
  • the alloy composition is as follows:
  • pre-treating the surface of the separator 7 in contact with the molten metal and using liquid immersion method (such as acid, alkali or alcohol) to remove the oil stains, inclusions and the like which are not favorable for the metal composite, and pre-heat treatment , its preheating temperature is 10CT300 degrees Celsius. Preheat the mold to 24CT280 degrees Celsius and spray the release agent in the cavity;
  • liquid immersion method such as acid, alkali or alcohol
  • the composite casting is heat treated according to the specific conditions. Can be promoted by further heat treatment
  • the inter-atomic diffusion or further metallurgical reaction at the interface or the adjustment of the interfacial structure increases the bonding strength between the two metal layers.
  • the heat treatment temperature is preferably in the range of 475 to 490 degrees Celsius, and the holding time is preferably in the range of 12 to 14 hours.
  • the metallurgical reaction occurs at the interface.
  • the intermediate transition layer connects the materials on both sides, and the interface is tightly combined without obvious cracks and holes.
  • the connecting rod has obvious cleavability in its cracking layer, and the cracking surface is controlled within the cracking layer region, effectively reducing the problems of unilateral tearing, cracking, and large head hole deformation. .
  • Analysis of the quality of the cracking surface From the macroscopic point of view, the fracture surface is flat. Microscopically, the surface of the two fracture surfaces has a natural canine staggered structure, which can realize the positioning of the connecting rod body and the connecting rod cover, and achieve precise assembly.
  • the invention relates to a method for setting a cracking layer in a blank of a part by using a composite bimetal, and is also suitable for processing a cross-section part with similarity in structure and process flow of the processing of the connecting rod hole, such as cracking of the crankcase of the engine crankcase. machining.
  • a number of derivations and substitutions may be made without departing from the spirit and scope of the invention, and should be considered as a scope of patent protection as defined by the appended claims.

Abstract

一种复合双金属裂解连杆制造方法,在连杆型腔大头部设置活动的隔离板(7),将型腔分割成两独立部分,先采用连杆主体用材浇铸连杆体(1)与连杆盖(3),待其大部分凝固时将隔离板(7)抽离型腔,再将裂解区用材注入隔离板(7)抽离后形成的空腔,两材料以冶金方式结合形成复合双金属铸件;接着采用裂解设备将连杆体(1)与连杆盖(3)沿预置的裂解面完成裂解分离,利用两断裂面上形成的相互啮合的犬齿交错结构定位与精确合装。本方法工艺简单,成本低,连杆装配精确高,适合于大功率发动机连杆的制造,可以满足承受高载荷、大扭矩连杆的要求。

