CN101591744B - 一种超塑性Ti-Al-Nb-Er合金材料及其制备方法 - Google Patents

一种超塑性Ti-Al-Nb-Er合金材料及其制备方法 Download PDF

Info

Publication number
CN101591744B
CN101591744B CN2009100874809A CN200910087480A CN101591744B CN 101591744 B CN101591744 B CN 101591744B CN 2009100874809 A CN2009100874809 A CN 2009100874809A CN 200910087480 A CN200910087480 A CN 200910087480A CN 101591744 B CN101591744 B CN 101591744B
Authority
CN
China
Prior art keywords
alloy
alloy material
plastic
super
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100874809A
Other languages
English (en)
Other versions
CN101591744A (zh
Inventor
段辉平
柯于斌
宋洪海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2009100874809A priority Critical patent/CN101591744B/zh
Publication of CN101591744A publication Critical patent/CN101591744A/zh
Application granted granted Critical
Publication of CN101591744B publication Critical patent/CN101591744B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种超塑性Ti-Al-Nb-Er合金材料及其制备方法,涉及Ti-Al-Nb-Er高温结构材料。本发明以具有轻密度、高比强的Ti-Al-Nb合金系为基础,通过在合金中添加稀土Er(原子百分比为0<Er<1%),利用真空电弧炉熔炼铸锭并通过一定的真空热处理工艺制备合金。该合金主要由α2、B2和O相组成,细小的富稀土相弥散分布在B2相内和晶界,使晶粒细化并阻碍裂纹扩展。该合金具有超塑性、高硬度和高韧性。

