WO2013155711A1 - 一种负载贵金属催化剂的制备方法 - Google Patents

一种负载贵金属催化剂的制备方法 Download PDF

Info

Publication number
WO2013155711A1
WO2013155711A1 PCT/CN2012/074466 CN2012074466W WO2013155711A1 WO 2013155711 A1 WO2013155711 A1 WO 2013155711A1 CN 2012074466 W CN2012074466 W CN 2012074466W WO 2013155711 A1 WO2013155711 A1 WO 2013155711A1
Authority
WO
WIPO (PCT)
Prior art keywords
coo
noble metal
water
oil
preparing
Prior art date
Application number
PCT/CN2012/074466
Other languages
English (en)
French (fr)
Inventor
岳仁亮
陈运法
刘刚
刘海弟
贾毅
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Priority to PCT/CN2012/074466 priority Critical patent/WO2013155711A1/zh
Publication of WO2013155711A1 publication Critical patent/WO2013155711A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy

Definitions

  • the present invention relates to the field of catalyst preparation, and in particular to a process for the preparation of a supported noble metal catalyst. Background technique
  • the noble metal catalyst supported is a kind of widely used environmentally friendly catalyst material, which has good catalytic effect on the reaction of low temperature catalytic combustion of formaldehyde, and in ammonia synthesis reaction, organic pollutant elimination, hydrogenation and reforming catalytic reaction, gas sensor and fuel. There are potential or practical applications in terms of batteries.
  • the preparation technology of the supported noble metal catalyst is mainly a liquid phase deposition method.
  • the preparation of supported noble metal catalysts reported in the literature involves two steps: 1) preparation of metal oxides; 2) deposition of precious metals onto metal oxides.
  • the specific step of the liquid deposition method is to first prepare a metal oxide, and after repeated filtration, washing, drying, calcining, and grinding, and then mixing the fine metal oxide with the solution in which the precious metal precursor is dissolved, after immersion for a long time. The product is dried and calcined to obtain a supported noble metal catalyst.
  • Japanese Patent Publication No. CN101229511 a method for preparing a nanocatalyst is disclosed.
  • the Ti0 2 dispersion is mixed with a stannous salt solution, stirred, washed, dispersed in water, and then added with a soluble precious metal salt solution.
  • Nanocatalyst The traditional liquid phase deposition method is not complicated, and the multi-step preparation of nano-catalyst is complicated. The stability of product quality is difficult to guarantee. It can not guarantee that all precious metal nanoparticles can be loaded on the metal oxide, resulting in low catalytic activity, which greatly limits the nanometer. Catalyst application. Summary of the invention
  • the present invention has been made to solve the above problems, and provides a method for preparing a supported noble metal catalyst which is continuous in process and simple in steps.
  • the preparation method of the supported noble metal catalyst of the invention comprises the following steps:
  • step 2) mixing the aqueous phase and the oil phase in the step 1) with a surfactant in a volume ratio of 1:10 to 1:3, and emulsification to form a water-in-oil emulsion, wherein the surfactant accounts for water-in-oil 2.0% ⁇ 20% of the total volume or total mass of the emulsion;
  • step 2) The water-in-oil emulsion of step 2) is obtained by atomization, ignition, combustion, cooling, and agglomeration steps. Loading precious metal catalyst powder;
  • the step 3) is carried out by supplying the water-in-oil emulsion to the flame spray pyrolysis apparatus.
  • the surfactant when the surfactant is a liquid, it accounts for 2.0% to 20% of the total volume of the emulsion, and when the surfactant is a solid, it accounts for 2.0% of the total mass of the emulsion. ⁇ 20%;
  • the specific process of the step 3) is that the emulsion is supplied to the atomizing nozzle through the peristaltic pump of the flame spray pyrolysis device, and is atomized by the atomized oxygen into a spray droplet; the atomizing nozzle The outlet is surrounded by a combustion-supporting flame composed of combustion-supporting oxygen and combustion-supporting formazan.
  • the oil phase solvent in the spray droplets and the noble metal precursor are burned to form precious metal particles, and a high-temperature flame reaction zone is formed; a large amount of combustion heat is coated in the emulsion droplets.
  • the aqueous solvent evaporates, and the metal oxide precursor dissolved in the aqueous solvent is pyrolyzed into the corresponding metal oxide; the noble metal particles produced by the combustion of the noble metal precursor pass through homogeneous nucleation or heterogeneous nucleation in the high temperature flame reaction zone. Loaded on the surface of the metal oxide to form a supported noble metal catalyst.
  • the emulsion according to the present invention comprises an aqueous phase containing a metal oxide precursor, an oil phase containing a noble metal precursor, and a surfactant, and the emulsion system is a water-in-oil (W/0) structure.