Description

一种复合双金属裂解连杆的制造方法 技术领域
本发明涉及一种复合双金属裂解连杆的制造方法, 属于发动机零部件制造领域。 背景技术
连杆是发动机的关键零部件之一, 其工作过程中主要承受燃烧爆发力和往复惯性力 所产生的拉伸、 压縮、 弯曲等高频交变载荷, 工作条件恶劣, 运动状态复杂, 疲劳、 磨 损、 震动等影响连杆的使用寿命。 因此连杆必须具有足够高的强度、 刚度与综合机械性 能。
传统连杆采用分体加工法, 整体锻造连杆坯件后用锯、 铣、 磨等方法加工连杆体和 连杆盖的结合面, 精加工连杆盖的定位销孔和连杆体螺栓孔后完成两者的合装。 传统方 法工序繁多, 效率低、 产品废品率高, 且承载能力与质量稳定性都较差。 目前, 连杆裂 解加工技术是连杆制造领域最具前景的加工技术, 但是, 裂解技术对连杆材料性质要求 很高, 保证其强度条件下限制其韧性指标, 要求断口呈现脆性断裂特性。 工程上裂解型 连杆常用的材料局限于粉末锻造、 高碳钢、 球墨铸铁和可锻铸铁, 这类材料制备条件苛 刻, 成本高昂, 使连杆裂解加工技术的应用与推广受局限。
申请号为 200820040497. X, 名称为 "发动机胀断连杆坯件" 的专利提出了采用粉末 锻造材料、 可锻铸铁、 70高碳钢或 C70S6高碳钢作连杆材料, 连杆毛坯采用锻造成型, 连杆大头孔内侧预加工应力槽后采用裂解工艺完成连杆裂解。 这类连杆对材料强韧性具 有严格要求, 材料制备困难, 价格高昂, 给裂解技术应用与推广带来局限。
申请号为 200580013038. 1, 名称为 "连杆及其制造方法 "的专利提出采用激光或等 离子体对连杆大头部的分割区进行照射, 在真空中冷却, 使分割区域的材料由奥氏体组 织变为马氏体组织, 在胀断载荷作用下奥氏体组织发生脆性断裂, 实现连杆体与连杆盖 的分离。 这种工艺方法存在的最大问题是: 激光或等离子体照射的区域不能有效控制, 这样除了断裂区域外, 断裂区附近部位也发生脆化, 它不仅减弱了连杆局部机械强度, 而且不能有效的保证连杆在预定的分割部位断裂, 裂解面易出现偏移等问题, 这种工艺 也不适合其他材料。
申请号为 200710300307. 3, 名称为 "高强度合金钢连杆深冷脆化胀断工艺" 的专利 提出将连杆放入液氮中深冷 5分钟以上, 改变材料的延展性, 使连杆进入脆性状态, 实 现连杆的脆性断裂。 该工艺方法使整个连杆脆化, 使连杆存在机械强度降低的危险; 连 杆脆性增加, 要将其大头部分割开需要很大的断裂载荷, 使断裂装置本身大型化, 设备 投入增加, 这种工艺不适合其他材料。
美国专利号: US20020148325A1 , 名称为 " Semi- sol id Formed, Low Elongation Aluminum Al loy Connecting Rod" 的专利提出采用半固态成型技术制造连杆毛坯, 后续 经淬火热处理、 人工时效调节铝合金连杆的强韧性, 使其满足裂解加工的技术要求。 它 存在如下不足: 半固态铝合金原料的制备工艺复杂, 成本高昂, 其冷却后形成的晶粒过 大或过小均影响连杆的强韧性, 后续的热处理对连杆性能的影响复杂, 使连杆裂解加工 时易出现大头撕裂、 裂不开、 掉渣、 断裂面变形等问题。
为了克服上述裂解连杆制造工艺存在的问题与不足, 本发明提出一种复合双金属裂 解连杆的工艺方法, 其利用复合技术使两种物理、 化学、 力学性能不同的金属在界面上 实现冶金结合而形成整体复合铸件, 它弥补了各组元材料的不足, 综合了各种材料的优 点, 实现整体性能的多样性。 由于连杆主体采用了高强韧性优质材料, 连杆大头部的裂 解区采用裂解用材质, 从而使连杆既具有高的强度和抗疲劳性能, 又具有足够的刚度和 韧性, 且在外载作用下满足裂解剖分的要求, 利用两断裂面上自然的犬齿交错结构, 保 证分离后的连杆体与连杆盖重新定位、 精确合装, 无需在机械加工配合面, 使得连杆具 有高的承载能力与高装配精度。
发明内容
本发明所要解决的技术问题是裂解用连杆材料可选种类少、 材料制备困难、 价格高 昂。