Description

一种超塑性Ti-Al-Nb-Er合金材料及其制备方法
技术领域
本发明属于金属材料技术领域,具体涉及一种Ti-Al-Nb-Er超塑性材料及其制备工艺。
背景技术
随着航空、航天推进技术的发展,对航空、航天发动机的性能提出了越来越高的要求,对于高推比发动机,要求高温结构材料必须“更强、更刚、更耐热和更轻”。TiAl基金属间化合物合金具有密度低、高温强度高及高温抗氧化能力强等特点,因此被认为是一种理想的、可用来代替目前航空航天常用的镍基高温合金的材料而受到广泛的重视。
高铌TiAl基合金通过加入大量高熔点元素Nb,是高温高性能TiAl基合金发展方向之一。陈国良院士等在国际上首先研究开发了具有优良高温性能的高铌TiAl基合金。高铌TiAl基合金与常用变形高温合金抗氧化性相似,但其比重比高温合金低一倍左右,因而具有显著的比强度优势。然而,室温塑性低、成形能力差等缺点是影响其投入实际应用的主要障碍。目前,高铌TiAl基合金的塑性已通过添加Mn、B等元素合金化、调整化学成份以及通过热加工及热处理有目的的控制显微组织而得到了一定的改善和提高。然而,难以进行常规压力加工和成形,成形困难及制造成本高依然是其实用化的最大障碍。
超塑性成形具有成形压力小、成形性好、设计自由度大、零件整体性好、无残余应力及材料利用率高等许多优越性,因此被认为是解决金属间化合物及其合金、陶瓷等难加工成形问题的最好方法之一。研究表明,通过热机械加工、合金化以及适当的热处理等途径细化合金晶粒调控组织及B2、O相和α2相的比例、形态和分布是改善Ti-Al-Nb合金强韧性的主要方法。目前关于通过添加稀土Er来制备塑性较好甚至是超塑性的Ti-Al-Nb合金以及稀土Er在Ti-Al-Nb合金中的冶金过程尚无报道。
发明内容
本发明的目的是提供一种通过添加适量的稀土Er,并经过一定的热处理过程来细化晶粒、调控组织从而改善材料的综合力学性能作用的Ti-Al-Nb-Er合金材料制备方法以及通过此种制备方法而获得了超塑性的Ti-Al-Nb-Er合金材料。本发明的Ti-Al-Nb-Er基合金材料由下述组分按照原子百分比at.%的配比组成:Al10~24%、Nb25~40%、0<Er<1%,余量为Ti及其它杂质元素。
超塑性Ti-Al-Nb-Er合金材料按照下述步骤进行制备:
a.按照配比计算熔炼所需各合金元素及稀土质量,对低熔点易挥发元素按挥发烧损量进行相应补偿。
b.采用真空电弧炉在氩气保护下炼制含有稀土的合金铸锭。
c.将所炼合金置于真空热处理炉中,用氩气保护,在β相转变温度以上保温2h进行均匀化退火,并快冷至O相转变温度保温8h进行回火,再炉冷至室温。
在Ti-Al-Nb-Er合金熔体冷凝过程中,稀土Er的加入促进了β相的形核,抑制了Ti-Al-Nb-Er合金晶粒的长大,起到细化晶粒的作用。Er与Al结合生成细小弥散的Al2Er3颗粒并在B2相内析出,对B2相起到“钉扎”作用。而在β相转变温度以上的均匀化退火处理使铸锭晶内化学成分均匀,消除了枝晶偏析和不平衡相的影响;在O相转变温度的回火处理使得从B2相中析出更多的O相,得到均匀的由O相和α2相强化的细小针状组织,使合金的塑性得到显著改善。
在Ti-Al-Nb-Er合金的各相组成中,B2相硬度较低,塑性较好;α2、O与B2相晶粒之间可以通过晶界滑动来调整和变换位置,甚至改变取向从而使合金变形。稀土Er的引入可使晶粒细化,B2相内析出的硬质相Al2Er3会阻碍塑性较好的B2相的变形,但通过晶界滑动和变换位置,B2相可继续发生塑性变形,从而提高合金的塑性,甚至表现出超塑性。
附图说明
图1Er元素对铸态Ti-Al-Nb-Er合金组织的影响;
图2Er元素对铸态Ti-Al-Nb-Er合金力学性能的影响;
图3超塑性Ti-Al-Nb-Er合金的针状显微组织;
图4超塑性Ti-16Al-27Nb-0.6Er合金XRD图谱;
图5Ti-Al-Nb-Er合金中富稀土相的TEM形貌及选区电子衍射花样;
图6Ti-Al-Nb-Er合金中富稀土相的能谱分析;
图7热处理Ti-Al-Nb-Er合金的力学性能;
图8超塑性Ti-Al-Nb-Er合金的三点弯曲断口形貌;
图9几种超塑性Ti-Al-Nb-Er铸态合金的力学性能。
具体实施方式
下面结合附图和实施例对本发明的i-Al-Nb-Er超塑性合金材料进行详细说明。
本发明提供一种Ti-Al-Nb-Er超塑性材料,由下述组分按照原子百分比at.%的配比组成:Al 10~24%、Nb25~40%、0<Er<1%,余量为Ti及其它杂质元素。
按照上述配比形成的合金可以是Ti-16Al-27Nb-0.6Er合金,该合金的显微组织为针状,显微硬度达到343HV,XRD检测的相组成主要由B2、O和α2相组成,存在Al2Er3相,屈服强度为800MPa,压缩塑性变形量达到90%以上,显示出了超塑性。断裂韧性KIC=44MPa·m1/2,属于韧性断裂。
按照上述配比形成的合金也可以是Ti-13Al-40Nb-0.8Er合金,或者Ti-10Al-30Nb-0.95Er合金,或者Ti-24Al-25Nb-0.05Er合金。
本发明还提供一种上述Ti-Al-Nb-Er超塑性合金材料的制备方法,具体步骤如下:
步骤一、原料配比。按照配比计算熔炼所需各合金元素及稀土质量,对低熔点易挥发元素按挥发烧损量进行相应补偿。
通过对熔炼前后铸锭成分的测定,计算低熔点易挥发元素的挥发烧损量,并以此作为补偿的基准,本实例中Al元素的烧损量按30wt.%进行补偿。
步骤二、熔炼。采用真空电弧炉在氩气保护下炼制含有稀土Er的合金铸锭。
步骤三、热处理。将所炼合金铸锭置于真空热处理炉中,用氩气保护,在β相转变温度以上保温2h进行均匀化退火,并快冷至O相转变温度保温8h进行回火,再炉冷至室温。