  • the emulsion is atomized into spray droplets by a flame spray pyrolysis device, and the spray droplets are subjected to a series of processes such as combustion, evaporation, nucleation, agglomeration and loading in a short time to obtain a noble metal-supported catalyst. Due to the water-in-oil structure of the emulsion system, precious metal particles are directly supported on the surface of the metal oxide particles during combustion.
  • the supported noble metal catalyst powder is collected on a glass fiber filter cloth using a particle collecting device under a vacuum provided by a vacuum pump.
  • the method for producing a supported noble metal catalyst according to the present invention wherein the total molar concentration of the metal oxide precursor in the water-in-oil emulsion in the aqueous phase is from 0.1 to 2.0 mol/L.
  • the method for producing a supported noble metal catalyst according to the present invention wherein the precious metal precursor in the water-in-oil emulsion has a mass of 0.01% to 10% by mass of the metal oxide precursor.
  • a method for producing a supported noble metal catalyst according to the present invention wherein the metal oxide precursor is A1(N0 3 ) 3 , Cr(N0 3 )3, Mn(N0 3 ) 2 , Mn(CH 3 COO) 2 , Fe(N0 3 ) 3 , Co(N0 3 ) 2 , Co(CH 3 COO) 2, Ni(N0 3 ) 2, Ni(CH 3 COO) 2, Cu(N0 3 ) 2 Cu(CH 3 COO) 2 Zn(CH 3 COO) 2 , Zn(N0 3 ) 2 , Zr(N0 3 ) 4 , Zr(CH 3 COO) 4 , Ba(CH 3 COO) 2 , Ba(N0 3 ) 2 La(N0 3 ) 3 , One or more of La(CH 3 COO) 3 , Ce(N0 3 ) 3 , Ce(CH 3 COO) 3 .
  • a method for producing a supported noble metal catalyst according to the present invention wherein the metal oxide precursor is preferably Mn(N0 3 ) 2, Mn(CH 3 COO) 2 , Co(N0 3 ) 2 , Co(CH 3 COO) 2 , one or more of Ni(N0 3 ) 2 , Ni(CH 3 COO) 2 , Ce(N0 3 ) 3 , Ce(CH 3 COO) 3 , and A1(N0 3 ) 3 .
  • the method for producing a supported noble metal catalyst according to the present invention wherein the noble metal precursor is one or more of Pd(acac) 2 , Pt(acac) 2 , R (acac) 3 Ru(acac) 3 .
  • the method for preparing a supported noble metal catalyst according to the present invention wherein the oil phase solvent is hexanium, hydrazine, hydrazine, cyclopentanyl, cyclohexanthene, benzene, toluene, xylene, gasoline, diesel, kerosene One or more.
  • the oil phase solvent is hexanium, hydrazine, hydrazine, cyclopentanyl, cyclohexanthene, benzene, toluene, xylene, gasoline, diesel, kerosene One or more.
  • a method of preparing a supported noble metal catalyst according to the present invention wherein the surfactant is a surfactant species well known to those skilled in the art, selected from, but not limited to, hexadecanyltrimethylammonium chloride (1631), Dodecyltrimethylammonium chloride (1231), dodecyldimethylbenzylammonium chloride (1227), tetradecyldimethylbenzylammonium chloride (1427), octadecyl Dimethylbenzylammonium chloride (1827), dodecyl dimethylamine oxide (OA-12), lauramide propyl amine oxide (LAO-30), cocamidopropyl amine oxide (CAO-30) ) Coco monoethanolamide (CMEA), cocodiethanolamide (6501), di(hydrogenated tallow) phthalic acid amide (TAB-2), fatty alcohol polyoxyethylene ether (AE), methyl Glucoside polyoxyethylene ether (E-20) castor oil polyoxy
  • the invention regulates the particle size of the metal oxide particles in the range of 10-100 nm by adjusting the concentration of the metal oxide precursor, the mass fraction of the noble metal precursor, the ratio of the oil phase to the water, and the amount of the surfactant, and the particle size of the noble metal particles is 0.1- lO nm range.
  • the invention combines the advantages of emulsion and flame spray pyrolysis technology to realize the regulation of precious metal particles on the nanometer scale, so that the noble metal particles are uniformly and uniformly dispersed on the metal oxide, and the preparation process of the invention is simple, continuous and easy to control. , with theoretical and practical application value.
  • Figure 1 is a schematic view showing the structure of a spray droplet of the present invention.
  • FIG. 2 is a schematic view of a flame spray pyrolysis apparatus of the present invention.
  • Figure 3 is a transmission electron micrograph of 5.0 w/.% Pt/CeO 2 -Mn 3 O 4 of the present invention, wherein the black dots are Pt particles.
  • Fig. 5 is a transmission electron micrograph of Pt/Ce0 2 -M n3 0 4 prepared by the liquid deposition method 78 in Comparative Example 2. detailed description
  • the noble metal catalyst powder is further prepared.
  • the emulsion flow rate is 9.225 mL/min.
  • the flow rates of combustion-supporting oxygen, combustion-supporting formazan and atomized oxygen were 4.0 L/min, 2.4 L/min and 4.0 L/min, respectively.
  • the powder was obtained using a particle collecting device.
  • the aqueous phase and the oil phase were ultrasonically mixed for 10 min, and 10 mL of the surfactant Span-80 was added to form a water-in-oil emulsion.
  • the noble metal catalyst powder is loaded by passing the emulsion through a flame spray pyrolysis apparatus.
  • the emulsion flow rate was 9.225 mL/min, and the flow rates of combustion-supporting oxygen, combustion-supporting formazan and atomized oxygen were 4.0 L/min, 2.4 L/min and 4.0 L/min, respectively.
  • the powder is obtained using a particle collecting device.
  • aqueous phase solution containing Ce(N0 3 ) 3 _6H 2 0 and 250 mL of a toluene phase containing Pt(acac) 2 were separately prepared.