本发明的技术方案是: 制造裂解连杆的毛坯时在裂解区设置裂解层, 使裂解层充填 不同于连杆主体的材料, 制造裂解连杆毛坯, 然后在裂解层实施裂解加工。 两种不同金 属材料以冶金方式结合, 获得的复合连杆即有优异的综合性能, 其裂解区又满足裂解加 工的技术要求。
通过在连杆型腔内位于连杆体与连杆盖连接部位设置活动的隔离板, 将连杆型腔分 成两独立部分, 先铸造连杆体与连杆盖, 待其大部分凝固时将隔离板抽离型腔, 再将裂 解区用材料注入隔离板抽离后形成的空腔, 使其在重力或压力条件下充满空腔, 两种材 料以冶金方式结合形成复合铸件。
连杆型腔中设置的隔离板的厚度为 lmnT50mm。 根据浇注的两种金属材料的体积比、 接触面积, 考虑两种材料的熔点, 确定隔离板的预热温度、 两金属材料的浇注温度和两 种金属浇注的时间间隔。 这些工艺参数的选择遵循的原则是: 隔离板的预热温度和连杆 主体用材料的浇注温度恰当匹配, 避免金属材料浇注温度过高烧损隔离板表面, 或隔离 板预热温度过低, 使与其接触的金属液冷却过快, 影响复合层的冶金结合质量。 两种金 属浇注时间间隔与先浇注的金属材料温度、 铸件大小有直接关系, 由连杆主体材料凝固 时间决定。
裂解加工时, 先在连杆大头部的裂解材料区开设裂解槽, 根据裂解材料区在连杆大 头部设置的具体位置, 可将裂解槽开设在裂解材料区的中间平面附近, 或设置在两种材 料的结合界面的附近; 再采用裂解设备使连杆体与连杆盖在裂解材料区完成裂解分离, 形成相互啮合的犬齿交错结构的两断裂面; 利用两断裂面上相互啮合的犬齿交错结构定 位, 完成连杆体与连杆盖的精确合装。
双金属连杆铸件毛坯在实施裂解加工之前, 可对连杆毛坯进行锻造处理, 消除其铸 造缺陷, 使组织致密, 提高连杆的力学性能。
隔离板形状可设置为平面状或锯齿状, 根据连杆具体应用场合进行选择。 对于大功 率发动机连杆, 需承受高载荷、 大扭矩, 连杆毛坯制造时在模具型腔内设置表面为锯齿 状的隔离板, 使两种材料之间形成锯齿状的结合界面。 实施裂解工艺时, 将裂解槽开设 在连杆结合界面附近, 外载作用下, 连杆体与连杆盖沿该预先设置的界面裂解分离, 两 断裂面上产生自然的近似锯齿状的结构, 利用这类锯齿结构相互啮合与定位, 完成连杆 体与连杆盖的精确合装。 由于连杆体与连杆盖接触面积大, 定位精确高, 使得连承载能 力与质量稳定性大幅提高。
本发明的具体步骤是:
(A)在连杆型腔内位于连杆体与连杆盖连接部位设置活动的隔离板,将连杆型腔分 成两独立部分;
(B) 浇铸连杆体和连杆盖;
(C)待连杆主体和连杆盖材料大部分凝固时, 将隔离板抽离型腔, 再将裂解用材料 液注入隔离板抽离后形成的空腔, 形成裂解材料区, 裂解材料和连杆主体、 连杆盖材料 以冶金方式结合;
(D) 在裂解材料区开设裂解槽;
(E)采用裂解设备使连杆体与连杆盖在裂解材料区完成裂解分离, 形成相互啮合的 犬齿交错结构的两断裂面;
(F) 利用两断裂面上相互啮合的犬齿交错结构定位与精确合装。 当裂解材料区的厚度较小, 隔离板过薄不便于铸造连杆体与连杆盖时, 隔离板厚度 可大于连杆裂解材料区的厚度, 通过下述两种方式来解决。
在步骤(C) 中, 将隔离板抽离型腔后, 调节连杆体与连杆盖的间距, 控制注入裂解 材料区空腔的厚度达预定裂解材料区厚度的要求, 再将裂解用材料液注入, 形成裂解材 料区。
在所述步骤(C) 中, 将裂解用材料液注入隔离板抽离后形成的空腔后, 调节连杆体 与连杆盖的间距, 挤压裂解材料, 控制裂解材料区的厚度达预定裂解材料区厚度的要求, 形成裂解材料区。
本发明还适合于大功率发动机连杆的制造, 连杆毛坯制造时在裂解区设置锯齿状的 裂解层, 裂解时使连杆沿该裂解层断裂出明显的锯齿结构, 无需在机加工结合面。 与传 统机械加工方法制造的锯齿连杆相比, 具有工序少, 成本低、 配合精度高, 质量稳定好 等优点。
本发明具有如下优点:
1. 本发明提供了一种制造裂解型连杆的新途径,扩大了裂解型连杆的材料选择的范 围, 可将铝合金、 钛合金、 40Cr等材料用于裂解型连杆的制造, 推进了连杆裂解加工技 术的应用。
2. 双金属裂解连杆综合了两种材料的优势, 既保证连杆主体性能, 又满足连杆大头 裂解剖分要求。
3.与传统机械锯切、 磨削结合面的普通连杆制造方法相比, 本发明简化了连杆的加 工工序, 减少了精加工设备及刀具投资, 节省能源, 产品合格率高。