实施例1:采用市购的纯Ti、Al、Nb、Er金属为原料,用砂纸磨去表面氧化层,并用丙酮在超声波中进行清洗。按下述原子百分比(at.%)进行配料:Al16%、Nb27%、Er0.6%,余量为Ti,并对Al按30wt.%的挥发烧损进行补偿。在氩气保护下,利用真空电弧炉经反复熔炼、翻料,随炉冷却,制备Ti-16Al-27Nb-0.6Er合金铸锭。然后,直接从铸态锭子上切取试样进行测试。图1为添加稀土前后铸态试样的金相组织,加稀土Er后,合金的晶粒得到了明显细化,图2为添加稀土Er前后这种铸态合金的室温压缩应力-应变曲线,屈服强度为700MPa左右,与未加稀土Er时合金的强度相当,然而,从曲线可看出,添加Er后压缩塑性变形量有了显著提高,达到65%以上。
将所制备Ti-16Al-27Nb-0.6Er合金铸锭置于真空热处理炉中,在氩气保护下,在1523K下保温2h,随炉冷至1123K后保温8h,再炉冷至室温。其显微组织如图3所示,超塑性Ti-16Al-27Nb-0.6Er合金的显微组织为针状,显微硬度达到343HV,XRD检测的相组成如图4所示,主要由B2、O和α2相组成,由于稀土所占体积分数较小在曲线上难以显现。通过带能谱的透射电镜的成分和结构分析证实了Al2Er3相的存在,如图5的TEM形貌象可清楚的观察到富稀土相的存在,对其的选区电子衍射花样标定以及图6的能谱分析都证实该富稀土相为Al2Er3相。图7(a)、(b)为添加稀土前后合金的室温下压缩应力-应变曲线,屈服强度为800MPa,与未加稀土Er前相比基本没变。然而,从曲线可看出,添加Er后压缩塑性变形量有了显著提高,达到90%以上,显示出了超塑性。断裂韧性KIC=44MPa·m1/2,比未加稀土合金的断裂韧性14MPa·m1/2提高了3倍多。图8为其三点弯曲的断口形貌,断裂过程中B2相被撕开,而Al2Er3相粒子被拔出,从图中可看出有大量的Al2Er3相粒子残留在韧窝,属于韧性断裂。
实施例2:采用市购的纯Ti、Al、Nb、Er金属为原料,用砂纸磨去表面氧化层,并用丙酮在超声波中进行清洗。按下述名义组分(原子百分比at.%)进行配料:Al 13%、Nb40%、Er0.8%,余量为Ti的量,并对Al元素按30wt.%的挥发烧损进行补偿。利用真空电弧炉在氩气保护下熔炼制备Ti-13Al-40Nb-0.8Er合金。经反复翻料、熔炼后随炉冷却制得合金铸锭。然后,直接从铸态锭子上切取试样进行测试。合金的断裂韧性KIC=45MPa·m1/2,图9(a)为添加稀土Er后这种铸态合金的室温压缩应力-应变曲线,屈服强度为875MPa左右,从曲线可看出,合金压缩塑性变形量达到97%以上,也显示出了超塑性。
实施例3:采用市购的纯Ti、Al、Nb、Er金属为原料,用砂纸磨去表面氧化层,并用丙酮在超声波中进行清洗。按下述名义组分(原子百分比at.%)进行配料:Al10%、Nb30%、Er0.95%,余量为Ti的量,并对Al元素按30wt.%的挥发烧损进行补偿。利用真空电弧炉在氩气保护下熔炼制备Ti-10Al-30Nb-0.95Er合金。经反复翻料、熔炼后随炉冷却制得合金铸锭。然后,直接从铸态锭子上切取试样进行测试。图9(b)为铸态Ti-10Al-30Nb-0.95Er合金的室温压缩应力-应变曲线,屈服强度为750MPa左右,从曲线可看出,合金压缩塑性变形量达到99%以上,显示出了超塑性,经过实施例1所述的热处理过程之后,合金的压缩塑性变形量将更高。
实施例4:采用市购的纯Ti、Al、Nb、Er金属为原料,用砂纸磨去表面氧化层,并用丙酮在超声波中进行清洗。按下述名义组分(原子百分比at.%)进行配料:Al24%、Nb25%、Er0.05%,余量为Ti的量,并对Al元素按30wt.%的挥发烧损进行补偿。利用真空电弧炉在氩气保护下熔炼制备Ti-24Al-25Nb-0.05Er合金。经反复翻料、熔炼后随炉冷却制得合金铸锭。然后,直接从铸态锭子上切取试样进行测试。图9(c)为铸态Ti-24Al-25Nb-0.05Er合金的室温压缩应力-应变曲线,屈服强度为800MPa左右,从曲线可看出,合金压缩塑性变形量达到71%以上,也显示出了超塑性。经过实施例1所述的热处理过程之后,合金的压缩塑性变形量将更高。
下表为不同组份的超塑性合金材料Ti-Al-Nb-Er在热处理后的力学性能:
  超塑性合金材料   室温屈服强度   压缩塑性变形量
  Ti-24Al-25Nb-0.8Er   800MPa   80%以上
  Ti-24Al-25Nb-0.6Er   750MPa   89%以上
  Ti-10Al-30Nb-0.1Er   900MPa   90%以上
  Ti-10Al-30Nb-0.7Er   800MPa   99%以上
  Ti-13Al-40Nb-0.05Er   880MPa   95%以上
  Ti-13Al-40Nb-0.90Er   950MPa   85%以上
通过在Ti-(10~24)Al-(25~40)Nb-(0~1)Er超塑性合金材料的成分范围内适当改变Er元素的含量,制备得到了具备超塑性能的合金材料,该材料在铸态就已经体现除了超塑性,在热处理均匀化之后合金的塑性变形量将会更大。本发明提供的Ti-(10~24)Al-(25~40)Nb-(0~1)Er超塑性合金材料的各相组成中,B2相硬度较低,塑性较好;α2、O与B2相晶粒之间可以通过晶界滑动来调整和变换位置,甚至改变取向从而使合金变形。硬质相Al2Er3相的引入可使晶粒细化,同时也阻碍塑性较好的B2相的变形,但通过晶界滑动和变换位置,B2相可继续发生塑性变形,从而提高合金的塑性,甚至表现出超塑性。为高温高性能TiAl基合金发展提供了一个方向。