  • the molar concentration of Ce(N0 3 ) 3 _6H 2 0 in the aqueous phase is 1.0 mol/L
  • the mass fraction of Pt(acac) 2 is Ce (0.5% of the mass of N0 3 _6H 2 0.
  • the aqueous phase and the oil are Phase sonic mixing for 10 min, simultaneously 10 mL of surfactant Span-80 and Triton X-100 (1:1 by volume) form a water-in-oil emulsion.
  • the water-in-oil emulsion is passed through a flame spray pyrolysis apparatus to produce a noble metal-supported catalyst powder.
  • the emulsion flow rate was 9.225 mL/min, and the flow rates of combustion-supporting oxygen, combustion-supporting formazan and atomized oxygen were 4.0 L/min, 2.4 L/min and 4.0 L/min, respectively.
  • the powder is obtained using a particle collecting device.
  • the water-in-oil emulsion was prepared by a flame spray pyrolysis device to prepare a noble metal-supported catalyst powder.
  • the emulsion flow rate was 9.225 mL/min, combustion-supporting oxygen, combustion-supporting
  • the flow rate of formazan and atomized oxygen was 4.0 L/min, 2.4 L/min and 4.0 L/min, respectively.
  • the powder was obtained using a particle collecting device.
  • 37.5 mL of an aqueous phase solution containing Ce(N0 3 ) r 6H 2 0 and Mn(CH 3 COO) H 2 0 in a molar ratio of 1:7 and 202.5 mL of a Pt( aCaC ) 2 octane oil phase were separately prepared.
  • the total molar concentration of the metal oxide precursor in the aqueous phase is 1.0 mol/L, and the mass fraction of Pt(acac) 2 is Ce(N0 3 ) 3 '6H 2 0 and the mass of Mn(CH 3 COO) 2 4H 2 0 And 5.0%.
  • the aqueous phase and the oil phase were ultrasonically mixed for 10 min, and 10 ml of the surfactant Tween-80 was added to form a water-in-oil emulsion.
  • the water-in-oil emulsion is passed through a flame spray pyrolysis apparatus to produce a noble metal-supported catalyst powder.
  • the emulsion flow rate was 9.225 mL/min, and the flow rates of combustion-supporting oxygen, combustion-supporting formazan and atomized oxygen were 4.0 L/min, 2.4 L/min and 4.0 L/min, respectively.
  • Obtained using a particle collection device 5.0w /.% Pt / CeO 2 -Mn 3 O4 powder (FIG. 3), Ce0 2 -Mn 3 04 particle size of 10-50 nm, particle diameter of Pt particles is 0.1-5 nm , more evenly distributed on the surface of the metal oxide particles, the active site of the precious metal is exposed to the surface.
  • 37.5 mL of an aqueous phase solution containing Ce(N0 3 ) r 6H 2 0 and Mn(CH 3 COO) H 2 0 in a molar ratio of 1:7 and 202.5 mL of a bismuth oil phase were separately prepared.
  • the total molar concentration of the metal oxide precursor in the aqueous phase is 1.0 mol/L.
  • the aqueous phase and the oil phase were ultrasonically mixed for 10 min, and 10 mL of the surfactant Tween-80 was added to form a water-in-oil emulsion.
  • the water-in-oil emulsion is passed through a flame spray pyrolysis apparatus to produce a noble metal-supported catalyst powder.
  • the emulsion flow rate was 9.225 mL/min, and the flow rates of combustion-supporting oxygen, combustion-supporting formazan and atomized oxygen were 4.0 L/min 2.4 L/min and 4.0 L/min, respectively.
  • the Ce0 2 -Mn 3 0 4 powder (Fig. 4) was obtained using a particle collecting device, and the Ce0 2 -Mn 3 0 4 particle size was 10-50 nm, and no Pt particles were deposited on the surface.
  • the aqueous phase and the oil phase were ultrasonically mixed for 10 min, and 50 mL of the surfactant Span-80 was added to form a water-in-oil emulsion.
  • the noble metal catalyst powder is loaded by passing the emulsion through a flame spray pyrolysis apparatus.
  • the emulsion flow rate was 9.225 mL/min, and the flow rates of combustion-supporting oxygen, combustion-supporting formazan and atomized oxygen were 4.0 L/min and 2.4 L/min R 4.0 L/min, respectively.
  • the powder is obtained using a particle collecting device.
  • aqueous phase containing Ni(N0 3 ) 2 , Zr(CH 3 COO) 2 , La(N0 3 ) 3 , Ba(CH 3 COO) 2 , Zn(N0 3 ) 2 Ba(N0 3 ) 2 was prepared separately.
  • the total molar concentration of the metal oxide precursor in the aqueous phase is 2.0 mol/L
  • the mass fraction of Pt(acac) 2 is 10% of the mass of the metal oxide precursor.
  • the aqueous phase and the oil phase were ultrasonically mixed for 10 min, and 10 mL of the surfactant Tween-80 was added to form a water-in-oil emulsion.
  • the noble metal catalyst powder is loaded by passing the emulsion through a flame spray pyrolysis apparatus.
  • the emulsion flow rate was 9.225 mL/min, and the flow rates of combustion-supporting oxygen, combustion-supporting formazan and atomized oxygen were 4.0 L/min, 2.4 L/min and 4.0 L/min, respectively.
  • the powder is obtained using a particle collecting device.
  • the emulsion is loaded with a precious metal catalyst powder by a flame spray pyrolysis device.
  • the emulsion flow rate is 9.225 mL/min, and the combustion-supporting oxygen, combustion-supporting formazan and atomized oxygen flow rates are respectively 4.0 L/min, 2.4 L/min R 4.0 L/min. Powder was obtained using a particle collection device.
  • Fig. 5 is a catalyst powder prepared by a liquid phase precipitation method, in which the product precious metal particles are poorly dispersed and the preparation steps are cumbersome.