4.本工艺方法还适合于制造大功率发动机连杆, 连杆毛坯制造时在裂解区设置锯齿 状的裂解层, 裂解时使连杆沿该裂解层断裂出明显的锯齿结构, 无需加工结合面, 与传 统机械加工方法制造的锯齿连杆相比, 具有工序少, 成本低、 配合精度高, 质量稳定好 等优点。
5. 根据连杆的使用场合与性能要求, 可对连杆毛坯进行锻造处理, 以消除连杆铸造 缺陷, 改善组织致密性, 提高其机械性能与力学性能。
附图说明
图 1为双金属裂解连杆的结构示意图。
图 2为采用锯齿状隔离板的连杆示意图。
图 3为复合双金属裂解连杆的铸造工艺图。 附图中: 连杆体 1, 裂解界面 2, 连杆盖 3, 连接螺栓 4, 裂解层 5, 二号浇注系统 6, 隔离板 7, 一号浇注系统 8, 裂解槽 9, 锯齿状隔离板 30。
具体实施方式
以下结合附图和实施例对本发明作进一步说明。
如图 1所示, 实施例连杆由连杆体 1与连杆盖 3组成, 两者由裂解界面 2上的犬齿 交错结构定位与相互啮合, 由螺栓 4将连杆体 1与连杆盖 3连接为一体。
如图 1、 图 3所示, 本发明的技术方案是连杆毛坯制造时在裂解区设置裂解层 5, 使 裂解层 5充填不同于连杆主体的材料, 然后在裂解层 5的位置实施裂解加工。 具体方法 是通过设计连杆材料的组元配合, 采用两个独立的浇注系统, 先采用一号浇注系统 8将 具有高强韧性、抗疲劳性能的连杆主体材料注入连杆体 1与连杆盖 3,再采用二号浇注系 统 6在裂解区空腔注入裂解用材料, 两种金属材料在铸造过程中以冶金方式结合, 获得 的整体复合铸件具有优异的综合力学性能与抗疲劳性能, 而且, 连杆大头部的裂解层 5 在外力作用下呈脆断性, 使连杆满足裂解加工的技术要求。
本实施例材料选择: 连杆主体材料为 LD10铝合金; 裂解区的脆性材料为 A390高硅 铝合金, 界面接触面积为 50x 80mm2。
合金成分如下:
Figure imgf000007_0001
采用上述模具装置制造复合连杆的关键工艺步骤如下:
1 ) 将待复合的两种金属材料分别熔炼, 精炼后进行除气、 去杂处理;
2 )对隔离板 7与金属液接触的表面施以预处理, 使用液体浸洗法(如酸、 碱或酒精 等) 去除表面不利于金属复合的油污、 夹杂等附着物, 并进行预热处理, 其预热温度为 10CT300摄氏度。 将模具预热至 24CT280摄氏度, 并在型腔内喷刷脱模剂;
4)将 LD10合金料液注入连杆体 1与连杆盖 3型腔, 待 LD10合金液大部分凝固时通 过传动机构带动隔离板 7沿凹腔退出型腔,将 Α390合金料液压注该空腔; LD10铝合金的 浇注温度为 73CT760度, Α390高硅铝合金的浇注温度为 69CT710度;
6 ) 铸件清理后根据具体情况对复合铸件进行热处理。 通过进一步的热处理可以促 进界面处原子间扩散或者进一步的冶金反应或者调节界面组织, 从而提高两种金属层之 间的结合强度。 热处理温度优选范围 475~490摄氏度, 保温时间优选范围 12~14小时。
7 )粗加工复合连杆大头孔, 在复合连杆大头部的裂解层的中间平面的附近开设裂解 槽, 再采用裂解设备使连杆体与连杆盖在裂解材料区完成裂解分离, 利用两断裂面上相 互啮合的犬齿交错结构定位, 用螺栓将连杆体 1与连杆盖 3连成一体精加工成品。
通过试验分析, 从结合界面处得微观组织形貌可看出, 界面处发生了明显的冶金反 应, 中间过渡层连接两侧材料, 界面结合紧密, 无明显裂纹和孔洞。 裂解时, 通过施加 外载, 连杆在其裂解层具有明显的可裂解性, 且裂解面控制在裂解层区域之内, 有效的 减少了单边撕裂、 裂解不开、 大头孔变形等问题。 裂解面质量上分析: 从宏观上看断裂 面平整, 微观上看两断裂面表面具有自然的犬齿交错结构, 可实现连杆体与连杆盖的定 位, 实现精确合装。
本发明涉及的采用复合双金属在零件毛坯中设置裂解层的工艺方法, 还适合于与连 杆孔的加工在结构、 工艺流程具有相似性的剖分类零件加工, 如发动机曲轴箱轴承座的 裂解加工。 在不脱离本发明构思的前提下, 还可以做出若干推演和替换, 都应视为属于 本发明所提交的权利要求书确定的专利保护范围。