Claims (7)

1.一种超塑性Ti-Al-Nb-Er合金材料,其特征在于:其组分主要含Ti、Al、Nb、Er元素,且按如下原子百分比at.%构成:Al10~24%、Nb25~40%、0<Er<1%,余量为Ti及其它杂质元素。
2.根据权利要求1所述的一种超塑性Ti-Al-Nb-Er合金材料,其特征在于:所述合金材料的压缩塑性变形量,铸态时达65%以上,热处理后达90%以上,显示出超塑性;其断裂韧性KIC达40MPa·m1/2以上。
3.根据权利要求1或2所述的一种超塑性Ti-Al-Nb-Er合金材料,其特征在于:所述的合金材料为Ti-16Al-27Nb-0.6Er合金,该合金热处理后的显微组织为针状,显微硬度达到343HV,XRD检测的相组成主要由B2、O和α2相组成,存在Al2Er3相,屈服强度为800MPa,压缩塑性变形量达到90%以上,显示出了超塑性,断裂韧性KIC=44MPa·m1/2
4.根据权利要求1或2所述的一种超塑性Ti-Al-Nb-Er合金材料,其特征在于:所述的合金材料为Ti-13Al-40Nb-0.8Er合金,压缩塑性变形量为97%,断裂韧性KIC=45MPa·m1/2
5.根据权利要求1或2所述的一种超塑性Ti-Al-Nb-Er合金材料,其特征在于:所述的合金材料为Ti-10Al-30Nb-0.95Er合金,或者Ti-24Al-25Nb-0.05Er合金。
6.一种超塑性Ti-Al-Nb-Er合金材料的制备方法,其特征在于:
a.按照配比计算熔炼所需各合金元素及稀土元素的质量,对低熔点易挥发元素按挥发烧损量进行相应补偿;
b.采用真空电弧炉在氩气保护下炼制含有稀土的合金铸锭;
c.将所炼合金置于真空热处理炉中,用氩气保护,在β相转变温度以上保温2h进行均匀化退火,并快冷至O相转变温度保温8h进行回火,再炉冷至室温。
7.根据权利要求6所述的Ti-Al-Nb-Er超塑性材料的制备方法,其特征在于:步骤c中在1523K保温2h进行均匀化退火,并随炉冷却到1123K保温8h进行回火处理,再炉冷至室温。
CN2009100874809A 2009-06-25 2009-06-25 一种超塑性Ti-Al-Nb-Er合金材料及其制备方法 Expired - Fee Related CN101591744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100874809A CN101591744B (zh) 2009-06-25 2009-06-25 一种超塑性Ti-Al-Nb-Er合金材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100874809A CN101591744B (zh) 2009-06-25 2009-06-25 一种超塑性Ti-Al-Nb-Er合金材料及其制备方法

Publications (2)

Publication Number Publication Date
CN101591744A CN101591744A (zh) 2009-12-02
CN101591744B true CN101591744B (zh) 2010-08-11

Family

ID=41406621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100874809A Expired - Fee Related CN101591744B (zh) 2009-06-25 2009-06-25 一种超塑性Ti-Al-Nb-Er合金材料及其制备方法