Abstract

提供了一种负载贵金属催化剂的制备方法,该方法包括以下步骤:1)将金属氧化物前驱体溶于水,制成水相,以及将贵金属前驱体溶于油相溶剂,制成油相;2)将步骤1)中所述水相和油相按照1:10-1:3的体积比,与表面活性剂混合,超声乳化形成油包水乳液,其中所述表面活性剂占油包水乳液总体积或总质量的2.0%-20%;3)将步骤2)所述油包水乳液进行雾化、点火、燃烧、冷却和团聚,从而制得负载贵金属催化剂粉体。该方法过程简单、可连续操作并且易于控制。

Description

一种负载贵金属催化剂的制备方法
技术领域
本发明涉及催化剂制备领域, 具体地,本发明涉及一种负载贵金属催化剂的 制备方法。 背景技术
负载贵金属催化剂是一类广泛应用的环境友好催化剂材料,对甲醛低温催化 燃烧等反应具有良好的催化效果, 并在氨合成反应、有机污染物消除、加氢及重 整催化反应、 气体传感器、 燃料电池等方面有潜在或实际应用价值。
目前, 负载贵金属催化剂的制备技术主要为液相沉积法。 已有文献报道的负 载贵金属催化剂的制备涉及两步: 1 )制备金属氧化物; 2)沉积法将贵金属沉积 到金属氧化物上。液相沉积法的具体步骤是首先制备金属氧化物,经过反复过滤、 洗涤、干燥、煅烧和研磨等流程, 而后将研磨细的金属氧化物与溶有贵金属前驱 体的溶液混合, 长时间浸渍后, 干燥及煅烧产物而获得负载贵金属催化剂。如公 开号为 CN101229511的专利, 公开了一种纳米催化剂的制备方法, 将 Ti02分散液 与亚锡盐溶液混合、 搅拌、 洗涤后分散于水中, 再加入可溶性贵金属盐溶液,经 过一系列处理得到纳米催化剂。传统液相沉积法非连续、多步骤制备纳米催化剂 过程复杂,产物质量稳定性难以保证, 不能保证所有贵金属纳米颗粒都能负载到 金属氧化物上, 导致催化活性不高, 这极大限制了纳米催化剂的应用。 发明内容
本发明为解决上述问题,提供一种工艺连续、步骤简单的负载贵金属催化剂的制 备方法。
本发明的负载贵金属催化剂的制备方法, 包括以下步骤:
1 )将金属氧化物前驱体溶于水, 制成水相; 将贵金属前驱体溶于油相溶剂, 制成油相;
2)将步骤 1 ) 中所述水相和油相按照 1 :10〜1 :3的体积比, 与表面活性剂混 合,超声乳化形成油包水乳液, 其中所述表面活性剂占油包水乳液总体积或总质 量的 2.0%〜20%;
3 ) 将步骤 2) 所述油包水乳液经雾化、 点火、 燃烧、 冷却、 团聚步骤制得 负载贵金属催化剂粉体;
4) 收集负载贵金属催化剂粉体。
根据本发明的负载贵金属催化剂的制备方法, 所述步骤 3 ) 由油包水乳液供 给火焰喷雾热解装置完成。
根据本发明的负载贵金属催化剂的制备方法, 所述步骤 2) 中, 表面活性剂 为液体时, 占乳液总体积的 2.0%〜20%, 表面活性剂为固体时, 占乳液总质量 的 2.0%〜20%;
根据本发明的负载贵金属催化剂的制备方法, 所述步骤 3 ) 的具体过程为, 乳液通过火焰喷雾热解装置的蠕动泵供给到雾化喷嘴,被雾化氧气雾化成喷雾液 滴; 雾化喷嘴出口处环绕由助燃氧气和助燃甲垸构成的助燃火焰, 喷雾液滴中的 油相溶剂和贵金属前驱体燃烧生成贵金属颗粒, 并形成高温火焰反应区; 大量燃 烧热使乳液液滴中所包覆的水相溶剂蒸发,溶于水相溶剂的金属氧化物前驱体热 解为相应的金属氧化物;贵金属前驱体燃烧生成的贵金属颗粒在高温火焰反应区 通过均相成核或者异相成核作用负载在金属氧化物表面, 形成负载贵金属催化 剂。
本发明涉及的乳液由含有金属氧化物前驱体的水相、含有贵金属前驱体的油 相及表面活性剂构成, 乳液体系为油包水(W/0)结构。 乳液通过火焰喷雾热解 装置雾化为喷雾液滴, 短时间内喷雾液滴经燃烧、 蒸发、 成核、 团聚及负载等一 系列过程, 得到负载贵金属催化剂。 由于乳液体系的油包水结构, 使得在燃烧过 程中贵金属颗粒直接负载在金属氧化物颗粒表面。
根据本发明的负载贵金属催化剂的制备方法, 所述步骤 4) 中, 使用颗粒收 集装置在真空泵提供的负压下, 将负载贵金属催化剂粉体收集在玻璃纤维滤布 上。
根据本发明的负载贵金属催化剂的制备方法,其中,所述油包水乳液中金属 氧化物前驱体在水相中总摩尔浓度为 0.1〜2.0 mol/L。
根据本发明的负载贵金属催化剂的制备方法,其中,所述油包水乳液中贵金 属前驱体质量为金属氧化物前驱体质量的 0.01 %〜 10%。
根据本发明的负载贵金属催化剂的制备方法,其中,所述金属氧化物前驱体 为 A1(N03)3、 Cr(N03)3、 Mn(N03)2、 Mn(CH3COO)2、 Fe(N03)3、 Co(N03)2、 Co(CH3COO)2、Ni(N03)2、Ni(CH3COO)2、 Cu(N03)2 Cu(CH3COO)2 Zn(CH3COO)2、 Zn(N03)2、 Zr(N03)4、 Zr(CH3COO)4、 Ba(CH3COO)2、 Ba(N03)2 La(N03)3、 La(CH3COO)3、 Ce(N03)3、 Ce(CH3COO)3中的一种或多种。
根据本发明的负载贵金属催化剂的制备方法,其中,所述金属氧化物前驱体 优选为 Mn(N03)2、 Mn(CH3COO)2、 Co(N03)2、 Co(CH3COO)2、 Ni(N03)2、 Ni(CH3COO)2、 Ce(N03)3、 Ce(CH3COO)3、 A1(N03)3中的一种或多种。
根据本发明的负载贵金属催化剂的制备方法, 其中, 所述贵金属前驱体为 Pd(acac)2、 Pt(acac)2、 R (acac)3 Ru(acac)3中的一种或多种。
根据本发明的负载贵金属催化剂的制备方法, 其中, 所述油相溶剂为己垸、 庚垸、 辛垸、 环戊垸、 环己垸、 苯、 甲苯、 二甲苯、 汽油、 柴油、 煤油中的一种 或多种。