Claims

权利要求书
1. 一种复合双金属裂解连杆的制造方法, 其特征在于, 制造裂解连杆的毛坯时在裂解区 设置裂解层, 使裂解层充填不同于连杆主体的材料, 制造裂解连杆毛坯, 然后在裂解层 实施裂解加工, 其具体步骤是:
(A) 在连杆型腔内位于连杆体与连杆盖连接部位设置活动的隔离板 (7 ), 将连杆型 腔分成两独立部分;
(B) 浇铸连杆体 (1 ) 和连杆盖 (3);
( C ) 待连杆主体 (1 ) 和连杆盖 (3 ) 材料大部分凝固时, 将隔离板 (7 ) 抽离型 腔, 再将裂解用材料液注入隔离板抽离后形成的空腔, 形成裂解材料区, 裂解材料和连 杆主体 (1 )、 连杆盖 (3) 材料以冶金方式结合;
(D) 在裂解材料区开设裂解槽 (9);
(E) 采用裂解设备使连杆体与连杆盖在裂解材料区完成裂解分离, 形成相互啮合的 犬齿交错结构的两断裂面;
(F) 利用两断裂面上相互啮合的犬齿交错结构定位与精确合装。
2. 根据权利要求 1 所述的一种复合双金属裂解连杆的制造方法, 其特征在于, 在所述步 骤 (C) 中, 将隔离板 (7 ) 抽离型腔后, 调节连杆体 (1 ) 与连杆盖 (3 ) 的间距, 控制 注入裂解材料区空腔的厚度达预定裂解材料区厚度的要求, 再将裂解用材料液注入, 形 成裂解材料区。
3. 根据权利要求 1 所述的一种复合双金属裂解连杆的制造方法, 其特征在于, 在所述步 骤 (C) 中, 将裂解用材料液注入隔离板抽离后形成的空腔后, 调节连杆体 (1 ) 与连杆 盖 (3 ) 的间距, 挤压裂解材料, 控制裂解材料区的厚度达预定裂解材料区厚度的要求, 形成裂解材料区。
4. 根据权利要求 1 、 2或 3所述的一种复合双金属裂解连杆的制造方法, 其特征在于, 所述隔离板 (7) 形状设置为平面状或锯齿状。
5. 根据权利要求 1 、 2或 3所述的一种复合双金属裂解连杆的制造方法, 其特征在于, 所述裂解材料区用材料的厚度为 1mm— 20mm。
6. 根据权利要求 1 、 2或 3所述的一种复合双金属裂解连杆的制造方法, 其特征在于, 所述步骤 (C) 中裂解区材料的注入是在重力或压力条件下完成。
7. 根据权利要求 1 、 2或 3所述的一种复合双金属裂解连杆的制造方法, 其特征在于, 在所述步骤 (D) 前, 对连杆毛坯进行锻造处理。
PCT/CN2012/083415 2012-04-17 2012-10-24 一种复合双金属裂解连杆的制造方法 WO2013155826A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/394,692 US9695866B2 (en) 2012-04-17 2012-10-24 Method for manufacturing composite double-metal fracture splitting connecting rod