Country Status (1)

Country Link
CN (1) CN101591744B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105018741A (zh) * 2015-07-31 2015-11-04 西安西工大超晶科技发展有限责任公司 一种均质Ti2AlNb合金铸锭的制备方法
CN107974653B (zh) * 2017-12-01 2019-05-21 中国航空工业标准件制造有限责任公司 一种钛铌合金零件退火热处理不合格的优化方法
CN110438369A (zh) * 2019-09-18 2019-11-12 大连大学 一种高硬度、高氧化性Ti-Al-Nb-Re合金的制备方法
CN110648989A (zh) * 2019-10-11 2020-01-03 重庆新启派电子科技有限公司 一种芯片植球用键合丝
CN114150238B (zh) * 2021-11-26 2022-08-09 中国航发北京航空材料研究院 一种Ti-Al-Nb基复合材料及其制备方法
CN115194065B (zh) * 2022-06-27 2023-06-23 中国航发北京航空材料研究院 热膨胀敏感且低塑性Ti-Al-Nb合金的锻造工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919886A (en) * 1989-04-10 1990-04-24 The United States Of America As Represented By The Secretary Of The Air Force Titanium alloys of the Ti3 Al type
CN1050742A (zh) * 1989-10-06 1991-04-17 通用电气公司 改进多组分钛合金的方法及所制备的合金
CN101457313A (zh) * 2007-12-12 2009-06-17 北京有色金属研究总院 一种含有稀土元素的高温钛合金

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919886A (en) * 1989-04-10 1990-04-24 The United States Of America As Represented By The Secretary Of The Air Force Titanium alloys of the Ti3 Al type
CN1050742A (zh) * 1989-10-06 1991-04-17 通用电气公司 改进多组分钛合金的方法及所制备的合金
CN101457313A (zh) * 2007-12-12 2009-06-17 北京有色金属研究总院 一种含有稀土元素的高温钛合金

Also Published As

Publication number Publication date
CN101591744A (zh) 2009-12-02

Similar Documents

Publication Publication Date Title
CN101457314B (zh) 钛铝化物合金
CN101591744B (zh) 一种超塑性Ti-Al-Nb-Er合金材料及其制备方法
CN110643856B (zh) 一种镍基合金、其制备方法与一种制造物品
CN108531790A (zh) 一种高强度高热导率6系铝合金带材及其制备方法
CN113122763B (zh) 一种高强韧性高熵合金制备方法
JP5082112B2 (ja) 常温での強度と加工性およびクリープ特性に優れるNi基合金材料とその製造方法
CN109487107B (zh) 一种兼具富铁相变质的铸造铝合金的复合变质剂及其变质方法
CN110218948A (zh) 一种低密度高韧度钢及其制备方法
JP3753101B2 (ja) 高強度高剛性鋼及びその製造方法
CN112195317B (zh) 一种异构结构高熵合金的冷轧复合激光表面退火工艺方法
CN109371268A (zh) 一种高温、高热稳定性、高蠕变抗力钛合金棒材的制备方法
EP3612657A1 (en) High formability steel sheet for the manufacture of lightweight structural parts and manufacturing process
Tan et al. Room and high temperature mechanical behavior of Ti–Al–Nb–Mo alloy reinforced with Ti2AlN ceramic particles
CN108220698A (zh) 一种车身外板用高成形性铝合金复合板材的制备方法
CN110951946B (zh) 一种低密度钢的热处理工艺及其制备方法
Rogal et al. Characteristics of 100Cr6 bearing steel after thixoforming process performed with prototype device
CN114438384A (zh) 一种低成本高强韧耐燃镁合金及其挤压材制备方法
CN102409258A (zh) 一种含硼的高强度、耐氢脆合金及其组织均匀性控制方法
CN114561517A (zh) 一种低密度高塑韧性钢及其制备方法和应用
CN109536776B (zh) 一种耐热钛合金及其制备方法
CN112210703B (zh) 一种高再结晶抗力和高强韧铝锂合金及其制备方法
CN107974632B (zh) 一种奥氏体热作模具钢及其制备方法
CN113474479A (zh) 由铝合金制造板材或带材的方法和由此制成的板材、带材或成形件
CN113005324B (zh) 一种铜钛合金及其制备方法
CN104498785A (zh) 一种Al-Mg-Er-Zr耐热铝合金及其制备工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100811

Termination date: 20110625