根据本发明的负载贵金属催化剂的制备方法,其中,所述表面活性剂为本领 域技术人员公知的表面活性剂种类, 选自但不局限于十六垸基三甲基氯化铵 (1631)、 十二垸基三甲基氯化铵 (1231)、 十二垸基二甲基苄基氯化铵 (1227)、 十四 垸基二甲基苄基氯化铵 (1427)、 十八垸基二甲基苄基氯化铵 (1827)、 十二垸基二 甲基氧化胺 (OA-12)、 月桂酰胺丙基氧化胺 (LAO-30)、 椰油酰胺丙基氧化胺 (CAO-30) 椰油酸单乙醇酰胺 (CMEA)、 椰油酸二乙醇酰胺 (6501)、 二 (氢化牛脂 基)邻苯二甲酸酰胺 (TAB-2)、 脂肪醇聚氧乙烯醚 (AE)、 甲基葡萄糖苷聚氧乙烯醚 (E-20) 蓖麻油聚氧乙烯醚 (EL)、 乙二醇单 (双)硬脂酸酯 (EGMS、 EGDS)、 单 (双) 硬脂酸甘油酯 (GMS、 E471) 壬基酚聚氧乙烯醚 (ΝΡΕΟ)、 辛基酚聚氧乙烯醚 (ΟΡΕΟ) 十二垸基聚氧乙烯醚 (DPEO)、 二壬基酚聚氧乙烯醚 (DNPEO)、 聚氧乙 烯 -8-辛基苯基醚 (Triton X- 100)、 失水山梨醇单月桂酸酯聚氧乙烯醚 (Tween-20)、 失水山梨醇单棕榈酸酯聚氧乙烯醚 (Tween-40)、 失水山梨醇单硬脂酸酯聚氧乙烯 醚 (Tween-60)、 失水山梨醇三硬脂酸酯聚氧乙烯醚 (Tween-65)、 失水山梨醇单油 酸酯聚氧乙烯醚 (Tween-80)、 失水山梨醇三油酸酯聚氧乙烯醚 (Tween-85)、 失水 山梨醇单月桂酸酯 (Span-20)、失水山梨醇单棕榈酸酯 (Span-40)、失水山梨醇单硬 脂酸酯 (Span-60)、 失水山梨醇三硬脂酸酯 (Span-65) 、 失水山梨醇单油酸酯 (Span-80)、 失水山梨醇三油酸酯 (Span-85)中的一种或几种。
本发明通过调节金属氧化物前驱体浓度、贵金属前驱体质量分数、油相与水 相比例、 表面活性剂用量, 调控金属氧化物颗粒粒径在 10-100 nm范围, 贵金属 颗粒粒径在 0.1-lO nm范围。 本发明结合乳液与火焰喷雾热解技术的优势, 实现 了贵金属颗粒在纳米尺度上的调控, 使贵金属颗粒均匀地、尺寸均一地分散在金 属氧化物上,本发明制备过程简单、连续且易于控制,具有理论及实际应用价值。 附图说明
图 1为本发明的喷雾液滴结构示意图。
图 2为本发明的火焰喷雾热解装置示意图。
图 3为本发明的 5.0w/.%Pt/CeO2-Mn3O4的透射电镜图片, 其中, 黑色点状 物为 Pt颗粒。
图 4为本发明的 Ce02-Mn304的透射电镜图片。
图 5为对比实施例 2中采用液相沉积 78法制备的 Pt/Ce02-Mn304的透射电镜图 片。 具体实施方式
下面通过具体实施例作进一步说明。
实施例 1
分别配制 37.5 mL含 Ce(N03 6H20的水相溶液和 202.5 mL含 Pt(acac)2的 二甲苯油相。 其中, Ce(N03)3_6H20在水相中的摩尔浓度为 1.0 mol/L, Pt(acac)2 的质量分数为 Ce(N03 _6H20质量的 0.2%。 将水相及油相超声混合 10 min, 同 时加入 10 mL的表面活性剂 Span-80, 形成油包水乳液。 将油包水乳液通过火焰 喷雾热解装置 (图 2) 形成喷雾液滴后 (喷雾液滴结构如图 1 ) 进一步制得负载 贵金属催化剂粉体。 乳液流量为 9.225 mL/min, 助燃氧气、 助燃甲垸及雾化氧气 流量分别为 4.0 L/min、 2.4 L/min及 4.0 L/min。 使用颗粒收集装置获得粉体。
实施例 2
分别配制 50 mL含 Ce(N03)3-6H20、 Mn(CH3COO)2 4H20、 A1(N03)3、 Zn(CH3COO)2、 Zr(N03)4、 La(CH3COO)3的水相溶液和 250.0 mL含 Pt(acac)2的二 甲苯油相。 其中, 所述金属氧化物前驱体在水相中的总摩尔浓度为 1.0 mol/L, Pt(acac)2的质量分数为所述金属氧化物前驱体质量的 0.2%。将水相及油相超声混 合 10 min, 同时加入 10 mL的表面活性剂 Span-80, 形成油包水乳液。 将乳液通 过火焰喷雾热解装置制得负载贵金属催化剂粉体。 乳液流量为 9.225 mL/min,助 燃氧气、 助燃甲垸及雾化氧气流量分别为 4.0 L/min、 2.4 L/min及 4.0 L/min。 使 用颗粒收集装置获得粉体。
实施例 3
分别配制 50 mL含 Ce(N03)3_6H20的水相溶液和 250 mL含 Pt(acac)2的甲苯 油相。 其中, Ce(N03)3_6H20在水相中的摩尔浓度为 1.0 mol/L, Pt(acac)2的质量 分数为 Ce(N03 _6H20质量的 0.5%。 将水相及油相超声混合 10 min, 同时加入 10 mL的表面活性剂 Span-80与 Triton X-100 (体积比为 1 : 1 ), 形成油包水乳液。 将油包水乳液通过火焰喷雾热解装置制得负载贵金属催化剂粉体。 乳液流量为 9.225 mL/min, 助燃氧气、 助燃甲垸及雾化氧气流量分别为 4.0 L/min、 2.4 L/min 及 4.0 L/min。 使用颗粒收集装置获得粉体。
实施例 4
配制 25ml含 Cu(CH3COO 的水相溶液和 250 mL分别含 Pd(acac)2、 R (acac)3 Ru(acac)3的甲苯油相。其中, Cu(CH3COO 在水相中的摩尔浓度为 0.5 mol/L, Pd(acac)2、 R (acac)3、 Ru(acac)3的质量为 Cu(CH3COO)2质量的 0.3%。将 水相及油相超声混合 10 min, 同时加入 10 mL的表面活性剂 Span-80, 形成油包 水乳液。将油包水乳液通过火焰喷雾热解装置制得负载贵金属催化剂粉体。乳液 流量为 9.225 mL/min,助燃氧气、助燃甲垸及雾化氧气流量分别为 4.0 L/min、 2.4 L/min及 4.0 L/min。 使用颗粒收集装置获得粉体。