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210111190.5 2012-04-17
CN201210111190.5A CN102626777B (zh) 2012-04-17 2012-04-17 一种复合双金属裂解连杆的制造方法

Publications (1)

Publication Number Publication Date
WO2013155826A1 true WO2013155826A1 (zh) 2013-10-24

Family

ID=46585276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083415 WO2013155826A1 (zh) 2012-04-17 2012-10-24 一种复合双金属裂解连杆的制造方法

Country Status (3)

Country Link
US (1) US9695866B2 (zh)
CN (1) CN102626777B (zh)
WO (1) WO2013155826A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3009701A1 (de) * 2014-10-07 2016-04-20 MAN Truck & Bus AG Bruchgetrenntes bauteil, insbesondere bruchgetrenntes pleuel oder bruchgetrennter hauptlagerdeckel eines kurbelgehäuses einer brennkraftmaschine
CN107838632A (zh) * 2016-09-19 2018-03-27 云南西仪工业股份有限公司 一种粉锻连杆的胀断预应力槽制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626777B (zh) 2012-04-17 2014-10-29 江苏大学 一种复合双金属裂解连杆的制造方法
CN103009020B (zh) * 2012-12-31 2015-07-08 江苏大学 一种钢制裂解连杆的制造方法
CN104668926B (zh) * 2015-01-19 2017-02-22 西安交通大学 一种剖分式连杆大端的激光起爆的爆轰裂解加工工艺
US10092951B2 (en) * 2015-08-31 2018-10-09 Akebono Brake Industry Co., Ltd Unitary caliper body and support bracket and method of making the same
CN105195673B (zh) * 2015-10-14 2017-08-04 江苏大学 一种双金属复合裂解连杆的熔模铸造方法
CN106736318A (zh) * 2016-11-30 2017-05-31 吉林省牧巍电子设备制造有限公司 一种发动机连杆涨断加工方法
CN106994496B (zh) * 2017-04-14 2018-12-14 江苏大学 一种钢制双金属裂解连杆的锻造方法
CN107740004A (zh) * 2017-10-23 2018-02-27 浙江跃进机械有限公司 钢纤维增强铝连杆的制造方法
CN108080602A (zh) * 2017-12-21 2018-05-29 南京航空航天大学 一种零件毛坯自然裂解工艺
CN110442915A (zh) * 2019-07-04 2019-11-12 天润曲轴股份有限公司 连杆设计方法
CN111496195A (zh) * 2020-04-26 2020-08-07 全椒康盛机电有限公司 汽车发动机连杆双金属熔模铸造工艺
CN112191827B (zh) * 2020-09-28 2021-09-21 安徽七里松铝业科技有限公司 一种铝合金板材制造用模具及其应用方法
CN114952187A (zh) * 2022-05-11 2022-08-30 重庆远航模具有限公司 用于微耕机的换挡操作杆及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2296752A (en) * 1995-01-09 1996-07-10 Fischer Georg Fahrzeugtech Method of manufacturing a connecting rod
JPH1162945A (ja) * 1997-06-10 1999-03-05 Hitachi Metals Ltd 鋳造コンロッドおよびロッド部並びにキャップ部
JP2000110825A (ja) * 1998-10-01 2000-04-18 Honda Motor Co Ltd コネクティングロッドの製造方法
CN101387314A (zh) * 2007-09-12 2009-03-18 黄石东贝电器股份有限公司 一种爆炸式组合连杆及其制造方法
CN101444884B (zh) * 2008-12-18 2010-12-01 浙江跃进机械有限公司 一种发动机连杆的加工工艺
CN102626777A (zh) * 2012-04-17 2012-08-08 江苏大学 一种复合双金属裂解连杆的制造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US179212A (en) * 1876-06-27 Improvement in the manufacture of metallic i-ngots and plates
US2244367A (en) * 1939-06-10 1941-06-03 Kinkead Robert Emerson Making composite metal articles