实施例 5
分别配制 37.5 mL含摩尔比为 1 :7的 Ce(N03)r6H20及 Mn(CH3COO) H20 的水相溶液和 202.5 mL的 Pt(aCaC)2辛垸油相。 其中, 水相中金属氧化物前驱体 总摩尔浓度为 1.0 mol/L, Pt(acac)2 的质量分数为 Ce(N03)3'6H20 及 Mn(CH3COO)24H20质量和的 5.0%。 将水相及油相超声混合 10 min, 同时加入 10 ml的表面活性剂 Tween-80,形成油包水乳液。将油包水乳液通过火焰喷雾热解 装置制得负载贵金属催化剂粉体。 乳液流量为 9.225 mL/min, 助燃氧气、 助燃甲 垸及雾化氧气流量分别为 4.0 L/min、 2.4 L/min及 4.0 L/min。 使用颗粒收集装置 获得 5.0w/.%Pt/CeO2-Mn3O4粉体 (如图 3 ), Ce02-Mn304粒径为 10-50 nm, Pt 颗粒的粒径为 0.1-5 nm, 较均匀分布于金属氧化物颗粒表面, 贵金属活性位置暴 露于表面。
对比实施例 1
分别配制 37.5 mL含摩尔比为 1 :7的 Ce(N03)r6H20及 Mn(CH3COO) H20 的水相溶液和 202.5 mL的辛垸油相。 其中水相中金属氧化物前驱体总摩尔浓度 为 1.0 mol/L。 将水相及油相超声混合 lO min, 同时加入 10 mL的表面活性剂 Tween-80,形成油包水乳液。 将油包水乳液通过火焰喷雾热解装置制得负载贵金 属催化剂粉体。 乳液流量为 9.225 mL/min, 助燃氧气、 助燃甲垸及雾化氧气流量 分别为 4.0 L/min 2.4 L/min及 4.0 L/min。 使用颗粒收集装置获得 Ce02-Mn304 粉体 (如图 4), Ce02-Mn304粒径为 10-50 nm, 表面无 Pt颗粒沉积。 分别配制 50 mL含 Cr(N03)3、 Co(CH3COO)2、 Mn(N03)3 Ni(CH3COO)2、 Fe(N03)3、 Ce(CH3COO)3的水相溶液和 150 mL含 Pt(acac)2的己垸庚垸油相 (己 垸庚垸体积比 1 : 1 )。 其中, 所述金属氧化物前驱体在水相中的总摩尔浓度为 2.0 mol/L, Pt(acac)2的质量分数为所述金属氧化物前驱体质量的 10%。 将水相及油 相超声混合 10 min, 同时加入 50 mL的表面活性剂 Span-80, 形成油包水乳液。 将乳液通过火焰喷雾热解装置制得负载贵金属催化剂粉体。 乳液流量为 9.225 mL/min, 助燃氧气、助燃甲垸及雾化氧气流量分别为 4.0 L/min、 2.4 L/min R 4.0 L/min。 使用颗粒收集装置获得粉体。
实施例 7
分别配制 70 mL含 Ni(N03)2、 Zr(CH3COO)2、 La(N03)3、 Ba(CH3COO)2、 Zn(N03)2 Ba(N03)2的水相溶液和 420 mL含 Pt(acac)2的油相, 其中油相溶剂为 环戊垸、环己垸的混合物。其中, 所述金属氧化物前驱体在水相中的总摩尔浓度 为 2.0 mol/L, Pt(acac)2的质量分数为所述金属氧化物前驱体质量的 10%。将水相 及油相超声混合 10 min, 同时加入 10 mL的表面活性剂 Tween-80, 形成油包水 乳液。 将乳液通过火焰喷雾热解装置制得负载贵金属催化剂粉体。 乳液流量为 9.225 mL/min, 助燃氧气、 助燃甲垸及雾化氧气流量分别为 4.0 L/min、 2.4 L/min 及 4.0 L/min。 使用颗粒收集装置获得粉体。
实施例 8
分别配制 70 mL含 Cu(N03 的水相溶液和 420 mL含 Pd(acac)2、 Pt(acac)2 的汽油油相。其中,所述 Cu(N03)2在水相中的总摩尔浓度为 0.1 mol/L, Pd(acac)2、 Pt(aCaC)2的质量分数为所述金属氧化物前驱体质量的 0.01%。 将水相及油相超声 混合 10 min, 同时加入 10 mL的表面活性剂 Tween-80, 形成油包水乳液。 将乳 液通过火焰喷雾热解装置制得负载贵金属催化剂粉体。 乳液流量为 9.225 mL/min, 助燃氧气、助燃甲垸及雾化氧气流量分别为 4.0 L/min、 2.4 L/min R 4.0 L/min。 使用颗粒收集装置获得粉体。
对比实施例 2
分别配制 100 mL含 Ce(N03)3'6H20、 Mn(CH3COO)2-4H20 (摩尔比 1 :7)水溶液 和 3 mol/L的 NaOH水溶液。 其中 Ce(N03)3 ·6Η20在水相中的摩尔浓度为 0.047 mol/L。 将 NaOH溶液滴加到含有 Ce、 Mn的溶液中同时充分混合, 形成沉淀。 将 得到的沉淀物经过多次过滤、 洗涤后 110°C干燥 10 h, 在真空度为 85 mbar的状态
6 下, 升温至 350°C并保温 5h, 得到 Ce02-Mn304粉体。 配制 50 mL乙酰丙酮铂的丙 酮溶液 (2g/L), 并将 1 g的 Ce02-Mn304粉体分散于上述溶液中, 超声分散 30 min 将分散液至于旋转蒸发器中 10 h, 真空度为 O.l MPa, 温度为 20Ό, 将丙酮溶剂 蒸干得到固体粉末。 将该固体粉末在 5%Η22的气氛中 (流速为 200mL/min), 升 温至 350°C并保温 5h。 得到液相沉淀法制备的催化剂粉体。 图 5为液相沉淀法制 备的催化剂粉体, 产物贵金属颗粒分散性差且制备步骤冗繁。

Claims

权利要求
1、 一种负载贵金属催化剂的制备方法, 其特征在于, 包括以下步骤:
1 )将金属氧化物前驱体溶于水, 制成水相; 将贵金属前驱体溶于油相溶剂, 制成油相;
2)将步骤 1 ) 中所述水相和油相按照 1 :10〜1 :3的体积比, 与表面活性剂混 合,超声乳化形成油包水乳液, 其中所述表面活性剂占油包水乳液总体积或总质 量的 2.0%〜20%;
3 ) 将步骤 2) 所述油包水乳液经雾化、 点火、 燃烧、 冷却、 团聚步骤制得 负载贵金属催化剂粉体。
2、 根据权利要求 1所述负载贵金属催化剂的制备方法, 其特征在于, 所述 步骤 3 ) 由油包水乳液供给火焰喷雾热解装置完成。
3、 根据权利要求 1所述负载贵金属催化剂的制备方法, 其特征在于, 所述 油包水乳液中金属氧化物前驱体在水相中总摩尔浓度为 0.1〜2.0 mol/L。
4、 根据权利要求 1所述负载贵金属催化剂的制备方法, 其特征在于, 所述 油包水乳液中贵金属前驱体质量为金属氧化物前驱体质量的 0.01%〜10%。
5、 根据权利要求 1所述负载贵金属催化剂的制备方法, 其特征在于, 所述 金属氧化物前驱体为 A1(N03)3、 Cr(N03)3、 Mn(N03)2 Mn(CH3COO)2 Fe(N03)3、 Co(N03)2、 Co(CH3COO)2、 Ni(N03)2、 Ni(CH3COO)2、 Cu(N03)2、 Cu(CH3COO)2、 Zn(CH3COO)2、 Zn(N03)2 Zr(N03)4、 Zr(CH3COO)4、 Ba(CH3COO)2、 Ba(N03)2、 La(N03)3、 La(CH3COO)3、 Ce(N03)3、 Ce(CH3COO)3中的一种或多种。
6、 根据权利要求 4所述负载贵金属催化剂的制备方法, 其特征在于, 所述 金属氧化物前驱体为 Mn(N03)2、 Mn(CH3COO)2、 Co(N03)2、 Co(CH3COO)2、 Ni(N03)2、 Ni(CH3COO)2、 Ce(N03)3、 Ce(CH3COO)3、 A1(N03)3中的一种或多种。
7、 根据权利要求 1所述负载贵金属催化剂的制备方法, 其特征在于, 所述 贵金属前驱体为 Pd(acac 、 Pt(acac)2 Rh(acac)3 Ru(acac)3中的一种或多种。
8、根据权利要求 1所述负载贵金属催化剂的制备方法, 其特征在于, 所述油 相溶剂为己垸、 庚垸、 辛垸、 环戊垸、 环己垸、 苯、 甲苯、二甲苯、 汽油、 柴油、 煤油中的一种或多种。
PCT/CN2012/074466 2012-04-20 2012-04-20 一种负载贵金属催化剂的制备方法 WO2013155711A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/074466 WO2013155711A1 (zh) 2012-04-20 2012-04-20 一种负载贵金属催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/074466 WO2013155711A1 (zh) 2012-04-20 2012-04-20 一种负载贵金属催化剂的制备方法