US3433284A (en) * 1966-01-14 1969-03-18 Gen Motors Corp Method of casting a pitted surface
AR207030A1 (es) * 1974-02-20 1976-09-09 Federal Mogul Corp Procedimiento para fabricar componentes de precision del tipo que comprende un miembro que es de construccion seccionalizada consistiendo ed una pluralidad de secciones apareadas
JPS61291941A (ja) * 1985-06-19 1986-12-22 Taiho Kogyo Co Ltd Si含有量が高いAl鋳造合金
JPH0638977B2 (ja) * 1985-10-17 1994-05-25 大同特殊鋼株式会社 鋳造工具の製造方法
GB8610906D0 (en) * 1986-05-03 1986-06-11 Ford Motor Co Fracture splitting of light metal components
ES2030918T3 (es) * 1988-02-27 1992-11-16 Sintermetallwerk Krebsoge Gmbh Procedimiento de fabricar componentes forjados de material pulvimetalurgico.
DE4303592A1 (de) * 1993-02-08 1994-08-11 Krebsoege Gmbh Sintermetall Verfahren zum Herstellen eines Bauteils mit wenigstens einem geteilten Lagersitz
US5826331A (en) * 1995-06-07 1998-10-27 Cummins Engine Company, Inc. Method for the production of a fracture split connection component
US20020148325A1 (en) * 2001-04-13 2002-10-17 Bergsma S. Craig Semi-solid formed, low elongation aluminum alloy connecting rod
CN1258416C (zh) * 2004-04-16 2006-06-07 清华大学 双金属压铸方法
JP2005308189A (ja) 2004-04-26 2005-11-04 Honda Motor Co Ltd コネクティングロッド及びその製造方法
DE102005015186A1 (de) * 2005-04-02 2006-10-05 Entec Consulting Gmbh Verfahren zur Herstellung eines metallischen Verbundgussbauteiles
CN201133417Y (zh) * 2007-12-14 2008-10-15 中国第一汽车集团公司无锡柴油机厂 B43型柴油机连杆
CN101307796A (zh) 2007-12-21 2008-11-19 长春设备工艺研究所 高强度合金钢连杆深冷脆化胀断工艺
CN201218271Y (zh) 2008-07-10 2009-04-08 安徽江淮汽车股份有限公司 发动机涨断连杆坯件
CN101643870A (zh) * 2009-08-28 2010-02-10 姜堰市万里特种合金铸造厂 可热锻的钪铝合金连杆材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2296752A (en) * 1995-01-09 1996-07-10 Fischer Georg Fahrzeugtech Method of manufacturing a connecting rod
JPH1162945A (ja) * 1997-06-10 1999-03-05 Hitachi Metals Ltd 鋳造コンロッドおよびロッド部並びにキャップ部
JP2000110825A (ja) * 1998-10-01 2000-04-18 Honda Motor Co Ltd コネクティングロッドの製造方法
CN101387314A (zh) * 2007-09-12 2009-03-18 黄石东贝电器股份有限公司 一种爆炸式组合连杆及其制造方法
CN101444884B (zh) * 2008-12-18 2010-12-01 浙江跃进机械有限公司 一种发动机连杆的加工工艺
CN102626777A (zh) * 2012-04-17 2012-08-08 江苏大学 一种复合双金属裂解连杆的制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3009701A1 (de) * 2014-10-07 2016-04-20 MAN Truck & Bus AG Bruchgetrenntes bauteil, insbesondere bruchgetrenntes pleuel oder bruchgetrennter hauptlagerdeckel eines kurbelgehäuses einer brennkraftmaschine
CN107838632A (zh) * 2016-09-19 2018-03-27 云南西仪工业股份有限公司 一种粉锻连杆的胀断预应力槽制备方法
CN107838632B (zh) * 2016-09-19 2023-10-20 云南西仪工业股份有限公司 一种粉锻连杆的胀断预应力槽制备方法