Publications (1)

Publication Number Publication Date
WO2013155711A1 true WO2013155711A1 (zh) 2013-10-24

Family

ID=49382824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074466 WO2013155711A1 (zh) 2012-04-20 2012-04-20 一种负载贵金属催化剂的制备方法

Country Status (1)

Country Link
WO (1) WO2013155711A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160912A1 (en) * 2001-02-23 2002-10-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide powder, catalyst and process for producing the same
CN1792425A (zh) * 2005-12-27 2006-06-28 中国科学院上海硅酸盐研究所 核壳结构可见光催化活性的纳米复合材料的制备方法
CN101632928A (zh) * 2009-08-14 2010-01-27 昆明理工大学 火焰燃烧合成法一步制备nsr催化剂
EP2436440A1 (en) * 2010-10-04 2012-04-04 General Electric Company Catalyst and method of manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160912A1 (en) * 2001-02-23 2002-10-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide powder, catalyst and process for producing the same
CN1792425A (zh) * 2005-12-27 2006-06-28 中国科学院上海硅酸盐研究所 核壳结构可见光催化活性的纳米复合材料的制备方法
CN101632928A (zh) * 2009-08-14 2010-01-27 昆明理工大学 火焰燃烧合成法一步制备nsr催化剂
EP2436440A1 (en) * 2010-10-04 2012-04-04 General Electric Company Catalyst and method of manufacture

Similar Documents

Publication Publication Date Title
CN108295848B (zh) 一种高分散纳米催化剂的制备方法
CN1318133C (zh) 纳米二氧化钛负载银纳米粒子的方法
CN102513104A (zh) 一种苯甲醛类化合物的制备方法及其用新型介孔碳担载的双金属催化剂
CN102513099A (zh) 一种新型介孔碳担载的金属催化剂及其制备方法
CN109718806A (zh) 一种贵金属单原子催化剂及其制备方法和应用
CN103372430B (zh) 一种负载贵金属催化剂的制备方法
JP2010540232A (ja) 水素化および脱水素化反応において使用する焼結耐性触媒ならびにその製造方法
CN109529858A (zh) 一种改性镍硅催化剂及其在催化顺酐加氢制备γ-丁内酯中的应用
JP5010547B2 (ja) 高活性触媒およびその製造方法
CN109529850A (zh) 一种镍硅催化剂及其制备方法和应用
CN101940952A (zh) 双金属纳米颗粒催化剂及其制备方法
Liu et al. Aluminum metal–organic framework–silver nanoparticle composites for catalytic reduction of nitrophenols
Liu et al. Architecture controlled PtNi@ mSiO 2 and Pt–NiO@ mSiO 2 mesoporous core–shell nanocatalysts for enhanced p-chloronitrobenzene hydrogenation selectivity
WO2014067186A1 (zh) 一种贵金属整体式催化剂及其制备方法
CN108144610A (zh) 火焰喷射裂解法制备的铜基加氢催化剂及其制备和应用
JP5660006B2 (ja) 排ガス浄化用Co3O4/CeO2複合触媒の製造方法およびそれによって得られた触媒
JP7371102B2 (ja) 炭素ベースの貴金属-遷移金属複合触媒及びこれの製造方法
CN101616736B (zh) 含有铂族金属纳米颗粒的催化剂和生产铂族金属纳米颗粒分散体系的工艺
CN112569948B (zh) 一种钙钛矿纳米颗粒催化剂及其制备方法与应用
CN108499568B (zh) 一种加压二氧化碳重整甲烷的镍基催化剂
CN115518653B (zh) 一种高效催化乙醇氧化羰基化制备碳酸二乙酯的催化剂及其制备方法
CN102675271A (zh) 一种苯酞及其衍生物的连续化制备方法
JP2017012999A (ja) 金−セリウム酸化物複合体触媒および該触媒を用いた選択的水素化方法
WO2015104025A1 (en) Method of preparing a catalyst structure
WO2013155711A1 (zh) 一种负载贵金属催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/03/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12874461

Country of ref document: EP

Kind code of ref document: A1