Also Published As

Publication number Publication date
CN102626777A (zh) 2012-08-08
CN102626777B (zh) 2014-10-29
US9695866B2 (en) 2017-07-04
US20150053363A1 (en) 2015-02-26

Similar Documents

Publication Publication Date Title
WO2013155826A1 (zh) 一种复合双金属裂解连杆的制造方法
US10953486B2 (en) Additive forging method for preparing homogenized forged pieces
CN103320727B (zh) 一种铝合金中厚板制备方法
JP5522321B1 (ja) 非調質鋼材
CN105195265B (zh) 双复合耐磨锤头及其制造方法
CN109894473B (zh) 一种连铸坯直锻生产热作模具钢的方法
CN108779534B (zh) 非调质棒钢
CN105268884A (zh) 一种钢锭超高温软芯锻造方法
CN109735748B (zh) 一种耐热铸造铝合金活塞材料及其制备方法
CN106363151B (zh) 一种制备铜铁双金属复合材料的方法
CN102626770A (zh) 一种裂解型连杆的制造方法
Chen et al. A novel method for net-shape forming of hypereutectic Al–Si alloys by thixocasting with powder preforms
Wang et al. The role of vibration time in interfacial microstructure and mechanical properties of Al/Mg bimetallic composites produced by a novel compound casting
CN101591744B (zh) 一种超塑性Ti-Al-Nb-Er合金材料及其制备方法
CN104004955A (zh) 高性能喷射钢的制造方法
JP2007002281A (ja) セルフピアスリベット接合用アルミニウム合金鋳物及びその製造方法
JP5588884B2 (ja) マグネシウム合金鍛造ピストンの製造方法およびマグネシウム合金鍛造ピストン
Tsuchiya et al. Research of semi solid casting of iron
CN106994496B (zh) 一种钢制双金属裂解连杆的锻造方法
CN110337504B (zh) 热锻用棒钢
CN106521256A (zh) 一种过共晶铝硅合金及其制备方法
Prabhu Microstructure and mechanical properties of a thixoforged (semi solid state forged) Al-Cu-Mg alloy
JP6488774B2 (ja) 破断分離後の破断面同士の嵌合性に優れた鋼部品用の熱間圧延鋼材および鋼部品
Guan et al. Semisolid die forging process, microstructures and properties of AZ31 magnesium alloy mobile telephone shells
JP7152932B2 (ja) アルミニウム合金部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14394692

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874819

Country of ref document: EP

Kind code of ref document: A1